JP6106883B2 - A novel collagen fibrosis evaluation model using second harmonic light - Google Patents

A novel collagen fibrosis evaluation model using second harmonic light Download PDF

Info

Publication number
JP6106883B2
JP6106883B2 JP2012186951A JP2012186951A JP6106883B2 JP 6106883 B2 JP6106883 B2 JP 6106883B2 JP 2012186951 A JP2012186951 A JP 2012186951A JP 2012186951 A JP2012186951 A JP 2012186951A JP 6106883 B2 JP6106883 B2 JP 6106883B2
Authority
JP
Japan
Prior art keywords
shg
collagen
evaluation method
luminance
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012186951A
Other languages
Japanese (ja)
Other versions
JP2014042671A (en
Inventor
由季生 佐々
由季生 佐々
利寛 向野
利寛 向野
達朗 石橋
達朗 石橋
茂生 吉田
茂生 吉田
修一郎 福島
修一郎 福島
荒木 勉
勉 荒木
安井 武史
武史 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka University
Original Assignee
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka University filed Critical Fukuoka University
Priority to JP2012186951A priority Critical patent/JP6106883B2/en
Publication of JP2014042671A publication Critical patent/JP2014042671A/en
Application granted granted Critical
Publication of JP6106883B2 publication Critical patent/JP6106883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Eye Examination Apparatus (AREA)

Description

本発明は,第二次高調波光(SHG光)を利用した増殖性眼疾患に関する線維化評価方法に関する。さらに詳しくは,牽引性網膜剥離等のコラーゲン増殖性眼疾患について,SHG顕微鏡を用いたインビボおよびインビトロ評価方法に関する。   The present invention relates to a fibrosis evaluation method for proliferative eye diseases using second harmonic light (SHG light). More specifically, the present invention relates to an in vivo and in vitro evaluation method using a SHG microscope for collagen proliferative eye diseases such as traction retinal detachment.

牽引性網膜剥離は,網膜前後面にI型コラーゲン線維を主体とする線維増殖膜が形成され,網膜を牽引することで,裂孔形成や難治性網膜剥離を引き起こす疾患である。牽引性網膜剥離に対する有効な薬物療法は未だ無く,病態の詳細な解明は急務である。牽引性網膜剥離の原因因子として形質転換成長因子(TGF)β,結合組織増殖因子(CTGF),血小板由来成長因子(PDGF)などが知られている。   Traction retinal detachment is a disease that causes fissure formation or refractory retinal detachment by forming a fibrotic membrane mainly composed of type I collagen fibers on the front and back surfaces of the retina and pulling the retina. There is still no effective drug therapy for traction retinal detachment, and detailed clarification of the pathological condition is urgent. Known factors that cause tractional retinal detachment include transforming growth factor (TGF) β, connective tissue growth factor (CTGF), and platelet-derived growth factor (PDGF).

このように牽引性網膜剥離の病態についてコラーゲン線維が大きく関与するが,コラーゲンが関与する眼疾患は,牽引性網膜剥離のほか,増殖糖尿病網膜症,黄斑前膜など複数存在する。このことから眼組織においてコラーゲン増殖を適切に評価できるインビトロ,インビボ評価法の確立は,コラーゲンが関与する眼疾患の病態解明や薬剤開発に大きく寄与することが期待される。   As described above, collagen fibers are greatly involved in the pathological condition of traction retinal detachment, but there are multiple eye diseases involving collagen, such as proliferative diabetic retinopathy and premacular membrane, in addition to traction retinal detachment. Therefore, the establishment of an in vitro and in vivo evaluation method that can appropriately evaluate collagen growth in ocular tissues is expected to greatly contribute to elucidation of pathological conditions and drug development of eye diseases involving collagen.

現在,眼組織におけるコラーゲンを評価するための方法として,組織染色法,および走査型電子顕微鏡や反射共焦点顕微鏡を用いた観察法などが知られている。しかしながら,組織染色法や走査型電子顕微鏡を用いた観察方法では,観察対象の固定が必要であり,侵襲的であるという欠点を有する。また,反射共焦点顕微鏡では,インビボ計測や三次元計測が可能であるものの,コラーゲン線維のみを観察できないという欠点を有する。加えて,組織染色法や反射共焦点顕微鏡を用いても,コラーゲンの配向情報を得ることはできないのが現状である。   Currently, as a method for evaluating collagen in eye tissues, a tissue staining method and an observation method using a scanning electron microscope or a reflection confocal microscope are known. However, the observation method using the tissue staining method and the scanning electron microscope requires fixing the observation target and has a drawback of being invasive. In addition, the reflection confocal microscope can perform in vivo measurement and three-dimensional measurement, but has a drawback that only the collagen fibers cannot be observed. In addition, it is currently impossible to obtain collagen orientation information using a tissue staining method or a reflection confocal microscope.

一方,第二次高調波発生(SHG,Second Harmonic Generation)は,2つの光子が中心対称性を欠いて分布する物質(非中心対称構造体)と相互作用した後,入射光のちょうど半分の波長をもった1つの光子へと変換される現象をいう。このSHGにより得られる光は,第二次高調波光(以下,「SHG光」と略する)と呼ばれる。SHG光は,電気・機械分野で長年研究が行われてきたが,近年では,生命科学分野においても広く研究が行われ(非特許文献1,2),コラーゲン検出に関する技術も開示されている(特許文献1)。   On the other hand, Second Harmonic Generation (SHG) is a wavelength that is exactly half the wavelength of incident light after the interaction of two photons with a material that lacks central symmetry (non-centrosymmetric structure). This is a phenomenon that is converted into a single photon. The light obtained by this SHG is called second harmonic light (hereinafter abbreviated as “SHG light”). SHG light has been researched for many years in the electrical and mechanical fields, but in recent years, extensive research has also been performed in the life science field (Non-patent Documents 1 and 2), and technologies relating to collagen detection are also disclosed ( Patent Document 1).

特開2007−049990JP2007-049990A

Chang Y et al. J Biol Phys. 2010 Sep;36(4):365-83.Epub 2010 Jun 9.Chang Y et al. J Biol Phys. 2010 Sep; 36 (4): 365-83.Epub 2010 Jun 9. Latour G et al. Biomed OptExpress. 2012 Jan 1;3(1):1-15. Epub 2011 Dec 1.Latour G et al. Biomed OptExpress. 2012 Jan 1; 3 (1): 1-15. Epub 2011 Dec 1.

特許文献1では,SHG光を用いたコラーゲン培養組織試料の評価方法に関する技術が開示されている。しかし,この技術では,眼組織に存在するコラーゲンに関する評価方法については何ら開示されていない。加えて,眼組織にコラーゲンが存在した場合の具体的な評価方法については,開示も示唆もない。   In patent document 1, the technique regarding the evaluation method of the collagen culture tissue sample using SHG light is disclosed. However, this technique does not disclose any evaluation method for collagen existing in the eye tissue. In addition, there is no disclosure or suggestion of a specific evaluation method when collagen is present in the ocular tissue.

上記事情を背景として本発明では,SHG光を利用してコラーゲン増殖を評価することにより,眼疾患の評価を行う評価方法の開発を課題とする。   In the present invention against the background of the above circumstances, an object of the present invention is to develop an evaluation method for evaluating an eye disease by evaluating collagen proliferation using SHG light.

発明者らは,同じコラーゲン増殖性眼疾患であっても,病態に特徴的なコラーゲンの型や病期の進行度などにより,SHG光の観察できる範囲や強度に違いがあることを発見した。発明者らは,この違いを評価することにより,コラーゲン増殖性眼疾患の病態や重症度の客観的評価が可能であることを見出し,本発明を完成させた。   The inventors have found that even in the same collagen proliferative eye disease, there is a difference in the observable range and intensity of the SHG light depending on the collagen type characteristic to the pathological condition and the stage progression. The inventors have found that by evaluating this difference, it is possible to objectively evaluate the pathophysiology and severity of collagen proliferative eye disease, and have completed the present invention.

本発明は,以下から構成される。   The present invention comprises the following.

本発明の第一の構成は,SHG顕微鏡を用いて眼疾患動物モデルの眼組織の観察を行う観察工程を含み,眼疾患動物モデルの病態の重症度ないし病期の評価を行うことを特徴とするインビボ評価方法である。   The first configuration of the present invention includes an observation step of observing an eye tissue of an eye disease animal model using an SHG microscope, and evaluating the severity or stage of the disease state of the eye disease animal model. In vivo evaluation method.

本発明の第二の構成は,前記インビボ評価方法がさらに,SHG顕微鏡により正常部位ないし病変部位のSHG輝度を測定するSHG輝度測定工程と,病変部位の面積を測定する面積測定工程とを含むことを特徴とする第一の構成に記載のインビボ評価方法である。   According to a second configuration of the present invention, the in vivo evaluation method further includes a SHG luminance measurement step of measuring SHG luminance of a normal site or a lesion site with an SHG microscope, and an area measurement step of measuring the area of the lesion site. The in vivo evaluation method according to the first configuration characterized by the above.

本発明の第三の構成は,前記インビボ評価方法がさらに,前記SHG輝度測定工程におけるSHG輝度と前記面積測定工程における面積値を用いて,病変部位における平均SHG輝度を算出する算出工程を含むことを特徴とする第二の構成に記載のインビボ評価方法である。   In a third configuration of the present invention, the in vivo evaluation method further includes a calculation step of calculating an average SHG luminance at a lesion site using the SHG luminance in the SHG luminance measurement step and the area value in the area measurement step. The in vivo evaluation method according to the second configuration characterized by the above.

本発明の第四の構成は,前記インビボ評価方法がさらに,眼疾患動物モデルに薬剤を投与し,治療効果を評価する治療効果評価工程を含むことを特徴とする第一から第三の構成に記載のインビボ評価方法である。   According to a fourth configuration of the present invention, the in vivo evaluation method further includes a therapeutic effect evaluation step of administering a drug to an animal model of an eye disease and evaluating a therapeutic effect. The described in vivo evaluation method.

本発明の第五の構成は,前記眼疾患動物モデルが,増殖硝子体網膜症・網膜前膜等のコラーゲン増殖性眼疾患動物モデルであることを特徴とする第一から第四の構成に記載のインビボ評価方法である。   According to a fifth aspect of the present invention, in the first to fourth aspects, the eye disease animal model is an animal model for collagen proliferative eye diseases such as proliferative vitreoretinopathy and preretinal membrane. This is an in vivo evaluation method.

本発明の第六の構成は,SHG顕微鏡を用いたコラーゲン3次元細胞培養系のインビトロ評価方法であって,コラーゲンを含む培地に線維芽細胞等のコラーゲン線維増殖を行う細胞を播種する工程と,SHG顕微鏡を用いて観察を行う観察工程を含み,コラーゲン増殖の有無等を評価することを特徴とするインビトロ評価方法である。
本発明の第七の構成は,前記コラーゲン線維増殖を行う細胞が,網膜色素上皮細胞等の眼由来細胞であることを特徴とする第六の構成に記載のインビトロ評価方法である。
A sixth configuration of the present invention is an in vitro evaluation method for a collagen three-dimensional cell culture system using an SHG microscope, the method comprising seeding cells that perform collagen fiber growth such as fibroblasts in a medium containing collagen; It is an in vitro evaluation method characterized by including the observation process of observing using an SHG microscope, and evaluating the presence or absence of collagen growth.
The seventh configuration of the present invention is the in vitro evaluation method according to the sixth configuration , wherein the cells that proliferate the collagen fibers are eye-derived cells such as retinal pigment epithelial cells.

本発明により,SHG光を利用した眼疾患の評価を行う評価方法の提供が可能となった。すなわち,本発明により,SHG顕微鏡を用いて,コラーゲン増殖の有無を定量的・定性的に評価することにより,眼疾患のインビボ,インビトロ評価が可能となった。
According to the present invention, it is possible to provide an evaluation method for evaluating an eye disease using SHG light. That is, according to the present invention, in vivo and in vitro evaluation of ocular diseases can be performed by quantitatively and qualitatively evaluating the presence or absence of collagen proliferation using an SHG microscope.

黄班円孔被験者手術検体のインビトロSHG像観察結果を示した図The figure which showed the in-vitro SHG image observation result of a macular hole test subject surgical specimen 黄斑前膜被験者手術検体のインビトロSHG像観察結果を示した図The figure which showed the in-vitro SHG image observation result of the test sample of a premacular membrane test subject 増殖性硝子体網膜症被験者手術検体のインビトロSHG像観察結果を示した図The figure which showed the in vitro SHG image observation result of the proliferative vitreoretinopathy subject's surgical specimen 増殖糖尿病網膜症被験者のインビボSHG像観察結果を示した図The figure which showed the in-vivo SHG image observation result of the proliferative diabetic retinopathy subject 増殖糖尿病網膜症被験者のインビボSHG像観察結果を示した図The figure which showed the in-vivo SHG image observation result of the proliferative diabetic retinopathy subject 増殖糖尿病網膜症被験者のインビボSHG像観察結果を示した図The figure which showed the in-vivo SHG image observation result of the proliferative diabetic retinopathy subject 増殖糖尿病網膜症被験者のインビボSHG像観察結果を示した図The figure which showed the in-vivo SHG image observation result of the proliferative diabetic retinopathy subject 増殖糖尿病網膜症被験者のインビボSHG像観察結果を示した図The figure which showed the in-vivo SHG image observation result of the proliferative diabetic retinopathy subject 増殖糖尿病網膜症被験者のインビボSHG顕微鏡観察測定結果をまとめた図Figure summarizing in vivo SHG microscopic observation results of proliferative diabetic retinopathy subjects コラーゲンゲル3次元系において,コラーゲンのSHG変化を示した図Diagram showing changes in collagen SHG in a 3D collagen gel system コラーゲンゲル3次元系において,コラーゲン線維の変化を示した図Diagram showing changes in collagen fibers in a collagen gel 3D system コラーゲンゲル3次元系において,コラーゲン線維束径の変化を示した図Figure showing changes in collagen fiber bundle diameter in a collagen gel 3D system コラーゲンゲル3次元系において,TGFβ2のSHG変化の影響を示した図Diagram showing the effect of SHG change of TGFβ2 in 3D collagen gel コラーゲンゲル3次元系において,PeriostinのSHG変化の影響を示した図Diagram showing the effect of Periostin's SHG change in a collagen gel 3D system

以下,本発明のインビボ,インビトロ評価方法について,詳細に説明する。
本発明のSHG光を用いたコラーゲン増殖性眼疾患に関する評価方法は,インビボおよびインビトロの2つの評価方法からなる。
Hereinafter, the in vivo and in vitro evaluation method of the present invention will be described in detail.
The evaluation method for collagen proliferative eye diseases using SHG light of the present invention comprises two evaluation methods, in vivo and in vitro.

まず,インビボ評価方法について説明を行う。
インビボ評価を行う施術者は,本発明のインビボ評価方法における評価対象として,眼疾患動物モデルを用いる。用いる眼疾患動物モデルについて,病変部位のコラーゲン増殖の有無に関わらず特に限定する必要はなく,施術者は,種々の眼疾患動物モデルを用いることができる。施術者は,増殖硝子体網膜症,網膜前膜などの,コラーゲン増殖性眼疾患動物モデルを,好ましくは用いることができる。また,牽引性網膜剥離,増殖性糖尿病網膜症,黄斑前膜などのコラーゲン増殖性眼疾患については未だ動物モデルが知られていないが,これらの疾患を反映させた動物モデルであっても構わない。
用いる眼疾患動物モデルについて,施術者は,点眼液の投薬や麻酔など,SHG顕微鏡観察を行うために必要と思われる前処理を眼疾患動物モデルに対し行うことができる。
First, the in vivo evaluation method will be described.
A practitioner who performs in vivo evaluation uses an eye disease animal model as an evaluation target in the in vivo evaluation method of the present invention. The eye disease animal model to be used is not particularly limited regardless of the presence or absence of collagen growth at the lesion site, and the practitioner can use various eye disease animal models. The practitioner can preferably use animal models of collagen proliferative eye diseases such as proliferative vitreoretinopathy and preretinal membrane. Moreover, although animal models for collagen proliferative eye diseases such as traction retinal detachment, proliferative diabetic retinopathy, and premacular membrane are not known yet, animal models that reflect these diseases may be used. .
With respect to the eye disease animal model to be used, the practitioner can perform pretreatments necessary for performing SHG microscopic observation such as ophthalmic solution administration and anesthesia on the eye disease animal model.

施術者は,SHG顕微鏡により,眼疾患動物モデルの眼組織の観察を行う(以下,「観察工程」という)。観察工程では,病変部位のみならず,正常部位を含めた眼組織全体の観察を行うことが好ましい。また,これら正常部位や病変部位の判定については,通常行われる,眼底カメラによる観察を組合わせて,判定を行ってもよい。   The practitioner observes the eye tissue of the eye disease animal model with the SHG microscope (hereinafter referred to as “observation process”). In the observation step, it is preferable to observe not only the lesion site but also the entire eye tissue including the normal site. The determination of these normal sites and lesion sites may be performed by combining observations with a fundus camera, which is normally performed.

本発明におけるインビボ評価法では,さらにSHG輝度測定工程と面積測定工程を含むことができる。これにより,眼疾患動物モデルの病態や重症度,病期について客観的指標が得られるという効果を有する。   The in vivo evaluation method of the present invention can further include an SHG luminance measurement step and an area measurement step. As a result, an objective index can be obtained for the disease state, severity, and stage of an animal model of eye disease.

SHG輝度測定工程においては,眼組織のSHG輝度を測定し得る限り,種々の測定方法を採ることができる。また,面積測定工程においては,眼組織において病変ないし異常部位(以下,まとめて「病変部位」という)の面積値を測定し得る限り,種々の測定方法を採ることができる。   In the SHG luminance measurement step, various measurement methods can be adopted as long as the SHG luminance of the eye tissue can be measured. In the area measurement step, various measurement methods can be employed as long as the area value of a lesion or an abnormal site (hereinafter collectively referred to as “lesion site”) can be measured in the eye tissue.

SHG輝度測定工程について例をあげて説明する。
施術者は,SHG顕微鏡観察を行い,正常部位の任意部位を数ヶ所選択し測定を行う。通常,SHG顕微鏡には,任意の部位の撮像画像を,ピクセルごとのSHG輝度情報とともに記録できる機能を備えている。この機能を利用し,施術者は,SHG顕微鏡観察を行い,正常部位と判断した任意部位を数ヶ所選択し,選択した正常部位の画像を記録することにより,正常部位におけるピクセルごとのSHG輝度情報を得ることができる。同様の操作により,病変部位におけるピクセルごとのSHG輝度情報を得ることができる。これらの画像記録作業により,SHG輝度測定工程を完了することができる。
An example of the SHG luminance measurement process will be described.
The practitioner performs SHG microscopic observation, selects several normal sites and performs measurement. Usually, the SHG microscope has a function of recording a captured image of an arbitrary part together with SHG luminance information for each pixel. Using this function, the practitioner performs SHG microscopic observation, selects several arbitrary sites determined to be normal sites, and records images of the selected normal sites, thereby providing SHG luminance information for each pixel in the normal sites. Can be obtained. By the same operation, SHG luminance information for each pixel in the lesion site can be obtained. With these image recording operations, the SHG luminance measurement process can be completed.

続いて面積測定工程について,例をあげて説明する。
上記のSHG輝度測定工程により,正常部位ないし病変部位におけるSHG輝度測定情報を得ることができるが,このSHG輝度測定情報を用いて,正確な病変部位の面積値を算出することができる。例えば,正常部位におけるSHG輝度情報の平均値もしくは最大値などを閾値として設定する。病変部位のSHG画像において,設定した閾値を上回るSHG輝度を有するピクセルを病変部位として改めて定義し,そのピクセル和を病変部位の面積値として設定するなどである。
Next, the area measurement process will be described with an example.
According to the SHG luminance measurement process, SHG luminance measurement information in a normal site or a lesion site can be obtained. By using this SHG luminance measurement information, an accurate area value of the lesion site can be calculated. For example, an average value or maximum value of SHG luminance information in a normal part is set as a threshold value. In the SHG image of the lesion site, a pixel having SHG luminance exceeding the set threshold value is newly defined as the lesion site, and the sum of the pixels is set as the area value of the lesion site.

本発明におけるインビボ評価法では,さらに算出工程を含むことができる,これにより,眼疾患動物モデルについて,数値としてのより客観的な指標が得られ,眼疾患動物モデルの病態や重症度,病期の客観的評価がよりしやすくなるという効果を有する。
算出工程について例をあげると,前記面積測定工程により算出された面積において,この面積におけるSHG輝度の総和を面積値で割ることにより,算出することができる。
The in vivo evaluation method of the present invention can further include a calculation step, whereby a more objective index as a numerical value can be obtained for the eye disease animal model, and the disease state, severity, and stage of the eye disease animal model can be obtained. It has the effect of making it easier to objectively evaluate.
As an example of the calculation process, the calculation can be performed by dividing the sum of SHG luminances in this area by the area value in the area calculated by the area measurement process.

本発明におけるインビボ評価法では,さらに,治療効果評価工程を含むことができる。これにより,薬剤等の治療効果を,SHG光を元にした客観的指標により評価が可能となるという効果を有する。   The in vivo evaluation method of the present invention can further include a therapeutic effect evaluation step. Thereby, it has the effect that the therapeutic effect of a medicine etc. can be evaluated by an objective index based on SHG light.

次に,インビトロ評価法について説明を行う。
本発明におけるインビトロ評価法において,施術者は,インビトロ評価系として,コラーゲンを含む培地に,線維芽細胞等のコラーゲン線維増殖を行う細胞の播種を行う。また,コラーゲン線維増殖を行う細胞等としては,網膜色素上皮細胞等の眼由来細胞をもちいることが好ましい。
コラーゲンゲルとしては,通常用いられるコラーゲンゲルを用いればよく,例えば,Cell Matrix I-AとDMEM,HEPES buffer等を混和し,インキュベートするなどして作製することができる。
作製されたコラーゲンゲルに,コラーゲン線維増殖を行う細胞の播種を行い,所定の時間,培養を行う。この播種されたコラーゲン線維増殖を行う細胞を,インビボ評価法と同様,SHG顕微鏡にて観察,測定を行うことにより,コラーゲン増殖を客観的に評価することが可能となる。
Next, the in vitro evaluation method will be described.
In the in vitro evaluation method according to the present invention, the practitioner seeds cells that grow collagen fibers such as fibroblasts in a medium containing collagen as an in vitro evaluation system. Moreover, it is preferable to use an eye-derived cell such as a retinal pigment epithelial cell as a cell or the like that performs collagen fiber growth.
As the collagen gel, a commonly used collagen gel may be used. For example, it can be prepared by mixing and incubating Cell Matrix IA, DMEM, HEPES buffer, and the like.
The prepared collagen gel is seeded with cells for growing collagen fibers and cultured for a predetermined time. It is possible to objectively evaluate collagen growth by observing and measuring the seeded cells that perform collagen fiber growth with an SHG microscope as in the in vivo evaluation method.

以下では,実施例を踏まえ,本発明のインビボ評価法およびインビトロ評価法をさらに詳細に説明するが,当然のことながら,本発明の内容は下記に限定されるものではない。   In the following, the in vivo evaluation method and in vitro evaluation method of the present invention will be described in more detail on the basis of examples. However, as a matter of course, the contents of the present invention are not limited to the following.

<<実施例1>>
1.被験者の同意の元,各被験者の手術検体を採取し,20%ホルマリン液で固定した。固定した手術検体をスライドガラスに均一に展開し,光学顕微鏡又はSHG顕微鏡にて観察を行った。
2.合わせて,手術前の被験者について,眼底カメラを用い眼底像およびOCT像の観察を行った。
<< Example 1 >>
1. Under the consent of the subjects, surgical specimens of each subject were collected and fixed with 20% formalin solution. The fixed surgical specimen was uniformly spread on a slide glass and observed with an optical microscope or an SHG microscope.
2. In addition, the fundus image and the OCT image were observed using a fundus camera for the subject before the operation.

<結果>
1.図1から図3に結果を示す。各図はそれぞれ上段が眼底カメラによるOCT像又は観察像,下段左が光学顕微鏡による拡大観察像,下段右がSHG顕微鏡による観察像である。図1は黄班円孔,図2は黄斑前膜,図3は増殖性硝子体網膜症の被験者である。
2.IV型コラーゲン増殖病態を主とする黄班円孔被験者の手術検体では,SHG光は全く検出されなかった(図1)。一方,I型コラーゲン増殖病態を主とする黄斑前膜や増殖性硝子体網膜症の被験者の手術検体では,SHG光が検出された(図2,3)。
3.これらの結果から,コラーゲンの型の違いにより,SHG光の検出が異なることが示された。
4.病態によりコラーゲンの型が異なることもあり,また,同じ病態であってもその進行度によりコラーゲンの成熟度が異なることが通常である。このことを踏まえると,病態や病態の進行度により,SHG顕微鏡観察結果に変化が見られることが強く示唆され,そのSHG観察結果を客観的に評価することにより,病態や病態の進行度の客観的評価が可能となりうることが強く示唆された。
<Result>
1. The results are shown in FIGS. In each figure, the upper row is an OCT image or observation image by a fundus camera, the lower left is an enlarged observation image by an optical microscope, and the lower right is an observation image by an SHG microscope. FIG. 1 shows a macular hole, FIG. 2 shows a premacular membrane, and FIG. 3 shows a subject with proliferative vitreoretinopathy.
2. SHG light was not detected at all in the surgical specimens of the macular hole subject mainly with type IV collagen proliferative pathology (FIG. 1). On the other hand, SHG light was detected in surgical specimens of subjects with premacular membranes and proliferative vitreoretinopathy mainly having type I collagen growth pathology (FIGS. 2 and 3).
3. From these results, it was shown that the detection of SHG light differs depending on the type of collagen.
4). Collagen types may differ depending on the pathological condition, and even in the same pathological condition, collagen maturity usually varies depending on the degree of progression. Based on this, it is strongly suggested that changes in the SHG microscopic observation results are observed depending on the pathological condition and the degree of progression of the pathological condition. By objectively evaluating the SHG observation results, an objective evaluation of the pathological condition and the degree of pathological condition is made. It was strongly suggested that an evaluation could be possible.

<<実施例2>>
<方法>
1.SHG顕微鏡にて,増殖性糖尿病網膜症被験者の眼の観察を行った。
2.増殖組織の無い部位のSHG輝度を測定し,そのうち最高輝度の部位を正常組織の閾値とした。
3.正常組織の閾値よりも高いSHG輝度を有する部位を増殖膜のある部位とした。この増殖膜のある部位の任意の部位(318.5×318.5μm2)を3か所選択し,SHG輝度の測定を行った。
4.SHG輝度の面積当たりの平均値を算出した。
5.合わせて,眼底カメラにて,眼底像およびOCT像の観察・解析を行った。
<< Example 2 >>
<Method>
1. The eyes of proliferative diabetic retinopathy subjects were observed with an SHG microscope.
2. The SHG brightness of the site without proliferating tissue was measured, and the site with the highest brightness was taken as the threshold value for normal tissue.
3. A part having SHG luminance higher than the threshold value of the normal tissue was determined as a part having a proliferation film. Three arbitrary portions (318.5 × 318.5 μm 2 ) of the portion having the proliferation membrane were selected, and SHG luminance was measured.
4). The average value per area of SHG luminance was calculated.
5. At the same time, fundus images and OCT images were observed and analyzed with a fundus camera.

<結果>
1.結果を図4から8に示す。各図において,上段が眼底カメラによる観察結果,下段がSHG顕微鏡による観察結果を示す。図上段のうち,左と右が眼底像,中央がOCT像を示す。
2.図4から図8の増殖性糖尿病網膜症被験者の眼底カメラによる観察において,いずれにおいてもコラーゲンの増殖が確認された。
(1) 比較的病気の進行が進んでいない被験者では,SHG光が広範に観察される一方,そのSHG強度はそれほど高くなかった(図4,5)。
(2) また,図6に見られるように,SHG光が観察される範囲は狭いものの,SHG強度が高い被験者も見られた。
(3) また,病気の進行が進んでいる被験者では,SHG光が広範に観察され,かつ,そのSHG強度も高かった(図7,8)。
3.各被験者について,SHGが観察される面積およびその強度をまとめたものを図9に示す。このようにSHG顕微鏡観察面積およびSHG強度を定量化することにより,増殖性糖尿病網膜症被験者を客観的に評価することが可能となる。また,この結果から,SHG顕微鏡観察面積およびSHG強度は比例するわけではないが,これらいずれもが高くなると,増殖性糖尿病網膜症被験者の病期の進行度,すなわち増殖膜の成熟度と相関する可能性が示唆された。
4.これらの結果は,増殖性糖尿病網膜症の病期の進行度の評価に,SHG観察が有用であることを示す結果である。
<Result>
1. The results are shown in FIGS. In each figure, the upper part shows the observation result with the fundus camera, and the lower part shows the observation result with the SHG microscope. In the upper part of the figure, the left and right are fundus images and the center is an OCT image.
2. In the observation of the proliferative diabetic retinopathy subject of FIGS. 4 to 8 with the fundus camera, the proliferation of collagen was confirmed in all cases.
(1) SHG light was observed extensively in subjects with relatively poor disease progression, but the SHG intensity was not so high (Figs. 4 and 5).
(2) In addition, as shown in FIG. 6, although the range in which SHG light was observed was narrow, some subjects had high SHG intensity.
(3) In addition, SHG light was observed extensively and the SHG intensity was high in subjects whose disease progressed (Figs. 7 and 8).
3. FIG. 9 shows a summary of the area where SHG is observed and the intensity of each subject. Thus, by quantifying the SHG microscopic observation area and the SHG intensity, it becomes possible to objectively evaluate proliferative diabetic retinopathy subjects. In addition, from this result, the SHG microscopic observation area and the SHG intensity are not proportional to each other, but if both of these are high, they correlate with the progression of stage of proliferative diabetic retinopathy, that is, the maturity of the proliferation membrane The possibility was suggested.
4). These results are results showing that SHG observation is useful for evaluating the progression of the stage of proliferative diabetic retinopathy.

<<実施例3>>
<実験方法>
1.コラーゲンゲルについて,まず,Cell Matrix I-A(700μL)と5倍濃縮DMEM(200μL),buffer(0.05N NaOH/260 mM NaHCO3 / 20mM HEPES 100μL)を混和した。この混和溶液200μLを,3.5mmガラスシャーレに加えて,30分間37℃インキュベーションすることによりゲル化し,コラーゲンゲルを作製した。
2.作製したコラーゲンゲルに,ヒト網膜色素上皮細胞(hRPE)を,播種密度4.0×104 cells/mLで2cc播種した。播種後すぐに培養液にTGFβ(3ng/mL)を添加した。培養液交換は2日ごとに行い,液量は1.8mLとした。
3.位相差顕微鏡とSHG顕微鏡を用いて,24時間,4日,8日目に1dishにつき3視野測定し,平均をSHG発現面積率・平均輝度として評価を行った。
4.走査電子顕微鏡(SEM)を用いて,培養していないゲル及び8日間細胞培養後のゲル表面を,トリプシン処理後に観察を行った。
<< Example 3 >>
<Experiment method>
1. Collagen gels were first admixed Cell Matrix IA (700μL) and 5-fold concentrated DMEM (200μL), buffer (0.05N NaOH / 260 mM NaHCO 3 / 20mM HEPES 100μL). 200 μL of this mixed solution was added to a 3.5 mm glass petri dish and gelled by incubation at 37 ° C. for 30 minutes to prepare a collagen gel.
2. To the prepared collagen gel, 2 cc of human retinal pigment epithelial cells (hRPE) were seeded at a seeding density of 4.0 × 10 4 cells / mL. Immediately after seeding, TGFβ (3 ng / mL) was added to the culture. The culture medium was changed every 2 days, and the volume was 1.8 mL.
3. Using a phase contrast microscope and an SHG microscope, three visual fields were measured per dish at 24 hours, 4 days, and 8 days, and the average was evaluated as the SHG expression area ratio and average luminance.
4). Using a scanning electron microscope (SEM), the gel that had not been cultured and the surface of the gel that had been cultured for 8 days were observed after trypsin treatment.

<結果>
1.結果を図10から図14に示す。
2.コラーゲンゲル3次元培養系では,培養4日目よりSHG発現面積及び平均輝度の上昇を認め,8日目には両指標ともに統計学的に有意な差を認めた(図10)。
3.同条件ゲルのSEM顕微鏡解析では,細胞培養後のゲルでコラーゲン線維が密に存在することが明らかとなった(図11)。
4.SEM顕微鏡解析を用いたコラーゲン線維束径の比較では,培養後の方が培養前のコラーゲン線維よりも,統計学的に有意に太いコラーゲン線維束を認めた(図12)。
5.TGFβ刺激hRPE細胞培養下では,培養4日目からSHG発現面積及び平均輝度の統計学的に有意な上昇を認め,その効果は8日目まで継続した(図13,下段)。
6.同条件ゲルのSEM顕微鏡解析では,TGFβ刺激hRPE細胞のゲルでコラーゲン線維が密に存在していた(図13,上段)。
7.SHG顕微鏡を用いたコラーゲン3次元培養系は,コラーゲンの線維化及び抑制効果を,固定など修飾を行わずにリアルタイムで観察できることが示された。よって,コラーゲン線維リモデリングの新しいインビトロ評価法として有用である。


<Result>
1. The results are shown in FIGS.
2. In the collagen gel three-dimensional culture system, the SHG expression area and the average luminance increased from the 4th day of culture, and statistically significant differences were observed for both indices on the 8th day (FIG. 10).
3. SEM microscopic analysis of the same condition gel revealed that collagen fibers were densely present in the gel after cell culture (FIG. 11).
4). In comparison of collagen fiber bundle diameters using SEM microscopic analysis, collagen fiber bundles that were statistically significantly thicker were recognized after culture than collagen fibers before culture (FIG. 12).
5. Under TGFβ-stimulated hRPE cell culture, a statistically significant increase in SHG expression area and average brightness was observed from the 4th day of culture, and the effect continued until the 8th day (FIG. 13, lower panel).
6). In SEM microscopic analysis of the same condition gel, collagen fibers were densely present in the gel of TGFβ-stimulated hRPE cells (FIG. 13, upper panel).
7). Collagen three-dimensional culture system using SHG microscope showed that collagen fibrosis and inhibitory effect can be observed in real time without modification such as fixation. Therefore, it is useful as a new in vitro evaluation method for collagen fiber remodeling.


Claims (1)

SHG顕微鏡を用いてコラーゲン増殖性眼疾患動物モデルの眼組織の正常部位ないし病変部位のSHG輝度を測定するSHG輝度測定工程と,病変部位の面積を測定する面積測定工程と,前記SHG輝度測定工程におけるSHG輝度と前記面積測定工程における面積値を用いて,病変部位における平均SHG輝度を算出する算出工程と,SHG光の検出からコラーゲン型を特定する工程を含むことを特徴とするインビボ評価方法。
And the SHG intensity measuring step of measuring the SHG intensity of normal site or lesion of the eye tissue collagen proliferative ocular disease animal model using SHG microscope, the area measuring step of measuring the area of the lesion, the SHG intensity measurements An in vivo evaluation method comprising: a calculation step of calculating an average SHG luminance at a lesion site using SHG luminance in the step and an area value in the area measuring step; and a step of identifying a collagen type from detection of SHG light .
JP2012186951A 2012-08-27 2012-08-27 A novel collagen fibrosis evaluation model using second harmonic light Expired - Fee Related JP6106883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186951A JP6106883B2 (en) 2012-08-27 2012-08-27 A novel collagen fibrosis evaluation model using second harmonic light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186951A JP6106883B2 (en) 2012-08-27 2012-08-27 A novel collagen fibrosis evaluation model using second harmonic light

Publications (2)

Publication Number Publication Date
JP2014042671A JP2014042671A (en) 2014-03-13
JP6106883B2 true JP6106883B2 (en) 2017-04-05

Family

ID=50394404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186951A Expired - Fee Related JP6106883B2 (en) 2012-08-27 2012-08-27 A novel collagen fibrosis evaluation model using second harmonic light

Country Status (1)

Country Link
JP (1) JP6106883B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563368C1 (en) * 2014-05-13 2015-09-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method for simulating proliferative vitreoretinopathy in rats
RU2568368C1 (en) * 2014-10-22 2015-11-20 Федеральное государственное бюджетное учреждение "Московский научно-исследовательский институт глазных болезней имени Гельмгольца" Министерства здравоохранения Российской Федерации Method for simulating proliferative vitreoretinopathy
CN108998496A (en) * 2018-08-20 2018-12-14 北京市眼科研究所 A kind of evaluation method of artificial light source visual system injury

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207387A1 (en) * 2000-11-20 2002-05-22 Institut Curie Multi-photon imaging installation.
AU2002366641A1 (en) * 2001-12-11 2003-06-23 Fibrogen, Inc. Methods for inhibiting ocular processes
JP2007049990A (en) * 2005-07-19 2007-03-01 Osaka Univ Method for evaluating cultured tissue sample and method for producing cultured tissue using the same
US20080009922A1 (en) * 2006-05-25 2008-01-10 Josef Bille Photodynamic therapy for treating age-related macular degeneration
EP2033047B1 (en) * 2006-06-29 2020-02-19 Agency for Science, Technology and Research Shg quantification of matrix-related tissue dynamic and disease
EP2635187B1 (en) * 2010-11-05 2019-10-09 Sinocare Meditech, Inc. Improved algorithm for detection of diabetes

Also Published As

Publication number Publication date
JP2014042671A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
Zheng et al. Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca2+ in neurons and astroglia
Nagasaki et al. Centripetal movement of corneal epithelial cells in the normal adult mouse
Zheng et al. Comparison of human corneal cell density by age and corneal location: an in vivo confocal microscopy study
Leyton-Mange et al. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor
Morishige et al. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy
Niederer et al. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea
Sheehy et al. Quality metrics for stem cell-derived cardiac myocytes
Bonnet et al. Human limbal epithelial stem cell regulation, bioengineering and function
Lagali et al. Laser-scanning in vivo confocal microscopy of the cornea: imaging and analysis methods for preclinical and clinical applications
Link et al. Intraocular pressure in zebrafish: comparison of inbred strains and identification of a reduced melanin mutant with raised IOP
JP2015146747A (en) cell determination method
Wang et al. Changes in mouse corneal epithelial innervation with age
JP6106883B2 (en) A novel collagen fibrosis evaluation model using second harmonic light
Liu et al. Increased substrate stiffness elicits a myofibroblastic phenotype in human lamina cribrosa cells
Flockerzi et al. Structural changes in the corneal subbasal nerve plexus in keratoconus
Kate et al. A review of the diagnosis and treatment of limbal stem cell deficiency
Duchi et al. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy
Ghosh et al. Corneal cell morphology in keratoconus: A confocal microscopic observation
Jun et al. Aging changes of mouse corneal endothelium and Descemet's membrane
Chen et al. In vivo imaging of newt lens regeneration: novel insights into the regeneration process
Mandai Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review
Peebo et al. Cellular-level characterization of lymph vessels in live, unlabeled corneas by in vivo confocal microscopy
Tan et al. Imaging cellular responses to mechanical stimuli within three‐dimensional tissue constructs
Szmacinski et al. Imaging hydroxyapatite in sub-retinal pigment epithelial deposits by fluorescence lifetime imaging microscopy with tetracycline staining
US20220387668A1 (en) Cultivated Autologous Limbal Epithelial Cell (CALEC) Transplantation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170215

R150 Certificate of patent or registration of utility model

Ref document number: 6106883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees