JP6106654B2 - Gas flow measuring device - Google Patents

Gas flow measuring device Download PDF

Info

Publication number
JP6106654B2
JP6106654B2 JP2014246403A JP2014246403A JP6106654B2 JP 6106654 B2 JP6106654 B2 JP 6106654B2 JP 2014246403 A JP2014246403 A JP 2014246403A JP 2014246403 A JP2014246403 A JP 2014246403A JP 6106654 B2 JP6106654 B2 JP 6106654B2
Authority
JP
Japan
Prior art keywords
gas flow
flow rate
signal
measuring device
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014246403A
Other languages
Japanese (ja)
Other versions
JP2015043006A (en
JP2015043006A5 (en
Inventor
和紀 鈴木
和紀 鈴木
中田 圭一
圭一 中田
佐藤 亮
亮 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014246403A priority Critical patent/JP6106654B2/en
Publication of JP2015043006A publication Critical patent/JP2015043006A/en
Publication of JP2015043006A5 publication Critical patent/JP2015043006A5/ja
Application granted granted Critical
Publication of JP6106654B2 publication Critical patent/JP6106654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、気体流量測定装置に関わり、特に、エンジンの吸入空気流量測定に関する。   The present invention relates to a gas flow rate measuring apparatus, and more particularly, to an intake air flow rate measurement of an engine.

自動車用エンジンにおいては、燃料噴射量を制御するために吸入空気流量を測定する必要がある。この吸入空気流量を測定する装置の一種に、発熱抵抗体式気体流量測定装置がある。この発熱抵抗体式気体流量測定装置の出力信号は温度が変化しても出力信号変化が小さい、すなわち、温度依存誤差が小さいことが望ましい。   In an automobile engine, it is necessary to measure the intake air flow rate in order to control the fuel injection amount. One type of device for measuring the intake air flow rate is a heating resistor type gas flow rate measurement device. It is desirable that the output signal of the heating resistor type gas flow measuring device has a small change in the output signal even when the temperature changes, that is, a temperature-dependent error is small.

この温度依存誤差を小さくするために、気体温度、基板温度検出信号から、気体流量検出信号の温度依存誤差を補正する必要がある。   In order to reduce this temperature-dependent error, it is necessary to correct the temperature-dependent error of the gas flow rate detection signal from the gas temperature and substrate temperature detection signal.

必要最小限の分解能の向上をさせるために、不等間隔の補正テーブルで、局所的に分解能を向上させる特開2007−071889号公報に記載されている技術がある。一般的に発熱抵抗体式気体流量測定装置では、空気流量−出力特性に関するテーブルデータを有し、このテーブルデータの領域を分割して各空気流量領域ごとに出力特性の補正式を変更して空気流量を算出する演算回路を備え、前記テーブルデータの領域分割は、空気流量の低流量域を高流量域よりも細かく分割してなる。これにより、テーブルのデータ数を極端に増やすことなく低流量精度を向上させることができる。   In order to improve the necessary minimum resolution, there is a technique described in Japanese Patent Application Laid-Open No. 2007-071889 in which the resolution is locally improved with a correction table having unequal intervals. Generally, a heating resistor type gas flow rate measuring device has table data on air flow rate-output characteristics, and divides this table data area and changes the output characteristic correction formula for each air flow area to change the air flow rate. The table data area is divided by dividing the low air flow rate range more finely than the high flow rate range. Thereby, the low flow rate accuracy can be improved without extremely increasing the number of data in the table.

特開2007−071889号公報JP 2007-071889 A

一般に、デジタル補正において、補正誤差を低減し、かつ全流量域において高精度化するためには、テーブルの分解能を向上させる必要があるが、テーブルのデータ数が増えることで検索数が増加し演算処理が遅くなってしまう。   In general, in digital correction, it is necessary to improve the resolution of the table in order to reduce the correction error and increase the accuracy in the entire flow rate range, but the number of searches increases as the number of data in the table increases, so that Processing will be slow.

特許文献1では、気体流量信号の補正および気体温度依存性の補正において、関数による補間ではなく、テーブルを用いて補正を行うことで、気体流量信号および気体温度依存性の非線形性を補正することができる。しかし、テーブルを用いた補正を行う場合、データ数に応じて補正精度が決定するため、データ数が多い程、高精度な補正ができるが、データ数が少ないと、補正誤差が大きくなってしまう。   In Patent Document 1, in the correction of the gas flow rate signal and the correction of the gas temperature dependency, the correction is performed using a table instead of the interpolation by the function, thereby correcting the nonlinearity of the gas flow rate signal and the gas temperature dependency. Can do. However, when performing correction using a table, the correction accuracy is determined according to the number of data. Therefore, the higher the number of data, the higher the accuracy of correction. However, the smaller the number of data, the larger the correction error. .

そのため、精度を向上させるためにテーブルのデータ数を増やすことが考えられるが、演算回路が大きくなることからコストが上昇してしまう。また、テーブルのデータ数を増やさずに精度を向上させる方法として、テーブルのデータ間隔を不等間隔にすることで、局所的に分解能を向上させることが考えられる。しかし、不等間隔のテーブルを用いると演算負荷が大きくなってしまい演算処理が遅くなるおそれがある。   For this reason, it is conceivable to increase the number of data in the table in order to improve accuracy, but the cost increases because the arithmetic circuit becomes large. Further, as a method of improving the accuracy without increasing the number of data in the table, it is conceivable to improve the resolution locally by making the data interval of the table unequal. However, if an unequally spaced table is used, the calculation load may increase and the calculation process may be delayed.

さらに、低流量以外に局所的に分解能を向上させるためには、あらかじめテーブルのデータ間隔を決めておく必要があった。   Furthermore, in order to improve the resolution locally in addition to the low flow rate, it is necessary to determine the data interval of the table in advance.

本発明の目的は、流量信号を補正する際の補正精度を向上することにある。   An object of the present invention is to improve correction accuracy when correcting a flow rate signal.

上記目的を達成するために、本発明の気体流量検出装置は、気体流量検出信号の特性補正を行う信号変換手段を有する気体流量測定装置において、前記信号変換手段は、前記気体流量検出信号の特性曲がり領域の分割数を、特性曲がり領域ではない領域の分割数よりも増やして信号変換手段を行い、前記特性曲がり領域の分割数nは、特性曲がり領域の最小値と最大値の間隔をnで分割した場合に、その分割した各区間における気体流量Qに対する目標出力と前記気体流量検出信号との差分ΔYとQの勾配をそれぞれ足し合わせた総和を、nで割った値が、所定値以下となるように設定されていることを特徴とする。
In order to achieve the above object, the gas flow rate detection device of the present invention is a gas flow rate measurement device having signal conversion means for correcting the characteristics of a gas flow rate detection signal, wherein the signal conversion means is a characteristic of the gas flow rate detection signal. The number of divisions of the curved region is increased from the number of divisions of the region that is not the characteristic curved region, and signal conversion means is performed. The division number n of the characteristic curved region is defined as n between the minimum and maximum values of the characteristic curved region. When divided, the sum obtained by adding the difference ΔY and the gradient of Q between the target output for the gas flow rate Q and the gas flow rate detection signal in each divided section is divided by n to be equal to or less than a predetermined value. It is set so that it may become .

本発明によれば、流量信号を補正する際の補正精度を向上することが可能である。   According to the present invention, it is possible to improve the correction accuracy when correcting the flow signal.

空気流量測定装置のボディへの装着図。The attachment figure to the body of an air flow measuring device. 図1のA-A′断面図。FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1. 第1の実施形態の空気流量測定装置の回路図。The circuit diagram of the air flow measuring device of a 1st embodiment. 空気流量検出信号の特性。Characteristics of air flow detection signal. 第1の実施形態における検出信号の変換図。FIG. 5 is a conversion diagram of a detection signal in the first embodiment. 流量信号の座標変換図。The coordinate conversion figure of a flow signal. 第1の実施形態における空気流量検出信号の特性曲がり。The characteristic curve of the air flow rate detection signal in the first embodiment. 流量信号特性変換の図。The figure of flow signal characteristic conversion. テーブルを用いた補正のフロー図。The flowchart of the correction | amendment using a table. 迂回副通路形状の空気流量測定装置のボディへの装着図。The attachment figure to the body of the air flow measuring device of a detour subway shape. コの字副通路形状の空気流量測定装置のボディへの装着図。The attachment figure to the body of the air flow measuring device of U-shaped sub channel shape. α型副通路形状の空気流量測定装置のボディへの装着図。Fig. 3 is a view of mounting an air flow measuring device having an α-type auxiliary passage shape on the body. 第2の実施形態における検出信号の変換図。FIG. 10 is a conversion diagram of a detection signal in the second embodiment. 第3の実施形態における検出信号の変換図。The conversion diagram of the detection signal in 3rd Embodiment. 第3の実施形態における座標変換組合せ図。The coordinate transformation combination figure in a 3rd embodiment.

本発明による空気流量測定装置の実施の形態について、図面を参照して説明する。以下、空気流量測定装置について説明する。 Embodiments of an air flow measuring device according to the present invention will be described with reference to the drawings. Hereinafter, the air flow rate measuring device will be described.

まず、本発明の第1の実施形態について、図1から図6を用いて説明する。   First, a first embodiment of the present invention will be described with reference to FIGS.

図1において、吸気温度検出素子1が設けられた、空気流量測定装置2が気体流路ボディ3に挿入されている。   In FIG. 1, an air flow rate measuring device 2 provided with an intake air temperature detecting element 1 is inserted into a gas flow path body 3.

図2において、空気流量測定装置2は内燃機関の吸気流路を形成する気体通路ボディ3に取り付けて主通路6を流れる気体8にさらす構成である。そのため、気体温度検出素子(サーミスタあるいは気体温度測定抵抗体とも呼ばれる)1は吸気流体に直接さらされるように、空気流量測定装置2の上流側に備えられている。また、気体流量検出素子4は、基板5上に取り付けられており、気体流量検出素子4が取り付けられた部分のみが副通路7内に設置されている。基板5には、気体温度検出回路22も備えられており、副通路7とは隔離されている。   In FIG. 2, an air flow rate measuring device 2 is configured to be attached to a gas passage body 3 that forms an intake passage of an internal combustion engine and exposed to a gas 8 that flows through a main passage 6. Therefore, a gas temperature detecting element (also called a thermistor or a gas temperature measuring resistor) 1 is provided on the upstream side of the air flow measuring device 2 so as to be directly exposed to the intake fluid. Further, the gas flow rate detecting element 4 is attached on the substrate 5, and only the portion where the gas flow rate detecting element 4 is attached is installed in the sub-passage 7. The substrate 5 is also provided with a gas temperature detection circuit 22 and is isolated from the auxiliary passage 7.

図3において、気体温度検出素子1で検出した気体温度は、基板5上の気体温度検出回路22により電圧信号に変換されアナログ−デジタル変換器AD3 14に入力される。また、集積回路21内には、基板5相当の温度を検出するための基板温度を検出するために集積回路内の温度センサ12が備え付けられている。これにより、気体温度と空気流量測定装置2のそれぞれの温度を検出することができる。
また、気体温度検出回路22は、吸気流路に配置した気体温度検出素子1と固定抵抗9を直列接続して構成されており、気体温度検出回路22にはレギュレータ23出力の定電圧が供給される。
In FIG. 3, the gas temperature detected by the gas temperature detection element 1 is converted into a voltage signal by the gas temperature detection circuit 22 on the substrate 5 and input to the analog-digital converter AD <b> 314. The integrated circuit 21 is provided with a temperature sensor 12 in the integrated circuit for detecting a substrate temperature for detecting a temperature corresponding to the substrate 5. Thereby, each temperature of gas temperature and the air flow measuring device 2 is detectable.
The gas temperature detection circuit 22 is configured by connecting the gas temperature detection element 1 and the fixed resistor 9 arranged in the intake passage in series, and a constant voltage output from the regulator 23 is supplied to the gas temperature detection circuit 22. The

また、補正を行うにあたって、気体流量検出素子4からの気体流量検出信号Taをアナログ−デジタル変換器AD1 11によって変換したデジタル値、集積回路内の温度センサ12からの基板温度信号をアナログ−デジタル変換器AD2 13によって変換したデジタル値、気体温度検出素子1からの気体温度信号Taをアナログ−デジタル変換器AD3 14によって変換したデジタル値、これらのデジタル信号を元にテーブルにより補正を行う。テーブルとは、規格化された気体流量信号と気体温度信号に対する補正定数を格子状に並べたものをテーブルいい、このテーブルを用いて、流量信号及び温度信号に応じて補正値を算出する方法をテーブル補正という。規格化された流量信号と温度信号の交点を格子点と呼び、補正定数を与える。テーブル補正に用いられる補正定数は、あらかじめPROM15内に保存されている定数を元にデジタル信号処理DSP10によって補正演算処理される。このように補正された気体流量信号および気体温度信号のデジタル値は、デジタル−アナログ変換器DA1 16およびデジタル−アナログ変換器DA2 18を用いてアナログ変換され、電圧信号として出力される。一方、気体流量信号のデジタル値をフリーランニングカウンタFRC1 17を用いてアナログ変換すると、周波数信号として出力さる。同様に、気体温度信号のデジタル値をフリーランニングカウンタFRC2 19を用いてアナログ変換すると、周波数信号として出力される。デジタル−アナログ変換器DA1 16とフリーランニングカウンタFRC1 17の選択はマルチプレクサMUX1 24の設定で選択実施できる、デジタル−アナログ変換器DA2 18とフリーランニングカウンタFRC2 19の選択はマルチプレクサMUX2 25の設定で選択実施できる。また、発振器20により回路全体を駆動している。さらに、空気流量測定装置は電気的にECU26と接続されている。   In performing the correction, the digital value obtained by converting the gas flow rate detection signal Ta from the gas flow rate detection element 4 by the analog-digital converter AD111, and the substrate temperature signal from the temperature sensor 12 in the integrated circuit are converted from analog to digital. The digital value converted by the device AD2 13, the digital value converted from the gas temperature signal Ta from the gas temperature detecting element 1 by the analog-digital converter AD3 14, and the digital signal are corrected by a table. A table is a table in which correction constants for standardized gas flow rate signals and gas temperature signals are arranged in a grid, and a method for calculating correction values according to the flow rate signal and the temperature signal using this table. This is called table correction. The intersection of the normalized flow rate signal and temperature signal is called a grid point, and a correction constant is given. Correction constants used for table correction are corrected and calculated by the digital signal processing DSP 10 based on constants stored in the PROM 15 in advance. The digital values of the gas flow rate signal and the gas temperature signal corrected in this way are converted into analog signals using the digital-analog converter DA1 16 and the digital-analog converter DA2 18, and are output as voltage signals. On the other hand, when the digital value of the gas flow rate signal is converted into an analog signal using the free running counter FRC117, it is output as a frequency signal. Similarly, when the digital value of the gas temperature signal is converted into an analog signal using the free running counter FRC2 19, it is output as a frequency signal. The selection of the digital-analog converter DA1 16 and the free-running counter FRC1 17 can be selected by the setting of the multiplexer MUX1 24. The selection of the digital-analog converter DA2 18 and the free-running counter FRC2 19 can be selected by the setting of the multiplexer MUX2 25 it can. The entire circuit is driven by the oscillator 20. Further, the air flow rate measuring device is electrically connected to the ECU 26.

図4は、気体流量検出信号と目標出力を示している。流体には、層流と乱流があり、層流が乱流に遷移する点が存在し、この影響で気体流量検出信号に特性曲がりが生じる。この特性曲がりは、空気流量計測装置の構造、特に気体流量検出素子4近傍の構造によって、特性曲がりの大きさや特性曲がりの生じる場所が異なる。ここで特性曲がりとは、図4に示す目標特性から、ある一定量以上外れてしまった曲がりのことをいう。   FIG. 4 shows the gas flow rate detection signal and the target output. The fluid includes laminar flow and turbulent flow, and there is a point where the laminar flow transitions to turbulent flow. Due to this influence, a characteristic curve occurs in the gas flow rate detection signal. This characteristic curve differs depending on the structure of the air flow rate measuring device, particularly the structure in the vicinity of the gas flow rate detecting element 4 and the location where the characteristic curve occurs. Here, the characteristic curve refers to a curve that deviates more than a certain amount from the target characteristic shown in FIG.

図5に特性曲がりを補正するための方法を示す。気体流量信号、基板温度信号、気体温度信号をデジタル値に変換した信号を用いて補正を行うにあたって、温度信号に関しては、基板温度信号Tlと気体温度信号Taのどちらを用いるかを選択できるスイッチが設けられており、このスイッチはPROM15内の定数によって切り替えることが可能である。気体流量検出信号Qを第1座標変換テーブルによりQ1、気体温度検出信号Taを第2座標変換テーブルによりT1に変換する。このとき、第1座標変換テーブルは気体流量信号Qを特性変換するためのテーブルで、17点の格子点をもったテーブルである。これに対し、第2座標変換テーブルは気体温度信号Tlを特性変換するためのテーブルで5点の格子点をもったテーブルである。気体流量信号と気体温度信号の特性は異なるため、座標変換テーブルも異なる座標変換テーブルを用いる。このように、元の特性を座標変換し、特性変換した信号Q1、T1を用いることにより、QおよびTaを用いて補正テーブルで補正するよりも、Q1およびT1で補正したほうが補正テーブルでの特性曲がり近傍の分解能が向上する。補正テーブルにより補正した出力Q2に元の気体流量検出信号Qに加えて出力する。これらQ1、T1を入力信号として補正テーブルによる気体流量信号および気体温度依存誤差を補正することで、温度及び流量の特性曲がり近傍の分解能を向上させ高精度に補正することができる。図6に座標変換前後の特性を示す。特性曲がりの大きな部分を座標変換により特性変換することで、特性曲がりの部分に割り当てられる格子数が増え、分解能が向上する。   FIG. 5 shows a method for correcting characteristic bending. When performing correction using a gas flow rate signal, a substrate temperature signal, and a signal obtained by converting the gas temperature signal into a digital value, a switch that can select whether to use the substrate temperature signal Tl or the gas temperature signal Ta is used for the temperature signal. This switch can be switched by a constant in the PROM 15. The gas flow rate detection signal Q is converted to Q1 by the first coordinate conversion table, and the gas temperature detection signal Ta is converted to T1 by the second coordinate conversion table. At this time, the first coordinate conversion table is a table for characteristic conversion of the gas flow rate signal Q and is a table having 17 lattice points. On the other hand, the second coordinate conversion table is a table for converting the characteristics of the gas temperature signal Tl and having five lattice points. Since the characteristics of the gas flow rate signal and the gas temperature signal are different, a coordinate conversion table having a different coordinate conversion table is used. In this way, the original characteristic is subjected to coordinate conversion, and the characteristic-converted signals Q1 and T1 are used, so that the correction in Q1 and T1 is more correct in the correction table than in the correction table using Q and Ta. The resolution near the bend is improved. The output Q2 corrected by the correction table is output in addition to the original gas flow rate detection signal Q. By correcting the gas flow rate signal and the gas temperature dependent error by the correction table using these Q1 and T1 as input signals, the resolution near the characteristic curve of the temperature and flow rate can be improved and corrected with high accuracy. FIG. 6 shows the characteristics before and after coordinate conversion. By converting the characteristic curve portion by coordinate conversion, the number of lattices assigned to the characteristic curve portion is increased, and the resolution is improved.

一方、局所的な特性曲がり部分を高精度に補正するためには、特性曲がり部分の分解能を第1及び第2座標変換テーブルにて向上させる必要がある。このため、局所的な特性曲がりの大きさを判断し曲がりの大きさによって特性曲がりの近傍の分解能を決定する方法を図7を用いて説明する。図7には、横軸に気体流量信号Q、縦軸には目標出力と気体流量検出素子4によって検出された気体流量検出信号との差ΔYを示したグラフである。但し、このグラフは、気体流量検出信号を目標出力に対して、高流量と低流量の2点でゼロスパン調整した時の差を示している。ここで、特性曲がりの判断に(1)式の値を用いて判断をする。   On the other hand, in order to correct a local characteristic curve portion with high accuracy, it is necessary to improve the resolution of the characteristic curve portion by using the first and second coordinate conversion tables. Therefore, a method of determining the local characteristic curve magnitude and determining the resolution near the characteristic curve according to the magnitude of the curve will be described with reference to FIG. FIG. 7 is a graph showing the gas flow rate signal Q on the horizontal axis and the difference ΔY between the target output and the gas flow rate detection signal detected by the gas flow rate detection element 4 on the vertical axis. However, this graph shows the difference when the gas flow rate detection signal is zero-span adjusted at two points of high flow rate and low flow rate with respect to the target output. Here, the value of equation (1) is used to determine the characteristic curve.

Sは、特性曲がりの大きさを示す値で、この値の大きさで特性曲がりの大きさを判断し、a−bの範囲で、どこに特性曲がりが存在するかを判断する。このように、場所と大きさを特定することで、第1及び第2座標変換テーブルによって特性曲がり部近傍の分割数を決定することが可能となる。図8に示すように、Sが0.055以上となるa及びbがそれぞれa=60kg/h、b=220kg/hであるとき、60kg/hと220kg/hの間の格子分解能が2倍となるように座標変換テーブルで特性変換する。Sが0.055は流量誤差で約2%に相当する。aとbは、特性曲がりを覆うように決定する。aとbの間に特性曲がりが半分しか入らなかった場合にSを正しく計算できないからである。そのため、特性曲がりの大きさによってaとbの間隔が決まる。特性曲がりの大きさが大きい場合にはaとbの間隔が大きくなり、特性曲がりが小さいとaとbの間隔も小さくなる。   S is a value indicating the magnitude of the characteristic curve, and the magnitude of the characteristic curve is determined based on this value, and it is determined where the characteristic curve exists in the range of ab. Thus, by specifying the location and size, it is possible to determine the number of divisions in the vicinity of the characteristic curve portion using the first and second coordinate conversion tables. As shown in FIG. 8, when a and b where S is 0.055 or more are a = 60 kg / h and b = 220 kg / h, respectively, the lattice resolution between 60 kg / h and 220 kg / h is doubled. Characteristic conversion is performed using the coordinate conversion table. When S is 0.055, the flow rate error corresponds to about 2%. a and b are determined so as to cover the characteristic curve. This is because S cannot be calculated correctly when only half of the characteristic curve is between a and b. Therefore, the interval between a and b is determined by the size of the characteristic curve. When the characteristic curve is large, the distance between a and b is large. When the characteristic curve is small, the distance between a and b is small.

また、第1及び第2座標変換でテーブルを用いる場合、図9に示すテーブルを用いる。特性曲がりの大きさを表すSから変換量Yが決定し、入力Xと変換量Yの関係を表すテーブルが複数のデータ(入力はx1〜xnまでn個、変換量はy1〜ynまでのn個)で構成されている。変換後の出力ΔYは、入力Xにテーブルによって算出された変換量Yを加えることで算出される。但し、テーブルのデータ数nが多ければ、補正精度が向上するが、PROM15内に書き込むデータ容量が増大してしまいコストが上昇してしまう。逆に、データ数nが少なければ、PROM15内に書き込むデータ容量が小さいため、コスト上昇を防ぐことができるが、補正精度が低下してしまう。そのため、テーブルに用いるデータ数nは、気体流量検出信号の特性曲がりの大きさや数から最適なデータ数に設定する必要がある。このテーブルを用いた手法にすることで、関数を用いた補正方法よりも演算処理量を小さくすることが可能である。   Further, when a table is used in the first and second coordinate conversions, the table shown in FIG. 9 is used. The conversion amount Y is determined from S representing the magnitude of the characteristic curve, and the table representing the relationship between the input X and the conversion amount Y is a plurality of data (input is n from x1 to xn, and the conversion amount is n from y1 to yn. ). The converted output ΔY is calculated by adding the conversion amount Y calculated by the table to the input X. However, if the number n of data in the table is large, the correction accuracy is improved, but the data capacity written in the PROM 15 is increased and the cost is increased. Conversely, if the number of data n is small, the amount of data written into the PROM 15 is small, so that an increase in cost can be prevented, but the correction accuracy decreases. For this reason, the number of data n used in the table needs to be set to an optimum number of data based on the magnitude and number of characteristic curves of the gas flow rate detection signal. By using this table, it is possible to reduce the amount of calculation processing compared to the correction method using a function.

以上、説明したように、本実施例では流量信号を特性変換することで、テーブルのデータ数を増やすことなく、かつ間隔を不等間隔にすることなく、局所的な曲がりを高精度に補正することができるので流量計測の精度を向上させることができる。   As described above, in this embodiment, by converting the characteristics of the flow rate signal, local bending is corrected with high accuracy without increasing the number of data in the table and without making the intervals unequal. Therefore, the accuracy of flow rate measurement can be improved.

また、本実施例は、図2に示す副通路7のように、主通路6に平行な形状だけでなく、図10に示す副通路7のような渦巻き状で、副通路入り口28から入った気体は副通路7に沿って気体流量検出素子4を通過し、副通路出口29から出ていく構造にも適応できる。さらには、渦巻き状以外にも図11に示すようなコの字形や図12に示すようなα形などの副通路でも実施することが可能である。   Further, in this embodiment, not only the shape parallel to the main passage 6 as in the sub-passage 7 shown in FIG. 2, but also the spiral shape like the sub-passage 7 shown in FIG. The gas can also be adapted to a structure in which the gas passes through the gas flow rate detecting element 4 along the sub passage 7 and exits from the sub passage outlet 29. Further, in addition to the spiral shape, it is also possible to carry out with a sub-passage such as a U-shape as shown in FIG. 11 or an α-shape as shown in FIG.

なお、空気流量測定装置の実施例は、空気を測定する場合について説明したが、本発明は、空気以外の気体の流量を検出する場合にも適応できる。   In addition, although the Example of the air flow rate measuring apparatus demonstrated the case where air was measured, this invention is applicable also when detecting the flow volume of gases other than air.

次に、第2の実施形態について図13を用いて説明する。第2の実施形態では、図13に示すように、第1の実施形態の気体温度の信号を用いたのに変え、基板温度の信号を用いたものである。気体温度信号Taを用いて温度依存誤差を補正している。しかし、気体温度検出素子1は、気体温度を検出するため、吸気流体に直接さらされるように、空気流量測定装置2の上流側に備えられている。気体温度検出素子1が断線した場合には、気体温度が検出できなくなるため、気体温度依存誤差補正ができなくなってしまう。そこで、集積回路21内には、基板5相当の温度を検出するための基板温度を検出するために集積回路内の温度センサ12が備え付けられており、この温度信号Tlを基に温度依存誤差補正を行う。温度依存誤差補正を行うために用いる温度信号は、気体温度検出素子1からの温度信号Taを用いるか基板温度を検出するための集積回路内の温度センサからの温度信号Tlを用いるかは、PROM15内にあらかじめ設定する情報によって切り替えることができる。このように、集積回路内の温度センサからの温度信号Tlを用いることで、気体温度検出素子を支えるターミナルが無くなり、断線することがなくなる。また、集積回路内の温度センサは吸気流体に直接さらされることがないため、気体温度検出素子のように汚損することがない。そのため、汚損による抵抗値の変化の影響を受けないので、温度特性の耐久変化を低減でき、精度が向上する。   Next, a second embodiment will be described with reference to FIG. In the second embodiment, as shown in FIG. 13, instead of using the gas temperature signal of the first embodiment, a substrate temperature signal is used. The temperature dependent error is corrected using the gas temperature signal Ta. However, the gas temperature detecting element 1 is provided on the upstream side of the air flow rate measuring device 2 so as to be directly exposed to the intake fluid in order to detect the gas temperature. When the gas temperature detecting element 1 is disconnected, the gas temperature cannot be detected, and thus the gas temperature dependent error correction cannot be performed. Therefore, the integrated circuit 21 is provided with a temperature sensor 12 in the integrated circuit for detecting the substrate temperature for detecting the temperature corresponding to the substrate 5, and temperature dependent error correction is performed based on the temperature signal Tl. I do. Whether the temperature signal used for correcting the temperature-dependent error is the temperature signal Ta from the gas temperature detecting element 1 or the temperature signal Tl from the temperature sensor in the integrated circuit for detecting the substrate temperature is used as the PROM 15 Can be switched according to information set in advance. Thus, by using the temperature signal Tl from the temperature sensor in the integrated circuit, there is no terminal supporting the gas temperature detecting element, and there is no disconnection. Further, since the temperature sensor in the integrated circuit is not directly exposed to the intake fluid, it is not polluted like the gas temperature detecting element. Therefore, since it is not affected by the change of the resistance value due to the contamination, the endurance change of the temperature characteristic can be reduced and the accuracy is improved.

次に、第3の実施形態について図14を用いて説明する。第1及び第2の実施形態に対して座標変換がテーブルではなく、N次の関数を用いている。気体流量検出信号Qを第1座標変換によりQ1に変換する。この座標変換は、N次の関数で変換する。また、気体温度信号Tを第2座標変換によりT1に変換する。この座標変換もN次の関数を用いて変換する。図15に示すように、この第1座標変換と第2座標変換においてテーブルとN次関数の変換の組み合わせはいくつかある。第1座標変換、第2座標変換共にテーブルによる変換。第1座標変換はテーブルで第2座標変換はN次関数による変換。第1座標変換がN次関数で第2座標変換はテーブルによる変換。第1座標変換、第2座標変換共にN次関数による変換による補正ができる。補正テーブルもN次関数による補正もできるが、補正テーブルでは、気体流量検出信号の特性曲がりを関数で対応することが難しくテーブルで特性曲がり部の分解能が低下してしまう。それに対し、第1及び第2座標変換においては、それぞれ気体流量信号及び気体温度信号の非線形性を緩和するための変換であり、補正テーブルで特性曲がり部の分解能を向上させるための変換であるため、N次関数でも対応できる。第1座標変換がテーブルで第2座標変換がN次関数の場合、実施例1と同等に精度を向上することが可能である。   Next, a third embodiment will be described with reference to FIG. For the first and second embodiments, coordinate conversion is not a table but an Nth order function. The gas flow rate detection signal Q is converted to Q1 by the first coordinate conversion. This coordinate conversion is performed by an Nth order function. Further, the gas temperature signal T is converted to T1 by the second coordinate conversion. This coordinate conversion is also performed using an Nth order function. As shown in FIG. 15, there are several combinations of table and N-order function conversions in the first coordinate conversion and the second coordinate conversion. Table conversion for both the first coordinate conversion and the second coordinate conversion. The first coordinate transformation is a table, and the second coordinate transformation is an N-order function transformation. The first coordinate transformation is an Nth order function and the second coordinate transformation is a table transformation. Both the first coordinate conversion and the second coordinate conversion can be corrected by conversion using an N-order function. Although the correction table can also be corrected by an N-order function, it is difficult for the correction table to cope with the characteristic curve of the gas flow rate detection signal by the function, and the resolution of the characteristic curve portion is reduced by the table. On the other hand, the first and second coordinate transformations are transformations for reducing the nonlinearity of the gas flow rate signal and the gas temperature signal, respectively, and are transformations for improving the resolution of the characteristic curve portion in the correction table. , N-order function can be used. When the first coordinate transformation is a table and the second coordinate transformation is an N-order function, the accuracy can be improved as in the first embodiment.

1 気体温度検出素子
2 空気流量測定装置
3 ボディ
4 気体流量検出素子
5 基板
6 主通路
7 副通路
8 空気の流れ
9 固定抵抗
10 デジタル信号処理DSP
11 アナログ−デジタル変換器AD1
12 集積回路内の温度センサ
13 アナログ−デジタル変換器AD2
14 アナログ−デジタル変換器AD3
15 PROM
16 デジタル−アナログ変換器DA1
17 フリーランニングカウンタFRC1
18 デジタル−アナログ変換器DA2
19 フリーランニングカウンタFRC2
20 発振器
21 集積回路
22 気体温度検出回路
23 レギュレータ
24 マルチプレクサMUX1
25 マルチプレクサMUX2
26 エンジンコントロールユニットECU
27 副通路入り口
28 副通路出口
DESCRIPTION OF SYMBOLS 1 Gas temperature detection element 2 Air flow measuring device 3 Body 4 Gas flow detection element 5 Board | substrate 6 Main passage 7 Sub passage 8 Air flow 9 Fixed resistance 10 Digital signal processing DSP
11 Analog-to-digital converter AD1
12 Temperature sensor in integrated circuit 13 Analog-to-digital converter AD2
14 Analog-to-digital converter AD3
15 PROM
16 Digital-analog converter DA1
17 Free running counter FRC1
18 Digital-analog converter DA2
19 Free running counter FRC2
20 Oscillator 21 Integrated Circuit 22 Gas Temperature Detection Circuit 23 Regulator 24 Multiplexer MUX1
25 Multiplexer MUX2
26 Engine control unit ECU
27 Auxiliary passage entrance 28 Auxiliary passage exit

Claims (8)

気体流量検出信号の特性補正を行う信号変換手段を有する気体流量測定装置において、
前記信号変換手段は、前記気体流量検出信号の特性曲がり領域の分割数を、特性曲がり領域ではない領域の分割数よりも増やして信号変換手段を行い、
前記特性曲がり領域の分割数nは、特性曲がり領域の最小値と最大値の間隔をnで分割した場合に、その分割した各区間における気体流量Qに対する目標出力と前記気体流量検出信号との差分ΔYとQの勾配をそれぞれ足し合わせた総和を、nで割った値が、所定値以下となるように設定されていることを特徴とする気体流量測定装置。
In the gas flow rate measuring device having signal conversion means for correcting the characteristics of the gas flow rate detection signal,
The signal conversion means performs the signal conversion means by increasing the number of divisions of the characteristic curve region of the gas flow rate detection signal more than the number of divisions of the region that is not the characteristic curve region,
The division number n of the characteristic curve region is the difference between the target output for the gas flow rate Q and the gas flow rate detection signal in each divided section when the interval between the minimum value and the maximum value of the characteristic curve region is divided by n. A gas flow rate measuring apparatus, characterized in that a value obtained by dividing the sum of the slopes of ΔY and Q by n is set to a predetermined value or less .
請求項1に記載の気体流量測定装置において、
前記所定値は0.055あることを特徴とする気体流量測定装置。
In the gas flow measuring device according to claim 1,
Wherein the predetermined value, the gas flow measuring device, characterized in that 0.055.
請求項1または2に記載の気体流量測定装置において、
前記信号変換手段は、
前記気体流量検出信号の非線形性を緩和するための第1座標変換テーブルと、
温度検出信号の非線形性を緩和するための第2座標変換テーブルと有し、
前記座標変換された信号を元に補正行う補正テーブルを有する気体流量測定装置。
In the gas flow measuring device according to claim 1 or 2 ,
The signal converting means includes
A first coordinate conversion table for alleviating nonlinearity of the gas flow rate detection signal;
A second coordinate conversion table for reducing nonlinearity of the temperature detection signal;
A gas flow measuring device having a correction table for performing correction based on the coordinate-converted signal.
請求項に記載の気体流量測定装置において、
前記第1及び第2座標変換テーブルは、任意の分割数の等間隔テーブルであることを特徴とする気体流量測定装置。
In the gas flow measuring device according to claim 3 ,
The gas flow rate measuring apparatus according to claim 1, wherein the first and second coordinate conversion tables are an equal interval table having an arbitrary number of divisions.
請求項に記載の気体流量測定装置において、
前記気体流量測定装置は、気体流量検出回路からの出力と気体温度検出素子からの出力信号をデジタル信号に変換し、それぞれの信号を補正した出力信号をアナログ信号に変換し出力する集積回路を備えることを特徴とする気体流量測定装置。
In the gas flow measuring device according to claim 2 ,
The gas flow rate measuring device includes an integrated circuit that converts an output signal from a gas flow rate detection circuit and an output signal from a gas temperature detection element into a digital signal, converts an output signal obtained by correcting each signal into an analog signal, and outputs the analog signal. A gas flow rate measuring device characterized by that.
請求項に記載の気体流量測定装置において、
前記補正テーブルに用いる気体温度検出信号は、気体温度検出素子からの気体温度信号であることを特徴とする気体流量測定装置。
In the gas flow measuring device according to claim 3 ,
The gas flow rate measuring apparatus according to claim 1, wherein the gas temperature detection signal used for the correction table is a gas temperature signal from a gas temperature detection element.
請求項に記載の気体流量測定装置において、
前記補正テーブルに用いる気体温度検出信号は、集積回路内に備えられた基板温度センサからの温度信号であることを特徴とする気体流量測定装置。
In the gas flow measuring device according to claim 3 ,
The gas flow rate measuring apparatus according to claim 1, wherein the gas temperature detection signal used in the correction table is a temperature signal from a substrate temperature sensor provided in the integrated circuit.
請求項に記載の気体流量測定装置において、
デジタル信号に変換された前記気体温度検出信号および集積回路内に備えられた基板温度センサからの基板温度検出信号および前記気体流量検出回路からの気体流量検出信号が入力され、入力されたデジタル信号に基づいて補正演算処理を行うことを特徴とする気体流量測定装置。
In the gas flow measuring device according to claim 3 ,
The gas temperature detection signal converted into a digital signal, the substrate temperature detection signal from the substrate temperature sensor provided in the integrated circuit, and the gas flow rate detection signal from the gas flow rate detection circuit are input, and the input digital signal A gas flow rate measuring device which performs correction calculation processing based on the above.
JP2014246403A 2014-12-05 2014-12-05 Gas flow measuring device Active JP6106654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246403A JP6106654B2 (en) 2014-12-05 2014-12-05 Gas flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246403A JP6106654B2 (en) 2014-12-05 2014-12-05 Gas flow measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011215905A Division JP5663447B2 (en) 2011-09-30 2011-09-30 Gas flow measuring device

Publications (3)

Publication Number Publication Date
JP2015043006A JP2015043006A (en) 2015-03-05
JP2015043006A5 JP2015043006A5 (en) 2015-11-05
JP6106654B2 true JP6106654B2 (en) 2017-04-05

Family

ID=52696562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246403A Active JP6106654B2 (en) 2014-12-05 2014-12-05 Gas flow measuring device

Country Status (1)

Country Link
JP (1) JP6106654B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487589B2 (en) * 1998-10-26 2004-01-19 松下電器産業株式会社 Flow coefficient setting method and flow measurement device using the same
JP3751538B2 (en) * 2001-04-11 2006-03-01 株式会社日立製作所 Gas flow meter
JP2007071889A (en) * 2006-11-27 2007-03-22 Hitachi Ltd Thermal air flowmeter
JP4993311B2 (en) * 2008-05-30 2012-08-08 株式会社デンソー AIR FLOW MEASURING DEVICE, AIR FLOW CORRECTION METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP2015043006A (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5663447B2 (en) Gas flow measuring device
EP2924405B1 (en) Intake air temperature sensor and flow measurement device
JP5577198B2 (en) Gas flow measuring device
JP5558599B1 (en) Thermal air flow meter
JP2010169657A (en) Mass flow meter and mass flow controller
CN105008870B (en) Heat type fluid measuring device
EP3043155A1 (en) Thermal flow sensor
US20090299657A1 (en) Air flow measurement device and air flow correction method
JP5304766B2 (en) Flow measuring device
JP6106654B2 (en) Gas flow measuring device
JP2015197324A (en) Abnormality determination device and abnormality determination method
JP7168340B2 (en) thermal flow meter
US8527243B2 (en) Air flow measurement apparatus
JP5814884B2 (en) Thermal flow measurement device and control device using the same
JP6549235B2 (en) Air flow meter
US11009379B2 (en) Gas flow rate measurement device
JPH0835869A (en) Air flowmeter
WO2020008786A1 (en) Thermal flow rate measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250