JP6104101B2 - Near wave power generator - Google Patents

Near wave power generator Download PDF

Info

Publication number
JP6104101B2
JP6104101B2 JP2013173059A JP2013173059A JP6104101B2 JP 6104101 B2 JP6104101 B2 JP 6104101B2 JP 2013173059 A JP2013173059 A JP 2013173059A JP 2013173059 A JP2013173059 A JP 2013173059A JP 6104101 B2 JP6104101 B2 JP 6104101B2
Authority
JP
Japan
Prior art keywords
wave
wave receiving
tank
opening
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013173059A
Other languages
Japanese (ja)
Other versions
JP2015040540A (en
Inventor
小林 健一
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013173059A priority Critical patent/JP6104101B2/en
Publication of JP2015040540A publication Critical patent/JP2015040540A/en
Application granted granted Critical
Publication of JP6104101B2 publication Critical patent/JP6104101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、波のエネルギーを利用して発電する装置に関し、より詳しくは、岸辺に打ち寄せて盛り上がる波によりタンク内に圧縮空気を得て、その圧縮空気によって発電機を稼動させる装置に関する。   The present invention relates to an apparatus that generates electric power using wave energy, and more particularly, to an apparatus that obtains compressed air in a tank by a wave that hits a shore and rises, and operates a generator using the compressed air.

海岸の高い防波堤を乗り越える程の大きなエネルギーを持っている寄せ波を見て、本発明者は寄せ波から圧縮空気を得ればその圧縮空気によって発電機を稼動させることが可能となるはずであるとの着想を得た。   Looking at a spilling wave that has enough energy to overcome the high breakwater on the coast, the present inventor should be able to operate the generator with the compressed air if the compressed air is obtained from the spilling wave. I got the idea.

従来、岸辺の波から圧縮空気を得て発電機を稼動させる各種の装置が提案されている。
例えば、下記特許文献1には、ケーシング外側に発生する波によりケーシング内側の水位を上下変動させ、この水位変動によりケーシング内の気圧を変化させ、その変化する空気圧により発電機を稼動させようとする「固定式波力発電システム」が提案されている。
しかし、この装置では、ケーシング内の空気が漏れないようにケーシング下端部が海面下に没入し、寄せ波の谷部となる高さよりもさらに低い位置に海水を受け入れる開口部が下に向けて設けられている。このため、岸辺に打ち寄せる波の岸に向う運動エネルギーがケーシングの側面に当たって打ち消されてしまい、寄せ波の持つ運動エネルギーを効率良く利用することができない。
更に、この装置ではケーシング内部に水平面的な広がりを有しているので、波が引いてケーシング外に出ていくのに時間を要し、寄せた波が引き終わらないうちに次の波が打ち寄せてしまい、寄せ波と引き波が干渉しあって寄せ波の運動エネルギーを消耗しケーシング内部に大きな高低さが得られない。この点でも波のエネルギーを効率良く利用することができない。
Conventionally, various devices for operating a generator by obtaining compressed air from shore waves have been proposed.
For example, in Patent Document 1 below, the water level inside the casing is fluctuated up and down by a wave generated outside the casing, the air pressure inside the casing is changed by this water level fluctuation, and the generator is operated by the changed air pressure. "Fixed wave power generation system" has been proposed.
However, in this device, the lower end of the casing is immersed below the sea level so that air in the casing does not leak, and an opening for receiving seawater is provided at a position lower than the height that becomes the valley of the spilling wave. It has been. For this reason, the kinetic energy directed toward the shore of the waves hitting the shore hits the side surface of the casing and is canceled out, and the kinetic energy of the rushing waves cannot be used efficiently.
Furthermore, since this apparatus has a horizontal plane inside the casing, it takes time for the waves to pull out of the casing and the next wave strikes before the wave that has been pulled is not finished. As a result, the spilling wave and the pulling wave interfere with each other and the kinetic energy of the spilling wave is consumed, so that a large height cannot be obtained inside the casing. Even in this respect, the wave energy cannot be used efficiently.

又、下記特許文献2には、海岸の護岸壁に打ち寄せる波を集波ラッパ管で受けてその管内に圧縮空気を得、その圧縮空気によりエアータービンを回転させて発電しようとする「波動風洞発電システム内蔵の沿岸広域防潮防波護岸帯システム」が提案されている。
しかし、該システムでは、波を受ける部分が護岸壁に設けたラッパ管であり、該ラッパ管は径がテーパー状に減少して細くなる管であり、波を受け入れる空間的容量が寄せ波の大きさに比して極めて小さい。このため岸辺に打ち寄せて盛り上がる波の運動エネルギーを有効に利用することができず、効率良く電力を得ることができない。
Further, in Patent Document 2 below, “Wave wind tunnel power generation is attempted to generate power by receiving a wave that strikes the coastal revetment wall with a collecting trumpet tube, obtaining compressed air in the tube, and rotating the air turbine with the compressed air. A system built-in coastal wide sea tide breakwater system has been proposed.
However, in this system, the portion that receives the wave is a trumpet tube provided on the revetment wall, and the trumpet tube is a tube whose diameter decreases in a taper shape and becomes narrower, and the spatial capacity to receive the wave is large It is extremely small compared to this. For this reason, it is not possible to effectively use the kinetic energy of the waves that hit the shore and rise, and it is not possible to obtain electric power efficiently.

特開2013−29087号公報JP 2013-29087 A 特開2011−85003号公報JP 2011-85003 A

上記特許文献等の従来の装置では、海岸に打ち寄せる寄せ波を受け入れて高く盛り上げる構造がないため、寄せ波の運動エネルギーの大きさに較べて得られる電気エネルギーは極めて小さく、寄せ波から効率良く大容量で高圧の圧縮空気を得ることができなかった。   In conventional devices such as the above-mentioned patent documents, since there is no structure that accepts a rising wave that hits the coast and raises it to a high level, the electrical energy obtained compared to the magnitude of the kinetic energy of the moving wave is extremely small, and it is efficiently increased from the rising wave. High volume compressed air could not be obtained.

そこで、本発明は、海岸に向かって打ち寄せる波の運動エネルギーを受け入れてタンク内に海水を高く盛り上げることでタンク内に大容量で高圧となる圧縮空気を繰り返し得、その圧縮空気から大きな電気エネルギーを得ることが可能となる寄せ波発電装置を提供することを目的とする。   Therefore, the present invention accepts the kinetic energy of waves rushing toward the coast and repeatedly raises the seawater in the tank to repeatedly generate compressed air that has a large capacity and high pressure in the tank, and generates large electric energy from the compressed air. An object of the present invention is to provide a wake-up generator that can be obtained.

上記課題を解決するため、本発明の寄せ波発電装置は、請求項1の発明にあっては、海岸沿の海中に設置され、底面部、上面部、両側面部、陸側背面部及び海側前面部で囲われ、波受け口が前記海側前面部の下部に設けられ、寄せ波を受けて前記波受け口が閉ざされた際に密閉空間が形成される波受けタンクと、該波受けタンクの前記波受け口に寄せ波を集める波受け板と、前記波受け口から入り前記密閉空間で盛り上がる海水に押されて圧縮される前記波受けタンク内の空気の圧力を受けて発電する発電機と、を備え、前記波受け板は、前記波受けタンクの下部から上部又は中間部にかけての陸側背面部の両側辺縁から両側方に張出し部を突出させて該張出し部の先端部から海側に向けて平行又は末広がりに突出されると共に海底から立ち上げられたことを特徴とする。 In order to solve the above-mentioned problem, the swell wave power generator according to the present invention is installed in the sea along the coast, and includes a bottom surface portion, a top surface portion, both side surfaces, a land side back surface portion, and a sea side. surrounded by the front portion, the wave receiving port is provided at a lower portion of the sea-side front portion, and the wave receiving tank enclosed space when the wave receptacle is closed by receiving the surf is formed, the wave receiving tank A wave receiving plate that collects waves at the wave receiving port, and a generator that generates electric power by receiving the pressure of the air in the wave receiving tank compressed by the seawater that enters from the wave receiving port and rises in the sealed space. The wave receiving plate protrudes from both side edges of the land-side rear surface from the lower part to the upper part or middle part of the wave receiving tank, and projects from both ends to the sea side from the tip part of the protruding part. Projecting parallel or divergent and standing up from the seabed And said that there was Gerare.

請求項2の発明にあっては、上記発明において、前記波受けタンクの上面部又は上面部近傍面にパイプ接続孔設けられ、該波受けタンクの上部側には該パイプ接続孔と下部側とを除いた全周囲が密閉されたタンク上部空間が形成されたことを特徴とする。 According to a second aspect of the present invention, in the above invention, a pipe connection hole is provided in an upper surface portion of the wave receiving tank or a surface near the upper surface portion, and the pipe connection hole and a lower side are provided on an upper side of the wave receiving tank. A tank upper space that is hermetically sealed except for and is formed.

請求項の発明にあっては、上記発明において、前記パイプ接続孔に上部から接続させたパイプと、該パイプに接続されて該パイプに流れる空気の圧力を受けて回転する回転装置と、該回転装置に接続されて該回転装置の回転を受けて発電する発電機とを備えたことを特徴とする。 In the invention of claim 3 , in the above invention, a pipe connected to the pipe connection hole from above, a rotating device connected to the pipe and rotating under the pressure of air flowing through the pipe, And a generator that is connected to the rotating device and generates power by receiving the rotation of the rotating device.

請求項4の発明にあっては、上記発明において、前記パイプ接続孔と回転装置との間のパイプに圧縮空気を一時貯える圧縮気体供給タンクを設けると共に前記パイプに圧縮気体供給タンク方向のみに開く逆止弁を設けたことを特徴とする。 According to a fourth aspect of the present invention, in the above invention, a compressed gas supply tank for temporarily storing compressed air is provided in the pipe between the pipe connection hole and the rotating device, and the pipe is opened only in the direction of the compressed gas supply tank. A check valve is provided.

請求項の発明にあっては、上記発明において、前記波受けタンク下部の両側面部に側面開口部を設けたことを特徴とする。 The invention of claim 5 is characterized in that, in the above invention, side opening portions are provided on both side surfaces of the wave receiving tank lower portion.

請求項の発明にあっては、上記発明において、前記波受けタンク下部の両側面開口部に電気的に制御可能な電磁開閉蓋を設けたことを特徴とする。 The invention according to claim 6 is characterized in that, in the above invention, an electromagnetic controllable lid that is electrically controllable is provided at both side opening portions of the lower part of the wave receiving tank.

請求項の発明にあっては、上記発明において、前記波受け口を常時開放された下側部分と開閉可能な上側部分とに分割し、該上側部分には該上側部分の開口面積を拡大又は縮小可能とした開閉板を備えたことを特徴とする。 According to a seventh aspect of the present invention, in the above invention, the wave receiving port is divided into a lower part that is always open and an upper part that can be opened and closed, and an opening area of the upper part is expanded or increased in the upper part. An opening / closing plate that can be reduced is provided.

請求項の発明にあっては、上記発明において、前記上側部分の両側部にガイドレールを設けると共に該ガイドレールに前記下側部分の上部から下部に向かって遮断可能にスライドする上下開閉板を装着し、海側前面部の波受け口上端部よりも上部に前記上下開閉板を上下に昇降させる開閉駆動部を設けたことを特徴とする。 According to an eighth aspect of the present invention, in the above invention, the upper and lower opening / closing plates that are provided with guide rails on both sides of the upper portion and slide on the guide rail so as to be cut off from the upper portion to the lower portion of the lower portion. mounting, and is characterized in that a closing drive unit for lifting and lowering the upper and lower closing plate on the upper end portion of the wave receiving port of the sea-side front portion up and down.

請求項の発明にあっては、上記発明において、前記上側部分の両側部に上下間隔を置いて対向させた枢支部を設けると共に該枢支部に上下連続して複数の横長羽板を平行に吊り下げ、各横長羽板の下部辺縁がその下の横長羽板の上部辺縁枠に内側から夫々気密状態に重なり合うように当たって停止するルーバー状の擺動開閉板を設けたことを特徴とする。 According to a ninth aspect of the present invention, in the above invention, a pivotal support portion is provided on both sides of the upper portion so as to face each other with a vertical interval, and a plurality of horizontally long slats are arranged parallel to the pivotal support portion in parallel. A louver-like peristaltic open / close plate is provided that is suspended and stops when the lower edge of each horizontally long slat hits the upper edge frame of the horizontally long slat underneath so as to overlap each other in an airtight state from the inside.

請求項10の発明にあっては、上記発明において、前記波受けタンクの上部に開口部を設け、該開口部にタンク上部空間内の空気の加圧で閉じ且つ減圧で開く逆止蓋を装着したことを特徴とする。 In the invention of claim 10 , in the above invention, an opening is provided in the upper part of the wave receiving tank, and a check lid that is closed by pressurizing air in the tank upper space and opened by depressurization is attached to the opening. It is characterized by that.

請求項11の発明にあっては、上記発明において、前記波受けタンクの底面部に、陸側が競り上がる内弧状の湾曲面とするか又は平面状の傾斜面とした寄せ波誘導面を形成したことを特徴とする。 In the invention of claim 11 , in the above invention, a wave-guiding surface is formed on the bottom surface of the wave receiving tank as an inner arc-shaped curved surface where the land side competes or a flat inclined surface. It is characterized by that.

本発明は上記の如き構成であり、沖から海岸に向かって打ち寄せる波は波受け板に当たって更に進み、その波が波受け口の上端部に遮られることなく波受け口から波受けタンク内に勢い良く飛び込む。
その際、波受け板は海側に向けて突出されているので、岸に打ち寄せる波をより多く捕らえ、その波は波受け口に集められ、直接波受け口に入った波と一緒になって、陸側背面部に当たりタンク上部空間内の海水を繰り返し高く盛り上げる。
The present invention is configured as described above, and the waves rushing from the coast to the coast further hit the wave receiving plate, and the waves jump into the wave receiving tank vigorously from the wave receiving port without being blocked by the upper end of the wave receiving port. .
At that time, since the wave receiving plate protrudes toward the sea side, it catches more waves rushing to the shore, the waves are collected at the wave receiving port, and together with the waves directly entering the wave receiving port, The sea water in the tank upper space is repeatedly raised to hit the side back side.

その高く盛り上げられた海水により波受け口が閉ざされ、その際に波受けタンク内に密閉空間が形成され、さらに海水が高く盛り上げられると波受けタンク上部の密閉空間内の空気が圧縮される。
その圧縮空気の圧力を受けて発電機が稼動し発電される。
即ち、寄せ波の運動エネルギーは空気の圧縮エネルギーに転換され、その圧縮エネルギーのエネルギーが電気エネルギーに転換される。
The wave receiving port is closed by the seawater that is raised to a high level. At that time, a sealed space is formed in the wave receiving tank, and when the seawater is further raised, the air in the sealed space above the wave receiving tank is compressed.
In response to the pressure of the compressed air, the generator operates to generate electricity.
That is, the kinetic energy of the rush wave is converted into compressed air energy, and the compressed energy is converted into electric energy.

寄せ波は間欠的に海岸に押し寄せ、その都度タンク上部空間内を上昇し、繰り返し海水を高く盛り上げ、タンク上部空間内の空気を繰り返し圧縮する。
そして、波が引くときにはタンク上部空間内の海水が波受け口から排出され、内部の水位が低くなるが、このとき海水は重力で垂直に下降するので引き足が早く、次に波が寄せるまでに水位は最低にまで低下する。
このためタンク上部空間内には海水の水位の大きな高低差が生まれる。
この繰り返しで、その都度タンク上部空間内の空気が大きく圧縮され効率良く発電が行われる。
海が凪状態では寄せ波が発生しないので発電できないが、海が荒れて大きな寄せ波が発生するとタンク上部空間内には海水面の大きな高低差が得られるので空気の圧縮量が大きくなり、より大きな電力が得られる。
The swaying wave intermittently rushes to the coast and rises in the tank upper space each time, repeatedly raises the seawater repeatedly, and repeatedly compresses the air in the tank upper space.
And when the wave is drawn, the seawater in the tank upper space is discharged from the wave receiving port, the internal water level becomes low, but at this time the seawater descends vertically due to gravity, so the pulling is quick and the next wave comes The water level drops to a minimum.
For this reason, a large level difference in seawater level is created in the tank upper space.
By repeating this, the air in the tank upper space is greatly compressed each time, and power is generated efficiently.
When the sea is in a dredging state, no spilling waves are generated, so power generation is not possible.However, if a large swelling wave occurs when the sea is rough, a large level difference in sea level is obtained in the space above the tank. Large power can be obtained.

そして、前記波受けタンクが、底面部、上面部、両側面部、陸側背面部及び海側前面部で囲われるので、前記海側前面部の下部に対して前記波受け口が広く確実に設けられ、又寄せ波は前記陸側背面部に突き当たって、タンク上部の密閉空間内を上昇し、繰り返し海水を高く盛り上げ、空気の圧縮量が大きくなり、より大きな電力が得られる。
そして更に、沖から海岸に向かって打ち寄せる波は直接波受け口に入るが、その際、張出し部に当たって側面開口部から入った海水と一緒になってタンク上部空間内の海水をより高く盛り上げる。このため、タンク上部空間内の空気が大きく圧縮され、より大きな発電を行うことが可能となる。
The wave receiving tank is surrounded by the bottom surface, the upper surface, both side surfaces, the land-side back surface, and the sea-side front surface, so that the wave receiving port is widely and reliably provided at the bottom of the sea-side front surface. Moreover, the near wave hits the land-side back surface and rises in the sealed space above the tank, repeatedly raising the seawater, increasing the amount of compressed air, and obtaining a larger electric power.
Furthermore, the waves rushing from the offshore to the coast directly enter the wave receiving port, and at that time, hits the overhanging portion and joins the seawater in the tank upper space together with the seawater entering from the side opening. For this reason, the air in the tank upper space is greatly compressed, and larger power generation can be performed.

請求項の発明においては、海水が高く盛り上げられた海水で圧縮されたタンク上部空間内の空気が他に漏れることなく前記波受けタンクの上部側に設けたパイプ接続孔に集中させることができる。 In the invention of claim 2 , the air in the tank upper space compressed by the seawater that is raised to a high level can be concentrated in the pipe connection hole provided on the upper side of the wave receiving tank without leaking to the other. .

請求項の発明においては、海水で圧縮されたパイプ接続孔に集中したタンク上部空間内の空気が該パイプ接続孔に接続させたパイプを通過し、該パイプに接続された回転装置に圧送される。そして、その空気の圧力を受けて回転装置が回転し、その回転で発電機が稼動される。
即ち、寄せ波の運動エネルギーから転換された空気の圧縮エネルギーが回転エネルギーへと転換され、最終的にその回転エネルギーが電気エネルギーに転換される。
In the invention of claim 3 , the air in the tank upper space concentrated in the pipe connection hole compressed with seawater passes through the pipe connected to the pipe connection hole, and is pumped to the rotating device connected to the pipe. The The rotating device rotates under the pressure of the air, and the generator is operated by the rotation.
That is, compressed air energy converted from the kinetic energy of the spilling wave is converted into rotational energy, and finally the rotational energy is converted into electric energy.

請求項の発明においては、タンク上部空間内に発生した圧縮空気が圧縮気体供給タンクに一旦貯えられ、圧縮空気が安定的に送り出されることで発電機の稼動を安定させることが可能となる。
寄せ波で圧縮されたタンク上部空間内の圧縮空気を前記回転装置に送る前に一旦圧縮気体供給タンク内に貯蔵可能となる。そして、該圧縮気体供給タンク内が高圧状態である間は安定して前記回転装置に圧縮空気を送り続けることが可能となり、安定した電力を得ることが可能となる。
In the invention of claim 4 , the compressed air generated in the tank upper space is temporarily stored in the compressed gas supply tank, and the compressed air is stably sent out, so that the operation of the generator can be stabilized.
The compressed air in the tank upper space compressed by the squeezing wave can be temporarily stored in the compressed gas supply tank before being sent to the rotating device. And while the inside of this compressed gas supply tank is a high pressure state, it becomes possible to continue sending compressed air to the said rotation apparatus stably, and it becomes possible to obtain the stable electric power.

請求項の発明においては、張出し部を有する形態において、前記波受けタンク下部の両側面部に側面開口部を設けられているので、前記波受け口の常時開放された下側部分からは海水が自由に流入し海水が高く盛り上がるのを助ける。
又、波は引くときには、高く盛り上がった波受けタンク内の海水が、波受け口から排出されるのに加えて前記側面開口部からも同時に排出されるので足早な排出が可能となり、引く波と寄せる波とが波受けタンク内で衝突し合うことが避けられる。
In the fifth aspect of the present invention, in the form having the overhanging portion, the side opening portions are provided on both side surface portions of the lower portion of the wave receiving tank, so that seawater is free from the lower side portion of the wave receiving port that is always open. To help the seawater rise.
In addition, when the waves are drawn, the seawater in the wave receiving tank that is raised and raised is simultaneously discharged from the side opening in addition to being discharged from the wave receiving port, so that it is possible to quickly discharge the water and draw the wave. It is avoided that waves collide in the wave receiving tank.

請求項の発明においては、前記波受けタンク下部の両側面部に側面開口部を設け、該側面開口部に電気的に制御可能な電磁開閉蓋を設けることによって、波は引くときに蓋を強制的に開き、高く盛り上がった波受けタンク内の海水が、波受け口から排出されるのに加えて前記側面開口部からも同時に排出されるので足早な排出が可能となり、引く波と寄せる波とが波受けタンク内で衝突し合うことが避けられる。 According to a sixth aspect of the present invention, a side opening is provided on both side portions of the wave receiving tank lower portion, and an electrically controllable electromagnetic opening / closing lid is provided on the side opening, thereby forcing the lid when a wave is drawn. The seawater in the wave receiving tank, which is open and raised up, is discharged from the side opening in addition to being discharged from the wave receiving port, so that it can be discharged quickly, and the wave to be drawn and the wave to come Colliding with each other in the catch tank is avoided.

寄せ波が細かいピッチで押し寄せる波の場合には、引き波と寄せ波とが波受けタンク内で衝突し合い、海水を盛り上げるための運動エネルギーが減殺され、波受けタンク内で盛り上がる波の大きな高低差を得られなくなるおそれがある。
その際、波は引くときに、高く盛り上がった波受けタンク内の海水が、波受け口から排出されるのに加えて前記側面開口部からも同時に排出されるので足早な排出が可能となり、引く波と寄せる波とが波受けタンク内で衝突し合うことが避けられる
この結果、細かいピッチの寄せ波であっても、波受けタンク内に海水が繰り返し大きく盛り上げられ、大きな発電の維持が可能となる。
In the case of a wave that rushes at a fine pitch, the pulling wave and the spilling wave collide with each other in the wave receiving tank, the kinetic energy for exciting the seawater is reduced, and the wave rising and rising in the wave receiving tank There is a risk that the difference cannot be obtained.
At that time, when the wave is drawn, the sea water in the wave receiving tank that is raised and raised is simultaneously discharged from the side opening in addition to being discharged from the wave receiving port. As a result, even if the pulsating wave has a fine pitch, the seawater repeatedly rises up in the wave receiving tank, and large power generation can be maintained. .

請求項の発明においては、前記波受け口を常時開放された下側部分と開閉可能な上側部分とに分割し、該上側部分には該上側部分の開口面積を拡大又は縮小可能とした開閉板を備えたことを特徴とする。
そして、上側部分は開閉板により該上側部分の開口面積が拡大又は縮小される。そして寄せ波の流入する量を調節することで、タンク上部空間内の空気の圧縮量を増加させ、効率良く発電させることが可能となる。
前記波受け口の常時開放された下側部分からは海水が自由に流入し、且つ上側部分は開閉板により該上側部分の開口面積が拡大又は縮小され。流入する海水の量を調節することで、タンク上部空間内の空気の圧縮量を増加させ、効率良く発電させることが可能となる。
In the invention of claim 7, the wave receiving port is divided into a lower part that is always open and an upper part that can be opened and closed, and an opening and closing plate that allows the opening area of the upper part to be enlarged or reduced in the upper part It is provided with.
The opening area of the upper part is enlarged or reduced by the opening / closing plate. By adjusting the amount of incoming waves, the amount of compressed air in the tank upper space can be increased and power can be generated efficiently.
Seawater freely flows from the lower part of the wave receiving port that is always open, and the opening area of the upper part is enlarged or reduced by the opening / closing plate. By adjusting the amount of inflowing seawater, the amount of compressed air in the tank upper space can be increased and power can be generated efficiently.

請求項の発明においては、開閉駆動部で上下開閉板を上下に操作し、発生する寄せ波の山部の高さに応じて、波受け口の開口部の上端位置を調節することが可能となる。
そして、流入する海水の量を調節することで、所望の発電量を得ることが可能となる。
In the invention of claim 8 , it is possible to adjust the upper end position of the opening portion of the wave receiving opening according to the height of the peak portion of the wake wave generated by operating the upper and lower opening and closing plates up and down by the opening and closing drive unit. Become.
And it becomes possible to obtain desired electric power generation amount by adjusting the quantity of the seawater which flows in.

請求項の発明においては、海面の昇降変化と、波受け口の上端部を寄せ波の山部の高さに応じて、海岸に向かう運動エネルギーを持って外部から寄せ波が横長羽板に当たってその部分の横長羽板を内側に開き、その開いた横長羽板の下から波受けタンク内に流入する。
それより上の横長羽板は内側からの空気の圧力を受けて閉じられ、更に海水が大きく盛り上げられるとその部分の横長羽板は内側からの海水の圧力を受けて閉じられた状態を維持する。
このため、海水の盛り上がりで得られた圧縮空気が横長羽板部分から波受けタンクの外部に漏れてタンク上部空間内の空気が減圧されてしまうことが防止できる。
この形態では、波の山部の水位が上下に大きく変化しても寄せ波の運動エネルギーが横長羽板に妨げられることなく、またタンク上部空間内の空気が漏れることがないので、常に自動的に山部の高低変化に対応してタンク上部空間内の海水が高く盛り上げられ、効率良く発電量を増大させることが可能となる。
In the invention of claim 9 , the rising and falling of the sea surface, the upper end of the wave receiving port according to the height of the peak portion of the wave, the swell wave hits the long slats from the outside with kinetic energy toward the coast. A part of the horizontally long slat is opened inward, and flows into the wave receiving tank from under the opened horizontally slat.
The upper horizontal slats are closed under the pressure of air from the inside, and when the seawater is further raised, the horizontal slats of that part remain closed under the pressure of seawater from the inside. .
For this reason, it can prevent that the compressed air obtained by the rise of seawater leaks from the horizontally long slats to the outside of the wave receiving tank and the air in the tank upper space is decompressed.
In this configuration, even if the water level at the peak of the wave changes greatly up and down, the kinetic energy of the spilling wave is not obstructed by the horizontally long slats, and the air in the upper space of the tank does not leak. In addition, the seawater in the tank upper space is raised in response to the height change of the mountain, and the power generation amount can be increased efficiently.

請求項10の発明においては、タンク上部空間内に盛り上がった海水が引き波で下降する際、タンク上部空間内が減圧されて逆止蓋が開き、開口部から空気がタンク上部空間内に入る。このためタンク上部空間内の減圧状態が解消され、タンク上部空間内に盛り上がっていた海水が波受け口から速やかに排出される。
そして、次の寄せ波が最低水位の位置から高く盛り上がることで、タンク上部空間内の海水の大きな高低差が得られる。この結果、タンク上部空間内の空気は大きく圧縮されて大きなエネルギーが発生し、より大きな電力を得ることが可能となる。
In the invention of claim 10 , when seawater rising in the tank upper space descends due to the pulling wave, the pressure in the tank upper space is reduced, the check lid is opened, and air enters the tank upper space from the opening. For this reason, the decompression state in the tank upper space is eliminated, and the seawater that has risen in the tank upper space is quickly discharged from the wave receiving port.
And since the next swell wave rises high from the position of the lowest water level, a large level difference of the seawater in the tank upper space is obtained. As a result, the air in the tank upper space is greatly compressed to generate a large amount of energy, and a larger amount of power can be obtained.

請求項11の発明においては、前記波受け口から入る寄せ波が底面部の傾斜した寄せ波誘導面に当たって上方へ進路が変えられ、タンク上部空間内により高い海水の盛り上がり得られる。この結果、タンク上部空間内の空気がより強く圧縮され、その圧縮空気により大きな電力が得られるようになる。 In the invention of claim 11, the approaching wave entering from the wave receiving port hits the approaching wave guiding surface inclined at the bottom surface part, and the course is changed upward, so that a higher rise of seawater is obtained in the tank upper space. As a result, the air in the tank upper space is more strongly compressed, and a larger amount of electric power can be obtained by the compressed air.

本発明の上下開閉板を設けた形態を示す斜視図である。It is a perspective view which shows the form which provided the upper and lower opening-and-closing plate of this invention. 波受け板に張出し部を備えた形態を示す斜視図である。It is a perspective view which shows the form provided with the overhang | projection part in the wave receiving plate. 寄せ波誘導面を形成した形態を示す斜視図である。It is a perspective view which shows the form which formed the approaching wave induction surface. 摺動開閉板を設けた形態を示す斜視図である。It is a perspective view which shows the form which provided the sliding opening / closing plate. 図2の形態を示す縦断側面図である。It is a vertical side view which shows the form of FIG. 図4の形態を示す縦断側面図である。It is a vertical side view which shows the form of FIG. 寄せ波誘導面のない形態を示す縦断側面図である。It is a vertical side view which shows the form without a near wave induction surface. 逆止蓋のない形態を示す縦断側面図である。It is a vertical side view which shows a form without a non-return lid. 圧縮気体供給タンクを有する形態を示す縦断側面図である。It is a vertical side view which shows the form which has a compressed gas supply tank.

本発明は、風で海が荒れるなどして発生する寄せ波の大きな運動エネルギーにより、海岸に当たり大きく盛り上がる海水を利用して空気を圧縮させ、その圧縮空気で発電機を稼動させようとするものであり、以下本発明の寄せ波発電装置の実施形態を図を参照して説明する。   The present invention intends to compress the air by using seawater that rises greatly on the coast due to the large kinetic energy of the swelling waves that are generated when the sea is damaged by the wind, and operates the generator with the compressed air. In the following, an embodiment of the wake wave power generator of the present invention will be described with reference to the drawings.

本発明は、図1〜4に示すように、海Uと岸Kとの境である海岸線Lの近くの海底Gに波受けタンク1の下部の底面部1dを固定し、図5〜図9に示すように、両側面部1a、1bと陸側背面部1eと海側前面部1fを前記底面部1dの周辺から海上に立ち上げてその上部を上面部1cで覆い、該波受けタンク1の上部は、盛り上がる寄せ波Wの高さhよりも高い位置となる高になるように海上に突出させる。   In the present invention, as shown in FIGS. 1 to 4, a bottom surface portion 1 d at the bottom of the wave receiving tank 1 is fixed to the sea floor G near the coastline L that is the boundary between the sea U and the shore K, and FIGS. As shown in FIG. 2, the side surface portions 1a, 1b, the land side rear surface portion 1e, and the sea side front surface portion 1f are raised from the periphery of the bottom surface portion 1d to the sea, and the upper portion is covered with the upper surface portion 1c. The upper part is projected on the sea so as to be higher than the height h of the rising wave W.

前記波受けタンク1の陸側背面部1eは、直立させるか又は上部側を岸K側へ傾斜させることができる(図省略)。これは、海Uから岸Kへと進行する寄せ波Wが陸側背面部1eを駆け上がって海面よりも上方に高くなるように導いて海水の盛り上がる高さを大きくするためである。しかしこの逆に上部側を海U側へ傾斜させると、波は上方へは駆け上がらず陸側背面部に当たって斜め下向きに打ち返され、前記波受け口2から出て行ってしまうので好ましくない。   The land side rear surface portion 1e of the wave receiving tank 1 can be made upright or the upper side can be inclined toward the shore K side (not shown). This is to increase the rising height of the seawater by guiding the wake wave W traveling from the sea U to the shore K so as to run up the land side back surface portion 1e and become higher above the sea surface. On the contrary, if the upper side is inclined toward the sea U side, the wave does not run upward, but hits the rear side of the land and strikes back diagonally downward, leaving the wave receiving port 2 and is not preferable.

該波受けタンク1の下部の底面部1dは、自然の海底(図省略)とするか又は各図に示すように、人工の平面とすることができる。
自然の海底とする場合には、波受けタンク1内に突出する岩などは、海水流入の障害となるので除去しておく。
The bottom surface portion 1d of the wave receiving tank 1 can be a natural seabed (not shown) or an artificial flat surface as shown in the drawings.
In the case of a natural seabed, rocks and the like protruding into the wave receiving tank 1 are obstructed by the inflow of seawater and are removed.

そして、前記波受けタンク1の海側前面部1fの下部に波受け口2を設ける。
該波受け口2は、図5〜図9に示すように、縦幅を底面部1dから想定される寄せ波Wの山部の高さまでの間とし、横幅は図1〜図4に示すように、両側面部1a、1b間をできるだけ広く開口させる。
寄せ波Wの山部までの広い開口としたのは、岸方向に向かう運動エネルギーを持った波をできるだけ多量に取り込むためである。
And the wave receiving port 2 is provided in the lower part of the sea side front surface part 1f of the wave receiving tank 1.
As shown in FIGS. 5 to 9, the wave receiving port 2 has a vertical width from the bottom surface portion 1 d to the height of the peak portion of the approaching wave W, and a horizontal width as shown in FIGS. 1 to 4. The gap between the side surface portions 1a and 1b is widened as much as possible.
The reason why the wide opening up to the peak of the wake wave W is to capture as much of the wave with kinetic energy as possible in the shore direction.

例えば、前記波受け口2の上端部2cを寄せ波Wの谷部に合わせると、波の本体部分の殆どが前記波受けタンク1の海側前面部1fに当たって弾き返され、岸方向の運動エネルギーが波受けタンク1内に入ることなく消滅してしまうので好ましくない。   For example, when the upper end portion 2c of the wave receiving port 2 is aligned with the trough portion of the approaching wave W, most of the wave main body part hits the sea side front surface portion 1f of the wave receiving tank 1 and is rebounded, and the kinetic energy in the shore direction is increased. Since it disappears without entering into the wave receiving tank 1, it is not preferable.

寄せ波の大きさは気象により時事刻々変化するが、毎日2回の潮の干満による海面高さの変化は一定である。
このため波受け口2を固定する場合は、例えば、波の大きさを考慮せず、潮の干満の間の海面の平均的位置となるように波受け口2の上端部2cの位置を設定すれば1日のうちで4回は最適位置となる。この場合は、満潮では寄せ波Wの谷部が波受け口2の上端部2cを越えてしまい、又、干潮の状態では寄せ波Wの山部が波受け口2の上端部2cから下方へ離れてしまうので寄せ波があっても充分に効率を上げることはできない。
The size of the surf wave changes with the weather, but the change in sea level due to tidal fluctuations twice a day is constant.
For this reason, when the wave receiving port 2 is fixed, for example, if the position of the upper end 2c of the wave receiving port 2 is set so as to be an average position of the sea surface between tidal periods without considering the magnitude of the wave. The best position is 4 times a day. In this case, at high tide, the valley portion of the wake wave W exceeds the upper end portion 2c of the wave receiving port 2, and in the low tide state, the mountain portion of the wake wave W moves away from the upper end portion 2c of the wave receiving port 2 downward. Therefore, even if there is a rush wave, the efficiency cannot be increased sufficiently.

そして、図5に示すように、前記波受けタンク1の上面部1cにパイプ接続孔1hを設ける。
該パイプ接続孔1hの位置は、各図では前記波受けタンク1の上面部1cに設けた態様を示したが、盛り上がった海水が届かない位置であれば上面部1cよりも下となる壁面部分に設けても良い。
そして、前記波受けタンク1の上部には、前記パイプ接続孔1h及び下部側を除いた全周囲を密閉してタンク上部空間1gを形成する。
And as shown in FIG. 5, the pipe connection hole 1h is provided in the upper surface part 1c of the said wave receiving tank 1. As shown in FIG.
The position of the pipe connection hole 1h is shown in the respective drawings in the form provided on the upper surface portion 1c of the wave receiving tank 1, but the wall surface portion below the upper surface portion 1c if the raised seawater does not reach May be provided.
In the upper part of the wave receiving tank 1, the entire periphery except the pipe connection hole 1h and the lower side is sealed to form a tank upper space 1g.

前記パイプ接続孔1hには、図5に示すように、その上部からパイプ5を設け、該パイプ5が前記波受けタンク1の上部のタンク上部空間1gと連通可能に接続する。
更に、該パイプ5の上部には、該パイプ5に接続されて該パイプ5に流れる圧縮空気の圧力を受けて回転する回転装置6を設ける。該回転装置6は例えばエアータービンなどが使用できる。
又、該回転装置6には回転に使用した圧縮空気を外部に排出するための排気口19を接続する。そして、前記回転装置6を回転させた空気は該排気口19から排出されるようにする。
そして更に、該回転装置6には該回転装置6の回転を受けて発電する発電機7を接続する。
前記発電機7は前記波受けタンク1の上に直接載せて設置しても良く、又前記波受けタンク1から離して設置しても良い。
又前記発電機7は前記回転装置6と一体のタービン式発電機を用いても良い。
As shown in FIG. 5, the pipe connection hole 1 h is provided with a pipe 5 from above, and the pipe 5 is connected to a tank upper space 1 g in the upper part of the wave receiving tank 1 so as to be able to communicate therewith.
Further, a rotating device 6 that is connected to the pipe 5 and rotates by receiving the pressure of the compressed air flowing through the pipe 5 is provided at the upper part of the pipe 5. For example, an air turbine can be used as the rotating device 6.
The rotating device 6 is connected to an exhaust port 19 for discharging compressed air used for rotation to the outside. And the air which rotated the said rotation apparatus 6 is discharged | emitted from this exhaust port 19. FIG.
Further, the rotating device 6 is connected to a generator 7 that generates power by receiving the rotation of the rotating device 6.
The generator 7 may be placed directly on the wave receiving tank 1 or may be set away from the wave receiving tank 1.
The generator 7 may be a turbine generator integrated with the rotating device 6.

又、図1〜図4に示すように、前記波受けタンク1の両側面部1a、1bの外側には波受け板3、4を設ける。
該波受け板3、4は、図1に示すように、波受けタンク1の下部から上部又は中間部にかけての両側面部1a、1bの波受け口2近傍から直接海側に向けて平行又は末広がりに突出させると共に海底から立ち上げる形態と、図2に示すように、該波受けタンク1の下部から上部又は中間部にかけての陸側背面部1eの両側辺縁から両側方に張出し部3aを突出させて両側面部1a、1bから海側の板面を離し、該張出し部3aの先端部から海側に向けて平行又は末広がりに突出させると共に海底から立ち上げる形態とが可能である。
Moreover, as shown in FIGS. 1-4, the wave receiving plates 3 and 4 are provided in the outer side of the both-sides surface parts 1a and 1b of the said wave receiving tank 1. As shown in FIG.
As shown in FIG. 1, the wave receiving plates 3 and 4 are parallel or diverging directly from the vicinity of the wave receiving port 2 of the side surface parts 1 a and 1 b from the lower part to the upper part or the middle part of the wave receiving tank 1 toward the sea side. As shown in FIG. 2, the protruding portion 3a is protruded from both side edges of the land-side back surface portion 1e from the lower portion to the upper portion or the middle portion of the wave receiving tank 1 as shown in FIG. Thus, it is possible to separate the sea-side plate surface from the both side surface portions 1a and 1b, and to project from the front end portion of the overhang portion 3a to the sea side in a parallel or divergent manner and to rise from the seabed.

後者の該張出し部3aのある形態では、図2に示すように、前記波受けタンク1の側面部1a、1bの下部に側面開口部9、10を設けることができる。
この形態では、寄せ波は波受けタンク1の両側面部1a、1bの側方と前記波受け板3、4との間に打ち寄せて高く盛り上がるが、その際、盛り上がり下部の海水の高い水圧で海水が側面開口部9、10に進入し、波受けタンク1内の海水の盛り上がりを助勢しより高く盛り上げる。その結果、タンク上部空間1gの空気がより強く圧縮されることとなる。
又、一旦波が引くときにはタンク上部空間1g内の海水が波受け口2から排出されると共に、側面開口部9、10からも排出されるので、一気に内部の水位が低くなる。
即ち、波の引き足が早いので、ピッチの短い寄せ波でも、次に波が寄せるまでに水位は最低にまで低下する。このため、波は引くときに、高く盛り上がった波受けタンク1内の海水が、波受け口2から排出するのに加えて前記側面開口部9、10からも排出されるので足早な排出が可能となり、引く波と寄せ波とが波受けタンク1内で衝突し合うことによる寄せ波の運動エネルギーの減衰が避けられて、高い発電の維持が可能となる。
In the latter form of the overhanging portion 3a, side opening portions 9 and 10 can be provided below the side surface portions 1a and 1b of the wave receiving tank 1, as shown in FIG.
In this form, the swell wave rises and rises between the side surfaces 1a and 1b of the wave receiving tank 1 and the wave receiving plates 3 and 4 at that time. Enters the side openings 9 and 10 and assists the rising of the seawater in the wave receiving tank 1 to raise it higher. As a result, the air in the tank upper space 1g is more strongly compressed.
Further, when the wave is once drawn, the seawater in the tank upper space 1g is discharged from the wave receiving port 2 and also from the side openings 9, 10, so that the internal water level is lowered at a stretch.
In other words, since the wave is drawn quickly, the water level is lowered to the lowest level by the next wave even when the pitch is short. For this reason, when the wave is drawn, the seawater in the wave receiving tank 1 which is raised and raised is discharged from the side opening portions 9 and 10 in addition to being discharged from the wave receiving port 2, so that it can be discharged quickly. Thus, attenuation of the kinetic energy of the spilling wave due to collision of the pulling wave and the spilling wave in the wave receiving tank 1 is avoided, and high power generation can be maintained.

なお、タンク上部空間1g内の海水の引き足を早めるに、波受け板3、4を波受けタンク1の両側面部1a、1bの海側の波受け口2近傍から直接海側に向けた図1に示す態様に対して、側面に引き水排出口22を設ける場合には、図3に示すように、該引き水排出口22に電磁開閉装置24により開閉制御を行う開閉板23を設けることができる。
該電磁開閉装置24にはタンク上部空間1g内に海水の圧力を感知する感圧センサーを設け、設定した水圧を感知したら自動的に開くようにすることで、開閉板23の開閉の自動化が可能となる。
In addition, in order to speed up the pulling of the seawater in the tank upper space 1g, the wave receiving plates 3 and 4 are directed to the sea side directly from the vicinity of the wave receiving openings 2 on the side surfaces 1a and 1b of the wave receiving tank 1 in FIG. In the case where the water discharge port 22 is provided on the side surface, the opening / closing plate 23 that performs opening / closing control by the electromagnetic switch 24 is provided in the water discharge port 22 as shown in FIG. it can.
The electromagnetic switch 24 is provided with a pressure-sensitive sensor that detects the pressure of seawater in the tank upper space 1g. When the set water pressure is detected, the electromagnetic switch 24 is automatically opened to automatically open and close the open / close plate 23. It becomes.

海岸に押し寄せる波の力は大きく、軽量で強度が小さいものでは破壊されてしまうおそれがある。このため前記波受けタンク1及び前記波受け板3、4は金属やコンクリートなど強度と耐久性の優れた素材で形成すると良い。   The wave force that pushes to the coast is large, and if it is light and low in strength, it may be destroyed. Therefore, the wave receiving tank 1 and the wave receiving plates 3 and 4 are preferably made of a material having excellent strength and durability such as metal or concrete.

又、図1〜図7に示すように、前記波受けタンク1の上部に開口部11を設け、該開口部11にタンク上部空間1g内の空気の加圧で閉じ且つ減圧で開く逆止蓋12を装着する。
例えば、該逆止蓋12は開口部11の下に枢支部20で枢支し、上向きに逆止蓋12が閉じる程度の弱いバネ21を装着することでタンク上部空間1g内の空気の加圧で閉じ且つ減圧で開く逆止蓋12が可能である。
該逆止蓋12付きの開口部11の設置場所は、最上部の空間に臨ませ、盛り上がった海水が当たらない位置、即ち、波受けタンク1の上部の側面部1a、1b又は上面部1cに設けることができる。
なお、図8で示した形態はこのような逆止蓋12のない形態である。
As shown in FIGS. 1 to 7, an opening 11 is provided in the upper part of the wave receiving tank 1, and a non-return lid that is closed by pressurizing air in the tank upper space 1g and opened by depressurization. 12 is installed.
For example, the check lid 12 is pivotally supported by the pivotal support portion 20 below the opening portion 11, and a weak spring 21 is attached so that the check lid 12 is closed upward to pressurize the air in the tank upper space 1 g. A non-return lid 12 that can be closed and opened under reduced pressure is possible.
The installation location of the opening 11 with the non-return lid 12 faces the uppermost space and is not exposed to the raised seawater, that is, on the side surface portions 1a, 1b or the upper surface portion 1c at the top of the wave receiving tank 1. Can be provided.
In addition, the form shown in FIG. 8 is a form without such a check lid 12.

又、図1、図3、図4、図6及び図9に示すように、海岸近くの海底Gに下部を固定した波受けタンク1の下部に、底面部1dの陸側が競り上がる寄せ波誘導面8を形成することもできる。
該寄せ波誘導面8は海から岸へと進行する寄せ波を上方に導くためのものであり、底面部1dの陸側が競り上がる内弧状に湾曲するか又は平面状に傾斜させて設けることができる。
図3、図4及び図6では内弧状に湾曲させて形成したものを示し、図1〜図9は平面状の傾斜面を形成したものを示す。
Further, as shown in FIGS. 1, 3, 4, 6, and 9, a wake wave induction in which the land side of the bottom surface portion 1d competes in the lower portion of the wave receiving tank 1 whose lower portion is fixed to the sea floor G near the coast. The surface 8 can also be formed.
The approaching wave guiding surface 8 is for guiding the approaching wave traveling from the sea to the shore upward, and may be provided in an inner arc shape in which the land side of the bottom surface portion 1d competes or inclined in a planar shape. it can.
3, FIG. 4 and FIG. 6 show the one formed by bending in an inner arc shape, and FIG. 1 to FIG. 9 show the one formed with a flat inclined surface.

前記寄せ波誘導面8のある形態では前記寄せ波が前記波受けタンク1の底面部1dの寄せ波誘導面8に当たって進路を上方に変え、海水をより高く上昇させる。
このためタンク上部空間1g内により大きな海水の盛り上がりが得られる。この結果、タンク上部空間1g内の上部空間の空気は大きな圧縮量となってより大きなエネルギーが発生し、発電量を大きくすることができる。
In a certain form of the approaching wave guiding surface 8, the approaching wave hits the approaching wave guiding surface 8 of the bottom surface portion 1d of the wave receiving tank 1 to change the course upward and raise the seawater higher.
For this reason, a large rise of seawater is obtained in the tank upper space 1g. As a result, the air in the upper space in the tank upper space 1g becomes a large amount of compression, generating more energy and increasing the amount of power generation.

本発明では、図7に示すように、波受け口2に何も設けずに全面的に開放した形態と、この他に、波受け口2を開放された下側部分と、開閉可能とした上側部分とに分割させて該上側部分には該上側部分の開口面積を拡大又は縮小可能とした開閉板を設けた形態が可能である。
その内、上側部分に開閉板を設けた形態を次に説明する。
In the present invention, as shown in FIG. 7, a configuration in which the wave receiving port 2 is completely opened without providing anything, and in addition to this, a lower portion in which the wave receiving port 2 is opened, and an upper portion that can be opened and closed. It is possible to adopt a form in which the upper part is provided with an opening / closing plate that can be enlarged or reduced in the opening area of the upper part.
The form which provided the opening-and-closing board in the upper part among them is demonstrated below.

この形態ででは、図1に示すように、前記波受け口2の上側部分を、設置場所での寄せ波Wの山部の高さの計測データから、波受け口2の上端部2cを長期的計測データの最高値付近の高さに設定し、下部を長期的計測データの最低値付近の高さに設定する。
この設定は、発電効率を上げるため、前記波受け口2で受け入れる可能性の最大限度と最小限度を決めるためである。
In this embodiment, as shown in FIG. 1, the upper end portion of the wave receiving port 2 is measured for a long term from the measurement data of the height of the peak portion of the approaching wave W at the installation location. Set the height near the highest value of the data, and set the lower part to the height near the lowest value of the long-term measurement data.
This setting is for determining the maximum and minimum possibility of receiving at the wave receiving port 2 in order to increase the power generation efficiency.

前記上側部分に開閉板を備えた形態として、図1の上下開閉板14を設けた形態と、図4の擺動開閉板13を設けた形態とが実施可能である。   As an embodiment in which the upper part is provided with an opening / closing plate, an embodiment in which the upper and lower opening / closing plate 14 in FIG.

そのうち先ず前記上下開閉板14を設けた形態を説明する。
この形態では、図1〜図3に示すように、前記波受け口2の上側部分の両側部にガイドレール25を設けると共に該ガイドレール25に前記下側部分の上部から下部に向かって遮断可能にスライドする上下開閉板14を装着し、海側前面部1fの波受け口2の上端部2cよりも上部に前記上下開閉板14を上下に昇降させる開閉駆動部15を設ける。
又この形態では、前記計測データから、図5に示すように、前記波受け口2の上端部2cを寄せ波の山部の想定される最高の高さに合わせて設定し、前記開閉駆動部15で前記上下開閉板14を該山部の最高の高さから想定される最低の高さまでの間の開口部に、波受け口2の開口高さを調節できるようにする。
First, an embodiment in which the upper and lower opening / closing plates 14 are provided will be described.
In this embodiment, as shown in FIGS. 1 to 3, guide rails 25 are provided on both sides of the upper portion of the wave receiving port 2, and the guide rail 25 can be blocked from the upper portion to the lower portion of the lower portion. A sliding upper / lower opening / closing plate 14 is mounted, and an opening / closing driving unit 15 for moving the upper / lower opening / closing plate 14 up and down is provided above the upper end 2c of the wave receiving port 2 of the sea side front face 1f.
Further, in this embodiment, as shown in FIG. 5, the upper end portion 2c of the wave receiving port 2 is set according to the assumed maximum height of the peak of the approaching wave from the measurement data, and the opening / closing drive unit 15 Thus, the opening height of the wave receiving port 2 can be adjusted to the opening between the upper and lower opening / closing plates 14 from the highest height of the peak portion to the lowest height assumed.

前記開閉駆動部15は、昇降ロッド18の下端部を開閉板14に固定し、該昇降ロッド18の上部を内蔵したモータで引上げて開閉板14を引上げ可能とし、内部のモータの稼動は遠隔操作可能に設ける。なお遠隔操作用の回路や配線は一般的な操作回路が使用できる(該回路配や線図は省略)。
その操作により、海側前面部1fの波受け口2の上端部2cよりも上部に上側部分の開口部分を上部から下部に向かって前記上下開閉板14で遮断できるようになる。
The opening / closing drive unit 15 fixes the lower end of the lifting rod 18 to the opening / closing plate 14 and allows the opening / closing plate 14 to be pulled up by a motor having a built-in upper portion of the lifting rod 18. Provide as possible. Note that a general operation circuit can be used for the remote operation circuit and wiring (the circuit arrangement and diagram are omitted).
By this operation, the upper and lower opening / closing plates 14 can block the opening portion of the upper portion above the upper end portion 2c of the wave receiving port 2 of the sea side front surface portion 1f from the upper portion to the lower portion.

次に、波受け口の上側部分に擺動開閉板13を設けた形態について説明する。
この形態は、図4及び図6に示すように、擺動開閉板13は複数の横長羽板13a、13b、13c、13dを備える。
その枚数は、波受け口の上側部分の縦幅の大小に応じて、横長羽根の強度を勘案して各個の幅の選択と共に最適な数を選択することができる。
該横長羽板13a、13b、13c、13dは上側部分の両側部に上下間隔を置いて対向させた枢支部を設けると共に該枢支部に上下連続して複数の横長羽板13a、13bを平行に吊り下げ、各横長羽板13aの下部辺縁がその下の横長羽板13bの上部辺縁枠17に内側から夫々気密状態に重なり合うように当たって停止するルーバー状とすることが可能である。
なお、各横長羽板13aの下部辺縁とその下の横長羽板13bの上部辺縁枠17との簡には空気が漏れないようにゴム板等を挟着させて気密性を高めることも可能である。
Next, the form which provided the peristaltic opening / closing plate 13 in the upper part of the wave receiving port is demonstrated.
In this embodiment, as shown in FIGS. 4 and 6, the peristaltic opening / closing plate 13 includes a plurality of horizontally long wing plates 13a, 13b, 13c, and 13d.
The optimum number of sheets can be selected along with the selection of the width of each piece in consideration of the strength of the horizontally long blades according to the vertical width of the upper portion of the wave receiving port.
The horizontally long slats 13a, 13b, 13c, 13d are provided with pivot portions facing each other at both sides of the upper portion with a vertical interval, and a plurality of the horizontally long slats 13a, 13b are arranged in parallel to the pivot portions in parallel. It is possible to form a louver that suspends and stops when the bottom edge of each horizontally long slat 13a hits the top edge frame 17 of the horizontally long slat 13b below the top edge frame 17 so as to overlap each other in an airtight state.
In addition, a rubber plate or the like may be sandwiched between the lower edge of each horizontally long slat 13a and the top edge frame 17 of the horizontally long slat 13b below to improve airtightness. Is possible.

この形態では、前記波受け口2は上端部2cを寄せ波Wの谷部に合わせると、波本体の運動エネルギーが有効には取り込めなくなるおそれがある。
波の大きさは時事刻々変化するが、この形態は、図4及び図6に示すように、前記波受け口2の上端部2cを寄せ波の山部の想定される最高の高さに合わせて設定する。そして、該山部の最高の高さから想定される最低の高さまでの間の開口部に、下開きに上下連続して平行に吊った複数の横長羽板13a、13b、13c、13dを、タンク内側に向かっては外側から進入する波で、下側の横長羽板13dから上方へ順に枢支部16を中心に自由に開閉する。しかし、どの横長羽板13a、13b、13c、13dも前記上部辺縁枠17でタンク外側に向かっては開かないように停止され、内側の圧力で垂れ下がった横長羽板13で開口部の一部が上部から順に塞がれる。
このため、大きな圧縮量となってより大きなエネルギーが発生し、発電量も大きくなる。
In this embodiment, the wave receiving port 2 may not be able to effectively capture the kinetic energy of the wave body when the upper end 2c is aligned with the trough of the wave W.
Although the magnitude of the wave changes from moment to moment, as shown in FIG. 4 and FIG. 6, the shape of the wave is adjusted so that the upper end 2c of the wave receiving port 2 is adjusted to the maximum height assumed for the peak portion of the wave. Set. Then, a plurality of horizontally long slats 13a, 13b, 13c, and 13d suspended in parallel vertically below the lower opening at the opening between the highest height of the peak and the lowest expected height, A wave entering from the outside toward the inside of the tank freely opens and closes around the pivot 16 in order upward from the lower horizontal slat 13d. However, any of the horizontally long slats 13a, 13b, 13c, 13d is stopped by the upper edge frame 17 so as not to open toward the outside of the tank, and a part of the opening is formed by the horizontally long slats 13 depending on the inner pressure. Are closed in order from the top.
For this reason, it becomes a big compression amount, big energy generate | occur | produces, and electric power generation amount also becomes large.

この形態では、寄せ波が当たって横長羽板13が開くが、引き波のときは横長羽板13が自動的に閉じられるので、海水の排出量が入るときより少なくなる。このため、盛り上がった海水の全量が排出されるのに時間がかかるおそれがある。このいため、図3に示す形態と同様に波受けタンク1の両側面部1a、1bの下部の引き水排出口22を設け、該引き水排出口22に電磁開閉装置24により開閉制御を行う開閉板23を設けることで対応することが可能となる。この場合には該電磁開閉装置24にはタンク上部空間1g内に海水の圧力を感知する感圧センサーを設け、設定した水圧を感知したら自動的に開くようにする。
又、前記横長羽板13a、13b、13c、13dの枢支部に一旦開いた開閉板を一定時間は間閉じないように制御する開閉装置を設けることでもピッチの短い寄せ波の海水の排出を速やかに行えるようにすることが可能となる。
In this embodiment, the horizontally long slats 13 are opened by hitting a swaying wave. However, since the horizontally long slats 13 are automatically closed during a pulling wave, the amount of seawater discharged becomes smaller. For this reason, there is a possibility that it takes time for the whole amount of the raised seawater to be discharged. Therefore, similarly to the embodiment shown in FIG. 3, a water outlet 22 is provided below the both side surfaces 1 a and 1 b of the wave receiving tank 1, and an opening and closing plate that controls opening and closing by the electromagnetic opening and closing device 24 at the water outlet 22. By providing 23, it becomes possible to cope. In this case, the electromagnetic switch 24 is provided with a pressure-sensitive sensor for detecting the pressure of seawater in the tank upper space 1g, and is automatically opened when the set water pressure is detected.
In addition, by providing an opening / closing device for controlling the opening / closing plate once opened at the pivotal support portion of the horizontally long blades 13a, 13b, 13c, 13d for a certain period of time, it is possible to quickly discharge the seawater of a short pitch. Can be performed.

又、前記パイプ接続孔1hと回転装置6との間のパイプ5には、図9に示すように、圧縮空気を貯える圧縮気体供給タンク26を設けると共に該パイプ5には圧縮気体供給タンク26方向のみに開く逆止弁28を設けることが可能である。
この圧縮気体供給タンク26内に寄せ波で圧縮されたタンク上部空間1g内の圧縮空気が一旦前記圧縮気体供給タンク26内に貯蔵されてから前記回転装置6に送り出されるため安定して前記回転装置6に圧縮空気が送られることで安定した電力が得られる。
Further, as shown in FIG. 9, the pipe 5 between the pipe connection hole 1h and the rotating device 6 is provided with a compressed gas supply tank 26 for storing compressed air, and the pipe 5 has a direction toward the compressed gas supply tank 26. It is possible to provide a check valve 28 that only opens.
Since the compressed air in the tank upper space 1g compressed in the compressed gas supply tank 26 by the near wave is once stored in the compressed gas supply tank 26 and then sent to the rotating device 6, the rotating device can be stably provided. Stable power can be obtained by sending compressed air to 6.

次に、本装置の各部の作用について説明する。
風等で海水に運動エネルギーを得て沖から岸に向かい上下に振れて進行する寄せ波は、特に荒れた海での運動エネルギーは極めて大きく、前記波受け板3、4内に至った波は波受け口2に向かって集められ、該波受け口2から前記波受けタンク1内に進んで行く。
前記波受け板3、4を側方へ広げ下部に側面開口部9、10を設けた形態では、寄せ波は波受けタンク1の両側面部1a、1bの側方と前記波受け板3、4との間に打ち寄せて高く盛り上がり、その際、盛り上がり下部の海水の高い水圧で海水が側面開口部9、10に進入し、波受けタンク1内の海水の盛り上がりを助勢してより高く盛り上げる。
Next, the operation of each part of the apparatus will be described.
The swaying wave that travels by moving up and down from the offshore to the shore by obtaining kinetic energy from the sea by wind etc., especially in the rough sea, the kinetic energy is extremely large, the wave that has reached the wave receiving plates 3 and 4 Collected toward the wave receiving port 2, proceeds from the wave receiving port 2 into the wave receiving tank 1.
In the form in which the wave receiving plates 3, 4 are widened to the side and the side openings 9, 10 are provided in the lower part, the spilling waves are formed on the sides of the side surfaces 1 a, 1 b of the wave receiving tank 1 and the wave receiving plates 3, 4. In this case, the seawater enters the side openings 9 and 10 by the high water pressure of the seawater in the lower part of the seam, and the seawater in the wave receiving tank 1 is assisted and swells higher.

その寄せ波が波受け口2に入ると陸側背面部1eに突き当たり、運動エネルギーはそこから方向を変えて上方に向かい、タンク上部空間1gの水面を大きく上に盛り上げる。
この結果、前記タンク上部空間1g内の空間は縮小して空気が圧縮される。
その圧縮された空気は、タンク上部のパイプ5に導かれて回転装置6へと送られ、該回転装置6が回転しその回転で前記発電機7による発電が行われる。
When the approaching wave enters the wave receiving port 2, it strikes the land-side back surface portion 1e, and the kinetic energy changes direction from there and moves upward, so that the water surface of the tank upper space 1g is greatly raised.
As a result, the space in the tank upper space 1g is reduced and air is compressed.
The compressed air is guided to the pipe 5 at the upper part of the tank and sent to the rotating device 6, and the rotating device 6 rotates, and the generator 7 generates electricity by the rotation.

その後、タンク上部空間1g内に盛り上がっていた海水は盛り上がるエネルギーを失い海水の重力により下降し、波受け口2や側面開口部9、10から排出される。
又、一旦波が引くときにはタンク上部空間1g内の海水が波受け口から排出されると共に、側面開口部9、10からも排出されるので、一気に内部の水位が低くなる。波の引き足が早いので、ピッチの短い寄せ波でも、次に波が寄せるまでに水位は最低にまで低下する。
なお、図3に示す引き水排出口22を備えた態様では、一旦波が引くときにはタンク上部空間1g内の海水が波受け口から排出されると共に、電磁開閉装置24で引き水排出口22の開閉板23が開き、ここからも海水が排出されるので、一気に内部の水位が低くなる。波の引き足が早いので、ピッチの短い寄せ波でも、次に波が寄せるまでに水位は最低にまで低下する。
Thereafter, the seawater that has risen in the tank upper space 1 g loses the energy that rises and falls due to the gravity of the seawater, and is discharged from the wave receiving port 2 and the side openings 9 and 10.
Further, when the wave is once drawn, the seawater in the tank upper space 1g is discharged from the wave receiving port and also from the side openings 9, 10, so that the internal water level is lowered at a stretch. Since the wave is drawn quickly, the water level drops to the lowest level by the next wave, even if the pitch is short.
In the embodiment provided with the water drain port 22 shown in FIG. 3, once the wave is drawn, the seawater in the tank upper space 1 g is discharged from the wave port, and the electromagnetic switch 24 opens and closes the water drain port 22. Since the plate 23 opens and seawater is discharged from here, the internal water level is lowered at a stretch. Since the wave is drawn quickly, the water level drops to the lowest level by the next wave, even if the pitch is short.

海水の下降の際、波受けタンク1の上部にタンク上部空間1g内の空気の加圧で閉じ且つ減圧で開く逆止蓋12付きの開口部11を設けた形態では、前記タンク上部空間1g内の海水の下降で内部の空気が減圧され、逆止蓋12が開いて前記開口部11から空気が入り込み、減圧状態が解除され前記タンク上部空間1g内の海水が円滑に下降可能となる。
なお、前記タンク上部空間1gが高圧となったときには逆止蓋12が閉じて、高圧空気が逆止蓋12からは外部に漏れず、高圧のまま送られるので効率良く回転装置6の回転が行われる。
In the form in which the opening 11 with the check lid 12 that is closed by pressurization of air in the tank upper space 1g and opened by decompression is provided in the upper part of the wave receiving tank 1 when the seawater descends, the tank upper space 1g When the seawater descends, the internal air is depressurized, the check lid 12 is opened and air enters through the opening 11, the decompressed state is released, and the seawater in the tank upper space 1g can be lowered smoothly.
When the tank upper space 1g is at a high pressure, the check lid 12 is closed, and the high pressure air is not leaked to the outside from the check lid 12 and is sent at a high pressure, so that the rotating device 6 is efficiently rotated. Is called.

本発明は、上記の如く寄せ波でタンク上部空間1g内に海水面の大きな高低さが得られ、寄せ波は大きいほど大きな圧縮量となってより大きなエネルギーが発生し、そのエネルギーによって効率良く発電できるようになる。
波受けタンク1は、陸側背面部と海側前面部との間の距離が発生する寄せ波の山部の間隔より小さいと、前記タンク上部空間1gで得られる圧縮空気の容積も小さくなる。又、発生する寄せ波の山部の間隔より大きいと、先の波が引き終わらないうちにその後の波が寄せてきてしまうので、寄せ波と引き波はぶつかり合って干渉し、前記タンク上部空間1g内に盛り上がる海水の高さが低くなる。
寄せ波は均一なピッチで発生するものではないので、全の波の大きさに適合させることはできないが、一定時間を見れば似たような波が切り替えし発生し、その間に大小が極端に異なる寄せ波も殆どできない。
したがって、設置場所での平均的な波の大きさに対応させて設計することが好ましい。
なお、海の寄せ波は繰り返し押し寄せ、その度に寄せ波で間欠的に発電されることとなるので一定の発電を継続的に得ることができない。このため、前記回転装置6にフライホイール等を組み込むことで回転を一定の速度に保たせ、安定した電力を得ることが可能となる
In the present invention, as described above, the height of the sea level is obtained in the tank upper space 1g by the spilling wave, and the larger the spilling wave, the greater the compression amount and the greater the amount of energy generated. become able to.
When the wave receiving tank 1 has a distance between the land-side rear surface portion and the sea-side front surface portion that is smaller than the distance between the peak portions of the swelling waves, the volume of compressed air obtained in the tank upper space 1g is also reduced. In addition, if the distance between the peaks of the generated spilling waves is larger than that, the subsequent waves will come in before the previous wave is finished. The height of the seawater that rises within 1 g is reduced.
Since the near wave does not occur at a uniform pitch, it cannot be adapted to the size of the whole wave, but if you look at a certain time, similar waves will switch and occur, and the magnitude will be extremely large during that time. You can hardly do different spills.
Therefore, it is preferable to design in accordance with the average wave size at the installation site.
In addition, since the spilling wave of the sea repeatedly pushes and generates power intermittently by the spilling wave each time, it is not possible to obtain a constant power generation continuously. For this reason, by incorporating a flywheel or the like into the rotating device 6, the rotation can be maintained at a constant speed, and stable power can be obtained.

本発明は、寄せ波の来る海岸近くの海底に設けられるが、設置場所は海岸を掘削して設けて設置することも可能である。   Although the present invention is provided on the sea floor near the coast where the swells come, the installation location can be installed by excavating the coast.

1 波受けタンク
1a、1b 側面部
1c 上面部
1d 底面部
1e 陸側背面部
1f 海側前面部
1g タンク上部空間
1h パイプ接続孔
2 波受け口
2a、2b 側部
2c 上端部
2d 下端部
3 波受け板
3a 張出し部
4 波受け板
4a 張出し部
5 パイプ
6 回転装置
7 発電機
8 寄せ波誘導面
8a 内弧状の湾曲面
8b 平面状の傾斜面
9 側面開口部
10 側面開口部
11 上面開口部
12 逆止蓋
13 擺動開閉板
13a、13b、13c、13d 横長羽板
14 上下開閉板
15 開閉駆動部
16 枢支部
17 上部辺縁枠
18 昇降ロッド
19 排気口
20 枢支部
21 バネ
22 引き水排出口
23 開閉板
24 電磁開閉装置
25 ガイドレール
26 圧縮気体供給タンク
27 パイプ
28 逆止弁
G 海底
W 寄せ波
h 寄せ波上昇幅
K 岸
U 海
L 海岸線
DESCRIPTION OF SYMBOLS 1 Wave receiving tank 1a, 1b Side surface part 1c Upper surface part 1d Bottom surface part 1e Land side rear surface part 1f Sea side front surface part 1g Tank upper space 1h Pipe connection hole 2 Wave receiving port 2a, 2b Side part 2c Upper end part 2d Lower end part 3 Wave receiving Plate 3a Overhang portion 4 Wave receiving plate 4a Overhang portion 5 Pipe 6 Rotating device 7 Generator 8 Bringing wave guiding surface 8a Inner arc-shaped curved surface 8b Planar inclined surface 9 Side surface opening portion 10 Side surface opening portion 11 Top surface opening portion 12 Reverse Stop lid 13 Peristaltic opening / closing plate 13a, 13b, 13c, 13d Horizontal long wing plate 14 Upper / lower opening / closing plate 15 Opening / closing drive part 16 Pivot part 17 Upper edge frame 18 Lifting rod 19 Exhaust port 20 Pivot part 21 Spring 22 Draw water outlet 23 Open / close Plate 24 Electromagnetic switch 25 Guide rail 26 Compressed gas supply tank 27 Pipe 28 Check valve
G submarine W wake wave h wake wave rise width K shore U sea L coastline

Claims (11)

海岸沿の海中に設置され、底面部、上面部、両側面部、陸側背面部及び海側前面部で囲われ、波受け口が前記海側前面部の下部に設けられ、寄せ波を受けて前記波受け口が閉ざされた際に密閉空間が形成される波受けタンクと、
該波受けタンクの前記波受け口に寄せ波を集める波受け板と、
前記波受け口から入り前記密閉空間で盛り上がる海水に押されて圧縮される前記波受けタンク内の空気の圧力を受けて発電する発電機と、
を備え、
前記波受け板は、前記波受けタンクの下部から上部又は中間部にかけての陸側背面部の両側辺縁から両側方に張出し部を突出させて該張出し部の先端部から海側に向けて平行又は末広がりに突出されると共に海底から立ち上げられたことを特徴とする寄せ波発電装置。
It is installed in the sea along the coast, and is surrounded by a bottom surface, top surface, both side surfaces, a land-side back surface, and a sea-side front surface, and a wave receiving port is provided at the bottom of the sea-side front surface. A wave receiving tank in which a sealed space is formed when the wave receiving port is closed;
A wave receiving plate that collects waves at the wave receiving port of the wave receiving tank;
A generator that generates electric power by receiving the pressure of the air in the wave receiving tank that is compressed by being pushed by the seawater that enters from the wave receiving port and rises in the sealed space;
With
The wave receiving plate projects in parallel from the both side edges of the land-side back surface from the lower part to the upper part or the middle part of the wave receiving tank, and is parallel to the sea side from the tip part of the overhang part. Alternatively, a swell wave power generation device characterized by being projected from the bottom and launched from the seabed.
波受けタンクの上面部又は上面部近傍面にパイプ接続孔設けられ、該波受けタンクの上部側には該パイプ接続孔と下部側とを除いた全周囲が密閉されたタンク上部空間が形成されたことを特徴とする請求項1に記載の寄せ波発電装置。 A pipe connection hole is provided on the upper surface of the wave receiving tank or in the vicinity of the upper surface, and a tank upper space is formed on the upper side of the wave receiving tank, the entire circumference except for the pipe connection hole and the lower side being sealed. The wake-up power generator according to claim 1, wherein パイプ接続孔に上部から接続させたパイプと、該パイプに接続されて該パイプに流れる空気の圧力を受けて回転する回転装置と、該回転装置に接続されて該回転装置の回転を受けて発電する発電機とを備えたことを特徴とする請求項2に記載の寄せ波発電装置。   A pipe connected to the pipe connection hole from above, a rotating device connected to the pipe and rotating under the pressure of the air flowing through the pipe, and a power generating device connected to the rotating device and receiving the rotation of the rotating device The wake-up power generator according to claim 2, further comprising: パイプ接続孔と回転装置との間のパイプに圧縮空気を一時貯える圧縮気体供給タンクを設けると共に前記パイプに圧縮気体供給タンク方向のみに開く逆止弁を設けたことを特徴とする請求項3に記載の寄せ波発電装置。 4. A compressed gas supply tank for temporarily storing compressed air is provided in a pipe between the pipe connection hole and the rotating device, and a check valve that opens only in the direction of the compressed gas supply tank is provided in the pipe. The wake wave power generator described. 波受けタンク下部の両側面部に側面開口部を設けたことを特徴とする請求項1からのうちいずれかに記載の寄せ波発電装置。 Surf power generator according to any one of claims 1, characterized in that a side opening in both side surface portions of the wave receiving tank bottom 4. 波受けタンク下部の両側面開口部に電気的に制御可能な電磁開閉蓋を設けたことを特徴とする請求項に記載の寄せ波発電装置。 6. A near wave power generation device according to claim 5 , wherein an electromagnetically controllable electromagnetic opening / closing lid is provided at both side opening portions of the lower part of the wave receiving tank. 波受け口を常時開放された下側部分と開閉可能な上側部分とに分割し、該上側部分には該上側部分の開口面積を拡大又は縮小可能とした開閉板を備えたことを特徴とする請求項1からのうちいずれかに記載の寄せ波発電装置。 The wave receiving port is divided into a lower part that is always open and an upper part that can be opened and closed, and the upper part is provided with an opening and closing plate that can enlarge or reduce the opening area of the upper part. Item 6. The swelling power generator according to any one of Items 1 to 6 . 上側部分の両側部にガイドレールを設けると共に該ガイドレールに前記下側部分の上部から下部に向かって遮断可能にスライドする上下開閉板を装着し、海側前面部の波受け口上端部よりも上部に前記上下開閉板を上下に昇降させる開閉駆動部を設けたことを特徴とする請求項に記載の寄せ波発電装置。 A guide rail is provided on both sides of the upper part, and an upper and lower opening and closing plate that slides from the upper part to the lower part of the lower part is attached to the guide rail, and is higher than the upper end part of the wave receiving port on the sea side front part. The swelling power generator according to claim 7 , wherein an opening / closing drive part for raising and lowering the upper and lower opening / closing plate up and down is provided on an upper part. 上側部分の両側部に上下間隔を置いて対向させた枢支部を設けると共に該枢支部に上下連続して複数の横長羽板を平行に吊り下げ、各横長羽板の下部辺縁がその下の横長羽板の上部辺縁枠に内側から夫々気密状態に重なり合うように当たって停止するルーバー状の擺動開閉板を設けたことを特徴とする請求項に記載の寄せ波発電装置。 A pivotal support portion is provided on both sides of the upper portion so as to be opposed to each other with a vertical interval, and a plurality of horizontally long slats are suspended in parallel vertically on the pivotal support part, and the lower edge of each laterally long slat is below it. 8. A swelled wave power generator according to claim 7 , further comprising a louver-like peristaltic opening / closing plate that stops by hitting the upper edge frame of the horizontally long slats so as to overlap each other in an airtight manner from the inside. 波受けタンクの上部に開口部を設け、該開口部にタンク上部空間内の空気の加圧で閉じ且つ減圧で開く逆止蓋を装着したことを特徴とする請求項1からのうちいずれかに記載の寄せ波発電装置。 The opening part is provided in the upper part of a wave receiving tank, The check cover which closes by the pressurization of the air in a tank upper space, and opens by pressure reduction was mounted | worn in any one of Claim 1 to 9 characterized by the above-mentioned. The near wave power generation device described in 1. 波受けタンクの底面部に、陸側が競り上がる内弧状の湾曲面とするか又は平面状の傾斜面とした寄せ波誘導面を形成したことを特徴とする請求項1から10のうちいずれかに記載の寄せ波発電装置。 The bottom portion of the wave receiving tank, to any one of claims 1, wherein the 10 that the land side was formed surf guide surface which is an inner arcuate curved surface with either or planar inclined surface rising auction The wake wave power generator described.
JP2013173059A 2013-08-23 2013-08-23 Near wave power generator Expired - Fee Related JP6104101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173059A JP6104101B2 (en) 2013-08-23 2013-08-23 Near wave power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173059A JP6104101B2 (en) 2013-08-23 2013-08-23 Near wave power generator

Publications (2)

Publication Number Publication Date
JP2015040540A JP2015040540A (en) 2015-03-02
JP6104101B2 true JP6104101B2 (en) 2017-03-29

Family

ID=52694834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173059A Expired - Fee Related JP6104101B2 (en) 2013-08-23 2013-08-23 Near wave power generator

Country Status (1)

Country Link
JP (1) JP6104101B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201903397XA (en) * 2016-10-17 2019-05-30 Wave Swell Energy Ltd Apparatus and method for extracting energy from a fluid
JP7178642B2 (en) * 2020-07-01 2022-11-28 パナソニックIpマネジメント株式会社 Wave power utilization device and its control method
JP7241357B2 (en) * 2020-10-19 2023-03-17 パナソニックIpマネジメント株式会社 Wave power utilization device and method for controlling wave power utilization device
CN113417792A (en) * 2021-07-28 2021-09-21 苗哉翠 Energy storage device for tidal power generation
WO2023100596A1 (en) * 2021-12-01 2023-06-08 パナソニックIpマネジメント株式会社 Wave power utilization device and method for controlling wave power utilization device
TWI787067B (en) * 2022-01-21 2022-12-11 劉邦健 Impeller and surge power generation equipment thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765875A (en) * 1980-10-07 1982-04-21 Taisei Corp Wave-power energy recovering device
JPS61108888U (en) * 1984-12-24 1986-07-10
JPH02112516A (en) * 1988-10-21 1990-04-25 Takenaka Doboku Co Ltd Wave energy absorption device
JPH03179170A (en) * 1989-12-07 1991-08-05 Kumagai Gumi Co Ltd Wave generating set
JP2002147329A (en) * 2000-11-08 2002-05-22 Yamaguchi Technology Licensing Organization Ltd Moving object type wave power energy conversion device

Also Published As

Publication number Publication date
JP2015040540A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
JP6104101B2 (en) Near wave power generator
AU2020204291B2 (en) Apparatus and method for extracting energy from a fluid
JP6547753B2 (en) Coast protection and wave energy generation system
US7470087B2 (en) Wave-dissipating block
JP2008534839A (en) Device and control system for generating power from wave energy
US9709022B2 (en) Apparatus for generating energy
JP5486600B2 (en) Fluid generator
WO2010049708A2 (en) Improved apparatus for generating power from wave energy
US8033752B2 (en) System for generating energy from sea waves
JP2016517923A (en) Submersible hydroelectric generator device and method for draining water from such device
WO2006129310A2 (en) Wave energy conversion system
CN111550357B (en) Wave energy power generation equipment
CN104234922B (en) Oscillation float type wave energy collection device
CA3188714A1 (en) An improved apparatus and method for extracting energy from a fluid
CN111550356A (en) Wave energy power generation equipment
CN204113527U (en) A kind of oscillating float type Wave energy collecting device
RU2536754C1 (en) Combined wave energy converter
CN111550354B (en) Wave energy power generation equipment
IT201600112969A1 (en) System for obtaining electricity from a wave motion.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6104101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees