JP6104593B2 - relay - Google Patents

relay Download PDF

Info

Publication number
JP6104593B2
JP6104593B2 JP2012275583A JP2012275583A JP6104593B2 JP 6104593 B2 JP6104593 B2 JP 6104593B2 JP 2012275583 A JP2012275583 A JP 2012275583A JP 2012275583 A JP2012275583 A JP 2012275583A JP 6104593 B2 JP6104593 B2 JP 6104593B2
Authority
JP
Japan
Prior art keywords
value
temperature
outside air
relay
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012275583A
Other languages
Japanese (ja)
Other versions
JP2014120371A (en
Inventor
努 安井
努 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2012275583A priority Critical patent/JP6104593B2/en
Publication of JP2014120371A publication Critical patent/JP2014120371A/en
Application granted granted Critical
Publication of JP6104593B2 publication Critical patent/JP6104593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Relay Circuits (AREA)

Description

本発明は、航空機に搭載される電子機器に好適に用いられる継電器に関するものである。   The present invention relates to a relay suitably used for an electronic device mounted on an aircraft.

従来、下記特許文献1に開示されているように、航空機に搭載される電子機器に好適に用いられる継電器が知られている。この種の継電器は、駆動部材と、固定接点と、可動接点とを有していて、磁気回路で発生する磁気力によって駆動部材を駆動することにより、可動接点を動作させ、固定接点及び可動接点のオン・オフ切り換えを行う。   Conventionally, as disclosed in Patent Document 1 below, a relay that is suitably used for an electronic device mounted on an aircraft is known. This type of relay has a drive member, a fixed contact, and a movable contact, and operates the movable contact by driving the drive member with a magnetic force generated by a magnetic circuit, thereby fixing the fixed contact and the movable contact. Switch on / off.

特開平5−205599号公報JP-A-5-205599

継電器では、固定接点及び可動接点間の断接(オン・オフ)が繰り返されるため、継電器には寿命が存在する。すなわち、固定接点及び可動接点間の断接が繰り返されると、発熱するようになり、最終的には故障に至る。   In the relay, since the connection (ON / OFF) between the fixed contact and the movable contact is repeated, the relay has a lifetime. That is, when the connection / disconnection between the fixed contact and the movable contact is repeated, heat is generated and eventually a failure occurs.

そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、継電器が寿命に近づいたことを予測し易くすることにある。   Therefore, the present invention has been made in view of the above-described prior art, and an object of the present invention is to make it easy to predict that a relay is approaching the end of its life.

前記の目的を達成するため、本発明は、互いに間隔をおいて配置された一対の固定接点を有する電力ラインと、前記一対の固定接点間を断接する可動接点を動作させるための駆動部材と、前記一対の固定接点及び前記可動接点の接触部から生ずる熱の発熱量を代表する値を検出する発熱量検出手段と、外気温度を検出する外気温度センサと、前記発熱量検出手段による検出値と、前記外気温度センサによって検出された外気温度に前記電力ラインを流れる電流の電流値を用いて計算された発熱量に基づく温度上昇値を加算した基準温度値と、の差分が予め設定された値以上になると、寿命に近づいたことを示す信号を出力する制御部と、を備えている継電器である。   In order to achieve the above object, the present invention provides a power line having a pair of fixed contacts that are spaced apart from each other, a driving member for operating a movable contact that connects and disconnects between the pair of fixed contacts, A calorific value detection means for detecting a value representative of the calorific value of heat generated from the contact portion of the pair of fixed contacts and the movable contact, an outside air temperature sensor for detecting an outside air temperature, and a detection value by the calorific value detection means A difference between a reference temperature value obtained by adding a temperature increase value based on a calorific value calculated using a current value of a current flowing through the power line to an outside air temperature detected by the outside air temperature sensor is set in advance. If it becomes above, it is a relay provided with the control part which outputs the signal which shows that it was near the lifetime.

本発明では、発熱量検出手段による検出値により、一対の固定接点及び可動接点の接触部から生ずる熱の発熱量を代表する値が得られる。一方、電力ラインを流れる電流の電流値を用いて計算された発熱量に基づく温度上昇値から、電力ラインの電流値が変化することによって変化する温度上昇値が得られ、この温度上昇値に外気温度センサによる外気温度値を加算することにより、電力ラインの電流値が変化したときに得られる外気温度が求められる。このとき、電気抵抗値の変化は考慮されていない。一方、一対の固定接点及び可動接点の接触部から生ずる熱の発熱量を代表する値の変化は、接触部において電気抵抗値が変化したことによって生ずる電流値の変化(すなわち発熱量の変化)の影響を受けたものとなっている。このため、発熱量検出手段による検出値と、前記外気温度センサによって検出された外気温度に電力ラインを流れる電流の電流値を用いて計算された発熱量に基づく温度上昇値を加算した基準温度値との差分を求めることにより、一対の固定接点及び可動接点の接触部での電気抵抗値の変化量に基づく、温度変化値が得られることになる。したがって、一対の固定接点及び可動接点の接触部での電気抵抗の変化値が擬似的に得られることになり、継電器の寿命を推測することができる。したがって、制御部から信号が出力されることにより、継電器が寿命に近づいたことを判断することができる。しかも、外気温度(前記接触部による発熱の影響を受けない場所での空気の温度)との差分が用いられるため、外気温度が変化した場合にもその影響が排除され、正確な判断を行うことができる。   In the present invention, a value representative of the heat generation amount of heat generated from the contact portion of the pair of fixed contact and movable contact is obtained by the detection value by the heat generation amount detection means. On the other hand, a temperature rise value that changes as the current value of the power line changes is obtained from the temperature rise value based on the calorific value calculated using the current value of the current flowing through the power line. By adding the outside air temperature value from the temperature sensor, the outside air temperature obtained when the current value of the power line changes is obtained. At this time, the change of the electrical resistance value is not taken into consideration. On the other hand, the change in the value representative of the amount of heat generated from the contact portion between the pair of fixed contacts and the movable contact is the change in the current value (that is, the change in the amount of heat generation) caused by the change in the electrical resistance value in the contact portion. It has been affected. For this reason, the reference temperature value obtained by adding the detected value by the calorific value detection means and the temperature rise value based on the calorific value calculated using the current value of the current flowing through the power line to the outside temperature detected by the outside temperature sensor The temperature change value based on the change amount of the electrical resistance value at the contact portion between the pair of fixed contact and the movable contact is obtained. Therefore, the change value of the electrical resistance at the contact portion of the pair of fixed contact and movable contact is obtained in a pseudo manner, and the life of the relay can be estimated. Therefore, it can be determined that the relay is approaching the end of its life by outputting a signal from the control unit. In addition, since the difference from the outside air temperature (the temperature of the air in a place not affected by the heat generated by the contact portion) is used, even when the outside air temperature changes, the influence is eliminated, and accurate determination is performed. Can do.

また本発明は、互いに間隔をおいて配置された一対の固定接点を有する電力ラインと、前記一対の固定接点間を断接する可動接点を動作させるための駆動部材と、前記一対の固定接点及び前記可動接点の接触部から生ずる熱の発熱量を代表する値を検出する発熱量検出手段と、前記発熱量検出手段による検出値が予め設定された値以上になると、寿命に近づいたことを示す信号を出力する制御部と、を備えている継電器である。   According to another aspect of the present invention, there is provided a power line having a pair of fixed contacts that are spaced apart from each other, a driving member for operating a movable contact that connects and disconnects the pair of fixed contacts, the pair of fixed contacts, A calorific value detecting means for detecting a value representative of the calorific value of heat generated from the contact portion of the movable contact, and a signal indicating that the life is approaching when the detected value by the calorific value detecting means exceeds a preset value And a control unit that outputs a relay.

本発明において、一対の固定接点及び可動接点の接触部での電気抵抗値が変化すれば、当該接触部での発熱量が変化するため、発熱量検出手段の検出値は、その発熱量の影響を受けた値となる。したがって、例えば継電器が寿命に近づき発熱しているときの温度を実験などによって予め求めておいて、当該温度を基準値として、発熱量検出手段の検出値が該基準値になると、寿命に近づいたと判断することができる。   In the present invention, if the electrical resistance value at the contact portion between the pair of fixed contact and the movable contact changes, the amount of heat generated at the contact portion changes, so the detection value of the heat generation amount detection means is influenced by the amount of heat generation. The value that received. Therefore, for example, the temperature when the relay is nearing the end of its life and generating heat is obtained in advance by experiment etc., and when the detected value of the calorific value detection means becomes the reference value with the temperature as a reference value, Judgment can be made.

以上説明したように、本発明によれば、継電器が寿命に近づいたことを予測し易くすることができる。   As described above, according to the present invention, it is possible to easily predict that the relay has reached the end of its life.

本発明の実施形態に係る継電器の構成を説明するための図である。It is a figure for demonstrating the structure of the relay which concerns on embodiment of this invention. 前記継電器に設けられた演算回路の構成を説明するための図である。It is a figure for demonstrating the structure of the arithmetic circuit provided in the said relay. 接点間の断接繰り返し数と差分値との相関を示す図である。It is a figure which shows the correlation with the connection repeating number between contacts, and a difference value. 接点間の断接繰り返し数と温度値との相関を示す図である。It is a figure which shows the correlation with the connection repeating number between contacts, and a temperature value.

以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本実施形態に係る継電器は、航空機に搭載される電子機器に用いられる継電器であり、図1に示すように、継電器1は、電力ライン10と、駆動部材13と、外気温度センサ20と、温度センサ21と、制御部としての演算回路23とを備えている。   The relay according to the present embodiment is a relay used in an electronic device mounted on an aircraft. As illustrated in FIG. 1, the relay 1 includes a power line 10, a drive member 13, an outside air temperature sensor 20, a temperature The sensor 21 and the arithmetic circuit 23 as a control part are provided.

電力ライン10は、図外の入力側(一次側)に接続可能に構成される入力部16と、図外の出力側(二次側)に接続可能に構成される出力部17と、入力部16及び出力部17間において互いに間隔をおいて設けられた一対の固定接点15a,15bと、を備えている。   The power line 10 includes an input unit 16 configured to be connectable to an input side (primary side) outside the figure, an output unit 17 configured to be connectable to an output side (secondary side) outside the figure, and an input unit 16 and the output part 17 are provided with a pair of fixed contacts 15a and 15b provided at a distance from each other.

駆動部材13は、可動接点14を動作させる。すなわち、駆動部材13は、磁性体によって構成されていて、コイル12に近接して配置されている。コイル12には、給電部40から電力が供給される。なお、図1中の符号11は鉄心である。   The driving member 13 operates the movable contact 14. That is, the drive member 13 is made of a magnetic material and is disposed in the vicinity of the coil 12. Electric power is supplied to the coil 12 from the power supply unit 40. In addition, the code | symbol 11 in FIG. 1 is an iron core.

演算回路23は、固定接点15a,15b及び可動接点14の寿命を判断するために設けられており、図2に示すように、変換器23aと、演算器23bと、比較器23cとを含む。なお、変換器23a、演算器23b及び比較器23cは、演算回路23の一機能として含まれていてもよい。   The arithmetic circuit 23 is provided to determine the lifetimes of the fixed contacts 15a and 15b and the movable contact 14, and includes a converter 23a, an arithmetic unit 23b, and a comparator 23c, as shown in FIG. Note that the converter 23 a, the calculator 23 b, and the comparator 23 c may be included as one function of the calculation circuit 23.

変換器23aは、熱電対で構成された温度センサ21から送られる電流値に応じて、温度センサ21によって検出された温度の値T2を導出するように構成されている。温度センサ21は、固定接点15a,15b及び可動接点14間の接触部から生ずる熱の影響を受ける場所に配置されている。すなわち、温度センサ21は、固定接点15a,15b及び可動接点14間から生ずる熱の発熱量を代表する値を検出する発熱量検出手段として機能する。本実施形態では、接点間から生ずる熱の発熱量を代表する値として、接点近傍の空気温度が用いられているが、これに限られるものではない。例えば、発熱量検出手段は、接点自体の温度、あるいは接点から伝熱する部材(図示省略)の温度を、発熱量を代表する値として検出する構成であってもよい。つまり、接点間での発熱の影響を受ける部材や同影響を受ける場所での空気の温度が発熱量を代表する値と検出されればよい。   The converter 23a is configured to derive a temperature value T2 detected by the temperature sensor 21 in accordance with a current value sent from the temperature sensor 21 formed of a thermocouple. The temperature sensor 21 is disposed at a location that is affected by heat generated from a contact portion between the fixed contacts 15 a and 15 b and the movable contact 14. That is, the temperature sensor 21 functions as a calorific value detection unit that detects a value representative of the calorific value of heat generated between the fixed contacts 15 a and 15 b and the movable contact 14. In the present embodiment, the air temperature in the vicinity of the contacts is used as a value representing the amount of heat generated between the contacts, but is not limited thereto. For example, the calorific value detection means may be configured to detect the temperature of the contact itself or the temperature of a member (not shown) that conducts heat from the contact as a value representative of the calorific value. That is, it is only necessary to detect the temperature of the member affected by the heat generation between the contacts and the temperature of the air at the affected location as a value representative of the heat generation amount.

なお、図例では、温度センサ21が固定接点15aに近接して配置された例を示しているがこれに限られない。例えば、温度センサ21は固定接点15bに近接して配置されていてもよい。また、温度センサ21は接点15a,15b,14に接触するように配置されていてもよい。   In the example shown in the figure, the temperature sensor 21 is disposed close to the fixed contact 15a, but the present invention is not limited to this. For example, the temperature sensor 21 may be disposed in the vicinity of the fixed contact 15b. Moreover, the temperature sensor 21 may be arrange | positioned so that the contact 15a, 15b, 14 may be contacted.

演算器23bには、電力ライン10を流れる電流の電流値を検出するためのコイル22と、外気温度センサ20とが接続されている。演算器23bの機能には、電流値導出部31と、外気温度導出部32と、基準温度導出部33とが含まれている。コイル22は、電力ライン10における一次側ライン10a、すなわち、入力部16と固定接点15aとをつなぐライン10aに配置されているが、これに限られない。例えば、コイル22は、電力ライン10における二次側ライン10b、すなわち、固定接点15bと出力部17とをつなぐライン10bに配置されていてもよい。またコイル22は、継電器1の筐体内側に配置されていてもよく、筐体外側に配置されていてもよい。   A coil 22 for detecting the current value of the current flowing through the power line 10 and the outside air temperature sensor 20 are connected to the computing unit 23b. The function of the calculator 23b includes a current value deriving unit 31, an outside air temperature deriving unit 32, and a reference temperature deriving unit 33. Although the coil 22 is arrange | positioned at the primary side line 10a in the electric power line 10, ie, the line 10a which connects the input part 16 and the fixed contact 15a, it is not restricted to this. For example, the coil 22 may be disposed on the secondary line 10 b in the power line 10, that is, the line 10 b that connects the fixed contact 15 b and the output unit 17. Moreover, the coil 22 may be arrange | positioned inside the housing | casing of the relay 1, and may be arrange | positioned outside the housing | casing.

電流値導出部31は、コイル22を流れる電流値(の変化)を検出し、その検出値に応じて、電力ライン10に流れる電流の値Iを導出する。   The current value deriving unit 31 detects (changes in) the current value flowing through the coil 22 and derives the value I of the current flowing through the power line 10 according to the detected value.

外気温度導出部32は、熱電対で構成された外気温度センサ20から送られる電流値に応じて、外気温度センサ20によって検出された温度の値T1を導出する。外気温度センサ20は、継電器1の内部に配置されていてもよく、或いは継電器1の外側に配置されていてもよい。ただし、外気温度センサ20は、固定接点15a,15b及び可動接点14間の接触部から生ずる熱の影響を受けない場所での空気の温度を検出するように配置されている必要がある。   The outside air temperature deriving unit 32 derives a temperature value T1 detected by the outside air temperature sensor 20 in accordance with a current value sent from the outside air temperature sensor 20 configured by a thermocouple. The outside air temperature sensor 20 may be disposed inside the relay 1 or may be disposed outside the relay 1. However, the outside air temperature sensor 20 needs to be disposed so as to detect the temperature of the air in a place not affected by the heat generated from the contact portion between the fixed contacts 15 a and 15 b and the movable contact 14.

基準温度導出部33は、電流値導出部31によって導出された電流値Iを用いて計算された発熱量に基づく温度上昇値ΔTを導出する。以下、具体的に説明する。   The reference temperature deriving unit 33 derives a temperature increase value ΔT based on the calorific value calculated using the current value I derived by the current value deriving unit 31. This will be specifically described below.

一般に、入力電流Iによる発熱量Qは、以下の関係式(1)
Q=m・c・ΔT ・・・(1)
で表される。ここで、mは、可動接点14および固定接点15a,15bとそれを保持する部品の質量であり、cは、可動接点14および固定接点15a,15bとそれを保持する部品の比熱であり、ΔTは、温度上昇値である。また、Q=I・R(ただし、Rは、可動接点14および固定接点15a,15b間の接触部における抵抗値)であるので、以下の関係式(2)
ΔT=I・R/(m・c) ・・・(2)
が成立する。基準温度導出部33は、この関係式(2)を用いて温度上昇値ΔTを導出する。なお、抵抗値R、質量m及び比熱cは、既知の値である。
In general, the calorific value Q due to the input current I is expressed by
Q = m · c · ΔT (1)
It is represented by Here, m is the mass of the movable contact 14 and fixed contacts 15a and 15b and the parts holding them, and c is the specific heat of the movable contact 14 and fixed contacts 15a and 15b and parts holding them, and ΔT Is a temperature rise value. Further, since Q = I 2 · R (where R is the resistance value at the contact portion between the movable contact 14 and the fixed contacts 15a and 15b), the following relational expression (2)
ΔT = I 2 · R / (m · c) (2)
Is established. The reference temperature deriving unit 33 derives the temperature increase value ΔT using this relational expression (2). The resistance value R, mass m, and specific heat c are known values.

また、基準温度導出部33は、外気温度導出部32によって導出された温度値T1に温度上昇値ΔTを加算して、基準温度値T3を導出する。すなわち、
T3=T1+ΔT ・・・(3)
なので、関係式(2)(3)より以下の関係式(4)
T3=T1+I・R/(m・c) ・・・(4)
が成立する。基準温度導出部33は、この関係式(4)を用いて基準温度値T3を導出する。この基準温度値T3は、抵抗値Rが変化しない(一定)との条件下で導出される温度である。つまり、基準温度値T3は、外気温度T1に、理想モデルとしての発熱量に基づく温度上昇値ΔTを加えたものである。
The reference temperature deriving unit 33 derives a reference temperature value T3 by adding the temperature increase value ΔT to the temperature value T1 derived by the outside air temperature deriving unit 32. That is,
T3 = T1 + ΔT (3)
Therefore, from the relational expressions (2) and (3), the following relational expression (4)
T3 = T1 + I 2 · R / (m · c) (4)
Is established. The reference temperature deriving unit 33 derives a reference temperature value T3 using this relational expression (4). The reference temperature value T3 is a temperature derived under the condition that the resistance value R does not change (constant). That is, the reference temperature value T3 is obtained by adding the temperature increase value ΔT based on the calorific value as an ideal model to the outside air temperature T1.

比較器23cは、変換器23aによって導出された温度値T2と、基準温度導出部33によって導出された基準温度値T3との差分を求める。すなわち、変換器23aによって導出された温度値T2は、温度センサ21によって検出された温度に対応する温度値となっているが、温度センサ21によって検出される温度は、外気温度T1に、固定接点15a,15b及び可動接点14間の接触部における発熱に基づく温度上昇値を加算した値に相当する。このときの発熱量Q’は、I・R’(R’は、固定接点15a,15b及び可動接点14間の接触部における実際の抵抗値)で表されるが、抵抗値R’は、接点間の断接が繰り返し行われるに従って徐々に変化する。そして、寿命が近づくと急に上昇する。換言すれば、温度センサ21によって検出される温度は、接点間の抵抗値が変化した場合に、その変化した抵抗値に応じた発熱量Q’に左右される温度上昇値を外気温度T1に加えたものとなっている。これに対し、基準温度値T3は、抵抗値Rが変化しない(一定)との条件下で導出される温度である。したがって、変換器23aによって導出された温度値T2と、基準温度値T3との差分を求めることにより、接点間の抵抗値の変化量を導出することができる。そして、差分値T2−T3が、予め設定された値(閾値)以上になったか否かを判定することにより、継電器1が寿命に達したか否かを判定することができる。なお、閾値は、実験等によって求めておくことができる。 The comparator 23c obtains a difference between the temperature value T2 derived by the converter 23a and the reference temperature value T3 derived by the reference temperature deriving unit 33. That is, the temperature value T2 derived by the converter 23a is a temperature value corresponding to the temperature detected by the temperature sensor 21, but the temperature detected by the temperature sensor 21 is equal to the outside air temperature T1 and the fixed contact. This corresponds to a value obtained by adding a temperature rise value based on heat generation at the contact portion between 15a, 15b and the movable contact 14. The calorific value Q ′ at this time is represented by I 2 · R ′ (R ′ is an actual resistance value at the contact portion between the fixed contacts 15a and 15b and the movable contact 14), and the resistance value R ′ is It gradually changes as the connection between the contacts is repeated. And when the life approaches, it rises suddenly. In other words, when the resistance value between the contacts changes, the temperature detected by the temperature sensor 21 adds a temperature rise value that depends on the heat generation amount Q ′ according to the changed resistance value to the outside air temperature T1. It has become. On the other hand, the reference temperature value T3 is a temperature derived under the condition that the resistance value R does not change (constant). Therefore, by obtaining the difference between the temperature value T2 derived by the converter 23a and the reference temperature value T3, the amount of change in the resistance value between the contacts can be derived. Then, it can be determined whether or not the relay 1 has reached the end of its life by determining whether or not the difference value T2-T3 has reached or exceeded a preset value (threshold value). The threshold value can be obtained by experiments or the like.

例えば、図3は、接点間の断接繰り返し数Nと、差分値T2−T3との相関を示しており、寿命に近づいたと推測される繰り返し数N=5×10回のときの差分値T2−T3を求め、この値を閾値とすることができる。 For example, FIG. 3 shows the correlation between the number N of contact repetitions between the contacts and the difference value T2-T3, and the difference value when the number of repetitions N = 5 × 10 4 estimated to have approached the lifetime. T2-T3 can be obtained and this value can be used as a threshold value.

そして、比較器23cは、得られた差分が予め設定された値以上になると、継電器1が寿命に近づいたことを示す信号(Fault signal)を出力する。この信号は、故障出力部41を通して継電器1の外部に出力される。   When the obtained difference becomes equal to or greater than a preset value, the comparator 23c outputs a signal (Fault signal) indicating that the relay 1 is nearing the end of its life. This signal is output to the outside of the relay 1 through the failure output unit 41.

以上説明したように、本実施形態では、温度センサ21による検出値により、一対の固定接点15a,15b及び可動接点14の接触部から生ずる熱の影響を受けた空気温度が、発熱量を代表する値として得られる。一方、電力ライン10を流れる電流の電流値を用いて計算された発熱量に基づく温度上昇値から、電力ライン10の電流値が変化することによって変化する温度上昇値が得られ、この温度上昇値に外気温度センサ20による外気温度値を加算することにより、電力ライン10の電流値が変化したときに得られる温度(基準温度)が求められる。この基準温度は、電流値の変化による発熱量の変化が考慮されるのであって、抵抗値の変化は加味されない。すなわち、抵抗値が一定であるとの条件下で計算された値である。その一方で、一対の固定接点15a,15b及び可動接点14の接触部から生ずる熱の影響を受けた空気温度(発熱量の代表値)の変化は、接点15a,15b,14同士の接触部において電気抵抗値が変化したことによって生ずる電流値の変化(すなわち発熱量の変化)の影響を受けたものとなっている。このため、温度センサ21による検出値と、外気温度センサ20によって検出された外気温度に電力ライン10を流れる電流の電流値を用いて計算された発熱量に基づく温度上昇値を加算した基準温度値との差分を求めることにより、接点15a,15b,14同士の接触部での電気抵抗値の変化量に基づく、温度変化値が得られることになる。したがって、接点同士の接触部での電気抵抗の変化値が擬似的に得られることになり、継電器1の寿命を推測することができる。したがって、演算回路23から信号が出力されることにより、継電器1が寿命に近づいたことを判断することができる。しかも、外気温度(接点15a,15b,14同士の接触部による発熱の影響を受けない場所での空気の温度)との差分が用いられるため、外気温度が変化した場合にもその影響が排除され、正確な判断を行うことができる。   As described above, in the present embodiment, the air temperature affected by the heat generated from the contact portion of the pair of fixed contacts 15a and 15b and the movable contact 14 based on the detection value by the temperature sensor 21 represents the heat generation amount. Obtained as a value. On the other hand, from the temperature rise value based on the calorific value calculated using the current value of the current flowing through the power line 10, a temperature rise value that changes as the current value of the power line 10 changes is obtained. The temperature (reference temperature) obtained when the current value of the power line 10 changes is obtained by adding the outside air temperature value from the outside air temperature sensor 20 to. This reference temperature takes into account the change in the amount of heat generated by the change in the current value, and does not take into account the change in the resistance value. That is, it is a value calculated under the condition that the resistance value is constant. On the other hand, the change in the air temperature (a representative value of the heat generation amount) affected by the heat generated from the contact portion between the pair of fixed contacts 15a and 15b and the movable contact 14 is changed in the contact portion between the contacts 15a, 15b and 14. It is influenced by the change in the current value (that is, the change in the heat generation amount) caused by the change in the electrical resistance value. For this reason, the reference temperature value obtained by adding the detected value by the temperature sensor 21 and the temperature rise value based on the calorific value calculated using the current value of the current flowing through the power line 10 to the outside temperature detected by the outside temperature sensor 20. The temperature change value based on the change amount of the electrical resistance value at the contact portion between the contacts 15a, 15b, and 14 is obtained. Therefore, the change value of the electrical resistance at the contact portion between the contacts is obtained in a pseudo manner, and the life of the relay 1 can be estimated. Therefore, when the signal is output from the arithmetic circuit 23, it can be determined that the relay 1 is near the end of its life. In addition, since the difference from the outside air temperature (the temperature of the air in a place not affected by the heat generated by the contact portion between the contacts 15a, 15b, 14) is used, the influence is eliminated even when the outside air temperature changes. Can make accurate decisions.

なお、本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、前記実施形態では、差分値T2−T3が予め設定された閾値以上になったか否かによって寿命に近づいたか否かが判定される構成としたが、これに限られない。例えば、変換器23aによって導出された温度値T2(温度センサ21によって検出された温度による温度値T2)が予め設定された閾値以上になったか否かによって判定してもよい。すなわち図4に示すように、温度値T2自体も接点間の断接繰り返し数Nの増加に伴って徐々に上昇し、継電器1が寿命に近づくと、急に上昇し始める。したがって、寿命に近づいたと推測される繰り返し数N=5×10回のときの温度値T2を閾値として設定してもよい。ただし、この形態では、外気温度の影響を排除しきれないため、外気温度が所定範囲内に収まっていることが前提の場合に有効となる。 Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, it is determined whether or not the lifetime is approaching depending on whether or not the difference value T2−T3 is equal to or greater than a preset threshold value, but is not limited thereto. For example, the determination may be made based on whether or not the temperature value T2 derived by the converter 23a (temperature value T2 based on the temperature detected by the temperature sensor 21) is equal to or higher than a preset threshold value. That is, as shown in FIG. 4, the temperature value T <b> 2 itself also gradually increases as the number of connection repetitions N between the contacts increases, and starts to increase suddenly when the relay 1 approaches the end of its life. Therefore, the temperature value T2 when the number of repetitions N = 5 × 10 4 estimated to have approached the lifetime may be set as the threshold value. However, in this embodiment, since the influence of the outside air temperature cannot be completely eliminated, it is effective when it is assumed that the outside air temperature is within a predetermined range.

この形態において、接点同士の接触部での電気抵抗値が変化すれば、当該接触部での発熱量が変化するため、温度センサ21の検出値は、その発熱量の影響を受けた値となる。したがって、例えば継電器が寿命に近づき発熱しているときの温度を実験などによって予め求めておいて、当該温度を基準値として、温度センサ21の検出値が該基準値になると、寿命に近づいたと判断することができる。   In this embodiment, if the electrical resistance value at the contact portion between the contacts changes, the amount of heat generated at the contact portion changes, so the detected value of the temperature sensor 21 is a value affected by the amount of heat generated. . Therefore, for example, the temperature at which the relay is nearing the end of its life and generating heat is obtained in advance by experiments, and when the detected value of the temperature sensor 21 becomes the reference value with the temperature as a reference value, it is determined that the life is approaching. can do.

前記実施形態では、外気温度センサ20、温度センサ21、コイル22、演算回路23が何れも継電器1の筐体内側に配置された構成としたが、これに限られるものではない。温度センサ21以外の構成部品、すなわち、外気温度センサ20、コイル22、演算回路23の少なくとも1つが継電器1の筐体外側に配置された構成としてもよい。これらは、別体の部品として筐体に取り付けられていてもよい。   In the above embodiment, the outside air temperature sensor 20, the temperature sensor 21, the coil 22, and the arithmetic circuit 23 are all arranged inside the casing of the relay 1. However, the present invention is not limited to this. Components other than the temperature sensor 21, that is, at least one of the outside air temperature sensor 20, the coil 22, and the arithmetic circuit 23 may be arranged outside the casing of the relay 1. These may be attached to the housing as separate components.

1 継電器
10 電力ライン
12 コイル
13 駆動部材
14 可動接点
15a 固定接点
15b 固定接点
16 入力部
17 出力部
20 外気温度センサ
21 温度センサ(発熱量検出手段の一例)
22 コイル
23 演算回路
23a 変換器
23b 演算器
23c 比較器
31 電流値導出部
32 外気温度導出部
33 基準温度導出部
40 給電部
41 故障出力部
DESCRIPTION OF SYMBOLS 1 Relay 10 Electric power line 12 Coil 13 Driving member 14 Movable contact 15a Fixed contact 15b Fixed contact 16 Input part 17 Output part 20 Outside temperature sensor 21 Temperature sensor (an example of calorific value detection means)
DESCRIPTION OF SYMBOLS 22 Coil 23 Calculation circuit 23a Converter 23b Calculator 23c Comparator 31 Current value deriving part 32 Outside temperature deriving part 33 Reference temperature deriving part 40 Power feeding part 41 Fault output part

Claims (2)

筐体を有する継電器であって、
一対の固定接点を有する電力ラインと、
前記一対の固定接点間を断接する可動接点と
前記筐体内において、前記一対の固定接点及び前記可動接点から生ずる発熱量を検出する発熱量検出手段と、
外気温度を検出する外気温度検出手段と、
前記発熱量検出手段によって検出された発熱量と、前記外気温度検出手段によって検出された前記外気温度に前記電力ラインを流れる電流の電流値を用いて計算された発熱量に基づく温度上昇値を加算した基準温度値と、の差分が予め設定された値以上になると、寿命に近づいたことを示す信号を出力する制御部と、を備え、
前記外気温度検出手段は、前記筐体の外に配置される
継電器。
A relay having a housing,
A power line having a pair of fixed contacts;
A movable contact for connecting and disconnecting the pair of fixed contacts;
A heat generation amount detecting means for detecting a heat generation amount generated from the pair of fixed contacts and the movable contact in the housing ,
Outside temperature detecting means for detecting outside temperature;
And thus the detected calorific to the heating amount detection means, the temperature rise value based on the calculated heating value with the current value of the current flowing through the power line on the detected outside air temperature by the outside air temperature detection means a reference temperature value obtained by adding, when the difference is equal to or greater than a preset value of, e Bei a control section for outputting a signal indicating that the approaching life, and
The outside air temperature detecting means is a relay arranged outside the housing .
筐体を有する継電器であって、
一対の固定接点を有する電力ラインと、
前記一対の固定接点間を断接する可動接点と
前記筐体内において、前記一対の固定接点及び前記可動接点から生ずる発熱量を検出する発熱量検出手段と、
外気温度を検出する外気温度検出手段と、
前記外気温度検出手段によって検出された前記外気温度が所定範囲に収まり、且つ、前記発熱量検出手段によって検出された発熱量が予め設定された値以上になると、寿命に近づいたことを示す信号を出力する制御部と、を備え、
前記外気温度検出手段は、前記筐体の外に配置される
継電器。
A relay having a housing,
A power line having a pair of fixed contacts;
A movable contact for connecting and disconnecting the pair of fixed contacts;
A heat generation amount detecting means for detecting a heat generation amount generated from the pair of fixed contacts and the movable contact in the housing ,
Outside temperature detecting means for detecting outside temperature;
When the outside air temperature detected by the outside air temperature detecting means falls within a predetermined range and the heat generation amount detected by the heat generation amount detecting means is equal to or greater than a preset value, a signal indicating that the life is approaching. for example Bei and a control unit configured to output,
The outside air temperature detecting means is a relay arranged outside the housing .
JP2012275583A 2012-12-18 2012-12-18 relay Active JP6104593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275583A JP6104593B2 (en) 2012-12-18 2012-12-18 relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275583A JP6104593B2 (en) 2012-12-18 2012-12-18 relay

Publications (2)

Publication Number Publication Date
JP2014120371A JP2014120371A (en) 2014-06-30
JP6104593B2 true JP6104593B2 (en) 2017-03-29

Family

ID=51175037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275583A Active JP6104593B2 (en) 2012-12-18 2012-12-18 relay

Country Status (1)

Country Link
JP (1) JP6104593B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599901B (en) * 2015-02-03 2017-05-10 珠海格力电器股份有限公司 Detection circuit for contactor
DE102016124083B4 (en) * 2016-12-12 2018-07-05 Phoenix Contact Gmbh & Co. Kg Method for monitoring an electromechanical component of an automation system
LU93350B1 (en) * 2016-12-12 2018-07-03 Phoenix Contact Gmbh & Co Kg Intellectual Property Licenses & Standards Method for monitoring an electromechanical component of an automation system
KR102295771B1 (en) * 2017-10-12 2021-08-31 주식회사 엘지에너지솔루션 System and method for diagnosing contactor life using contactor coil current
JP7330069B2 (en) * 2019-11-13 2023-08-21 三菱電機株式会社 Watt-hour meter and electrical equipment
CN114414934A (en) * 2021-11-17 2022-04-29 西安铁路信号有限责任公司 Non-contact type contact resistance acquisition device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281618A (en) * 1988-05-06 1989-11-13 Fuji Electric Co Ltd Detecting device for contact lifetime
US6231227B1 (en) * 1998-12-28 2001-05-15 General Electric Company Method of determining contact wear in a trip unit

Also Published As

Publication number Publication date
JP2014120371A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6104593B2 (en) relay
KR101542994B1 (en) Method of estimating temperature of rotor of motor
US9117609B2 (en) Electromagnetic opening/closing device
RU2013156867A (en) CONTACTLESS ELECTRICITY SUPPLY DEVICE
WO2012004092A2 (en) Foreign object detection in inductive coupled wireless power transfer environment using thermal sensors
JP5499608B2 (en) Contactless charger
JP2009204745A5 (en)
KR101520758B1 (en) Switchgear having a function of diagnosing abnormality by analyzing temperature and current
JP2012134142A5 (en)
CN110462917A (en) For determining method and apparatus, the operation method for battery unit, the control unit for battery unit and the working equipment of running temperature
JP2015011836A (en) Relay controller
CN101493358A (en) Temperature sensor
JP2020042239A5 (en)
JP6188523B2 (en) Distributed power system
KR102248533B1 (en) System and method for predicting the failure rate of contactor
FR2972274B1 (en) METHOD FOR DETECTING A FAILURE OF A TEMPERATURE PROBE
JP2013143308A (en) Battery temperature estimation device
JPWO2014185095A1 (en) Power supply device and power receiving device for non-contact power transmission
JP5660134B2 (en) Power measurement system and power temperature converter
JP6135923B2 (en) Power generation system
JP2011186232A5 (en)
JP5387145B2 (en) Cogeneration apparatus and method of operating cogeneration apparatus
KR100881615B1 (en) Reed switch position transmitter for muli-channel use
JP2019161028A (en) Abnormality monitoring device
CN207817088U (en) Control device is reminded in transformer detection based on magnetic field detection principle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R150 Certificate of patent or registration of utility model

Ref document number: 6104593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250