JP6106872B2 - Bulk-type lens, light emitter using the same, and illumination device - Google Patents

Bulk-type lens, light emitter using the same, and illumination device Download PDF

Info

Publication number
JP6106872B2
JP6106872B2 JP2012192715A JP2012192715A JP6106872B2 JP 6106872 B2 JP6106872 B2 JP 6106872B2 JP 2012192715 A JP2012192715 A JP 2012192715A JP 2012192715 A JP2012192715 A JP 2012192715A JP 6106872 B2 JP6106872 B2 JP 6106872B2
Authority
JP
Japan
Prior art keywords
light
lens
bulk
led
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012192715A
Other languages
Japanese (ja)
Other versions
JP2014048547A (en
Inventor
玉置 智
智 玉置
大塚 晃
晃 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAB Sphere Corp
Original Assignee
LAB Sphere Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAB Sphere Corp filed Critical LAB Sphere Corp
Priority to JP2012192715A priority Critical patent/JP6106872B2/en
Publication of JP2014048547A publication Critical patent/JP2014048547A/en
Application granted granted Critical
Publication of JP6106872B2 publication Critical patent/JP6106872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、バルク型レンズ及びそれを用いた発光体並びに照明装置に関し、さらに詳しくは、大出力LED等の大面積で発光する平面発光体からの発光を効率良く集光して放射するためのバルク型レンズ、バルク型レンズと大面積平面発光体を組み合わせた発光体及びこの発光体を用いた照明装置に関するものである。   The present invention relates to a bulk-type lens, a light emitter using the same, and an illumination device, and more specifically, for efficiently collecting and emitting light emitted from a flat light emitter that emits light in a large area such as a high-power LED. The present invention relates to a bulk lens, a light emitter that combines a bulk lens and a large-area planar light emitter, and an illumination device using the light emitter.

LEDは発光効率が良いため家庭用照明器具、街路灯、スポット照明装置等の多くの分野で使われるようになってきたが、蛍光灯や水銀灯などと比べて輝度が低く、価格が高いため、効率良く集光して必要な部分だけを照明する技術が開発されてきた。   LEDs have been used in many fields such as home lighting fixtures, street lamps, and spot lighting devices because of their high luminous efficiency, but they have lower brightness and higher prices than fluorescent lamps and mercury lamps. Technologies have been developed that efficiently concentrate and illuminate only the necessary parts.

特許文献1及び2等には、LEDなどの発光を効率良く集光するバルク型レンズが開示されている。バルク型レンズは、LED等の光源からの光を効率良く集光するため、街路灯やスポット照明機器として適している。   Patent Documents 1 and 2 disclose a bulk type lens that efficiently collects light emitted from an LED or the like. The bulk type lens is suitable as a street lamp or a spot lighting device because it efficiently collects light from a light source such as an LED.

図13は、従来のバルク型レンズ100の構造を示す断面図である。図13に示すように、従来のバルク型レンズ100(特許文献1参照)は、頂部102とレンズ内部にLED等の光源107を収納する凹部105とから構成されている光学媒体である。凹部105は天井部分の第1湾曲面105a(光入射部)と内周部105bとから構成されている。頂部102は、第1湾曲面105aから入射した光を光軸方向に出射する第2湾曲面102aからなる出射面を有している。凹部105の内周部105bは光源107の迷光成分の入射面として機能する。   FIG. 13 is a cross-sectional view showing the structure of a conventional bulk lens 100. As shown in FIG. 13, a conventional bulk lens 100 (see Patent Document 1) is an optical medium including a top portion 102 and a concave portion 105 that houses a light source 107 such as an LED inside the lens. The concave portion 105 includes a first curved surface 105a (light incident portion) and an inner peripheral portion 105b of the ceiling portion. The top portion 102 has an emission surface composed of a second curved surface 102a that emits light incident from the first curved surface 105a in the optical axis direction. The inner peripheral portion 105 b of the concave portion 105 functions as an incident surface for the stray light component of the light source 107.

従来のレンズ状の樹脂コートしたLED107に特許文献1及び2等で公知のバルク型レンズ100を装着すると、第1湾曲面105a(凹部天井)、第2湾曲面102a(凹部天井)、光伝送路長さ(第1湾曲面105aと第2湾曲面間102aの光軸上の距離)等の設計により、1/2ビーム角が7度〜40度で光利用効率が約90%という非常に優れた特性が実現できる。   When a known bulk-type lens 100 is mounted on a conventional lens-shaped resin-coated LED 107 in Patent Documents 1 and 2, etc., a first curved surface 105a (concave ceiling), a second curved surface 102a (concave ceiling), an optical transmission path By design such as length (distance on the optical axis between the first curved surface 105a and the second curved surface 102a), the 1/2 beam angle is 7 to 40 degrees and the light utilization efficiency is about 90%. Characteristics can be realized.

図14は、従来のバルク型レンズ110とレンズ状の樹脂コートしたLED107を組み合わせた発光体の光放射特性の一例を示す図である。バルク型レンズ110は、頂部102と底部103との間にさらに側壁部104を備えている。
バルク型レンズ110の第2湾曲面102aの曲率半径8.25mm、第1湾曲面105aの曲率半径5mm、第1湾曲面105aと第2湾曲面102aとの間の光軸上の長さ(導光路長さ)10.6mm、外径15mmのアクリル樹脂製(n=1.49)のバルク型レンズ110に、レンズ状の樹脂コートしたLED107を組み合わせたものである。
FIG. 14 is a diagram showing an example of the light emission characteristics of a light emitter in which a conventional bulk lens 110 and a lens-shaped resin-coated LED 107 are combined. The bulk lens 110 further includes a side wall portion 104 between the top portion 102 and the bottom portion 103.
The curvature radius of the second curved surface 102a of the bulk lens 110 is 8.25 mm, the curvature radius of the first curved surface 105a is 5 mm, and the length on the optical axis between the first curved surface 105a and the second curved surface 102a (guide). A lens-shaped resin-coated LED 107 is combined with an acrylic resin (n = 1.49) bulk lens 110 having an optical path length of 10.6 mm and an outer diameter of 15 mm.

レンズ状のLED107の光放射相対強度は、出射角0度:1、±20度:0.9、±40度:0.55、±60度:0.09、±70度:0.05であり、バルク型レンズ110を装着した時の光放射相対強度は出射角0度:2.7、±20度:1.35、±40度:0.09、±60度:0.05、±70度:0.03であった。1/2ビーム角は、LED単体で約85度であったものが、バルク型レンズ110を付けると約40度となった。バルク型レンズ110を付けた場合の1/2ビーム角内の光束は、LED107単体の光束の約90%を集光しているという非常に優れた集光性を有している。   The light emission relative intensity of the lens-shaped LED 107 is as follows: emission angle 0 degrees: 1, ± 20 degrees: 0.9, ± 40 degrees: 0.55, ± 60 degrees: 0.09, ± 70 degrees: 0.05 Yes, when the bulk type lens 110 is mounted, the light emission relative intensity is as follows: emission angle 0 degree: 2.7, ± 20 degrees: 1.35, ± 40 degrees: 0.09, ± 60 degrees: 0.05, ± 70 degrees: 0.03. The 1/2 beam angle was about 85 degrees for the LED alone, but was about 40 degrees when the bulk lens 110 was attached. The light beam within a ½ beam angle when the bulk lens 110 is attached has a very excellent light condensing property that condenses about 90% of the light beam of the LED 107 alone.

特開2001−44515号公報JP 2001-44515 A 特開2002−221658号公報JP 2002-221658 A

LED107は蛍光灯や水銀灯などと比べて発光効率が良いが、まだ出力が小さく、大出力LEDの開発や製品化が進められている。最近の大出力LEDでは、多くのLEDチップを一枚の基板に並べるなどして、発光面の直径が5mm〜15mmや更に大きなものもあり、レンズ状の樹脂コートがなく、ほぼ均一に面発光し、光放射角度が非常に広い。このような大出力LEDに従来のバルク型レンズ100、110を付けると、光放射角はあまり小さくならず、光利用効率も低くなる。   The LED 107 has better luminous efficiency than fluorescent lamps and mercury lamps, but the output is still small, and development and commercialization of high-power LEDs are being promoted. In recent high-power LEDs, many LED chips are arranged on a single substrate, and the diameter of the light emitting surface is 5 mm to 15 mm or larger, and there is no lens-like resin coat, and surface emission is almost uniform. However, the light emission angle is very wide. When the conventional bulk type lenses 100 and 110 are attached to such a high output LED, the light emission angle is not so small and the light utilization efficiency is also lowered.

レンズ状の樹脂コートがないLED107では、放射光強度はほぼ放射角度のsinに比例し、放射角度0度、20度、40度、60度、70度の光放射相対強度は、約1、0.94、0.77、0.5、0.34と放射角度が広い上に、レンズ光軸からのズレも大きくなる。バルク型レンズ110の光軸から大きく外れた光線は、レンズ外壁で全反射したり、光軸方向から大きく外れた方向へ放射したりして光利用効率が低下すると考えられる。   In the LED 107 without the lens-like resin coat, the emitted light intensity is substantially proportional to the sin of the emission angle, and the relative light emission intensity at the emission angles of 0 degrees, 20 degrees, 40 degrees, 60 degrees, and 70 degrees is about 1, 0. .94, 0.77, 0.5, and 0.34 have a wide radiation angle and a large deviation from the lens optical axis. The light beam greatly deviating from the optical axis of the bulk lens 110 is considered to be totally reflected by the lens outer wall or radiated in a direction deviating greatly from the optical axis direction, thereby reducing the light utilization efficiency.

従来の直径15mm程度の大きさのバルク型レンズ100、110では、発光面の直径を大きくした場合、発光点の光軸からのズレが2.5mm、光源の直径5mmでも全反射による光損失が大きくなり、さらに光放射角が大きくなる。   In the conventional bulk type lenses 100 and 110 having a diameter of about 15 mm, when the diameter of the light emitting surface is increased, the light loss from the optical axis of the light emitting point is 2.5 mm, and the light loss due to total reflection is caused even when the diameter of the light source is 5 mm. The light emission angle becomes larger.

大型化するために、単に小型のLED素子107を平面上に並べて実装した光源の場合も、1つの大きなバルク型レンズ100、110に収納すると光軸から離れた部分のLEDからの放射光がレンズ放射面で全反射して損失になり、また光軸から離れた方向に放射されるという課題がある。   Even in the case of a light source in which small LED elements 107 are simply arranged on a plane in order to increase the size, if the light is received in one large bulk type lens 100, 110, the emitted light from the LED at a portion away from the optical axis is emitted from the lens. There is a problem that the light is totally reflected on the radiation surface to be lost, and is emitted in a direction away from the optical axis.

本発明は上記課題に鑑み、大出力LED等の大面積で発光する平面発光体からの発光を効率良く集光して放射するためのバルク型レンズ大面積平面発光体を組み合わせた発光体を提供することを第の目的とし、この発光体を用いた照明装置を提供することを第の目的としている。 In view of the above problems, the present invention provides a light emitter that combines a bulk type lens and a large area planar light emitter for efficiently condensing and radiating light emitted from a planar light emitter that emits light in a large area such as a large output LED. The first object is to provide the second object, and the second object is to provide an illumination device using the light emitter.

本発明者等は、LEDのような大面積で発光する光源の最も外側の発光部分からの、有効に集光したい放射角度に対して、レンズ頂部光出射面の角度が、全反射しない条件で、かつ求める光指向性に合った方向に出射する角度にし、具体的には、従来方法でバルク型レンズを設計し、発光面の光軸から最も離れた位置で光放射角度を変えて光軌跡を計算し、レンズ光出射面で全反射条件に近づいた光放射角度より外側のレンズ出射面の曲率あるいはレンズ出射面と光軸との角度を徐々に大きくする、又は、レンズ光出射面の曲率を無限大(円錐形)にする、さらには、垂直に近い外壁での全反射を防止するため、有効に集光したい放射角度の光は側壁ではなく、レンズ頂部光出射面に当たるようにすることにより、平面型LEDの集光効率を向上できることを見出し、本発明に至った。   The inventors of the present invention have provided that the angle of the lens top light exit surface is not totally reflected with respect to the radiation angle that is desired to be effectively collected from the outermost light emitting portion of the light source that emits light in a large area such as an LED. In addition, the angle is set in the direction that matches the desired light directivity. Specifically, the bulk type lens is designed by the conventional method, and the light locus is changed at the position farthest from the optical axis of the light emitting surface. And gradually increase the curvature of the lens exit surface or the angle between the lens exit surface and the optical axis from the light emission angle close to the total reflection condition on the lens light exit surface, or the curvature of the lens light exit surface. In order to prevent infinite (conical) and to prevent total reflection on the outer wall that is nearly vertical, the light at the radiation angle that is desired to be collected effectively should hit the lens top light exit surface, not the side wall. To improve the light collection efficiency of planar LEDs Found to be able to above has led to the present invention.

上記第1の目的を達成するため、本発明の発光体は、頂部と、底部と、側壁部と、底部から該頂部に向かって形成された天井部及び内周部からなる凹部と、からなるバルク型レンズと、凹部に該凹部と間隔をあけて収容されるLEDと、を備え、LEDの発光面の直径は、側壁部の直径の1/6以上であり、天井部は、第1のレンズ面を構成し、頂部は、中央部と該中央部から側壁部へ接続される接続部とから成り、該頂部が第2のレンズ面を構成し、接続部は、中央部と同じ方向に傾斜して連続し中央部とは異なる曲率半径の湾曲面又は円錐状の面を有し、中央部より光放射角が大きく設定され、LEDの出射光は、天井部の第1のレンズ面に入射して中央部と接続部とで構成される頂部の第2のレンズ面から外部へ放射され、バルク型レンズの光軸から最も外側に位置するLEDの出射光は第1のレンズ面から第2のレンズ面の接続部へ到達し、該接続部に到達した光は、全反射しないようなレンズ出射面角度で放射されることを特徴とするTo achieve the first object, the light emitter of the present invention, a top, a bottom, a side wall portion, and a recess consisting of the ceiling portion and an inner peripheral portion formed toward said top from the bottom, consisting of A bulk-type lens and an LED housed in the concave portion with a gap from the concave portion, the light emitting surface of the LED having a diameter of 1/6 or more of the diameter of the side wall portion , Consists of a lens surface , the top part is composed of a central part and a connection part connected from the central part to the side wall part, the top part constitutes a second lens surface, and the connection part is in the same direction as the central part It has a curved surface or conical surface with a curvature radius different from that of the central portion that is inclined, and the light emission angle is set to be larger than that of the central portion, and the emitted light of the LED is directed to the first lens surface of the ceiling portion. Incident light is radiated to the outside from the second lens surface at the top, which is composed of the central part and the connection part. The light emitted from the LED located on the outermost side from the optical axis of the lens reaches the connecting portion of the second lens surface from the first lens surface, and the light that reaches the connecting portion is not totally reflected. Radiated at an angle .

上記構成において、天井部の光入射面は、好ましくは平面又は曲面である。接続部は、好ましくは、中央部の端部の接線から形成される直線で成り、全体としては円錐状である
側壁部の表面は、好ましくは、粗面又は光散乱体で被覆されている。
バルク型レンズの凹部に、バルク型レンズより小さな屈折率を有する気体又は流体を介して平面型LEDが配置されてもよい。
In the above configuration, the light incident surface of the ceiling is preferably a flat surface or a curved surface. The connecting portion is preferably formed by a straight line formed from a tangent line at the end of the central portion, and has a conical shape as a whole .
The surface of the side wall is preferably coated with a rough surface or a light scatterer.
The planar LED may be disposed in the concave portion of the bulk lens via a gas or fluid having a refractive index smaller than that of the bulk lens.

上記第の目的を達成するため、本発明の照明装置は、上記の何れかに記載の少なくとも1つ以上の発光体と発光体に接続された電源部とから成る。 In order to achieve the second object, an illumination device of the present invention includes at least one light emitter described in any of the above and a power supply unit connected to the light emitter.

本発明によれば、大面積で発光する光源の発光を有効に集光し、光照射角度の狭い、損失の少ないバルク型レンズ、発光体及び照明装置が実現できる。   According to the present invention, it is possible to effectively collect light emitted from a light source that emits light in a large area, and to realize a bulk lens, a light emitter, and an illumination device with a narrow light irradiation angle and with little loss.

本発明の第1の実施形態に係るバルク型レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the bulk type lens which concerns on the 1st Embodiment of this invention. 本発明のバルク型レンズを用いた発光体の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting body using the bulk type lens of this invention. 第1の実施形態に係るバルク型レンズの光放射特性を示す図である。It is a figure which shows the light emission characteristic of the bulk type lens which concerns on 1st Embodiment. 比較例のバルク型レンズの光軸上の光線の軌跡を示す図である。It is a figure which shows the locus | trajectory of the light ray on the optical axis of the bulk type lens of a comparative example. 比較例のバルク型レンズの光軸から5mm離れた光源面から放射した光線の軌跡を示す図である。It is a figure which shows the locus | trajectory of the light ray radiated | emitted from the light source surface 5 mm away from the optical axis of the bulk type lens of the comparative example. 比較例のバルク型レンズの光軸から10mm離れた光源面から放射した光線の軌跡を示す図である。It is a figure which shows the locus | trajectory of the light ray radiated | emitted from the light source surface 10 mm away from the optical axis of the bulk type lens of the comparative example. 本発明のバルク型レンズを用いた発光体の変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of the light-emitting body using the bulk type lens of this invention. 本発明の第2の実施形態に係るバルク型レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the bulk type lens which concerns on the 2nd Embodiment of this invention. 本発明のバルク型レンズを用いた発光体の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting body using the bulk type lens of this invention. 第2の実施形態に係るバルク型レンズの光放射特性を示す図である。It is a figure which shows the light emission characteristic of the bulk type lens which concerns on 2nd Embodiment. 本発明のバルク型レンズを用いた発光体の変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of the light-emitting body using the bulk type lens of this invention. 本発明の第3の実施形態に係る照明装置を模式的に示すブロック図である。It is a block diagram which shows typically the illuminating device which concerns on the 3rd Embodiment of this invention. 従来のバルク型レンズの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional bulk type lens. 従来のバルク型レンズとレンズ状に樹脂コートしたLEDを組み合わせた発光体の光放射特性を示す図である。It is a figure which shows the light emission characteristic of the light-emitting body which combined the LED by which the conventional bulk type lens and resin-coated LED were carried out.

以下、図面を参照しながら本発明の実施形態を具体的に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るバルク型レンズ1の構成を示す断面図であり、図2は、本発明のバルク型レンズ1を用いた発光体10の構成を示す断面図である。
図1に示すように、本発明のバルク型レンズ1は、頂部2と、底部3と、側壁部4と、底部3から頂部2に向かって形成された天井部5aと内周部5bとからなる凹部5と、を有している。バルク型レンズ1は、光学媒体からなる。凹部5は、図2に示すLED等からなる光源7の収納部となる。
Embodiments of the present invention will be specifically described below with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a bulk type lens 1 according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a configuration of a light emitter 10 using the bulk type lens 1 of the present invention. It is.
As shown in FIG. 1, the bulk lens 1 of the present invention includes a top portion 2, a bottom portion 3, a side wall portion 4, a ceiling portion 5a formed from the bottom portion 3 toward the top portion 2, and an inner peripheral portion 5b. And a recess 5. The bulk lens 1 is made of an optical medium. The concave portion 5 serves as a housing portion for the light source 7 composed of an LED or the like shown in FIG.

図2に示すように、本発明のバルク型レンズ1を用いた発光体10には、バルク型レンズ1の凹部5にLED等からなる光源7が収容されている。凹部5には、バルク型レンズ1とは異なる屈折率を有している空気8、空気以外の流体若しくは流動体9の何れかを介して収納されるようになっている。バルク型レンズ1の材料である光学媒体の屈折率(n1)は、空気8等の流体の屈折率(n0)よりも大きい。LED7aは、平面型LEDであり、基板上に複数のLEDチップが多数配設されている。図2では、平面型LED7aが、さらに、放熱板12に搭載されている。バルク型レンズ1の底部3は放熱板12に接着剤等で固定されている。平面型LED7aの形状は、円形、楕円形又は四角形等である。平面型LED7aの面積は、例えば直径が5mm〜30mmである。以下の説明では、平面型LED7aは直径が20mmとして、バルク型レンズ1の凹部5には、空気8を介して収納されているものとして説明する。 As shown in FIG. 2, the light emitter 10 using the bulk lens 1 of the present invention accommodates a light source 7 made of an LED or the like in the concave portion 5 of the bulk lens 1. The concave portion 5 is accommodated with air 8 having a refractive index different from that of the bulk lens 1, a fluid other than air, or a fluid 9. The refractive index (n 1 ) of the optical medium that is the material of the bulk lens 1 is larger than the refractive index (n 0 ) of the fluid such as air 8. The LED 7a is a planar LED, and a plurality of LED chips are arranged on a substrate. In FIG. 2, the planar LED 7 a is further mounted on the heat sink 12. The bottom 3 of the bulk lens 1 is fixed to the heat sink 12 with an adhesive or the like. The shape of the planar LED 7a is a circle, an ellipse, a quadrangle, or the like. The area of the planar LED 7a is, for example, 5 mm to 30 mm in diameter. In the following description, it is assumed that the planar LED 7a has a diameter of 20 mm and is housed in the concave portion 5 of the bulk lens 1 through the air 8.

凹部5の天井部5aは、第1湾曲面となり、平面型LED7aの光入射部となる。凹部5の天井部5aと平面型LED7aとの間には、バルク型レンズ1より屈折率が低い空気8が挿入されているので、第1湾曲面が平面であっても、平面型LED7aから出射した光は光軸方向に屈折して集光し、第1のレンズ面として作用する。凹部5の天井部5aの第1湾曲面(光入射面)は、平面又は曲面とすればよい。平面型LED7aから出射した光を光軸方向により収束させたい場合には、曲率を大きくすればよい。凹部5の天井部5aの光入射面を平面とすれば、曲率が無限大(∞)となるので、光軸方向の集光性を高くすることができる。逆に、凹部5の天井部5aの光入射面を曲面とすれば集光性を低くすることができる。   The ceiling part 5a of the recess 5 serves as a first curved surface and serves as a light incident part of the flat LED 7a. Since air 8 having a refractive index lower than that of the bulk lens 1 is inserted between the ceiling portion 5a of the concave portion 5 and the flat LED 7a, the light is emitted from the flat LED 7a even if the first curved surface is flat. The refracted light is refracted and condensed in the optical axis direction, and acts as a first lens surface. The first curved surface (light incident surface) of the ceiling portion 5a of the recess 5 may be a flat surface or a curved surface. In order to converge the light emitted from the planar LED 7a in the optical axis direction, the curvature may be increased. If the light incident surface of the ceiling 5a of the recess 5 is a flat surface, the curvature becomes infinite (∞), so that the light condensing property in the optical axis direction can be enhanced. Conversely, if the light incident surface of the ceiling portion 5a of the recess 5 is a curved surface, the light condensing property can be lowered.

側壁部4及び底部3は反射面として作用し、平面型LED7aから出射した光の内光軸からずれ側壁部4及び底部3方向への光(迷光)を頂部2へ伝送する、つまり光伝送作用を有しているので、側壁部4及び底部3は迷光を頂部2に集光する作用を有している。   The side wall portion 4 and the bottom portion 3 act as reflecting surfaces, and transmit light (stray light) in the direction of the side wall portion 4 and the bottom portion 3 to the top portion 2, that is, deviate from the inner optical axis of the light emitted from the planar LED 7a. Therefore, the side wall part 4 and the bottom part 3 have a function of collecting stray light on the top part 2.

頂部2は、光軸側の中央部2aと中央部2aから側壁部4に接続する接続部2bとからなる。中央部2aは第2湾曲面となる。図1のバルク型レンズ1では、中央部2aは球面又は楕円球面である。図1に示すように、接続部2bは、光軸に対して角度θで中央部2aの曲面に接する直線からなる曲面であり、光軸に頂点がある円錐形状を有している。
中央部2a及び接続部2bは、第1湾曲面から入射する光、側壁部4及び底部3から反射してくる光源7から光束を、バルク型レンズ1の光軸方向に収束して出射する。つまり、バルク型レンズ1の外側は空気8であるので、頂部2の中央部2a及び接続部2bは、第2のレンズ面として作用する。
The top portion 2 includes a central portion 2a on the optical axis side and a connecting portion 2b connected to the side wall portion 4 from the central portion 2a. The central part 2a is a second curved surface. In the bulk type lens 1 of FIG. 1, the central portion 2a is a spherical surface or an elliptical spherical surface. As shown in FIG. 1, the connecting portion 2 b is a curved surface that is a straight line that is in contact with the curved surface of the central portion 2 a at an angle θ with respect to the optical axis, and has a conical shape with a vertex on the optical axis.
The central portion 2 a and the connecting portion 2 b converge and emit light incident from the first curved surface and a light beam from the light source 7 reflected from the side wall portion 4 and the bottom portion 3 in the optical axis direction of the bulk lens 1. That is, since the outside of the bulk lens 1 is air 8, the central portion 2a and the connecting portion 2b of the top portion 2 act as a second lens surface.

バルク型レンズ1の頂部2の光軸に近いレンズ出射面、つまり、中央部2aの断面は、ほぼ円形又は楕円形で全体としては球状である。バルク型レンズ1の頂部2、つまり、接続部2bにおいて、光軸から所定の距離以上離れたレンズ出射面の断面は前記円形又は楕円形の端部の接線から形成される直線で全体としては円錐状である。頂部2の端部は、中央部2aと接続部2bとが接続される境界部分である。   The lens exit surface close to the optical axis of the top portion 2 of the bulk lens 1, that is, the cross section of the central portion 2 a is substantially circular or elliptical, and is generally spherical. In the top portion 2 of the bulk lens 1, that is, the connection portion 2b, the cross section of the lens exit surface that is separated from the optical axis by a predetermined distance or more is a straight line formed from the tangent line of the circular or elliptical end, and is generally a cone Is. The end portion of the top portion 2 is a boundary portion where the central portion 2a and the connecting portion 2b are connected.

本発明のバルク型レンズ1では、例えば直径が5mm以上の平面型LED7aからなる光源7をバルク型レンズ1の内部の光軸を中心として設置した場合について説明する。平面型LED7aからなる光源7の光軸から最も外側の位置から放射した光で有効に前方に集光したい所定の照射角度の光は、凹部5の天井部5aの光入射面からレンズ内部に入射し、球状及び円錐状のレンズ出射面に到達するようになっている。このレンズ出射面に到達した光がレンズ出射面で全反射しないようなレンズ出射面角度になっている。   In the bulk type lens 1 of the present invention, a case will be described in which a light source 7 including, for example, a planar LED 7a having a diameter of 5 mm or more is installed around the optical axis inside the bulk type lens 1. Light of a predetermined irradiation angle that is desired to be effectively collected forward by light emitted from the outermost position from the optical axis of the light source 7 composed of the planar LED 7a is incident on the inside of the lens from the light incident surface of the ceiling portion 5a of the recess 5. However, it reaches the spherical and conical lens exit surface. The angle of the lens exit surface is such that the light reaching the lens exit surface is not totally reflected by the lens exit surface.

第1の実施形態では、円形の発光面の光源7を想定しているが、長方形や楕円形の発光面の光源7の場合は光軸と垂直方向のレンズ断面を楕円形にすると良い。   In the first embodiment, the light source 7 having a circular light emitting surface is assumed. However, in the case of the light source 7 having a rectangular or elliptical light emitting surface, the lens cross section perpendicular to the optical axis may be elliptical.

楕円形レンズの場合もレンズ出射面の断面形状を同様に設計すれば良く、レンズの光軸断面の光軸付近、つまり中央部2aを楕円形とし、接続部2bを光軸付近の楕円形の境界部分の接線となる直線にする。   In the case of an elliptical lens, the cross-sectional shape of the lens exit surface may be designed in the same manner. The optical axis cross section of the lens, that is, the central portion 2a is elliptical, and the connecting portion 2b is elliptical near the optical axis. Make a straight line that is a tangent to the boundary.

また、光軸付近のレンズ出射面の光軸断面形状が完全な円形でなくとも、周辺部のレンズ出射面の光軸との角度が小さいと光軸から外れた発光面からの放射光が全反射するので、レンズ出射面の周辺部断面を直線にして光軸との角度を大きくし、全反射を防止して光集光率を高くすることができる。   In addition, even if the optical axis cross-sectional shape of the lens exit surface near the optical axis is not perfectly circular, if the angle with the optical axis of the peripheral lens exit surface is small, all the emitted light from the light emitting surface off the optical axis will be emitted. Since the light is reflected, the cross section of the peripheral portion of the lens exit surface is made straight, the angle with the optical axis is increased, total reflection can be prevented, and the light collection rate can be increased.

バルク型レンズ1は、レンズ作用及び入射面(凹部5の天井部5a)と出射面(頂部2)とを接続する光伝送作用を有するので、バルク型レンズ1に用いる光学媒体の材料は、光の波長に対して透明な材料である。光学媒体としては、アクリル樹脂等の透明樹脂、つまり、透明プラスチック材料、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス等の種々のガラス材料等が使用可能である。或いは、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、炭化珪素(SiC)等の結晶性材料を用いてもかまわない。また、可とう性、屈曲性や伸縮性のある透明ゴムのような材料でもかまわない。   Since the bulk type lens 1 has a lens action and an optical transmission function for connecting the incident surface (the ceiling portion 5a of the concave portion 5) and the emission surface (the top portion 2), the material of the optical medium used for the bulk type lens 1 is an optical material. It is a material that is transparent with respect to the wavelength. As the optical medium, a transparent resin such as an acrylic resin, that is, various plastic materials such as a transparent plastic material, quartz glass, soda-lime glass, borosilicate glass, and lead glass can be used. Alternatively, a crystalline material such as zinc oxide (ZnO), zinc sulfide (ZnS), or silicon carbide (SiC) may be used. Further, a material such as a transparent rubber having flexibility, flexibility and elasticity may be used.

(バルク型レンズの光放射特性)
バルク型レンズ1の光放射特性について説明する。
図1のバルク型レンズ1は、アクリル樹脂で作製した。バルク型レンズ1の各部の寸法を以下に示す。
第1湾曲面5aの曲率半径:∞(平面)
頂部2の中央部2a(第2湾曲面):曲率半径30mmで角度θが46度以下の部分(図1参照)
頂部2の接続部2b:第2湾曲面の角度θ46度で接線となる円錐形状(図1参照)
導光路長さ:55mm
側壁部4の直径:66mm
平面型LED7aの寸法:直径20mm
平面型LED7aと第1湾曲面5aとの距離:約2mm
(Light emission characteristics of bulk lens)
The light emission characteristics of the bulk lens 1 will be described.
The bulk type lens 1 in FIG. 1 was made of an acrylic resin. The dimension of each part of the bulk type lens 1 is shown below.
Curvature radius of first curved surface 5a: ∞ (plane)
Central portion 2a (second curved surface) of the top portion 2: a portion having a curvature radius of 30 mm and an angle θ of 46 degrees or less (see FIG. 1)
Connection portion 2b of the top portion 2: a conical shape that becomes a tangent at an angle θ46 ° of the second curved surface (see FIG. 1)
Light guide length: 55mm
Side wall 4 diameter: 66 mm
Dimension of flat LED 7a: Diameter 20mm
Distance between flat LED 7a and first curved surface 5a: about 2 mm

平面型LED7aから放射した光(出射角度0、±20度、±40度、±60度、±70度)の光放射を試算した。平面型LED7aの発光面7bの位置が光軸から外れるほどレンズ出射面で全反射し、出射光が光軸から外れるので、以下では光軸から10mmの位置の発光で説明する。   The light emission of the light emitted from the planar LED 7a (emission angle 0, ± 20 degrees, ± 40 degrees, ± 60 degrees, ± 70 degrees) was estimated. As the position of the light emitting surface 7b of the planar LED 7a deviates from the optical axis, it is totally reflected on the lens emitting surface, and the emitted light deviates from the optical axis.

図3は、第1の実施形態に係るバルク型レンズ1の光放射特性を示す図である。図3に示すように、光軸から10mmの発光面7bから外側20°、40°、60°、70°で出射した光は、レンズ入射面から約13度、26度、36度、39度で入射する。レンズ出射面で全反射となる入射角度は約42度であるので、全反射臨界角になるレンズ面の光軸との角度は、それぞれ約35度、22度、12度、9度となる。   FIG. 3 is a diagram showing the light emission characteristics of the bulk lens 1 according to the first embodiment. As shown in FIG. 3, the light emitted from the light emitting surface 7b 10 mm from the optical axis at the outer side of 20 °, 40 °, 60 °, and 70 ° is about 13 °, 26 °, 36 °, and 39 ° from the lens incident surface. Incident at. Since the incident angle for total reflection on the lens exit surface is about 42 degrees, the angles with the optical axis of the lens surface that become the total reflection critical angle are about 35 degrees, 22 degrees, 12 degrees, and 9 degrees, respectively.

光軸から外側20度に出射した光はレンズ入射面から約13度で入射し、レンズ出射面の中心角約46度の位置で光軸の反対方向約8度で出射する(光放射の軌跡16参照)。   Light emitted 20 degrees outward from the optical axis is incident at approximately 13 degrees from the lens incident surface, and is emitted at approximately 8 degrees in the direction opposite to the optical axis at a central angle of approximately 46 degrees on the lens exit surface (trajectory of light emission). 16).

後述する比較例の図5等に示すように、LEDからの出射角がより大きくなるとレンズ出射面で全反射するので、図3に示すように、レンズ出射面の球面中心角θが約46度以上のレンズ表面の角度を光軸に対して44度(球面中心角46度の接線)の円錐状にすれば、より大きな出射角の光に対しても全反射臨界角より小さな入射角となるため、全反射は防止できる。   As shown in FIG. 5 and the like of a comparative example to be described later, when the emission angle from the LED becomes larger, total reflection is performed on the lens emission surface, so that the spherical center angle θ of the lens emission surface is about 46 degrees as shown in FIG. If the above lens surface angle is conical with an angle of 44 degrees with respect to the optical axis (tangential line with a spherical central angle of 46 degrees), the incident angle is smaller than the total reflection critical angle even for light having a larger emission angle. Therefore, total reflection can be prevented.

図3に示すように、光軸から外側40度、60度、70度で出射した光はレンズ入射面から約26度、36度、39度で入射する。光軸に44度の円錐状表面2bでの入射角はそれぞれ約20度、10度、7度で全反射の臨界角以下で、屈折角はそれぞれ約31度、16度、10度であり、光軸に対する光放射角はそれぞれ約15度、30度、36度となる。   As shown in FIG. 3, the light emitted at 40 degrees, 60 degrees, and 70 degrees outside the optical axis is incident at about 26 degrees, 36 degrees, and 39 degrees from the lens incident surface. The incident angles at the conical surface 2b of 44 degrees on the optical axis are about 20 degrees, 10 degrees, and 7 degrees, respectively, which are less than the critical angle of total reflection, and the refraction angles are about 31 degrees, 16 degrees, and 10 degrees, respectively. The light emission angles with respect to the optical axis are about 15 degrees, 30 degrees, and 36 degrees, respectively.

光軸から10mmの発光面7bから外側70度に出射した光は、光軸から66mmの位置で円錐上のレンズ出射面2bに到達するので、この光を有効に放射するレンズの直径としては、66mm以上が必要となることが分かる(光放射の軌跡17参照)。本実施例では、レンズ直径をなるべく小さくするために、LED放射光強度が光軸の約34%となる放射角70度までの放射光を有効に集光するレンズ直径66mmとした。   The light emitted from the light emitting surface 7b 10 mm from the optical axis to the outside 70 degrees reaches the conical lens emitting surface 2b at a position 66 mm from the optical axis, and the diameter of the lens that effectively emits this light is as follows: It can be seen that 66 mm or more is required (see the light emission locus 17). In this embodiment, in order to reduce the lens diameter as much as possible, the lens diameter is 66 mm for effectively collecting the emitted light up to a radiation angle of 70 degrees where the LED emitted light intensity is about 34% of the optical axis.

本発明のバルク型レンズ1によれば、図3に示すように、直径20mmの発光面7bを有する平面型LED17aからの光がレンズ出射面2bで全反射せず、損失が少ないレンズが得られる。   According to the bulk type lens 1 of the present invention, as shown in FIG. 3, the light from the planar LED 17a having the light emitting surface 7b having a diameter of 20 mm is not totally reflected by the lens emitting surface 2b, and a lens with little loss is obtained. .

(比較例)
次に、本発明のバルク型レンズ1に対する比較例として、従来型のバルク型レンズ120の光放射特性について説明する。
平面型LEDを使用した場合に光軸からのズレの影響を小さくするため、比較例のバルク型レンズ120を、従来の砲弾型LED用のバルクレンズ110(図14参照)よりも比較的大きな口径として、光放射特性を調べた。
(Comparative example)
Next, as a comparative example for the bulk lens 1 of the present invention, the light emission characteristics of a conventional bulk lens 120 will be described.
In order to reduce the effect of deviation from the optical axis when using a flat LED, the comparative bulk type lens 120 has a relatively larger aperture than the conventional bullet type LED bulk lens 110 (see FIG. 14). As a result, the light emission characteristics were examined.

比較例のバルク型レンズ120は、アクリル樹脂で作製した。比較例のバルク型レンズ120における各部の寸法を以下に示す(図4参照)。
第1湾曲面105aの曲率半径:∞(平面)
第2湾曲面102aの曲率半径:30mm
導光路長さ:55mm
平面型LEDの寸法:直径20mm
平面型LEDと第1湾曲面35との距離:約2mm
側壁部104の直径:60mm
The bulk type lens 120 of the comparative example was made of an acrylic resin. The dimensions of each part in the bulk type lens 120 of the comparative example are shown below (see FIG. 4).
Curvature radius of first curved surface 105a: ∞ (plane)
Curvature radius of second curved surface 102a: 30 mm
Light guide length: 55mm
Flat LED dimensions: 20mm diameter
Distance between planar LED and first curved surface 35: about 2 mm
Side wall 104 diameter: 60 mm

図4〜6は、比較例のバルク型レンズ120で、それぞれ、光軸上の発光面107aからの光線の軌跡、光軸から5mm離れた発光面107aから放射した光線の軌跡、及び、光軸から10mm離れた発光面107aから放射した光線の軌跡を示す図である。図には、平面型LED107の発光面107aから放射した光の出射角度を、光軸に対して0、±20度、±40度、±60度、±70度として計算した光線の軌跡を示している。   4 to 6 show a comparative example of the bulk type lens 120. The locus of light rays from the light emitting surface 107a on the optical axis, the locus of light rays emitted from the light emitting surface 107a 5 mm away from the optical axis, and the optical axis, respectively. It is a figure which shows the locus | trajectory of the light ray radiated | emitted from the light emission surface 107a away from 10 mm. The figure shows the trajectory of light rays calculated by setting the emission angle of light emitted from the light emitting surface 107a of the flat LED 107 as 0, ± 20 degrees, ± 40 degrees, ± 60 degrees, and ± 70 degrees with respect to the optical axis. ing.

図4に示すように、レンズ光軸上の発光面107aから放射した光線の軌跡112は、集光性が優れているが、60度以上の光線ではやや内側方向へ光が放射する傾向がある。   As shown in FIG. 4, the locus 112 of the light beam emitted from the light emitting surface 107a on the optical axis of the lens is excellent in the light condensing property, but the light tends to radiate slightly inward in the light beam of 60 degrees or more. .

図5に示すように、レンズ光軸から5mm離れた発光面107aから放射した光線の軌跡113は、垂直放射の光もレンズ境界で内側方向に曲げられ、光軸の外方向に60度以上で放射する光は、レンズ出射面で全反射し、その後はレンズ光軸から大きく外れた方向に放射して照明に有効な光とはならない。   As shown in FIG. 5, the trajectory 113 of the light beam emitted from the light emitting surface 107a that is 5 mm away from the lens optical axis is also bent vertically inward by the lens boundary, and at 60 degrees or more in the outward direction of the optical axis. The emitted light is totally reflected on the lens exit surface, and then emitted in a direction greatly deviating from the lens optical axis, and does not become light effective for illumination.

図6に示すように、レンズ光軸から10mm離れた発光面107aから放射した光線の軌跡114においては、光軸の外方向に40度以上で放射する光は、レンズ出射面で全反射するため、照明としての損失がより大きくなる。   As shown in FIG. 6, in the locus 114 of the light beam emitted from the light emitting surface 107a that is 10 mm away from the lens optical axis, the light emitted at an angle of 40 degrees or more outward from the optical axis is totally reflected by the lens output surface. The loss as lighting becomes larger.

従来の直径15mm程度の大きさのバルク型レンズ110では、レンズ光軸からの発光点のズレが上記試算の4倍となるため、発光点の光軸からのズレが2.5mm、光源の直径が5mmでも光損失が大きく、かつ光放射角が大きくなった。   In the conventional bulk type lens 110 having a diameter of about 15 mm, the deviation of the light emission point from the lens optical axis is four times the above calculation, so the deviation of the light emission point from the optical axis is 2.5 mm, and the diameter of the light source Even when 5 mm, the light loss was large and the light emission angle was large.

発光体を大型化するために、平面型LEDを使用しないで単に小型のLED素子を平面上に並べて実装した光源も検討した。この場合も、従来の1つの大きなバルク型レンズに収納すると、光軸から離れた部分の小型のLEDからの放射光が、レンズ放射面で全反射して損失になり、また光軸から離れた方向に放射された。   In order to increase the size of the illuminant, a light source in which small LED elements are simply arranged and mounted on a flat surface without using a flat LED was also examined. In this case as well, when housed in one conventional large bulk lens, the light emitted from the small LED at a portion away from the optical axis is totally reflected on the lens radiation surface and lost, and further away from the optical axis. Radiated in the direction.

以上のように、本発明のバルク型レンズ1では、図3に示すように、従来の頂部2と側壁部4との間にさらに円錐形状の接続部2bを備えているので、レンズ光軸から10mm離れた発光面7bから放射した±70度の光を光軸方向に幅約70度程度の放射角に集光して出射できる。
一方、比較例に示す従来のバルク型レンズ120では、大面積で発光するLED107を従来のバルク型レンズ120で集光すると、光軸から外れた発光部からの放射角度の大きい光がレンズ出射面で全反射して損失が大きくなり、光放射角が大きくなることがわかる。
As described above, in the bulk type lens 1 of the present invention, as shown in FIG. 3, the conical connecting portion 2b is further provided between the conventional top portion 2 and the side wall portion 4, and therefore, from the lens optical axis. Light of ± 70 degrees emitted from the light emitting surface 7b separated by 10 mm can be condensed and emitted at a radiation angle of about 70 degrees in the optical axis direction.
On the other hand, in the conventional bulk-type lens 120 shown in the comparative example, when the LED 107 that emits light in a large area is condensed by the conventional bulk-type lens 120, light having a large radiation angle from the light-emitting portion off the optical axis is emitted from the lens exit surface It can be seen that the loss is increased due to total reflection and the light emission angle is increased.

第1の実施形態では、光源7のレンズ光軸からのズレが10mm、光源7の直径が20mmで説明しているが、直径15mm程度の従来のバルク型レンズ110では直径5mmの発光面の光源でも収束性が低下した。このため、直径5mmの発光面の光源の光を有効に集光するためには、第1の実施形態のバルク型レンズ1と同様な設計が必要である。   In the first embodiment, the displacement from the lens optical axis of the light source 7 is 10 mm and the diameter of the light source 7 is 20 mm. However, the conventional bulk lens 110 having a diameter of about 15 mm has a light emitting surface light source of 5 mm in diameter. But the convergence was reduced. For this reason, in order to condense the light of the light source of the light emission surface of diameter 5mm effectively, the design similar to the bulk type lens 1 of 1st Embodiment is required.

第1の実施形態では、LED7aからのレンズへの入射角をできるだけ光軸方向に近づけるため、凹部5の第1湾曲面(天井の光入射部)5aは平面としたが、より広角の放射特性を実現するためには球面であっても良い。   In the first embodiment, in order to make the incident angle of the LED 7a to the lens as close as possible to the optical axis direction, the first curved surface (light incident portion on the ceiling) 5a of the concave portion 5 is a flat surface. In order to realize this, a spherical surface may be used.

第1湾曲面(天井の光入射部)5aが球面の場合は、レンズへの入射角が平面の場合と比べて少しだけ小さくなり、屈折角も少し小さいので、円錐状のレンズ出射面へのLED7aの放射光の到達位置がより外側に、光放射角が少し大きく、必要なレンズ直径も少し大きくなる。   When the first curved surface (ceiling light incident portion) 5a is a spherical surface, the incident angle to the lens is slightly smaller than that of a flat surface and the refraction angle is also slightly smaller. The arrival position of the emitted light of the LED 7a is further outward, the light emission angle is slightly larger, and the necessary lens diameter is also slightly larger.

また、第1の実施形態では、第2湾曲面(光出射部)2aの中心角θ以上の周辺部2bを円錐形状にしたが、円錐状の場合、図3のように、光出射角が大きくなると光放射角も大きくなり、またレンズ外形も大きくなる。   In the first embodiment, the peripheral portion 2b having a central angle θ equal to or larger than the central angle θ of the second curved surface (light emitting portion) 2a is conical, but in the case of the conical shape, the light emitting angle is as shown in FIG. When it becomes larger, the light emission angle becomes larger and the lens outer shape becomes larger.

(第1の実施形態の変形例)
図7は、本発明のバルク型レンズ1を用いた発光体の変形例の構成を示す断面図である。図7に示すように、本発明のバルク型レンズ1を用いた発光体20が図2のバルク型レンズ1を用いた発光体10と異なるのは、バルク型レンズ1の凹部5に空気8を介してLEDを配置しないで、凹部5の空隙、つまり、凹部5と平面型LED7aとの間に、レンズ媒体の屈折率より小さな屈折率を有する透明な樹脂やゲル22を介して平面型LED7aを配置している点である。
(Modification of the first embodiment)
FIG. 7 is a cross-sectional view showing a configuration of a modification of the light emitter using the bulk lens 1 of the present invention. As shown in FIG. 7, the light emitter 20 using the bulk lens 1 of the present invention is different from the light emitter 10 using the bulk lens 1 of FIG. The flat LED 7a is interposed between the gap of the concave portion 5, that is, between the concave portion 5 and the flat LED 7a via a transparent resin or gel 22 having a refractive index smaller than that of the lens medium. It is a point that is arranged.

バルク型レンズ1の凹部5と平面型LED7aとの間に、透明な樹脂やゲル22を挿入すると、バルク型レンズ1とジェル22の屈折率の差が小さくなるので、入射面となる第1湾曲面5aで光軸方向に屈折させる効果は小さくなる。しかしながら、バルク型レンズ1への入射面での反射が非常に小さくなり、さらに、平面型LED7aの発熱をバルク型レンズ1により放熱し易くなるという効果が生じる。   When a transparent resin or gel 22 is inserted between the concave portion 5 of the bulk lens 1 and the planar LED 7a, the difference in refractive index between the bulk lens 1 and the gel 22 is reduced, so that the first curve serving as the incident surface is formed. The effect of refracting in the optical axis direction on the surface 5a is reduced. However, the reflection at the entrance surface to the bulk lens 1 becomes very small, and the heat generated by the planar LED 7a can be easily radiated by the bulk lens 1.

光軸方向に角度の狭い光照射を行わない場合などには、透明な樹脂やゲル22を介して平面型LED7aを配置する方が良い。例えば、シリコーン製のゲル22は透明で耐熱性や信頼性も優れている。   When light irradiation with a narrow angle in the optical axis direction is not performed, it is better to arrange the planar LED 7a via a transparent resin or gel 22. For example, the silicone gel 22 is transparent and has excellent heat resistance and reliability.

(第2の実施形態)
図8は、本発明の第2の実施形態に係るバルク型レンズ30の構成を示す断面図で、図9は、本発明のバルク型レンズ30を用いた発光体40の構成を示す断面図である。
図8に示すバルク型レンズ30が、図1のバルク型レンズ1と異なる点は、頂部32の接続部32bであり、円錐状の面としていない点である。
(Second Embodiment)
FIG. 8 is a cross-sectional view showing a configuration of a bulk type lens 30 according to the second embodiment of the present invention, and FIG. 9 is a cross-sectional view showing a configuration of a light emitter 40 using the bulk type lens 30 of the present invention. is there.
The bulk type lens 30 shown in FIG. 8 is different from the bulk type lens 1 of FIG. 1 in that the connecting part 32b of the top part 32 is not a conical surface.

具体的には、図8に示すバルク型レンズ30の接続部32bは、光軸から所定の距離離れたレンズ出射面の断面が円形の端部の接線から形成される直線からなる面、つまり、これらの直線が集まって全体としては円錐状の面Aと、断面の円形の延長線上の垂直の接線Bからなる円柱との間に形成される面からなる。この円柱は、第2湾曲面に接続される。接続部32bは、レンズ出射面の光軸との角度が、レンズ出射面が光軸から離れるにつれて徐々に小さくなるように形成されている。他の構成は、図1のバルク型レンズ1と同様に構成されているので説明は省略する。   Specifically, the connecting portion 32b of the bulk type lens 30 shown in FIG. 8 is a surface formed by a straight line formed by a tangent of a circular end portion of the cross section of the lens exit surface separated from the optical axis by a predetermined distance, that is, These straight lines gather together to form a surface formed between a conical surface A and a cylinder formed of a perpendicular tangent line B on a circular extension of the cross section. This cylinder is connected to the second curved surface. The connecting portion 32b is formed such that the angle of the lens exit surface with the optical axis gradually decreases as the lens exit surface moves away from the optical axis. The other configuration is the same as that of the bulk lens 1 of FIG.

図8に示すバルク型レンズ30では、直径5mm以上の大面積平面発光の光源7をバルク型レンズ30の内部の光軸を中心として設置した時に、光源7の光軸から最も外側の位置から放射した光で有効に前方に集光したい所定の放射角度の光は、凹部35の天井部35aの光入射面からレンズ内部に入射し、レンズ出射面に到達するようになっており、レンズ出射面に到達した光がレンズ出射面で全反射せず、レンズからの出射光が光軸に近い方向に出射するようなレンズ出射面角度になっている。   In the bulk type lens 30 shown in FIG. 8, when a large area planar light source 7 having a diameter of 5 mm or more is installed around the optical axis inside the bulk type lens 30, the light is emitted from the outermost position from the optical axis of the light source 7. The light having a predetermined radiation angle that is desired to be effectively collected forward by the incident light is incident on the inside of the lens from the light incident surface of the ceiling portion 35a of the recess 35 and reaches the lens exit surface. The light exiting from the lens is not totally reflected by the lens exit surface, and the lens exit surface angle is such that the exit light from the lens exits in a direction close to the optical axis.

(第2の実施形態に係るバルク型レンズの光放射特性)
バルク型レンズ30の光放射特性について説明する。
バルク型レンズ30は、アクリル樹脂で作製した。バルク型レンズ30の各部の寸法を以下に示す。
第1湾曲面35aの曲率半径:∞(平面)
頂部32の中央部32a(第2湾曲面):曲率半径30mmで角度θが46度以下の部分
頂部32の接続部32b:第2湾曲面の角度θが46度で接線となる円錐形状と、第2湾曲面の延長線との間で、周辺ほど徐々に光軸との角度が小さくなる形状
導光路長さ:55mm
側壁部34の直径:63mm
平面型LED7aの寸法:直径20mm
平面型LED7aと第1湾曲面35aとの距離:約2mm
(Light emission characteristics of bulk type lens according to the second embodiment)
The light emission characteristics of the bulk lens 30 will be described.
The bulk lens 30 was made of an acrylic resin. The dimensions of each part of the bulk lens 30 are shown below.
Curvature radius of first curved surface 35a: ∞ (plane)
Central portion 32a of the top portion 32 (second curved surface): a portion having a radius of curvature of 30 mm and an angle θ of 46 degrees or less. Connection portion 32b of the top portion 32: a conical shape in which the angle θ of the second curved surface is 46 degrees and a tangent line; A shape in which the angle with the optical axis gradually decreases from the extension line of the second curved surface toward the periphery. Light guide path length: 55 mm
Side wall 34 diameter: 63 mm
Dimension of flat LED 7a: Diameter 20mm
Distance between flat LED 7a and first curved surface 35a: about 2 mm

図10は、第2の実施形態に係るバルク型レンズ30の光放射特性を示す図である。図10に示すように、レンズ出射面で全反射臨界角とならない中央部の中心角度θ以上では、レンズ出射面の接続部32bから光を出射させることができる。第2湾曲面の延長線に接続する垂直接線Bと中央部32aの端部の接線Aとの間に接続部32bを設けることにより、この接続部32bの形状を調整することで中心角度θを徐々に大きくすることができる。これにより、従来のバルク型レンズ120で生じた全反射を防止し、光放射角度もより小さくすることができる。   FIG. 10 is a diagram illustrating the light emission characteristics of the bulk lens 30 according to the second embodiment. As shown in FIG. 10, light can be emitted from the connecting portion 32b of the lens exit surface at a central angle θ or more at the central portion that does not become the total reflection critical angle on the lens exit surface. By providing the connection portion 32b between the vertical tangent line B connected to the extension line of the second curved surface and the tangent line A at the end of the central portion 32a, the center angle θ can be set by adjusting the shape of the connection portion 32b. Can be gradually increased. As a result, total reflection caused by the conventional bulk lens 120 can be prevented, and the light emission angle can be made smaller.

例えば、光軸から10mmの発光面7bから外側20度、40度、60度、70度で出射した光は、レンズ入射面から約13度、26度、36度、39度で入射する。レンズ出射面の光軸との角度をそれぞれ約44度、38度、30度、26度にすれば、レンズ出射面の入射角はそれぞれ約33度、26度、24度、25度となり全反射の臨界角以下であり、屈折角は、それぞれ約53度、42度、38度、39度となる。
光放射角の光軸との角度は、それぞれ約−8度(光軸と逆方向、図10の光放射の軌跡36参照)、10度、22度、25度(図10の光放射の軌跡37参照)となり、図3に示すバルク型レンズ1の接続部2bが円錐状の場合と比べてより光軸方向に近い光放射となることが分かる。
For example, light emitted at 20 °, 40 °, 60 °, and 70 ° from the light emitting surface 7b 10 mm from the optical axis is incident at about 13 °, 26 °, 36 °, and 39 ° from the lens incident surface. If the angle of the lens exit surface with the optical axis is about 44 degrees, 38 degrees, 30 degrees, and 26 degrees, respectively, the incident angles on the lens exit surface are about 33 degrees, 26 degrees, 24 degrees, and 25 degrees, respectively, and total reflection The refraction angles are about 53 degrees, 42 degrees, 38 degrees, and 39 degrees, respectively.
The angles of the light emission angle and the optical axis are about -8 degrees (in the opposite direction to the optical axis, see the light emission locus 36 in FIG. 10), 10 degrees, 22 degrees, and 25 degrees (the light emission locus in FIG. 10). 37), and it can be seen that light emission is closer to the optical axis direction than in the case where the connecting portion 2b of the bulk lens 1 shown in FIG. 3 is conical.

図10に示すように、第2の実施形態に係るバルク型レンズ30によれば、より集光性が良くなるとともに、必要なレンズ直径も小さくすることができる。   As shown in FIG. 10, according to the bulk lens 30 according to the second embodiment, the light condensing performance is improved and the necessary lens diameter can be reduced.

(第2の実施形態の変形例)
図11は、本発明のバルク型レンズ30を用いた発光体の変形例の構成を示す断面図である。
図11に示すように、このバルク型レンズ30を用いた発光体45が図9に示したバルク型レンズ1を用いた発光体10と異なるのは、バルク型レンズ30の凹部35に空気8を介してLEDを配置しないで、凹部35の空隙、つまり、凹部35と平面型LED7aとの間に、光学媒体の屈折率より小さな屈折率を有する透明な樹脂やゲル22を介して平面型LED7aを配置した点である。透明な樹脂やゲル22を介して平面型LED7aを配置することによる効果は、第1の実施形態の変形例のバルク型レンズ1を用いた発光体10と同じであるので、説明は省略する。
(Modification of the second embodiment)
FIG. 11 is a cross-sectional view showing a configuration of a modification of the light emitter using the bulk lens 30 of the present invention.
As shown in FIG. 11, the light emitter 45 using the bulk lens 30 is different from the light emitter 10 using the bulk lens 1 shown in FIG. The flat LED 7a is interposed between the gap of the concave portion 35, that is, between the concave portion 35 and the flat LED 7a via a transparent resin or gel 22 having a refractive index smaller than that of the optical medium. This is the point that was placed. Since the effect of disposing the planar LED 7a via the transparent resin or gel 22 is the same as that of the light emitter 10 using the bulk lens 1 of the modification of the first embodiment, the description is omitted.

以上の説明では大面積平面発光の光源7は均一な面発光として説明した。光源7としては、平面型LED7aの代わりに、小型のLED素子を平面上に並べた光源を本実施例のバルク型レンズ1、30に収納した場合も同様な効果がある。この場合には、光軸から離れた部分の小型のLEDからの放射光がレンズ放射面で全反射することがなく、光軸から離れた方向に放射されることがなくなる。大面積平面発光の光源7としては、小型のLED素子を平面上に並べたような均一な面発光でない光源も含む。   In the above description, the large-area planar light source 7 has been described as uniform surface light emission. The light source 7 has the same effect when a light source in which small LED elements are arranged on a plane is housed in the bulk type lenses 1 and 30 of this embodiment instead of the planar LED 7a. In this case, the radiated light from the small LED at a portion away from the optical axis is not totally reflected by the lens emission surface, and is not emitted in the direction away from the optical axis. The light source 7 for large area planar light emission includes a light source that is not uniform surface light emission such as small LED elements arranged on a plane.

本発明のバルク型レンズ1、30の効果や各部の変形例について説明する。以下の説明では、バルク型レンズ30で説明するが、バルク型レンズ1にも適用できる。
バルク型レンズ30の凹部35の内周部35b及び外壁を形成する側壁部34は、有効に集光するLED放射光の主な経路とはなり得ず、第1に、バルク型レンズ30と平面型LED7aを近接して位置決めする構造物として、第2に、平面型LED7やバルク型レンズ30内部で乱反射した光を外に取り出す透明体として、第3に、バルク型レンズ30が平面型LED7aから受けた熱を基板や放熱板12に逃がす熱伝導体として、の効果がある。
The effects of the bulk type lenses 1 and 30 of the present invention and the modifications of each part will be described. In the following description, the bulk type lens 30 will be described, but the present invention can also be applied to the bulk type lens 1.
The inner peripheral portion 35b of the concave portion 35 of the bulk lens 30 and the side wall portion 34 forming the outer wall cannot be the main path of the LED radiation light that is effectively condensed. As a structure for positioning the LED 7a close, secondly, as a transparent body for extracting the light irregularly reflected inside the flat LED 7 or the bulk lens 30, and thirdly, the bulk lens 30 from the flat LED 7a. There is an effect as a heat conductor that releases the received heat to the substrate and the heat radiating plate 12.

第2の実施形態では、凹部35の内周部35bとレンズの側壁部34は光軸と平行になっている。しかし、バルク型レンズ1、30の主な光放射の経路は、凹部35の天井部35aから頂部32のレンズ出射面を通ることから、凹部35の内周部35bとレンズの側壁部34は、特に光軸と平行である必要はない。   In the second embodiment, the inner peripheral portion 35b of the recess 35 and the side wall portion 34 of the lens are parallel to the optical axis. However, since the main light emission paths of the bulk lenses 1 and 30 pass from the ceiling 35a of the recess 35 to the lens exit surface of the top 32, the inner peripheral portion 35b of the recess 35 and the side wall 34 of the lens are In particular, it does not have to be parallel to the optical axis.

バルク型レンズ30の側壁部34には、バルク型レンズ30と平面型LED7aを固定させる溝や穴を設けても良い。   The side wall 34 of the bulk lens 30 may be provided with a groove or a hole for fixing the bulk lens 30 and the planar LED 7a.

バルク型レンズ30において、凹部35の内周部35bと外壁34がほぼ光軸と並行になっていると、バルク型レンズ30の製造が容易である。さらに、バルク型レンズ30がLED7aから受けた熱を有効に放熱板12に逃がすことができるという利点がある。   In the bulk lens 30, when the inner peripheral portion 35b of the recess 35 and the outer wall 34 are substantially parallel to the optical axis, the bulk lens 30 can be easily manufactured. Furthermore, there is an advantage that the heat received by the bulk type lens 30 from the LED 7a can be effectively released to the heat radiating plate 12.

また、バルク型レンズ30の側壁部34が円柱に近い場合は、平面型LED7aから直接側壁部34に当たる光は非常に大きな角度で放射するか、全反射して後方散乱や損失となるので、外壁表面を荒らすか、酸化チタン粉末などを含む塗料などで塗装して光を散乱させれば、光がより有効に前方に放射するようにできる。   In addition, when the side wall 34 of the bulk lens 30 is close to a cylinder, the light directly hitting the side wall 34 from the planar LED 7a is emitted at a very large angle or is totally reflected and becomes backscattered or lost. If the surface is roughened or coated with a paint containing titanium oxide powder or the like to scatter light, the light can be emitted more effectively forward.

第2の実施形態では、バルク型レンズ1、30の材質を一般的なアクリル樹脂製としたが、透明であれば何でも良く、例えば、ポリカーボネートは耐熱性に優れており、また、ガラスは耐熱性も信頼性も優れている。   In the second embodiment, the bulk lenses 1 and 30 are made of a general acrylic resin. However, any material may be used as long as it is transparent. For example, polycarbonate is excellent in heat resistance, and glass is heat resistant. Also excellent in reliability.

(第3の実施形態)
本発明の第3の実施形態に係る照明装置50について説明する。
図12は、本発明の第3の実施形態に係る照明装置50を模式的に示すブロック図である。図12に示すように、照明装置50は、上記の何れかに記載の少なくとも1つ以上の発光体10と、発光体10に接続された電源部52と、から成る。照明装置50は、発光体10の光照射がされる側や、さらに放熱板12側に樹脂等からなるカバー部54を備えていてもよい。
(Third embodiment)
A lighting device 50 according to a third embodiment of the present invention will be described.
FIG. 12 is a block diagram schematically showing an illumination device 50 according to the third embodiment of the present invention. As shown in FIG. 12, the illumination device 50 includes at least one or more light emitters 10 described above and a power supply unit 52 connected to the light emitters 10. The illuminating device 50 may include a cover portion 54 made of resin or the like on the side where the light emitter 10 is irradiated with light, or on the side of the radiator plate 12.

本発明の発光体10は、大面積LED光源7の発光を有効に集光することができ、且つ様々な放射特性が実現できるので、複数の発光体10の特性、設置位置、設置角度を調整することにより、均一な広範囲の照明や、道路面に沿って細長い均一な照明など幅広い照明特性を実現できる。照明装置50は、従来のLEDを用いた照明装置と同様に、バルク型レンズの底部3に、更に背面鏡53を備えて構成されてもよい。背面鏡53としては、鏡板、金属や樹脂材料に金属薄膜を蒸着やメッキで被覆した構造等の種々の鏡が使用できる。
なお、発光体10は図2の構成の他に、図7に示す発光体20、図9に示す発光体40、図11に示す発光体45を用いてもよい。
Since the light emitter 10 of the present invention can effectively collect the light emitted from the large area LED light source 7 and can realize various radiation characteristics, the characteristics, installation positions, and installation angles of the plurality of light emitters 10 are adjusted. By doing so, it is possible to realize a wide range of illumination characteristics such as uniform wide range illumination and uniform illumination elongated along the road surface. The illuminating device 50 may be configured by further including a rear-view mirror 53 on the bottom 3 of the bulk type lens, similarly to the illuminating device using the conventional LED. As the rear mirror 53, various mirrors such as a mirror plate, a structure in which a metal thin film is coated on a metal or resin material by vapor deposition or plating can be used.
In addition to the structure of FIG. 2, the light emitter 10 may use the light emitter 20 shown in FIG. 7, the light emitter 40 shown in FIG. 9, and the light emitter 45 shown in FIG.

平面型LED7aはLED単体を直列接続したユニットをさらに並列接続して構成されている。平面型LED7aの順電圧は、例えば9.6V〜50V程度の製品が市販されている。発光体10に接続された電源部52は、平面型LED7aの順電圧に応じた電圧及び順電流を供給できる電源であればよい。このような電源部52は、商用電源(100V〜200V)又は蓄電池等を電源とする。   The planar LED 7a is configured by further connecting units in which single LEDs are connected in series to each other in parallel. As the forward voltage of the planar LED 7a, for example, a product having a voltage of about 9.6V to 50V is commercially available. The power source unit 52 connected to the light emitter 10 may be any power source that can supply a voltage and a forward current corresponding to the forward voltage of the planar LED 7a. Such a power supply unit 52 uses a commercial power supply (100V to 200V) or a storage battery as a power supply.

照明装置50は、さらに、センサ56を備えていてもよい。センサ56が日照を検知する照度センサの場合には、照度センサ56で電源52を駆動するような電源制御回路58を備えていてもよい。この場合には、照明装置50を夜間だけ照明することができる。   The lighting device 50 may further include a sensor 56. When the sensor 56 is an illuminance sensor that detects sunshine, a power control circuit 58 that drives the power source 52 with the illuminance sensor 56 may be provided. In this case, the illumination device 50 can be illuminated only at night.

本発明の照明装置50によれば、大出力LEDの光を効率良く集光することができ、光利用効率が向上することにより、大出力LEDの高発光効率の特性を活かした照明装置、街路灯、灯光器等が実現できる。   According to the lighting device 50 of the present invention, it is possible to efficiently collect the light of the high-power LED, and the light utilization efficiency is improved. Road lights, lamps, etc. can be realized.

本発明は上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention.

1、20:バルク型レンズ
2、32:頂部
2a、32a:中央部
2b、32b:接続部
3、33:底部
4、34:側壁部
5、35:凹部
5a、35a:天井部
5b、35b:内周部
7:光源
7a:平面型LED
7b:発光面
8:空気
9:流動体
10、20、40、45:発光体
12:放熱板
16、17、36、37:光放射の軌跡
22:ゲル
50:照明装置
52:電源部
53:背面鏡
54:カバー部
56:センサ
58:電源制御回路
DESCRIPTION OF SYMBOLS 1, 20: Bulk type | mold lens 2, 32: Top part 2a, 32a: Center part 2b, 32b: Connection part 3, 33: Bottom part 4, 34: Side wall part 5, 35: Concave part 5a, 35a: Ceiling part 5b, 35b: Inner circumference 7: Light source 7a: Planar LED
7b: Light emitting surface 8: Air 9: Fluid 10, 20, 40, 45: Light emitter 12: Radiation plate 16, 17, 36, 37: Trace of light emission 22: Gel 50: Lighting device 52: Power supply unit 53: Rear mirror 54: cover 56: sensor 58: power control circuit

Claims (6)

頂部と、底部と、側壁部と、該底部から該頂部に向かって形成された天井部及び内周部からなる凹部と、からなるバルク型レンズと
前記凹部に該凹部と間隔をあけて収容されるLEDと、
を備え、
前記LEDの発光面の直径は、前記側壁部の直径の1/6以上であり、
前記天井部は、第1のレンズ面を構成し
前記頂部は、中央部と該中央部から前記側壁部へ接続される接続部とから成り、該頂部が第2のレンズ面を構成し、
前記接続部は、前記中央部と同じ方向に傾斜して連続し前記中央部とは異なる曲率半径の湾曲面又は円錐状の面を有し、前記中央部より光放射角が大きく設定され
前記LEDの出射光は、前記天井部の第1のレンズ面に入射して前記中央部と前記接続部とで構成される前記頂部の前記第2のレンズ面から外部へ放射され、
前記バルク型レンズの光軸から最も外側に位置する前記LEDの出射光は前記第1のレンズ面から前記第2のレンズ面の前記接続部へ到達し、該接続部に到達した光は全反射しないようなレンズ出射面角度で放射される、発光体
A bulk type lens comprising a top portion, a bottom portion, a side wall portion, and a concave portion comprising a ceiling portion and an inner peripheral portion formed from the bottom portion toward the top portion;
An LED accommodated in the recess with a gap from the recess;
With
The diameter of the light emitting surface of the LED is 1/6 or more of the diameter of the side wall,
The ceiling portion constitutes a first lens surface ,
It said top is composed of a connecting portion from the center portion and the central portion being connected to said side wall, said top constitute the second lens surface,
The connecting portion has a curved surface or a conical surface with a curvature radius different from that of the central portion and continuously inclined in the same direction as the central portion, and a light emission angle is set larger than the central portion ,
The emitted light of the LED is incident on the first lens surface of the ceiling portion and is radiated to the outside from the second lens surface of the top portion constituted by the central portion and the connection portion,
The light emitted from the LED located on the outermost side from the optical axis of the bulk lens reaches the connection portion of the second lens surface from the first lens surface, and the light reaching the connection portion is totally reflected. A illuminant that emits at a lens exit surface angle that does not .
前記天井部の光入射面が平面又は曲面である、請求項1に記載の発光体。The light-emitting body according to claim 1, wherein a light incident surface of the ceiling portion is a flat surface or a curved surface. 前記接続部は、前記中央部の端部の接線から形成される直線で成り、全体として円錐状である、請求項1又は2に記載の発光体 The connecting portion is made by a straight line formed from the tangent of the edge portion of said central portion, a conical shape as a whole, the light-emitting body according to claim 1 or 2. 前記側壁部の表面は粗面又は光散乱体で被覆されている、請求項1〜3の何れかに記載の発光体The light emitting body according to any one of claims 1 to 3 , wherein a surface of the side wall portion is coated with a rough surface or a light scattering body . 請求項1〜の何れかに記載のバルク型レンズの前記凹部に、該バルク型レンズより小さな屈折率を有する気体又は流体を介して平面型LEDが配置される、発光体。 The light emitting body in which a planar LED is disposed in the concave portion of the bulk lens according to any one of claims 1 to 4 via a gas or fluid having a refractive index smaller than that of the bulk lens. 請求項1〜5の何れかに記載の少なくとも1つ以上の発光体と、発光体に接続された電源部と、から成る、照明装置。 At least one or more light emitting body according to any one of claims 1 to 5, a power supply unit connected to the emitters, consisting of the lighting device.
JP2012192715A 2012-09-01 2012-09-01 Bulk-type lens, light emitter using the same, and illumination device Active JP6106872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012192715A JP6106872B2 (en) 2012-09-01 2012-09-01 Bulk-type lens, light emitter using the same, and illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192715A JP6106872B2 (en) 2012-09-01 2012-09-01 Bulk-type lens, light emitter using the same, and illumination device

Publications (2)

Publication Number Publication Date
JP2014048547A JP2014048547A (en) 2014-03-17
JP6106872B2 true JP6106872B2 (en) 2017-04-05

Family

ID=50608264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192715A Active JP6106872B2 (en) 2012-09-01 2012-09-01 Bulk-type lens, light emitter using the same, and illumination device

Country Status (1)

Country Link
JP (1) JP6106872B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168015B2 (en) * 2014-08-29 2017-07-26 三菱電機株式会社 lamp
KR102408719B1 (en) 2015-02-02 2022-06-15 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A lens and a light emitting device package including the same
CN107408611A (en) * 2015-03-12 2017-11-28 三菱电机株式会社 Light-emitting component and video display devices
US10677416B2 (en) 2015-06-01 2020-06-09 Lumileds Llc Lens with elongated radiation pattern
JP6798137B2 (en) * 2016-04-28 2020-12-09 岩崎電気株式会社 Light source unit
JP7060932B2 (en) * 2017-08-21 2022-04-27 株式会社ユーテクノロジー LED lighting device
JP2020187152A (en) * 2019-05-09 2020-11-19 コイズミ照明株式会社 Diffusion lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254962A (en) * 1937-09-22 1941-09-02 George M Cressaty Unitary lens system
JP3300778B2 (en) * 1999-10-05 2002-07-08 ラボ・スフィア株式会社 Luminous body
JP5167452B2 (en) * 2001-01-29 2013-03-21 ラボ・スフィア株式会社 Bulk type lens and light emitting body, lighting apparatus and optical information system using the same
KR101080355B1 (en) * 2004-10-18 2011-11-04 삼성전자주식회사 Light emitting diode, lens for the same
CN101203965B (en) * 2005-06-23 2010-04-21 皇家飞利浦电子股份有限公司 A light-emitting device and method for its design

Also Published As

Publication number Publication date
JP2014048547A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP6106872B2 (en) Bulk-type lens, light emitter using the same, and illumination device
JP5216113B2 (en) Light emitting device
KR101948378B1 (en) Omni-directional reflector comprising a frusto-conical surface for a light-emitting diode
WO2014141204A1 (en) Optics for illumination devices and solar concentrators
US8733982B2 (en) Internal collecting reflector optics for LEDs
US20130083541A1 (en) Optical lens, light-emitting diode optical component and light-emitting diode illumination lamp
KR101189652B1 (en) LED array type for the lighting lens and the lens using the same
US20110080728A1 (en) Light emitting device
US10125951B2 (en) Light flux control member, light-emitting device and lighting device
US20140153255A1 (en) Luminaire
US20130329410A1 (en) Focusing optic for flashlight
JP5810317B2 (en) Lighting device
KR101150713B1 (en) A condensing lens having a oval-shape light emitting
KR101254027B1 (en) LED lighting apparatus having optical condensing means
EP3356875B1 (en) Led module with output lens
KR101387625B1 (en) Optical system for led spotlight and led spotlight included the same
US10047920B2 (en) Flashlight emitting light in two different directions using a reflector and reflective surface
JP2014160616A (en) Illumination device
KR101045837B1 (en) Photorefractive optics for LED lamps and LED lamp bulbs using the same
JP2012226922A (en) Led light emitting device
KR101111032B1 (en) a spot lighting device
CN109058935B (en) Light source device and light source system
KR102471181B1 (en) An illumination apparatus
KR102249869B1 (en) Lighting member using side reflection and lighting device using the same
RU2574611C2 (en) Illuminator with protective panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6106872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250