JP6108559B2 - Method for producing lignin from biomass using lignin-soluble ionic liquid, and method for producing lignin, hemicellulose, and cellulose - Google Patents

Method for producing lignin from biomass using lignin-soluble ionic liquid, and method for producing lignin, hemicellulose, and cellulose Download PDF

Info

Publication number
JP6108559B2
JP6108559B2 JP2014522492A JP2014522492A JP6108559B2 JP 6108559 B2 JP6108559 B2 JP 6108559B2 JP 2014522492 A JP2014522492 A JP 2014522492A JP 2014522492 A JP2014522492 A JP 2014522492A JP 6108559 B2 JP6108559 B2 JP 6108559B2
Authority
JP
Japan
Prior art keywords
group
lignin
ionic liquid
carbon atoms
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014522492A
Other languages
Japanese (ja)
Other versions
JPWO2014002674A1 (en
Inventor
伊藤 敏幸
敏幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Publication of JPWO2014002674A1 publication Critical patent/JPWO2014002674A1/en
Application granted granted Critical
Publication of JP6108559B2 publication Critical patent/JP6108559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/14Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/088Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/20Pulping cellulose-containing materials with organic solvents or in solvent environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、リグニン溶解性イオン液体を使用したバイオマスからのリグニンの製造方法、及びリグニン、ヘミセルロース、及びセルロースの製造方法に関する。   The present invention relates to a method for producing lignin from biomass using a lignin-soluble ionic liquid, and lignin, hemicellulose, and a method for producing cellulose.

リグニンは芳香族環をもつフェニルプロパノイドの複雑な架橋結合により3次元網目構造をした巨大分子であり、リグニンが多く含有されている木材では、セルロースとリグニンが複雑な複合体を形成しているため、純粋なリグニンを取り出すのは困難であった。リグニンを可溶化して木材から製造する方法としては、従来は硫酸中フェノール溶液で加熱、あるいは、22MPaという高圧下300℃の亜臨界水で加水分解する方法が知られていた。   Lignin is a macromolecule with a three-dimensional network structure formed by complex cross-linking of phenylpropanoids with aromatic rings. In wood that contains a lot of lignin, cellulose and lignin form a complex complex. Therefore, it was difficult to extract pure lignin. Conventionally known methods for solubilizing lignin from wood include heating with a phenol solution in sulfuric acid or hydrolysis with subcritical water at 300 ° C. under a high pressure of 22 MPa.

また、近年、リグニンを溶解するのに、イオン液体を溶媒とする方法が提案されている(非特許文献1)。非特許文献1は竹の粉末をイミダゾリウム塩イオン液体で溶解させる方法が記載されている。   In recent years, a method using an ionic liquid as a solvent for dissolving lignin has been proposed (Non-patent Document 1). Non-Patent Document 1 describes a method of dissolving bamboo powder with an imidazolium salt ionic liquid.

Nawshad Muhammad et al., Appl Biochem Biotechnol, 2011, 165, 998-1009.Nawshad Muhammad et al., Appl Biochem Biotechnol, 2011, 165, 998-1009.

しかし、硫酸中フェノール溶液で加熱する方法はコスト面でも安全性でも問題があり、亜臨界水で加水分解する方法はクリーンな方法であるが大規模な処理装置を有しエネルギー収支の点で問題があり、非特許文献1は少量しか溶解せず、抽出溶媒がアセトンと水の混合溶媒であるため、環境への負荷が懸念される。
本発明は、このような事情に鑑みてなされたものであり、リグニンの溶解性が高いイオン液体の開発と、簡単な装置で低コスト、安全にバイオマスからリグニンを製造するリグニン製造方法を提供するものである。
However, the method of heating with a phenol solution in sulfuric acid has problems in terms of cost and safety, and the method of hydrolyzing with subcritical water is a clean method, but it has a large-scale treatment device and has a problem in terms of energy balance. In Non-Patent Document 1, only a small amount is dissolved, and the extraction solvent is a mixed solvent of acetone and water, so there is a concern about the burden on the environment.
The present invention has been made in view of the above circumstances, and provides an ionic liquid having high lignin solubility and a lignin production method for producing lignin from biomass safely and at low cost with a simple apparatus. Is.

本発明によれば、下記化学式(1)
(式(1)中、R、Rは、同じでも違っていてもよく、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を表し、Rは、1種又は複数置換されてもよく、水素原子、アミノ基、ヒドロキシ基、フェニル基、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルコキシ基を表し、Yは、CH、O、Sを表し、nは、環員数に対応し、n=1、2であり、Xは、アミノ酸由来のアニオンを表す。前記アルキル基、アルケニル基、アルコキシ基は置換基として、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数有してもよい。)で表させるリグニン溶解性イオン液体が提供される。
According to the present invention, the following chemical formula (1)
(In the formula (1), R 1, R 3 may be different also identical, represent an alkyl group, an alkenyl group having 2 to 6 carbon atoms having 1 to 6 carbon atoms, R 2 is one or more It may be substituted, and represents a hydrogen atom, an amino group, a hydroxy group, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group, and Y represents CH 2 , O, S N represents the number of ring members, n = 1, 2 and X represents an anion derived from an amino acid, and the alkyl group, alkenyl group, and alkoxy group are substituted with halogen, amino group, phenyl A lignin-soluble ionic liquid represented by a group, a cycloalkyl group, an alkoxy group, or a hydroxy group.

本発明者らは、リグニンを溶解するイオン液体の開発の鋭意検討を行ったところ、従来用いられてきたイミダゾリウム塩イオン液体ではリグニンの溶解性が乏しかったのに対し、上記化学式(1)で表されるイオン液体を使用することによって、バイオマスからリグニンが容易に抽出できることが分かった。そして、高温高圧の条件を必要とすることがなく、安全にリグニンを製造できることが分かり、本発明の完成に到った。   The inventors of the present invention conducted intensive studies on the development of an ionic liquid that dissolves lignin. The imidazolium salt ionic liquid that has been used conventionally has poor solubility of lignin, whereas the chemical formula (1) It was found that lignin can be easily extracted from biomass by using the expressed ionic liquid. Then, it was found that lignin can be produced safely without requiring high-temperature and high-pressure conditions, and the present invention has been completed.

本発明者らの実験によると、カチオンにイミダゾリウム塩やアンモニウム塩を用いた場合に比べて、ピロリジニウム塩やピペリジニウム塩を用いた場合、リグニンの溶解度が高くなった。またアニオンにアミノ酸を用いることで、リグニン溶解性が高いイオン液体になることが分かった。   According to the experiments by the present inventors, the solubility of lignin was higher when pyrrolidinium salt or piperidinium salt was used than when imidazolium salt or ammonium salt was used as the cation. Moreover, it turned out that it becomes an ionic liquid with high lignin solubility by using an amino acid for an anion.

図1は、本発明のリグニン溶解実験で得られた析出リグニンと標品リグニンのXRDを測定した結果を示す。FIG. 1 shows the results of measuring XRD of precipitated lignin and standard lignin obtained in the lignin dissolution experiment of the present invention. 図2は、本発明のリグニンの製造方法を説明するための実験例である。FIG. 2 is an experimental example for explaining the method for producing lignin of the present invention. 図3は、本発明のリグニンの製造方法で得られた析出リグニン、溶け残りのセルロースと標品とのXRDを測定した結果を示す。FIG. 3 shows the result of XRD measurement of precipitated lignin obtained by the lignin production method of the present invention, undissolved cellulose and a sample. 図4は、本発明のリグニンの製造方法で得られた析出リグニンと標品リグニンのIRを測定した結果を示す。FIG. 4 shows the results of IR measurement of precipitated lignin and standard lignin obtained by the lignin production method of the present invention. 図5は、本発明のリグニンの製造、セルロース、ヘミセルロースの分離方法を説明するための実験例である。FIG. 5 is an experimental example for explaining the production method of lignin and the method for separating cellulose and hemicellulose of the present invention. 図6は、本発明のリグニンの製造方法で杉チップから得られたリグニンと標品リグニンとのXRDとIRを測定した結果を示す。FIG. 6 shows the results of measuring XRD and IR of lignin obtained from cedar chips and standard lignin by the lignin production method of the present invention. 図7は、本発明のリグニンの製造方法で杉チップから得られたセルロースと標品セルロースとのXRDとIRを測定した結果を示す。FIG. 7 shows the results of measurement of XRD and IR of cellulose obtained from cedar chips by the lignin production method of the present invention and standard cellulose. 図8は、本発明のリグニンの製造方法で杉チップから得られたヘミセルロースと杉チップから得られたセルロースとのXRDとIRを測定した結果を示す。FIG. 8 shows the results of measuring XRD and IR of hemicellulose obtained from cedar chips and cellulose obtained from cedar chips by the lignin production method of the present invention. 図9は、本発明のリグニンの製造方法で杉チップから得られたリグニンのMALDI−QIT−TOF MSを測定した結果を示す。FIG. 9 shows the results of measuring MALDI-QIT-TOF MS of lignin obtained from cedar chips by the lignin production method of the present invention. 図10は、本発明のリグニンの製造方法で杉、ヒノキ、ラワンチップから得られたリグニンのMALDI−QIT−TOF MSを測定した結果を示す。FIG. 10 shows the results of measuring MALDI-QIT-TOF MS of lignin obtained from cedar, hinoki and lawan chips by the lignin production method of the present invention.

以下、本発明の一実施形態について、詳細に説明する。
///////////////////////////////
<<1.リグニン溶解性イオン液体>>
<<2.イオン液体の合成>>
<2−1.塩化工程>
<2−2.塩交換工程>
(イオン交換樹脂法)
(酸化銀・メタノール法)
<<3.リグニン製造方法>>
<3−1.工程(1)リグニン溶解工程>
(バイオマス)
<3−2.工程(2)固液分離工程>
(再抽出工程)
<3−3.工程(3)リグニン析出工程>
<3−4.セルロース・ヘミセルロース分離工程>
(工程(4)ヘミセルロース抽出工程)
(工程(5)セルロース・ヘミセルロース分離工程)
(工程(6)セルロース・ヘミセルロース回収工程)
///////////////////////////////
Hereinafter, an embodiment of the present invention will be described in detail.
///////////////////////////////
<< 1. Lignin-soluble ionic liquid >>
<< 2. Synthesis of ionic liquid >>
<2-1. Chlorination process>
<2-2. Salt exchange process>
(Ion exchange resin method)
(Silver oxide / methanol method)
<< 3. Lignin production method >>
<3-1. Process (1) Lignin dissolution process>
(biomass)
<3-2. Step (2) Solid-liquid separation step>
(Re-extraction process)
<3-3. Step (3) Lignin Precipitation Step>
<3-4. Cellulose / hemicellulose separation process>
(Process (4) hemicellulose extraction process)
(Step (5) cellulose / hemicellulose separation step)
(Process (6) Cellulose / hemicellulose recovery process)
///////////////////////////////

<<1.リグニン溶解性イオン液体>>
リグニン溶解性を持つイオン液体は、下記の化学式(1)で表される。
<< 1. Lignin-soluble ionic liquid >>
The ionic liquid having lignin solubility is represented by the following chemical formula (1).

式(1)中、R、Rは、同じでも違っていてもよく、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を表し、Rは、1種又は複数置換されてもよく、水素原子、アミノ基、ヒドロキシ基、フェニル基、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルコキシ基を表し、Yは、CH、O、Sを表し、nは、環員数に対応し、n=1、2であり、Xは、アミノ酸由来のアニオンを表す。前記アルキル基、アルケニル基、アルコキシ基は置換基として、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数有してもよい。 In formula (1), R 1 and R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms, and R 2 is one or more substituted. And represents a hydrogen atom, an amino group, a hydroxy group, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group, and Y represents CH 2 , O, and S. N represents the number of ring members, n = 1, 2 and X represents an anion derived from amino acid. The alkyl group, alkenyl group, and alkoxy group may have one or more of halogen, amino group, phenyl group, cycloalkyl group, alkoxy group, and hydroxy group as a substituent.

炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられ、それぞれ、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数に置換されていてもよい。   Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a halogen, an amino group, a phenyl group, a cycloalkyl group, and an alkoxy group, respectively. Alternatively, one or more hydroxy groups may be substituted.

炭素数2〜6のアルケニル基としては、例えば、ビニル基、アリル基、3−ブテニル基、4−ペンテニル基、5−ヘキセニル基が挙げられ、それぞれ、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数に置換されていてもよい。   Examples of the alkenyl group having 2 to 6 carbon atoms include a vinyl group, an allyl group, a 3-butenyl group, a 4-pentenyl group, and a 5-hexenyl group. A halogen, an amino group, a phenyl group, and a cycloalkyl group, respectively. In addition, one or more of an alkoxy group or a hydroxy group may be substituted.

ハロゲンとしてはフルオロ基、クロロ基、ブロモ基が挙げられ、シクロアルキル基としてはシクロペンチル基、シクロヘキシル基が挙げられ、アルコキシ基としてはメトキシ基、エトキシ基が挙げられる。   Examples of the halogen include a fluoro group, a chloro group, and a bromo group. Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the alkoxy group include a methoxy group and an ethoxy group.

なかでもR、Rとしては、炭素数1〜6のアルキル基とアルコキシアルキル基の組み合わせが好ましく、特にメチル基と2−メトキシエチル基の組み合わせが好ましく、Rとしては水素原子が好ましい。Among these, as R 1 and R 3 , a combination of an alkyl group having 1 to 6 carbon atoms and an alkoxyalkyl group is preferable, and a combination of a methyl group and a 2-methoxyethyl group is particularly preferable, and R 2 is preferably a hydrogen atom.

Yとしては、CHが好ましく、nとしては、n=1が好ましい。Y is preferably CH 2 and n is preferably n = 1.

Xはアミノ基とカルボキシル基を同一炭素上に持つ化合物であり、例えばL−アミノ酸、D−アミノ酸が挙げられ、このうちL−アミノ酸が好ましく、特にリジン、アルギニンが好ましい。   X is a compound having an amino group and a carboxyl group on the same carbon, and examples thereof include L-amino acids and D-amino acids. Among these, L-amino acids are preferable, and lysine and arginine are particularly preferable.

<<2.イオン液体の合成>>
イオン液体の合成は大きく分けて次の2つの工程、<2−1.塩化工程>、<2−2.塩交換工程>で合成される。
<< 2. Synthesis of ionic liquid >>
The synthesis of the ionic liquid is roughly divided into the following two steps: <2-1. Chlorination step>, <2-2. Synthesized in the salt exchange step>.

<2−1.塩化工程>
塩化工程では、ピロリジン誘導体と末端にハロゲンを持つ化合物を混合し、ハロゲンをアニオンに持つピロリジニウム塩を合成する。具体的には例えば、ピロリジン誘導体と末端にハロゲンを持つ化合物を反応容器に入れ、40〜160℃で混合する。常圧で混合を行なってもよく、耐圧容器を用いて加圧条件下で行なってもよい。反応容器は、特に限定はしないが、ガラス製やテフロン(登録商標)製などが利用できる。前記混合方法は、特に限定はしないが、スターラーを用いてもよく、振とう機を用いてもよい。
<2-1. Chlorination process>
In the chlorination step, a pyrrolidine derivative and a compound having halogen at the terminal are mixed to synthesize a pyrrolidinium salt having halogen as an anion. Specifically, for example, a pyrrolidine derivative and a compound having a halogen at the terminal are placed in a reaction vessel and mixed at 40 to 160 ° C. Mixing may be performed at normal pressure, or may be performed under pressure using a pressure vessel. The reaction vessel is not particularly limited, but glass, Teflon (registered trademark), or the like can be used. The mixing method is not particularly limited, but a stirrer or a shaker may be used.

塩化工程の反応温度は、40〜160℃であり、好ましくは60〜100℃である。塩化工程の温度が低すぎると反応が進行せず、温度が高すぎると原料が気化し、イオン液体が着色するためである。この温度は、具体的には例えば、40、50、60、70、80、90、100、110、120、130、140、150又は160℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The reaction temperature in the chlorination step is 40 to 160 ° C, preferably 60 to 100 ° C. This is because if the temperature of the chlorination step is too low, the reaction does not proceed, and if the temperature is too high, the raw material is vaporized and the ionic liquid is colored. Specifically, this temperature is, for example, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, or 160 ° C., and between any two of the numerical values exemplified here. It may be within the range.

塩化工程の反応時間は、特に限定はしないが、例えば6〜48時間であり、好ましくは12〜24時間である。この時間は、具体的には例えば、6、7、8、9、10、11、12、15、18、21、24、27、30、36、42又は48時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   Although the reaction time of a chlorination process is not specifically limited, For example, it is 6 to 48 hours, Preferably it is 12 to 24 hours. Specifically, this time is, for example, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24, 27, 30, 36, 42, or 48 hours. It may be within the range between any two.

塩化工程の後、さらに、洗浄溶媒を加えて洗浄を行う洗浄工程を行なってもよい。洗浄工程は、未反応の基質を取り除くために行う工程である。前記洗浄溶媒は、特に限定されないが、ヘキサン、酢酸エチル、アセトニトリルやそれらの混合溶媒が挙げられ、基質を溶解し、ハロゲンをアニオンに持つピロリジニウム塩を溶解しない溶媒であればよい。   You may perform the washing | cleaning process which adds a washing | cleaning solvent and wash | cleans after the chlorination process. The washing step is a step performed to remove unreacted substrate. The washing solvent is not particularly limited, and examples thereof include hexane, ethyl acetate, acetonitrile, and mixed solvents thereof, and any solvent that dissolves a substrate and does not dissolve a pyrrolidinium salt having a halogen as an anion may be used.

<2−2.塩交換工程>
塩交換工程では、アニオンのハロゲンを目的のアミノ酸に交換を行う。
上記の化学式(1)のイオン液体を合成する方法は下記の(イオン交換樹脂法)と(酸化銀・メタノール法)の2つあり、(イオン交換樹脂法)は使用するイオン交換樹脂が再利用できるためコストが低く、(酸化銀・メタノール法)は大量合成に向いている利点がそれぞれある。(イオン交換樹脂法)と(酸化銀・メタノール法)で得られる生成物は全く同じであり、それぞれの利点を加味して状況に合わせた合成法を選ぶことができる。
<2-2. Salt exchange process>
In the salt exchange step, the anionic halogen is exchanged for the target amino acid.
There are two methods of synthesizing the ionic liquid of the above chemical formula (1): (ion exchange resin method) and (silver oxide / methanol method), and the ion exchange resin used is reused in (ion exchange resin method) The cost is low because it is possible, and the (silver oxide / methanol method) has advantages that are suitable for mass synthesis. The products obtained by the (ion exchange resin method) and the (silver oxide / methanol method) are exactly the same, and a synthesis method can be selected according to the situation taking into account the respective advantages.

(イオン交換樹脂法)
イオン交換樹脂法では、イオン交換樹脂に上記の<2−1.塩化工程>で得られたハロゲンをアニオンに持つピロリジニウム塩を通すことによりアニオンが水酸化物イオンに交換され、続いてアミノ酸と反応させることにより、水分子として脱離し、アニオンがアミノ酸であるピロリジニウム塩イオン液体が合成できる。具体的には例えば、ピロリジニウム塩水溶液をイオン交換樹脂に通し、アミノ酸水溶液と混合する。その後、水を留去する。前記イオン交換樹脂は、特に限定はしないが、陰イオン交換樹脂であり、アニオンをハロゲンから水酸化物イオンに交換できるものであればよい。反応容器は、特に限定はしないが、ガラス製、テフロン製やプラスチック製などが利用できる。前記混合方法は、特に限定はしないが、スターラーを用いてもよく、振とう機を用いてもよい。
(Ion exchange resin method)
In the ion exchange resin method, the above <2-1. The pyrrolidinium salt in which the anion is an amino acid is eliminated by passing the pyrrolidinium salt having halogen as an anion obtained in the chlorination step> by exchanging the anion with a hydroxide ion and subsequently reacting with an amino acid. An ionic liquid can be synthesized. Specifically, for example, an aqueous pyrrolidinium salt solution is passed through an ion exchange resin and mixed with an aqueous amino acid solution. Thereafter, water is distilled off. The ion exchange resin is not particularly limited, but may be an anion exchange resin as long as it can exchange an anion from a halogen to a hydroxide ion. Although the reaction vessel is not particularly limited, glass, Teflon, plastic, or the like can be used. The mixing method is not particularly limited, but a stirrer or a shaker may be used.

イオン交換樹脂を用いた塩交換の方法は、特に限定はしないが、筒状やロート状の容器にイオン交換樹脂を充填し、そこに自然落下又は圧力をかけて通す方法や、ビーカーやフラスコに入れ混合する方法でもよく、アニオンがハロゲンから水酸化物イオンへ交換される方法であればよい。
具体的には例えば、ガラス製のカラムにイオン交換樹脂を充填し、そこにピロリジニウム塩を自然落下により通すことで塩交換することができる。
The method of salt exchange using an ion exchange resin is not particularly limited, but a method of filling a cylindrical or funnel-shaped container with an ion exchange resin and letting it fall naturally or applying pressure thereto, beaker or flask A method of mixing and mixing may be used as long as the anion is exchanged from halogen to hydroxide ion.
Specifically, for example, salt exchange can be performed by filling a glass column with an ion exchange resin and passing a pyrrolidinium salt through natural dropping therethrough.

イオン交換樹脂法の反応温度は、−10〜30℃であり、好ましくは0〜10℃である。イオン交換樹脂法の温度が低すぎると反応が進行せず、温度が高すぎると原料が壊れてしまうためである。この温度は、具体的には例えば、−10、−5、0、5、10、20又は30℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The reaction temperature of the ion exchange resin method is −10 to 30 ° C., preferably 0 to 10 ° C. This is because the reaction does not proceed when the temperature of the ion exchange resin method is too low, and the raw material is broken when the temperature is too high. Specifically, this temperature is, for example, −10, −5, 0, 5, 10, 20 or 30 ° C., and may be within a range between any two of the numerical values exemplified here.

イオン交換樹脂法の反応時間は、特に限定はしないが、例えば6〜48時間であり、好ましくは12〜24時間である。この時間は、具体的には例えば、6、7、8、9、10、11、12、15、18、21、24、27、30、36、42又は48時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The reaction time of the ion exchange resin method is not particularly limited, but is, for example, 6 to 48 hours, preferably 12 to 24 hours. Specifically, this time is, for example, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24, 27, 30, 36, 42, or 48 hours. It may be within the range between any two.

イオン交換樹脂法では、さらに、水を留去した後に、洗浄分離工程を行なってもよい。洗浄分離工程は、未反応の基質を取り除くために行う工程である。洗浄溶媒は、特に限定されないが、アセトニトリル、メタノール、アセトンやそれらの混合溶媒が挙げられ、ピロリジニウム塩イオン液体を溶解し、基質を溶解しない溶媒であればよい。
分離方法は、特に限定されないが、例えば、ろ過や遠心分離などの方法を用いることができる。ろ過の方法としては、自然ろ過、減圧ろ過または加圧ろ過が挙げられる。
洗浄分離工程により未反応基質を取り除き、洗浄溶媒を留去することでピロリジニウム塩イオン液体を得ることができる。
In the ion exchange resin method, a washing and separating step may be performed after water is distilled off. The washing / separating step is a step performed for removing unreacted substrate. The washing solvent is not particularly limited, and examples thereof include acetonitrile, methanol, acetone, and a mixed solvent thereof. Any solvent that dissolves the pyrrolidinium salt ionic liquid and does not dissolve the substrate may be used.
The separation method is not particularly limited, and for example, a method such as filtration or centrifugation can be used. Examples of the filtration method include natural filtration, vacuum filtration, and pressure filtration.
A pyrrolidinium salt ionic liquid can be obtained by removing the unreacted substrate in the washing and separating step and distilling off the washing solvent.

(酸化銀・メタノール法)
酸化銀・メタノール法では、上記の<2−1.塩化工程>で得られたハロゲンをアニオンに持つピロリジニウム塩をメタノール中で反応させることによりアニオンがメトキシドに交換され、続いてアミノ酸と反応させることにより、メタノールとして脱離し、アニオンがアミノ酸であるピロリジニウム塩イオン液体が合成できる。具体的には例えば、ピロリジニウム塩、酸化銀、メタノールを混合し、固形分を分離し、分離した反応液にアミノ酸を混合し、固形分を分離し、溶媒を留去する。反応容器は、特に限定はしないが、ガラス製やテフロン製などが利用できる。前記混合方法は、特に限定はしないが、スターラーを用いてもよく、振とう機を用いてもよい。
(Silver oxide / methanol method)
In the silver oxide / methanol method, the above <2-1. The pyrrolidinium salt having halogen as an anion obtained in the chlorination step is reacted in methanol to exchange the anion for methoxide, and then reacted with an amino acid to be eliminated as methanol, and the anion is an amino acid pyrrolidinium salt An ionic liquid can be synthesized. Specifically, for example, pyrrolidinium salt, silver oxide, and methanol are mixed to separate a solid content, an amino acid is mixed into the separated reaction solution, the solid content is separated, and the solvent is distilled off. The reaction vessel is not particularly limited, but glass or Teflon can be used. The mixing method is not particularly limited, but a stirrer or a shaker may be used.

固形分を分離する方法は、特に限定されないが、例えば、ろ過や遠心分離などの方法を用いることができる。ろ過の方法としては、自然ろ過、減圧ろ過または加圧ろ過が挙げられる。   Although the method of isolate | separating solid content is not specifically limited, For example, methods, such as filtration and centrifugation, can be used. Examples of the filtration method include natural filtration, vacuum filtration, and pressure filtration.

酸化銀・メタノール法での反応温度は、0〜50℃であり、好ましくは15〜35℃である。この温度は、具体的には例えば、0、5、10、15、20、25、30、35、40、45又は50℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The reaction temperature in the silver oxide / methanol method is 0 to 50 ° C., preferably 15 to 35 ° C. Specifically, this temperature is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 ° C., and is within a range between any two of the numerical values exemplified here. There may be.

酸化銀・メタノール法での反応時間は、特に限定はしないが、例えば12〜72時間であり、好ましくは24〜48時間である。この時間は、具体的には例えば、12、18、24、30、36、42、48、54、60、66又は72時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The reaction time in the silver oxide / methanol method is not particularly limited, but is, for example, 12 to 72 hours, and preferably 24 to 48 hours. This time is specifically, for example, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, or 72 hours, and is within a range between any two of the numerical values exemplified here. There may be.

<<3.リグニン製造方法>>
本発明の一実施形態のリグニンの製造方法は、(1)イオン液体とバイオマスを混合し、(2)前記工程(1)で得られた混合液からイオン液体相と残渣を分離し、(3)前記工程(2)で得られた前記イオン液体相にリグニン析出溶媒を加え、リグニンを析出させ、分離する工程を備える。
<< 3. Lignin production method >>
The method for producing lignin according to one embodiment of the present invention comprises (1) mixing ionic liquid and biomass, (2) separating the ionic liquid phase and the residue from the mixed liquid obtained in the step (1), (3 ) A step of adding a lignin precipitation solvent to the ionic liquid phase obtained in the step (2) to precipitate and separate lignin is provided.

<3−1.工程(1)リグニン溶解工程>
工程(1)では、イオン液体とバイオマスを混合しリグニンをイオン液体に溶解させる。具体的には例えば、イオン液体とバイオマスを反応容器に入れ、0〜120℃で混合する。常圧で混合を行なってもよく、耐圧容器を用いて減圧又は加圧条件下で行なってもよい。前記反応容器は、特に限定はしないが、ガラス製、テフロン製やプラスチック製などが利用できる。前記混合方法は、特に限定はしないが、スターラーを用いてもよく、振とう機を用いてもよい。工程(1)ではバイオマス中のリグニンがイオン液体に溶解し、セルロース、ヘミセルロースは溶解されずに残渣として溶け残っている。
<3-1. Process (1) Lignin dissolution process>
In the step (1), the ionic liquid and biomass are mixed and lignin is dissolved in the ionic liquid. Specifically, for example, an ionic liquid and biomass are put into a reaction vessel and mixed at 0 to 120 ° C. Mixing may be performed at normal pressure, or may be performed under reduced pressure or pressurized conditions using a pressure vessel. The reaction vessel is not particularly limited, but glass, Teflon, plastic, or the like can be used. The mixing method is not particularly limited, but a stirrer or a shaker may be used. In step (1), lignin in the biomass is dissolved in the ionic liquid, and cellulose and hemicellulose are not dissolved but remain as a residue.

リグニン溶解工程の反応温度は、0〜120℃であり、好ましくは20〜100℃である。リグニン溶解工程の温度が低すぎると反応が進行せず、温度が高すぎるとイオン液体が分解するためである。リグニン溶解工程の温度は、具体的には例えば、0、10、20、30、40、50、60、70、80、90、100、110又は120℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The reaction temperature in the lignin dissolution step is 0 to 120 ° C, preferably 20 to 100 ° C. This is because the reaction does not proceed when the temperature of the lignin dissolving step is too low, and the ionic liquid is decomposed when the temperature is too high. Specifically, the temperature of the lignin dissolution step is, for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or 120 ° C, and any of the numerical values exemplified here It may be within a range between the two.

本発明で用いるイオン液体はセルロースも溶解するが、その溶解には80℃以上の温度が必要である。一方、リグニンは60℃〜80℃で溶解することができる。このため、本発明のイオン液体にバイオマスを加えて80℃以下で撹拌することで、リグニンの選択的な抽出が可能になる。   Although the ionic liquid used in the present invention also dissolves cellulose, the dissolution requires a temperature of 80 ° C. or higher. On the other hand, lignin can be dissolved at 60 ° C to 80 ° C. For this reason, selective extraction of a lignin is attained by adding biomass to the ionic liquid of this invention, and stirring at 80 degrees C or less.

リグニン溶解工程の反応時間は、特に限定はしないが、例えば0.5〜24時間であり、好ましくは6〜12時間である。この時間は、具体的には例えば、0.5、1、2、3、4、5、6、7、8、9、10、11、12、15、18、21又は24時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   Although the reaction time of a lignin dissolution process is not specifically limited, For example, it is 0.5 to 24 hours, Preferably it is 6 to 12 hours. This time is specifically 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, or 24 hours, for example, It may be within a range between any two of the numerical values exemplified in.

(バイオマス)
バイオマスとしては、植物系のバイオマスであれば特に限定はしないが、例えば木質系又は草本系植物原料が挙げられる。この木質系原料として、例えば、間伐材、木材加工屑家屋廃材などがあり、草本系原料としては、例えば、バガス、籾殻、稲、麦などの藁類、ケナフ、エリアンサス、農産物廃棄物などがある。
(biomass)
The biomass is not particularly limited as long as it is a plant-based biomass, and examples thereof include woody or herbaceous plant materials. Examples of this wood-based raw material include thinned wood, wood-processed scrap house waste, etc. is there.

<3−2.工程(2)固液分離工程>
工程(2)では、工程(1)で得られた混合液からイオン液体相と残渣を種々の固液分離法を用いて分離する。残渣は、固体またはゲル状の形状をしている。固液分離法は、特に限定されないが、例えば、ろ過や遠心分離などの方法を用いることができる。ろ過の方法としては、自然ろ過、減圧ろ過または加圧ろ過が挙げられる。
具体的には例えば、遠心分離により分離したイオン液体をピペットなどで取り除くことにより分離することができる。
<3-2. Step (2) Solid-liquid separation step>
In the step (2), the ionic liquid phase and the residue are separated from the mixed liquid obtained in the step (1) using various solid-liquid separation methods. The residue has a solid or gel-like shape. The solid-liquid separation method is not particularly limited, and for example, a method such as filtration or centrifugation can be used. Examples of the filtration method include natural filtration, vacuum filtration, and pressure filtration.
Specifically, for example, separation can be performed by removing the ionic liquid separated by centrifugation with a pipette or the like.

(再抽出工程)
固液分離工程の後、さらに、イオン液体を加え固液分離を行い残渣からイオン液体を分離する再抽出工程を複数回行なってもよい。再抽出工程は、残渣から完全にリグニンが溶解したイオン液体を取り除くために行う工程である。再抽出に用いるイオン液体は、特に限定されないが、好ましくはリグニン溶解工程で使用したものと同じイオン液体を使用して行うのがよい。再抽出方法としては、例えば、再度イオン液体を加え残渣と混合し、遠心分離により分離する方法を使用することができる。
再抽出工程の反応温度は、上記の<3−1.工程(1)リグニン溶解工程>と同じで、反応時間は、特に限定はしないが、例えば0.5〜3時間であり、好ましくは1〜2時間である。この時間は、具体的には例えば、0.5、1、1.5、2、2.5又は3時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
(Re-extraction process)
After the solid-liquid separation step, a re-extraction step of separating the ionic liquid from the residue by adding the ionic liquid and performing solid-liquid separation may be performed a plurality of times. The re-extraction step is a step performed to remove the ionic liquid in which lignin is completely dissolved from the residue. The ionic liquid used for the re-extraction is not particularly limited, but preferably the same ionic liquid as that used in the lignin dissolution step is used. As the re-extraction method, for example, a method in which an ionic liquid is added again, mixed with the residue, and separated by centrifugation can be used.
The reaction temperature of the re-extraction step is <3-1. The reaction time is not particularly limited as in the step (1) lignin dissolution step>, but is, for example, 0.5 to 3 hours, preferably 1 to 2 hours. Specifically, this time is, for example, 0.5, 1, 1.5, 2, 2.5, or 3 hours, and may be within a range between any two of the numerical values exemplified here. .

なお、再抽出工程は、リグニンの抽出効率を向上させるために行うものであり、特に大きな収率の変動がないため、再抽出工程は適時省略することが可能である。   Note that the re-extraction step is performed in order to improve the extraction efficiency of lignin, and since there is no particularly large yield fluctuation, the re-extraction step can be omitted in a timely manner.

<3−3.工程(3)リグニン析出工程>
工程(3)では、工程(2)で得られたイオン液体相にリグニン析出溶媒を加え、リグニンを析出させ、分離する。リグニン析出溶媒は、特に限定されないが、メタノール、エタノール、プロパノールなどのアルコール類、水、アセトンを用いることができ、イオン液体を溶解し、リグニンを溶解しない溶媒であればよい。
<3-3. Step (3) Lignin Precipitation Step>
In step (3), a lignin precipitation solvent is added to the ionic liquid phase obtained in step (2) to precipitate and separate lignin. The lignin precipitation solvent is not particularly limited, and alcohols such as methanol, ethanol, and propanol, water, and acetone can be used as long as they dissolve ionic liquid and do not dissolve lignin.

リグニンとイオン液体の分離法は、特に限定されないが、例えば、ろ過や遠心分離などの方法を用いることができる。ろ過の方法としては、自然ろ過、減圧ろ過または加圧ろ過が挙げられる。
具体的には例えば、遠心分離により分離したイオン液体をピペットなどで取り除くことにより分離することができる。
The method for separating lignin and ionic liquid is not particularly limited, and for example, methods such as filtration and centrifugation can be used. Examples of the filtration method include natural filtration, vacuum filtration, and pressure filtration.
Specifically, for example, separation can be performed by removing the ionic liquid separated by centrifugation with a pipette or the like.

<3−4.セルロース・ヘミセルロース分離工程>
セルロース・ヘミセルロース分離工程は、工程(2)で得られた残渣に塩基性水溶液を加え混合液を作製する工程(4)と、工程(4)で得られた混合液を液相と残渣に分離する工程(5)と、工程(5)で得られた液相からヘミセルロースを回収し、かつ工程(5)で得られた残渣からセルロースを回収する工程(6)から構成される。
<3-4. Cellulose / hemicellulose separation process>
In the cellulose / hemicellulose separation step, a basic aqueous solution is added to the residue obtained in step (2) to prepare a mixed solution, and the mixed solution obtained in step (4) is separated into a liquid phase and a residue. Step (5) and a step (6) of recovering hemicellulose from the liquid phase obtained in step (5) and recovering cellulose from the residue obtained in step (5).

(工程(4)ヘミセルロース抽出工程)
工程(4)では、工程(2)で得られた残渣に塩基性水溶液を加え混合液を作成し、ヘミセルロースを塩基性水溶液に溶解させる。塩基性水溶液は、特に限定されないが、種々の濃度の水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(CaOH)などの水溶液を用いることができ、ヘミセルロースを溶解し、セルロースを溶解しない溶液であればよい。特に、0.1Mの水酸化ナトリウム水溶液が好ましい。
工程(4)は、<3−1.工程(1)リグニン溶解工程>と同様の方法にて行うことができる。
(Process (4) hemicellulose extraction process)
In step (4), a basic aqueous solution is added to the residue obtained in step (2) to prepare a mixed solution, and hemicellulose is dissolved in the basic aqueous solution. The basic aqueous solution is not particularly limited, but aqueous solutions of various concentrations of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (CaOH), etc. can be used, dissolving hemicellulose, Any solution that does not dissolve may be used. In particular, a 0.1 M aqueous sodium hydroxide solution is preferred.
Step (4) is <3-1. It can be performed by the same method as in step (1) lignin dissolution step>.

(工程(5)セルロース・ヘミセルロース分離工程)
工程(5)では、工程(4)で得られた混合液を種々の固液分離法を用いて液相と残渣に分離する。固液分離法は<3−2.工程(2)固液分離工程>と同様の方法にて行うことができる。
(Step (5) cellulose / hemicellulose separation step)
In step (5), the liquid mixture obtained in step (4) is separated into a liquid phase and a residue using various solid-liquid separation methods. The solid-liquid separation method is <3-2. It can be performed by the same method as in step (2) solid-liquid separation step>.

(工程(6)セルロース・ヘミセルロース回収工程)
工程(6)では、工程(5)で得られた液相からヘミセルロースを回収し、かつ工程(5)で得られた残渣からセルロースを回収する。
(Process (6) Cellulose / hemicellulose recovery process)
In step (6), hemicellulose is recovered from the liquid phase obtained in step (5), and cellulose is recovered from the residue obtained in step (5).

ヘミセルロースの回収方法は、工程(5)で得られた液相を乾燥させ、水洗浄を行い、再度乾燥させる事により、ヘミセルロースを回収することができる。   In the method for recovering hemicellulose, hemicellulose can be recovered by drying the liquid phase obtained in step (5), washing with water, and drying again.

セルロースの回収方法は、工程(5)で得られた残渣を水洗浄し、乾燥させる事により、ヘミセルロースを精製することができる。   The method for recovering cellulose can purify hemicellulose by washing the residue obtained in step (5) with water and drying it.

(工程(6)セルロース・ヘミセルロース回収工程)での乾燥方法は、特に限定されないが、例えば、自然乾燥、真空乾燥、加熱乾燥などの方法を用いることができる。   Although the drying method in (Step (6) cellulose / hemicellulose recovery step) is not particularly limited, for example, methods such as natural drying, vacuum drying, and heat drying can be used.

(工程(6)セルロース・ヘミセルロース回収工程)での水洗浄方法は、特に限定されないが、例えば、スターラーや、振とう機などで撹拌し、水相をピペットなどで取り除く方法を用いることができる。   The water washing method in (Step (6) cellulose / hemicellulose recovery step) is not particularly limited, and for example, a method of stirring with a stirrer or a shaker and removing the aqueous phase with a pipette or the like can be used.

///////////////////////////////
<<1.リグニン溶解性イオン液体の合成>>
<1−1.塩化工程>
<1−2.塩交換工程>
(イオン交換樹脂法)
(酸化銀・メタノール法)
<1−3.各種のL−アミノ酸イオン液体の合成>
<<2.リグニン溶解実験>>
<2−1.カチオンの違いによる溶解性の変化>
<2−2.アニオンの違いによる溶解性の変化>
<<3.バイオマス溶解実験>>
<3−1.杉チップ溶解実験>
<3−2.標品との比較>
<3−3.リグニン・セルロース・ヘミセルロース分離実験>
<3−4.カチオンの違いによる溶解性の変化>
<<4.イオン液体のリサイクル>>
///////////////////////////////
///////////////////////////////
<< 1. Synthesis of lignin-soluble ionic liquid >>
<1-1. Chlorination process>
<1-2. Salt exchange process>
(Ion exchange resin method)
(Silver oxide / methanol method)
<1-3. Synthesis of various L-amino acid ionic liquids>
<< 2. Lignin dissolution experiment >>
<2-1. Change in solubility due to differences in cations>
<2-2. Change in solubility due to difference in anion>
<< 3. Biomass dissolution experiment >>
<3-1. Cedar chip melting experiment>
<3-2. Comparison with standard products>
<3-3. Lignin / cellulose / hemicellulose separation experiment>
<3-4. Change in solubility due to differences in cations>
<< 4. Recycling ionic liquid >>
///////////////////////////////

<<1.リグニン溶解性イオン液体の合成>>
以下の方法に従って、リグニン溶解性イオン液体を合成した。
<< 1. Synthesis of lignin-soluble ionic liquid >>
A lignin-soluble ionic liquid was synthesized according to the following method.

<1−1.塩化工程>
以下の化学式(2)に示す塩化反応を行った。
二口ナスフラスコをアルゴン置換し、1−メチルピロリジン14.4mlを量りとり、2−ブロモエチルメチルエーテル13.6mlを滴下し、80℃で24時間、マグネチックスターラー(500rpm)で撹拌した。撹拌終了後、ヘキサン/酢酸エチル混合溶媒(7/1)を用いて洗浄し、未反応の基質、ヘキサン/酢酸エチル混合溶媒を留去し、減圧乾燥を行い1−(2−メトキシエチル)−1−メチルピロリジニウムブロマイドを収率98%で得た。
<1-1. Chlorination process>
A chlorination reaction represented by the following chemical formula (2) was performed.
The two-necked eggplant flask was purged with argon, 14.4 ml of 1-methylpyrrolidine was weighed, 13.6 ml of 2-bromoethyl methyl ether was added dropwise, and the mixture was stirred at 80 ° C. for 24 hours with a magnetic stirrer (500 rpm). After stirring, the mixture was washed with a hexane / ethyl acetate mixed solvent (7/1), the unreacted substrate and the hexane / ethyl acetate mixed solvent were distilled off, and dried under reduced pressure to give 1- (2-methoxyethyl)- 1-methylpyrrolidinium bromide was obtained with a yield of 98%.

<1−2.塩交換工程>
イオン交換法、酸化銀・メタノール法を用いて、それぞれ以下の化学式(3)、化学式(4)に示す、アニオンをブロマイドからアミノ酸への塩交換反応を行った。反応条件は、以下の通りである。
<1-2. Salt exchange process>
Using an ion exchange method and a silver oxide / methanol method, a salt exchange reaction from bromide to amino acid was performed for the anion represented by the following chemical formula (3) and chemical formula (4), respectively. The reaction conditions are as follows.

(イオン交換樹脂法)
上記の<1−1.塩化工程>で得られた1−(2−メトキシエチル)−1−メチルピロリジニウムブロマイド1.5gの水溶液(水:10ml)をイオン交換樹脂(オルガノ株式会社製:Amberlite IRA400CL)に通した後、リジン水溶液(リジン:1.17g、水:50ml)に0℃で滴下し24時間、マグネチックスターラー(500rpm)で撹拌した。水を留去し、アセトニトリル/メタノール混合溶媒(9/1)で1回洗浄し、ろ過を行った。その後、アセトニトリル/メタノール混合溶媒を留去し、減圧乾燥して、N−メチル−N−(2−メトキシエチル)ピロリジニウムリジン([P1ME][Lys])を収率96%で得た。NMR、IRを測定した結果は以下の通りである。
1H NMR (500 MHz, ppm, CD3OD, J = Hz) 1.35-1.45(6H, m), 2.17(4H, s), 2.58(2H, t, J=6.9Hz), 3.25(1H, t, J=1.8), 3.30(2H, br), 3.35(2H, br), 3.38(3H, s), 3.53-3.56(8H, m), 3.77(2H, s); 13C NMR (125 MHz, ppm, CD3OD, J = Hz) 182.49, 67.63, 66.31, 64.40, 59.21, 57.61, 49.34, 42.46, 36.62, 33.94, 24.31, 22.43; IR (neat, cm-1) 3347, 3279, 2930, 2856, 2815, 2063, 1582, 1462, 1396, 1123, 1038
(Ion exchange resin method)
<1-1. After passing 1.5 g of an aqueous solution (water: 10 ml) of 1- (2-methoxyethyl) -1-methylpyrrolidinium bromide obtained in the chlorination step> through an ion exchange resin (manufactured by Organo Corporation: Amberlite IRA400CL) The solution was dropped into an aqueous lysine solution (lysine: 1.17 g, water: 50 ml) at 0 ° C. and stirred for 24 hours with a magnetic stirrer (500 rpm). Water was distilled off, washed once with a mixed solvent of acetonitrile / methanol (9/1), and filtered. Thereafter, the acetonitrile / methanol mixed solvent was distilled off, followed by drying under reduced pressure to obtain N-methyl-N- (2-methoxyethyl) pyrrolidinium lysine ([P 1ME ] [Lys]) in a yield of 96%. . The results of measurement of NMR and IR are as follows.
1 H NMR (500 MHz, ppm, CD 3 OD, J = Hz) 1.35-1.45 (6H, m), 2.17 (4H, s), 2.58 (2H, t, J = 6.9Hz), 3.25 (1H, t , J = 1.8), 3.30 (2H, br), 3.35 (2H, br), 3.38 (3H, s), 3.53-3.56 (8H, m), 3.77 (2H, s); 13 C NMR (125 MHz, (ppm, CD 3 OD, J = Hz) 182.49, 67.63, 66.31, 64.40, 59.21, 57.61, 49.34, 42.46, 36.62, 33.94, 24.31, 22.43; IR (neat, cm -1 ) 3347, 3279, 2930, 2856, 2815, 2063, 1582, 1462, 1396, 1123, 1038

(酸化銀・メタノール法)
上記の<1−1.塩化工程>で得られた1−(2−メトキシエチル)−1−メチルピロリジニウムブロマイド30.8gとメタノール50mlを混合し、酸化銀(I)25.6gを1時間かけて投入し、室温で24時間、マグネチックスターラー(500rpm)で撹拌した。反応液を濾過し、濾残をメタノール50mlで洗い濾洗液を得た。この濾洗液に、(L)−α−リジン23.9gを室温で15分かけて投入し、室温で48時間、マグネチックスターラー(500rpm)で撹拌した。浮遊していた固体を濾別し、濾液を濃縮乾燥して濃縮物70.0gを得た。この濃縮物にトルエンを加え、減圧して濃縮乾燥することで、N−メチル−N−(2−メトキシエチル)ピロリジニウムリジン([P1ME][Lys])35.8gを収率91%で得た。
(Silver oxide / methanol method)
<1-1. 30.8 g of 1- (2-methoxyethyl) -1-methylpyrrolidinium bromide obtained in the chlorination step> and 50 ml of methanol were mixed, and 25.6 g of silver (I) oxide was added over 1 hour. For 24 hours with a magnetic stirrer (500 rpm). The reaction solution was filtered, and the residue was washed with 50 ml of methanol to obtain a filtrate washing solution. To this filtrate, 23.9 g of (L) -α-lysine was added at room temperature over 15 minutes, and stirred at room temperature for 48 hours with a magnetic stirrer (500 rpm). The suspended solid was separated by filtration, and the filtrate was concentrated and dried to obtain 70.0 g of a concentrate. Toluene was added to the concentrate, and the filtrate was concentrated to dryness under reduced pressure to obtain 35.8 g of N-methyl-N- (2-methoxyethyl) pyrrolidinium lysine ([P 1ME ] [Lys]) at a yield of 91%. Got in.

<1−3.20種類のL−アミノ酸イオン液体の合成>
上記の(イオン交換樹脂法)と同様の合成法で、20種類のL−アミノ酸を用いてイオン液体を合成した結果を、表1に示す。
表1から、すべてのアミノ酸で良好な収率でイオン液体を合成できることが分かる。ここで、カチオンのN−メチル−N−(2−メトキシエチル)ピロリジニウムは[P1ME]と表記し、アニオンのアミノ酸は3文字表記で記載する。
<Synthesis of 1-3.20 types of L-amino acid ionic liquids>
Table 1 shows the results of synthesizing ionic liquids using 20 types of L-amino acids by the same synthesis method as the above (ion exchange resin method).
From Table 1, it can be seen that ionic liquids can be synthesized in good yield with all amino acids. Here, the cationic N-methyl-N- (2-methoxyethyl) pyrrolidinium is expressed as [P 1ME ], and the anionic amino acid is described in three letters.

<<2.リグニン溶解実験>>
イオン液体([P1ME][Lys])1gに対し、標品リグニン(ALDRICH製 lignin,alkali:471003−100G)0.05gをバイアル管に量りとり、5wt%混合液とし、室温で5時間、マグネチックスターラー(500rpm)で撹拌し、溶解しているかを目視で確認し溶解していたら、さらにリグニンを0.05gずつ加えていき溶解度を調べた。室温で溶解しないのを確認したら60℃、100℃に順次、昇温して溶解度を調べた。60℃、100℃では1時間撹拌させた。
100℃でも溶解しないのを確認したら、エタノールで希釈し、リグニンを析出させ、3500rpmで5分間遠心分離を行い、イオン液体とリグニンを分離した。
<< 2. Lignin dissolution experiment >>
To 1 g of ionic liquid ([P 1ME ] [Lys]), 0.05 g of standard lignin (lignin, alkali: 471003-100G manufactured by ALDRICH) is weighed into a vial tube to give a 5 wt% mixed solution at room temperature for 5 hours. It stirred with the magnetic stirrer (500 rpm), and it was visually confirming whether it melt | dissolved, and if it melt | dissolved, 0.05g of lignins were added further and the solubility was investigated. When it was confirmed that it did not dissolve at room temperature, the temperature was raised successively to 60 ° C. and 100 ° C. to examine the solubility. The mixture was stirred at 60 ° C. and 100 ° C. for 1 hour.
When it was confirmed that it did not dissolve even at 100 ° C., it was diluted with ethanol to precipitate lignin, and centrifuged at 3500 rpm for 5 minutes to separate the ionic liquid and lignin.

析出したリグニンのXRD測定を行い、標品リグニン(ALDRICH製 lignin,alkali:471003−100G)とパターンを比較した結果を図1に示す。
図1の結果から明らかなように、溶解前と溶解後では、リグニンの構造が変化していないことが分かった。
FIG. 1 shows the results of XRD measurement of the precipitated lignin and comparing the pattern with a standard lignin (lignin, alkali: 471003-100G manufactured by ALDRICH).
As is clear from the results of FIG. 1, it was found that the structure of lignin did not change before and after dissolution.

<2−1.カチオンの違いによる溶解性の変化>
上記の<<1.リグニン溶解性イオン液体の合成>>と同様の合成方法により、基質を変えて、以下の化学式(5)に示す5種のイオン液体を合成した。N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムアラニン([N221ME][Ala])は基質にジエチルメチルアミンを使用して合成し、N,N−ジエチル−N−メチル−N−(2−(メチルチオ)エチル)アンモニウムアラニン([N221MTE][Ala])は基質にジエチルメチルアミンと2-クロロエチルメチルスルフィドを使用して合成し、N,N−ジエチル−2−メトキシ−N−(2−メトキシエチル)エタンアンモニウムアラニン([N22(ME)2][Ala])は基質にジエチル(2−メトキシエチル)アミンを使用して合成し、N−エチル−2−メトキシ−N,N−ビス(2−メトキシエチル)エタンアンモニウムアラニン([N2(ME)3][Ala])は基質にエチルビス(2−メトキシエチル)アミンを使用して合成し、3−(2−メトキシエチル)−1−メチルイミダゾリウムアラニン([(2−ME)mim][Ala])は基質に1−メチルイミダゾールを使用して合成した。
<2-1. Change in solubility due to differences in cations>
Above << 1. Synthesis of Lignin-Soluble Ionic Liquid >> Five types of ionic liquids represented by the following chemical formula (5) were synthesized by changing the substrate by the same synthesis method as in >>. N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium alanine ([N 221ME ] [Ala]) was synthesized using diethylmethylamine as a substrate, and N, N-diethyl-N- Methyl-N- (2- (methylthio) ethyl) ammonium alanine ([N 221MTE ] [Ala]) was synthesized using diethylmethylamine and 2-chloroethylmethyl sulfide as substrates and N, N-diethyl-2 -Methoxy-N- (2-methoxyethyl) ethaneammonium alanine ([N22 (ME) 2 ] [Ala]) was synthesized using diethyl (2-methoxyethyl) amine as the substrate, and N-ethyl-2 -Methoxy-N, N-bis (2-methoxyethyl) ethaneammonium alanine ([N 2 (ME) 3 ] [Ala]) is ethyl bis ( 2- (methoxyethyl) amine was synthesized using 3- (2-methoxyethyl) -1-methylimidazolium alanine ([(2-ME) mim] [Ala]) using 1-methylimidazole as a substrate And synthesized.

上記の<1−3.20種類のL−アミノ酸イオン液体の合成>で合成した、[P1ME][Ala]と化学式(5)に示す5種のイオン液体について、上記の<<2.リグニン溶解実験>>と同様の操作で、リグニンの溶解性を調べた結果を表2に示す。
表2の結果から、[P1ME][Ala]が最もリグニンを溶解することが分かった。
[P 1ME ] [Ala] synthesized in the above <1-3.20 kinds of L-amino acid ionic liquids> and the five ionic liquids represented by the chemical formula (5) are described in the above << 2. Table 2 shows the results of examining the solubility of lignin in the same manner as in the lignin dissolution experiment >>.
From the results in Table 2, it was found that [P 1ME ] [Ala] dissolves lignin most.

さらに、上記の<1−3.20種類のL−アミノ酸イオン液体の合成>で合成した、[P1ME][Lys]と化学式(6)に示すN−メチル−N−(2−メトキシエチル)ピペリジニウムリジン([Py1ME][Lys])について、上記の<<2.リグニン溶解実験>>と同様の操作で、リグニンの溶解性を調べた結果を表3に示す。N−メチル−N−(2−メトキシエチル)ピペリジニウムリジン([Py1ME][Lys])は基質にN−メチルピペリジンを使用して、上記の<1−1.塩化工程>および(イオン交換樹脂法)と同様の方法で合成された。
表3の結果から、[P1ME][Lys]、[Py1ME][Lys]は両方共、高いリグニン溶解性を示すことが分かった。
Furthermore, [P 1ME ] [Lys] synthesized in the above <1-3.20 kinds of L-amino acid ionic liquid> and N-methyl-N- (2-methoxyethyl) represented by the chemical formula (6) For piperidinium lysine ([Py 1ME ] [Lys]), the above << 2. Table 3 shows the results of examining the solubility of lignin by the same operation as lignin dissolution experiment >>. N-methyl-N- (2-methoxyethyl) piperidinium lysine ([Py 1ME ] [Lys]) uses N-methyl piperidine as a substrate, and <1-1. It was synthesized by a method similar to the chlorination step> and (ion exchange resin method).
From the results in Table 3, it was found that both [P 1ME ] [Lys] and [Py 1ME ] [Lys] exhibit high lignin solubility.

<2−2.アニオンの違いによる溶解性の変化>
上記の<1−3.20種類のL−アミノ酸イオン液体の合成>で合成したイオン液体20種を使用してリグニンの溶解実験を行った結果を表4に示す。
表4の結果から、リジン、アルギニンに最も多くリグニンが溶解し、次いで、フェニルアラニン、チロシンによく溶解することが分かった。この結果から、リジン、アルギニン末端にアミノ基を持っており、このアミノ基がリグニンとセルロースの間で水素結合を形成し、リグニンをセルロースから引き剥がす効果が高いと思われる。また、フェニルアラニン、チロシンはともにベンゼン環を持っており、このベンゼン環とリグニンのベンゼン環とのスタッキング相互作用により、リグニンがイオン液体になじみやすく溶解性が高いものと思われる。
<2-2. Change in solubility due to difference in anion>
Table 4 shows the results of a lignin dissolution experiment using 20 types of ionic liquids synthesized in <1-3.20 types of L-amino acid ionic liquids> described above.
From the results in Table 4, it was found that lignin was most dissolved in lysine and arginine, and then dissolved well in phenylalanine and tyrosine. From these results, lysine and arginine have an amino group at the terminal, and this amino group forms a hydrogen bond between lignin and cellulose, and it seems that the effect of peeling lignin from cellulose is high. Phenylalanine and tyrosine both have a benzene ring, and it seems that lignin is easily compatible with ionic liquids and has high solubility due to the stacking interaction between the benzene ring and the benzene ring of lignin.

<<3.バイオマス溶解実験>>
図2に示したように、上記の<<1.リグニン溶解性イオン液体の合成>>で合成した、N−メチル−N−(2−メトキシエチル)ピロリジニウムリジン([P1ME][Lys])を使用しバイオマスの溶解実験を行った。バイオマスとして杉チップを使用し、杉チップは杉の板をノコギリで切るときにでるオガクズを使用した。
<< 3. Biomass dissolution experiment >>
As shown in FIG. 2, the above << 1. Synthesis experiment of biomass was performed using N-methyl-N- (2-methoxyethyl) pyrrolidinium lysine ([P 1ME ] [Lys]) synthesized by synthesis of lignin-soluble ionic liquid >>. Cedar chips were used as biomass, and sawdust was used to cut cedar boards with a saw.

<3−1.杉チップ溶解実験>
イオン液体([P1ME][Lys])1gに杉のチップ0.1gをスピッツ管に計りとり混合液とし、60℃で12時間撹拌した。続いて、遠心分離をした後、イオン液体層を回収した。そしてさらに、スピッツ管にイオン液体を0.3g加え、60℃で1時間撹拌、遠心分離、イオン液体層を回収という操作を2回行った。回収したイオン液体層をエタノールで希釈し、リグニンを析出させた。続いて遠心分離にかけてリグニンを分離し、真空乾燥して質量を測定した。
<3-1. Cedar chip melting experiment>
Cereal chips (0.1 g) were weighed in 1 g of ionic liquid ([P 1ME ] [Lys]) in a Spitz tube to prepare a mixed solution, and stirred at 60 ° C. for 12 hours. Subsequently, after centrifuging, the ionic liquid layer was recovered. Further, 0.3 g of ionic liquid was added to the Spitz tube, and the operation of stirring at 60 ° C. for 1 hour, centrifugation, and recovery of the ionic liquid layer was performed twice. The collected ionic liquid layer was diluted with ethanol to precipitate lignin. Subsequently, the lignin was separated by centrifugation, dried under vacuum, and the mass was measured.

杉チップ溶解実験では杉チップあたり16wt%のリグニンを回収することに成功した。杉には約20%のリグニンが含まれているので、ほとんどすべてを回収できることが分かった。   In the cedar chip dissolution experiment, 16 wt% lignin per cedar chip was successfully recovered. Since cedar contains about 20% lignin, it was found that almost all can be recovered.

<3−2.標品との比較>
上記の<3−1.杉チップ溶解実験>で得られた析出リグニンと溶け残りの残渣のXRDを測定した結果を図3に示す。
図3の結果から、析出リグニンは標品セルロース(Fluka製 Avicel PH−101:11365)のような鋭いピークがでず、標品リグニン(ALDRICH製 lignin,alkali:471003−100G)と同じようなピークが出ることが分かった。溶け残りの残渣は標品セルロース(Fluka製 Avicel PH−101:11365)と類似したパターンのピークが見られ、溶け残りの残渣はI型セルロースであると分かった。
<3-2. Comparison with standard products>
<3-1. The results of measuring the XRD of the precipitated lignin obtained in Cedar Chip Dissolution Experiment> and the undissolved residue are shown in FIG.
From the results shown in FIG. 3, the precipitated lignin does not have a sharp peak like that of a standard cellulose (Avicel PH-101: 11365 manufactured by Fluka), and is similar to a standard lignin (lignin, alkaline: 471003-100G manufactured by ALDRICH). I found out. The residue of undissolved residue was found to have a peak with a pattern similar to that of standard cellulose (Avicel PH-101: 11365 manufactured by Fluka), and the residue of undissolved was found to be type I cellulose.

また、上記の<3−1.杉チップ溶解実験>で得られた析出リグニンのIRを測定した結果を図4に示す。
図4の結果から、析出リグニンと標品リグニン(ALDRICH製 lignin,alkali:471003−100G)はIRのパターンが類似していることが分かる。
In addition, <3-1. FIG. 4 shows the results of IR measurement of the precipitated lignin obtained in the cedar chip dissolution experiment.
From the results of FIG. 4, it can be seen that the pattern of IR is similar between precipitated lignin and standard lignin (lignin, alkali: 471003-100G manufactured by ALDRICH).

図3、図4の結果から、イオン液体([P1ME][Lys])を使用して溶解実験を行うことで、杉チップからリグニンのみを抽出でき、溶解しなかった残渣はリグニンが除かれたセルロースであることが分かった。From the results of FIG. 3 and FIG. 4, by conducting a dissolution experiment using an ionic liquid ([P 1ME ] [Lys]), only lignin can be extracted from the cedar chips, and lignin is removed from the undissolved residue. It was found to be cellulose.

<3−3.リグニン・セルロース・ヘミセルロース分離実験>
図5に示したように、上記の<3−1.杉チップ溶解実験>と同様の方法で分量を10倍にしてリグニンを0.131g分離した。遠心分離後に試験管に残った残渣Dを水で3回洗浄し、0.1Mの水溶液ナトリウム水溶液でヘミセルロースの抽出を行い、抽出液Fを得た。得られた抽出液Fを真空乾燥させ、水で洗浄し、再度真空乾燥を行うことによりヘミセルロースを0.093g得た。さらに残渣Dからヘミセルロースを抽出したあとに残った残渣Eを水で3回洗浄し、真空乾燥を行うことによりセルロースを0.665g得た。
<3-3. Lignin / cellulose / hemicellulose separation experiment>
As shown in FIG. 5, the above <3-1. In the same manner as in the cedar chip dissolution experiment, the amount was increased 10 times to separate 0.131 g of lignin. Residue D remaining in the test tube after centrifugation was washed three times with water, and hemicellulose was extracted with a 0.1 M aqueous sodium solution solution to obtain extract F. The obtained extract F was vacuum-dried, washed with water, and vacuum-dried again to obtain 0.093 g of hemicellulose. Furthermore, 0.665g of cellulose was obtained by wash | cleaning the residue E which remained after extracting hemicellulose from the residue D 3 times with water, and performing vacuum drying.

上記の<3−3.リグニン・セルロース・ヘミセルロース分離実験>で得られたリグニン、セルロース、ヘミセルロースのXRDとIRを測定した結果を図6、図7,図8に示す。   <3-3. The results of measuring XRD and IR of lignin, cellulose, and hemicellulose obtained in <Lignin / cellulose / hemicellulose separation experiment> are shown in FIG. 6, FIG. 7, and FIG.

図6の結果から、得られたリグニンと標品リグニン(ALDRICH製 lignin,alkali:471003−100G)はXRDとIRのパターンが類似していることが分かる。同様に、図7の結果から、得られたセルロースと標品セルロース(Fluka製 Avicel PH−101:11365)はXRDとIRのパターンが類似していることが分かる。
また、図8の結果から、得られたセルロースとヘミセルロースはXRDとIRのパターンが大きく異なることが分かる。
From the results of FIG. 6, it can be seen that the XRD and IR patterns of the obtained lignin and the standard lignin (lignin, alkali: 471003-100G from ALDRICH) are similar. Similarly, it can be seen from the results of FIG. 7 that the XRD and IR patterns of the obtained cellulose and the standard cellulose (Avicel PH-101: 11365 manufactured by Fluka) are similar.
Moreover, from the result of FIG. 8, it can be seen that the obtained cellulose and hemicellulose have greatly different XRD and IR patterns.

図6、図7,図8の結果から、イオン液体([P1ME][Lys])を使用してリグニン、セルロース、ヘミセルロースの分離を行うことで、綺麗に3成分が分離できることが分かった。From the results of FIG. 6, FIG. 7, and FIG. 8, it was found that by separating lignin, cellulose, and hemicellulose using an ionic liquid ([P 1ME ] [Lys]), the three components can be separated cleanly.

上記の<3−3.リグニン・セルロース・ヘミセルロース分離実験>で得られたリグニンのMALDI−QIT−TOF MSを測定した結果を図9に示す。   <3-3. FIG. 9 shows the result of MALDI-QIT-TOF MS measurement of lignin obtained in the lignin / cellulose / hemicellulose separation experiment>.

図9の結果から、得られたリグニンの分子量は21キロダルトンになることが分かり、本発明の方法を用いることで、リグニンの構造をほとんど破壊することなく分離することが可能であることが分かる。   From the results of FIG. 9, it can be seen that the molecular weight of the obtained lignin is 21 kilodaltons, and that it is possible to separate the lignin structure with almost no destruction by using the method of the present invention. .

上記の<3−1.杉チップ溶解実験>と同様の方法で、杉の代わりにヒノキとラワンをバイオマスとして使用し、それぞれからリグニンを分離し、杉、ヒノキ、ラワンから得られたリグニンのMALDI−QIT−TOF MSを測定した結果を図10に示す。   <3-1. Cedar chip melting experiment> Using hinoki and lawan instead of cedar as biomass, separating lignin from each, and measuring MALDI-QIT-TOF MS of lignin obtained from cedar, hinoki and lawan The results are shown in FIG.

図10の結果から、杉とヒノキから得られるリグニンはm/z=196+197×nとm/z=110+197×nの2種のポリマーから構成され、ラワンから得られるリグニンはm/z=196+197×nの単一のポリマーから構成されていることが分かる。   From the results of FIG. 10, the lignin obtained from cedar and cypress is composed of two polymers of m / z = 196 + 197 × n and m / z = 110 + 197 × n, and the lignin obtained from Lauan is m / z = 196 + 197 × It can be seen that it is composed of n single polymers.

<3−4.カチオンの違いによる溶解性の変化>
カチオンを変えた3種のイオン液体について、上記の<3−1.杉チップ溶解実験>と同様の操作で、リグニンの溶解性を調べた結果を表5に示す。
使用したイオン液体は、上記の<1−1.塩化工程>および(イオン交換樹脂法)と同様の方法で基質を変えて合成された。N−メチル−N−(2−メトキシエチル)ピペリジニウムリジン([Py1ME][Lys])は基質にN−メチルピペリジンを使用して合成し、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムリジン([N221ME][Lys])は基質にジエチルメチルアミンを使用して合成した。
<3-4. Change in solubility due to differences in cations>
For the three ionic liquids with different cations, the above <3-1. Table 5 shows the results of examining the solubility of lignin by the same operation as in the cedar chip dissolution experiment>.
The ionic liquid used is <1-1. It was synthesized by changing the substrate in the same manner as in the chlorination step> and (ion exchange resin method). N-methyl-N- (2-methoxyethyl) piperidinium lysine ([Py 1ME ] [Lys]) was synthesized using N-methyl piperidine as a substrate, and N, N-diethyl-N-methyl-N -(2- Methoxyethyl ) ammonium lysine ([N 221ME ] [Lys]) was synthesized using diethylmethylamine as a substrate.

表5の結果から明らかなように、[Py1ME]、[N221ME]に比べて[P1ME]はリグニンの溶解度が高いことが分かった。As is clear from the results in Table 5, it was found that [P 1ME ] has higher lignin solubility than [Py 1ME ] and [N 221ME ].

<<4.イオン液体のリサイクル>>
上記の<3−1.杉チップ溶解実験>でリグニンと分離したイオン液体からエタノールを留去し、真空乾燥を行いイオン液体の再生を行った。
この再生したイオン液体をもう一度、<3−1.杉チップ溶解実験>の溶媒として利用すると、リグニンが初めて利用した時と同じ量溶解することが分かった。
<< 4. Recycling ionic liquid >>
<3-1. In the cedar chip dissolution experiment>, ethanol was distilled off from the ionic liquid separated from lignin, and vacuum drying was performed to regenerate the ionic liquid.
This regenerated ionic liquid is again <3-1. When used as a solvent in the cedar chip dissolution experiment>, it was found that lignin was dissolved in the same amount as when it was first used.

この再生をして、<3−1.杉チップ溶解実験>の溶媒として利用する操作を5回繰り返してもリグニンの溶解量が全く変わらないことが分かり、イオン液体[P1ME][Lys]は再生処理を行うことで何度も再利用が可能であることがわかった。Performing this reproduction, <3-1. It can be seen that the amount of lignin dissolved does not change at all even if the operation used as a solvent in the cedar chip dissolution experiment> is repeated 5 times, and the ionic liquid [P 1ME ] [Lys] is reused many times by performing regeneration treatment. Was found to be possible.

本発明の方法を用いれば、間伐材、木材加工屑、家屋廃材など,これまであまり利用価値がなかったバイオマスをリグニン成分とセルロース成分に分離することが可能となる。また、イオン液体、使用した溶媒なども回収してほとんどロスすることなく再利用ができるため、廃棄物がでないクリーンなリグニン製造が可能である。
リグニンは、ポリマー、医薬品、香料の原料として利用でき、リグニンがほぼすべて取り除けているので、溶け残りのセルロースはパルプとして利用が可能である。
If the method of this invention is used, it will become possible to isolate | separate biomass which had not so much utility value, such as a thinning material, a timber processing waste, a house waste material, into a lignin component and a cellulose component until now. In addition, since the ionic liquid, the used solvent, etc. can be recovered and reused with little loss, clean lignin production without waste is possible.
Lignin can be used as a raw material for polymers, pharmaceuticals, and fragrances, and since almost all lignin is removed, undissolved cellulose can be used as pulp.

Claims (11)

(1)下記化学式(1)

(式(1)中、R、Rは、同じでも違っていてもよく、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を表し、Rは、1種又は複数置換されてもよく、水素原子、アミノ基、ヒドロキシ基、フェニル基、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルコキシ基を表し、Yは、CH、O、Sを表し、nは、環員数に対応し、n=1、2であり、Xは、アミノ酸由来のアニオンを表す。前記アルキル基、アルケニル基、アルコキシ基は置換基として、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数有してもよい。)で表させるリグニン溶解性イオン液体とバイオマスを20〜80℃で混合して混合液を作製し、
(2)前記工程(1)で得られた混合液をイオン液体相と残渣に分離し、
(3)前記工程(2)で得られた前記イオン液体相に溶媒を加え、リグニンを析出させ、分離して回収する工程を備える、リグニンの製造方法。
(1) The following chemical formula (1)

(In the formula (1), R 1, R 3 may be different also identical, represent an alkyl group, an alkenyl group having 2 to 6 carbon atoms having 1 to 6 carbon atoms, R 2 is one or more It may be substituted, and represents a hydrogen atom, an amino group, a hydroxy group, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group, and Y represents CH 2 , O, S N represents the number of ring members, n = 1, 2 and X represents an anion derived from an amino acid, and the alkyl group, alkenyl group, and alkoxy group are substituted with halogen, amino group, phenyl A lignin-soluble ionic liquid represented by a group, a cycloalkyl group, an alkoxy group or a hydroxy group or a biomass group, and a biomass are mixed at 20 to 80 ° C. to prepare a mixed solution,
(2) The mixed liquid obtained in the step (1) is separated into an ionic liquid phase and a residue,
(3) A method for producing lignin, comprising a step of adding a solvent to the ionic liquid phase obtained in the step (2), precipitating lignin, separating and recovering the lignin.
前記Xは、L−アミノ酸由来のアニオンである請求項1に記載のリグニンの製造方法。 The method for producing lignin according to claim 1, wherein X is an anion derived from an L-amino acid. 前記Xは、L−リジン又はL−アルギニン由来のアニオンである請求項1又は2に記載のリグニンの製造方法。 The method for producing lignin according to claim 1 or 2, wherein X is an anion derived from L-lysine or L-arginine. 前記R、Rは、炭素数1〜6のアルキル基とアルコキシアルキル基であり、前記Rは、水素原子であり、Yは、CHであり、nは、1である請求項1〜3の何れか1つに記載のリグニンの製造方法。 The R 1 and R 3 are an alkyl group having 1 to 6 carbon atoms and an alkoxyalkyl group, the R 2 is a hydrogen atom, Y is CH 2 , and n is 1. The manufacturing method of lignin as described in any one of -3. 前記R、Rは、メチル基と2−メトキシエチル基であり、前記Rは、水素原子であり、Yは、CHであり、nは、1である請求項1〜4の何れか1つに記載のリグニンの製造方法。 The R 1 and R 3 are a methyl group and a 2-methoxyethyl group, the R 2 is a hydrogen atom, Y is CH 2 , and n is 1. 5. The manufacturing method of the lignin as described in any one. 前記工程(2)において、残渣を分離する方法は、ろ過又は遠心分離である請求項1〜5の何れか1つに記載のリグニンの製造方法。 The method for producing lignin according to any one of claims 1 to 5, wherein in the step (2), the method for separating the residue is filtration or centrifugation. 前記工程(2)の後であって、前記工程(3)の前に、前記工程(2)で得られた残渣に、さらに前記イオン液体を加え、前記工程(2)で得られた残渣から前記イオン液体を分離する工程を複数回備える請求項1〜6の何れか1つに記載のリグニンの製造方法。 After the step (2) and before the step (3), the ionic liquid is further added to the residue obtained in the step (2), and from the residue obtained in the step (2). The method for producing lignin according to any one of claims 1 to 6, comprising a step of separating the ionic liquid a plurality of times. 前記工程(3)において、前記溶媒は、水、アルコール、アセトンである請求項1〜7の何れか1つに記載のリグニンの製造方法。 In the said process (3), the said solvent is water, alcohol, and acetone, The manufacturing method of the lignin as described in any one of Claims 1-7. 前記工程(3)において、前記アルコールは、メタノール、エタノール、プロパノールである請求項8に記載のリグニンの製造方法。 The method for producing lignin according to claim 8, wherein in the step (3), the alcohol is methanol, ethanol, or propanol. (1)下記化学式(1)
(式(1)中、R 、R は、同じでも違っていてもよく、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を表し、R は、1種又は複数置換されてもよく、水素原子、アミノ基、ヒドロキシ基、フェニル基、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルコキシ基を表し、Yは、CH 、O、Sを表し、nは、環員数に対応し、n=1、2であり、Xは、アミノ酸由来のアニオンを表す。前記アルキル基、アルケニル基、アルコキシ基は置換基として、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数有してもよい。)で表させるリグニン溶解性イオン液体とバイオマスを20〜80℃で混合して混合液を作製し、
(2)前記工程(1)で得られた混合液をイオン液体相と残渣に分離し、
(4)前記工程(2)において得られた残渣を塩基性水溶液と混合して混合液を作製し、
(5)前記工程(4)で得られた混合液を液相と残渣に分離し、
(6)前記工程(5)で得られた液相からヘミセルロースを回収する工程を備えるヘミセルロースの製造方法。
(1) The following chemical formula (1)
(In the formula (1), R 1, R 3 may be different also identical, represent an alkyl group, an alkenyl group having 2 to 6 carbon atoms having 1 to 6 carbon atoms, R 2 is one or more It may be substituted, and represents a hydrogen atom, an amino group, a hydroxy group, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group, and Y represents CH 2 , O, S N represents the number of ring members, n = 1, 2 and X represents an anion derived from an amino acid, and the alkyl group, alkenyl group, and alkoxy group are substituted with halogen, amino group, phenyl A lignin-soluble ionic liquid represented by a group, a cycloalkyl group, an alkoxy group or a hydroxy group or a biomass group, and a biomass are mixed at 20 to 80 ° C. to prepare a mixed solution,
(2) The mixed liquid obtained in the step (1) is separated into an ionic liquid phase and a residue,
(4) The residue obtained in the step (2) is mixed with a basic aqueous solution to prepare a mixed solution,
(5) The mixed liquid obtained in the step (4) is separated into a liquid phase and a residue,
(6) the step (5) Bei El hemicellulose Ru the times Osamusu step from the liquid phase obtained in, hemicellulose manufacturing method.
(1)下記化学式(1)(1) The following chemical formula (1)
(式(1)中、R(In formula (1), R 1 、R, R 3 は、同じでも違っていてもよく、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を表し、RMay be the same or different and each represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms; 2 は、1種又は複数置換されてもよく、水素原子、アミノ基、ヒドロキシ基、フェニル基、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルコキシ基を表し、Yは、CHMay be one or more substituted, and represents a hydrogen atom, an amino group, a hydroxy group, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group, and Y is CH 2 、O、Sを表し、nは、環員数に対応し、n=1、2であり、Xは、アミノ酸由来のアニオンを表す。前記アルキル基、アルケニル基、アルコキシ基は置換基として、ハロゲン、アミノ基、フェニル基、シクロアルキル基、アルコキシ基又はヒドロキシ基のうち1種又は複数有してもよい。)で表させるリグニン溶解性イオン液体とバイオマスを20〜80℃で混合して混合液を作製し、, O, and S, n corresponds to the number of ring members, n = 1, 2, and X represents an anion derived from an amino acid. The alkyl group, alkenyl group, and alkoxy group may have one or more of halogen, amino group, phenyl group, cycloalkyl group, alkoxy group, and hydroxy group as a substituent. ) Lignin-soluble ionic liquid and biomass expressed at 20 to 80 ° C. to produce a mixed solution,
(2)前記工程(1)で得られた混合液をイオン液体相と残渣に分離し、(2) The mixed liquid obtained in the step (1) is separated into an ionic liquid phase and a residue,
(4)前記工程(2)において得られた残渣を塩基性水溶液と混合して混合液を作製し、(4) The residue obtained in the step (2) is mixed with a basic aqueous solution to prepare a mixed solution,
(5)前記工程(4)で得られた混合液を液相と残渣に分離し、(5) The mixed liquid obtained in the step (4) is separated into a liquid phase and a residue,
(6)前記工程(5)で得られた残渣からセルロースを回収する工程を備える、セルロースの製造方法。(6) A method for producing cellulose, comprising a step of recovering cellulose from the residue obtained in the step (5).
JP2014522492A 2012-06-26 2013-05-29 Method for producing lignin from biomass using lignin-soluble ionic liquid, and method for producing lignin, hemicellulose, and cellulose Expired - Fee Related JP6108559B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012143093 2012-06-26
JP2012143093 2012-06-26
PCT/JP2013/064885 WO2014002674A1 (en) 2012-06-26 2013-05-29 Method for producing lignin from biomass using lignin-dissolving ionic liquid, and method for producing lignin, hemicellulose and cellulose

Publications (2)

Publication Number Publication Date
JPWO2014002674A1 JPWO2014002674A1 (en) 2016-05-30
JP6108559B2 true JP6108559B2 (en) 2017-04-05

Family

ID=49782841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014522492A Expired - Fee Related JP6108559B2 (en) 2012-06-26 2013-05-29 Method for producing lignin from biomass using lignin-soluble ionic liquid, and method for producing lignin, hemicellulose, and cellulose

Country Status (2)

Country Link
JP (1) JP6108559B2 (en)
WO (1) WO2014002674A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044577B1 (en) * 2015-12-07 2017-12-22 Timothee Boitouzet METHOD FOR PARTIAL DELIGNIFICATION AND FILLING OF A LIGNOCELLULOSIC MATERIAL, AND STRUCTURE OF COMPOSITE MATERIAL OBTAINED BY THIS PROCESS
WO2017191845A1 (en) * 2016-05-04 2017-11-09 アイセップ株式会社 Plant tissue treatment method for accelerating decomposition of plant tissue, main agent therefor, raw material composition extracted using plant tissue treatment method, and method for reducing bulk of plant tissue.
CN106674120B (en) * 2016-11-30 2019-11-29 辽宁大学 A kind of preparation of ether functionalized ion liquid and the application in removal road traffic mark
FR3067275B1 (en) 2017-06-07 2022-08-12 Timothee Boitouzet PROCESS FOR PARTIAL DELIGNIFICATION BY SUPERCRITICAL OR SUBCRITICAL ROUTE AND FILLING OF A LIGNO-CELLULOSIC MATERIAL
CN108047137A (en) * 2018-01-02 2018-05-18 辽宁大学 One kind contains ether functional group Amino acid imidazolium ionic liquid and preparation method thereof
FR3077895B1 (en) 2018-02-09 2020-02-28 Sas Woodoo TACTILE DETECTION DEVICE WITH TACTILE INTERFACE IN COMPOSITE MATERIAL
JP2020015688A (en) * 2018-07-25 2020-01-30 国立大学法人千葉大学 Phosphonium cation containing sulfur and phosphonium ionic liquid containing sulfur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563313B2 (en) * 2007-03-14 2014-07-30 ザ・ユニバーシティ・オブ・トレド Biomass pretreatment
JP2009189277A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Method for treating woody biomass and method for producing organic acid or alcohol
JP5410060B2 (en) * 2008-10-02 2014-02-05 株式会社Kri Separation of lignocellulosic biomass from cellulose and lignin using ionic liquid
JP2012012568A (en) * 2010-05-31 2012-01-19 Idemitsu Kosan Co Ltd Method for treating biomass
JP5794609B2 (en) * 2011-01-06 2015-10-14 国立大学法人鳥取大学 Cellulose biomass processing method

Also Published As

Publication number Publication date
JPWO2014002674A1 (en) 2016-05-30
WO2014002674A1 (en) 2014-01-03

Similar Documents

Publication Publication Date Title
JP6108559B2 (en) Method for producing lignin from biomass using lignin-soluble ionic liquid, and method for producing lignin, hemicellulose, and cellulose
Hamada et al. A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid
KR20210088650A (en) Eutectic solvents and their applications in lignin extraction
TWI610935B (en) Method for producing lignin decomposition product
US9394375B2 (en) Compositions containing recyclable ionic liquids for use in biomass processing
FI125827B (en) Process for dissolving lignocellulosic material
CN102864672B (en) Method for extracting lignin
CN105908550A (en) Method for separating and extracting lignin from eucalyptus
CN109293625B (en) Synthesis method of high-purity 1, 4-butane sultone
JP7233774B2 (en) Method for purifying lignin
WO2011149341A1 (en) Process for the treatment of lignocellulosic biomass
CN102659594B (en) Method for preparing ethyl levulinate by using straw-type biomass
CN103031762B (en) Method for preparing material rich in cellulose in degradable ionic liquid solvent
CN101235100A (en) Method for cleanly preparing acylchitosan
CN108997424B (en) Simple method for preparing fosfomycin trometamol
JP2008231213A (en) Method for producing lignophenol and low-molecular-weight lignophenol obtained thereby
CN107021874A (en) A kind of method of the butantriol of the separation and purification from microbial fermentation solution 1,2,4
CN101619076A (en) The preparation method of glyphosate technicals
CN104130209B (en) A kind of method being separated N methyl piperazine and NEP
JP3956047B2 (en) Method for producing lignophenol derivative
JP5458430B2 (en) Purification method of lignophenol derivatives
KR100513899B1 (en) Methods for Removing Catalyst Residues from Polymer Solution
JP2014015439A (en) Method for producing lignin decomposed product
CN103755685B (en) Purifying and refining method of esomeprazole sodium
JP2018520698A (en) Method for isolating fermentable sugars from acid hydrolysates of substances containing cellulose, hemicellulose and lignin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6108559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees