JP6103631B2 - High-efficiency production method for wood using transformed plants - Google Patents

High-efficiency production method for wood using transformed plants Download PDF

Info

Publication number
JP6103631B2
JP6103631B2 JP2013002738A JP2013002738A JP6103631B2 JP 6103631 B2 JP6103631 B2 JP 6103631B2 JP 2013002738 A JP2013002738 A JP 2013002738A JP 2013002738 A JP2013002738 A JP 2013002738A JP 6103631 B2 JP6103631 B2 JP 6103631B2
Authority
JP
Japan
Prior art keywords
seq
nucleic acid
wood
gene
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013002738A
Other languages
Japanese (ja)
Other versions
JP2014132858A (en
Inventor
坂本 真吾
真吾 坂本
展隆 光田
展隆 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013002738A priority Critical patent/JP6103631B2/en
Publication of JP2014132858A publication Critical patent/JP2014132858A/en
Application granted granted Critical
Publication of JP6103631B2 publication Critical patent/JP6103631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、イネまたはその近縁植物の木質形成にかかわる転写制御因子により形質転換された植物における木質の高効率生産方法に関する。   The present invention relates to a high-efficiency production method of wood in a plant transformed with a transcriptional control factor involved in wood formation of rice or a related plant.

昨今、過剰な二酸化炭素の放出による地球温暖化の進行と化石燃料の枯渇に対する危機感、およびそれに伴う化石燃料の価格上昇、などの要因により、再生可能エネルギーの利用が注目を集めている。とくにバイオエタノールやバイオディーゼルなどの植物由来バイオ燃料は燃焼によって生じる二酸化炭素を新たな放出と捉える必要がない(カーボンニュートラル)ことから、内燃機関の燃料として非常に期待されている。しかし、従来のバイオ燃料(第一世代バイオ燃料)はトウモロコシのデンプンやナタネ油など食糧になり得るものを原料として生産されており、世界人口の増加により食糧の需給が逼迫しつつある現況から考えて持続可能なものとは言いがたい。そこで、非可食であるセルロースを原料とした第二世代バイオエタノールの実用化が求められている。セルロースは木質(二次細胞壁、二次壁)を構成する主要な成分の一つであり、グルコースが繰り返しβ-1,4結合したポリマーである。菌類などを由来とするセルラーゼによって処理することによってグルコースが得られるので、それを酵母で発酵させることによりエタノールを得られる。セルロースは木質中に大量に含まれており、植物の木質を増強させることは重要な開発目標となりえる。木質を増強させることができれば、木材としても価値も上げることができる。
植物の木質形成を制御する遺伝子は本発明者らが発見したNST転写因子遺伝子がよく知られている(非特許文献1)。NST転写因子はモデル実験植物シロイヌナズナにおいて発見された遺伝子で、nst1 nst3二重変異体では、道管を除いて木質(二次細胞壁)がまったく形成されなくなる。そのような植物では結晶性の低いセルロースが一次細胞壁にしか含まれず、セルラーゼによる酵素糖化性が高まる(特許文献1、非特許文献2)が、二次細胞壁がないために個体あたりのセルロース量は少なくなり、最終的な糖収量は減少してしまうと想定される。しかも茎の強度が大幅に低下して直立することができない。逆に、NST転写因子を植物体全体で過剰に発現させると、あらゆる細胞で異所的な木質形成が起きてしまい、植物の成長が著しく阻害されてしまう。
バイオ燃料用にバイオマスを増強させる先行技術としては特許文献2および非特許文献3があげられる。この文献ではヒトの糖ヌクレオチド(UDP-ガラクトース)輸送体をタバコに発現させることにより、全体的なバイオマスの増加を実現させているが、木質に焦点を絞ったものではなく、主に一次細胞壁が増加している印象を受ける。
特許文献3および非特許文献4は二次細胞壁を肥厚させる技術をうたっているが、実際に実証されているのは培養細胞での特殊な条件であり、植物体で実証したものではない。
このように木質を選択的に増強するのは容易ではなく、未だ確実な方法が確立されていない。
In recent years, the use of renewable energy has attracted attention due to factors such as the global warming due to excessive carbon dioxide emission and a sense of crisis over the depletion of fossil fuels, and the accompanying increase in the price of fossil fuels. In particular, plant-derived biofuels such as bioethanol and biodiesel are highly expected as fuels for internal combustion engines because they do not need to capture carbon dioxide generated by combustion as a new release (carbon neutral). However, conventional biofuels (first-generation biofuels) are produced using raw materials such as corn starch and rapeseed oil, and the supply and demand of food is becoming tight as the world population increases. It is hard to say that it is sustainable. Therefore, there is a demand for practical application of second generation bioethanol using non-edible cellulose as a raw material. Cellulose is one of the main components constituting wood (secondary cell wall, secondary wall) and is a polymer in which glucose is repeatedly β-1,4 bonded. Since glucose is obtained by treatment with cellulase derived from fungi or the like, ethanol can be obtained by fermenting it with yeast. Cellulose is contained in large quantities in wood, and strengthening the wood of plants can be an important development goal. If wood quality can be increased, the value of wood can be increased.
NST transcription factor genes discovered by the present inventors are well known as genes that control plant wood formation (Non-patent Document 1). NST transcription factor is a gene found in the model experimental plant Arabidopsis thaliana, and the nst1 nst3 double mutant does not form any wood (secondary cell wall) except for the canal. In such a plant, cellulose having low crystallinity is contained only in the primary cell wall and the enzymatic saccharification by cellulase is enhanced (Patent Document 1, Non-Patent Document 2), but since there is no secondary cell wall, the amount of cellulose per individual is It is assumed that the final sugar yield will be reduced. In addition, the strength of the stem is greatly reduced and it cannot stand upright. Conversely, if NST transcription factors are overexpressed throughout the plant, ectopic wood formation occurs in all cells, and plant growth is significantly inhibited.
Patent documents 2 and non-patent documents 3 are cited as prior arts for enhancing biomass for biofuels. In this document, the human sugar nucleotide (UDP-galactose) transporter is expressed in tobacco to achieve an overall increase in biomass, but it is not focused on the wood, but mainly the primary cell wall. Receive an increasing impression.
Patent Document 3 and Non-Patent Document 4 claim a technique for thickening the secondary cell wall, but what is actually demonstrated is a special condition in cultured cells, and has not been verified in a plant body.
Thus, it is not easy to selectively enhance wood quality, and a reliable method has not yet been established.

PCT/JP2007/053673PCT / JP2007 / 053673 特開2010−51252号公報JP 2010-51252 A 特開2010−233536号公報JP 2010-233536 A

The Plant Cell,2007 19,270-280The Plant Cell, 2007 19,270-280 Journal of Biotechnology,2009 142,279-284Journal of Biotechnology, 2009 142,279-284 Journal of Bioscience and Bioengineering,2010 109,159-169Journal of Bioscience and Bioengineering, 2010 109,159-169 The Plant Cell,2007 21,1155-1165The Plant Cell, 2007 21,1155-1165 Plant Biotechnology Journal,2006 4,325-332Plant Biotechnology Journal, 2006 4,325-332 Tappi,1961 44,793-798Tappi, 1961 44,793-798

本発明においては、植物本来の二次細胞壁(木質)形成能力を増強して、栽培個体あたりの木質の生産量を増やす技術を提供することを目的とする。木質は第二世代バイオエタノールの原料であるセルロースを大量に含んでいるので木質を増強することができれば一般にバイオエタノール生産量も増加させることができ、低炭素化社会の実現に向けて貢献できる。   In the present invention, an object is to provide a technique for increasing the production capacity of a secondary cell wall (wood) inherent in a plant and increasing the amount of wood produced per cultivated individual. Since wood contains a large amount of cellulose, which is a raw material for second-generation bioethanol, if the wood can be strengthened, the amount of bioethanol produced can generally be increased, contributing to the realization of a low-carbon society.

二次細胞壁からなる木質を選択的に増強させるためには、木質の形成を根本的に制御する遺伝子を強化するなどして木質繊維細胞でのみ選択的に発現させる必要があると考えられる。本発明者らは植物特異的な転写因子であるNACファミリー転写因子群をシロイヌナズナにおいて網羅的に機能解析する過程で、木質形成を根本的に制御する転写因子遺伝子として、NST転写因子群(NST1、NST2、NST3)を発見した(非特許文献1)。
これらのうちシロイヌナズナのnst1 nst3二重変異体では花茎や胚軸の木質繊維細胞で木質がまったく形成されなくなり、花茎の強度が大幅に低下するほか、直立することができなかった。しかし同様に木質が形成される道管においては木質の欠損が起こることはなく、植物の生存には影響がなかった(非特許文献1)。また、逆にこれらの遺伝子を植物体全体で過剰に発現させると、あらゆる細胞で異所的な木質形成が起きてしまい、植物の成長が著しく阻害された(非特許文献1)。
本発明者らはNST転写因子の木質形成能に着目し、広くそのオルソログ遺伝子について検討するなかで、イネにおいてNST転写因子のオルソログ遺伝子として同定されたOsNST1、OsNST2遺伝子の機能解析を行ったところ、シロイヌナズナのNST転写因子と同様に、イネにおいてその機能を抑制すると二次細胞壁が減少して垂れ葉形質を示した。また、双子葉植物であるシロイヌナズナにおいても、過剰に異所発現させたところ、異所的な木質形成が起き、シロイヌナズナの成長を著しく阻害させることが確認された。しかも、このとき起きた木質の異所形成はシロイヌナズナのNST転写因子を異所発現させたときよりもはるかに顕著であり(図1)、NST結合配列に対しての転写活性化能力を比較したところ、OsNST2転写因子はシロイヌナズナNST3転写因子よりも有意に高かった(図2)。
そこで、シロイヌナズナのNST転写因子をイネのOsNST転写因子に置き換えることで、二次細胞壁が増強できるのではないかと考え、OsNST2転写因子を木質で特異的に遺伝子発現を誘導するNST3プロモータに繋ぎ、nst1 nst3二重変異体に導入してOsNST2転写因子を発現させた(以下この植物をOsNST2相補ラインと呼ぶ)。その結果二重変異体の表現型(直立できない)が回復しただけでなく、花茎の下部10cmをサンプリングしたところ乾燥重量が増加しており、曲げ強度が野生株よりも強くなっていることがわかった(図3)。
さらに、通常では木化しない花茎の中心部分までリグニン様物質の沈着に代表されるような木化が起きていることがわかった(図3)。単子葉植物由来のNST転写因子であるOsNST転写因子が双子葉植物で発揮するこのような顕著な木質形成能又は細胞壁増強能は、本発明者らにとっても意外なものであり、OsNST転写因子の特殊性を表している。そして、木質バイオマスとしては圧倒的に利用価値の高い樹木資源を含む双子葉植物で観察されたこのような特性は、きわめて大きな有用性が期待できる。得られたOsNST2相補ライン(ProNST3:OsNST2 nst1 nst3)について、花茎の基部から3cmから10cmの部分を取得して硫酸糖化処理を行い、鮮重量あたりで得られるグルコース、キシロースの量を比較したところ、野生株に比べて鮮重量あたりのグルコースは約45%、キシロースでは約77%も多くの単糖を得られることがわかった(図4)。また、当該OsNST2相補ラインに対して、バイオエタノール生産に一般的な「苛性ソーダ前処理+セルラーゼ糖化」を施したところ、野生株よりも約20%多くのグルコースを得られることがわかった(図4)。
以上の知見を得たことから、本発明を完成した。
In order to selectively enhance the wood composed of the secondary cell walls, it is considered necessary to selectively express only in the wood fiber cells, for example, by strengthening a gene that fundamentally controls the formation of the wood. In the process of comprehensively analyzing the NAC family transcription factor group, which is a plant-specific transcription factor, in Arabidopsis thaliana, the present inventors have used the NST transcription factor group (NST1, NST1, NST2 and NST3) were discovered (Non-patent Document 1).
Among these, the nst1 nst3 double mutant of Arabidopsis thaliana no longer formed wood in the flower stems and hypocotyl wood fiber cells, greatly reducing the strength of the flower stems and unable to stand upright. However, in the same way, wood loss does not occur in the canal where the wood is formed, and the survival of the plant was not affected (Non-patent Document 1). Conversely, when these genes are excessively expressed in the whole plant, ectopic wood formation occurs in all cells, and plant growth is significantly inhibited (Non-patent Document 1).
The present inventors paid attention to the woody forming ability of NST transcription factor, and extensively examined its orthologous gene, and when conducting functional analysis of OsNST1, OsNST2 gene identified as an orthologous gene of NST transcription factor in rice, Similar to the Arabidopsis NST transcription factor, when its function was suppressed in rice, the secondary cell wall decreased and showed drooping leaf traits. In addition, in Arabidopsis thaliana, which is a dicotyledonous plant, when ectopically expressed, ectopic wood formation occurred and it was confirmed that the growth of Arabidopsis thaliana was significantly inhibited. Moreover, the ectopic formation of the wood that occurred at this time was much more prominent than when the NST transcription factor of Arabidopsis thaliana was expressed ectopically (Fig. 1), and the transcription activation ability for NST binding sequences was compared. However, the OsNST2 transcription factor was significantly higher than the Arabidopsis NST3 transcription factor (FIG. 2).
Therefore, we thought that the secondary cell wall could be enhanced by replacing the Arabidopsis thaliana NST transcription factor with the rice OsNST transcription factor, and linked the OsNST2 transcription factor to the NST3 promoter that specifically induces gene expression in the wood, and nst1 The OsNST2 transcription factor was expressed by introducing it into the nst3 double mutant (hereinafter this plant is referred to as OsNST2 complementary line). As a result, not only did the double mutant phenotype (cannot stand upright) recovered, but when the lower 10 cm of the flower stem was sampled, the dry weight increased and the bending strength was stronger than the wild strain (FIG. 3).
Furthermore, it was found that the tree formation represented by the deposition of the lignin-like substance occurred up to the central part of the flower stalk which is not normally converted into a tree (FIG. 3). The remarkable ability to form wood or enhance the cell wall exhibited by OsNST transcription factor, which is a monocotyledonous NST transcription factor in dicotyledonous plants, is surprising to the present inventors. Represents speciality. Such characteristics observed in dicotyledonous plants containing tree resources that are overwhelmingly valuable as woody biomass can be expected to be extremely useful. For the obtained OsNST2 complementary line (ProNST3: OsNST2 nst1 nst3), a portion of 3 cm to 10 cm was obtained from the base of the flower stalk and subjected to saccharification, and the amounts of glucose and xylose obtained per fresh weight were compared. It was found that about 45% glucose per fresh weight and about 77% more monosaccharides were obtained with xylose than the wild type strain (FIG. 4). In addition, when the OsNST2 complementary line was subjected to the general “caustic soda pretreatment + cellulase saccharification” for bioethanol production, it was found that about 20% more glucose than the wild strain was obtained (FIG. 4). ).
Obtaining the above knowledge, the present invention was completed.

すなわち、本発明は以下の通りである。
〔1〕 木質形成細胞特異的に遺伝子発現を誘導するプロモータの下流に、以下の(a)〜(d)のいずれかに記載の木質形成の制御活性を有する転写制御因子をコードする核酸が配置されたコンストラクトを用いて植物を形質転換することを特徴とする、植物の木質を増強する方法;
(a)配列番号1に示されるアミノ酸配列をコードする核酸、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードする核酸、
(c)配列番号2に示される塩基配列からなる核酸、
(d)配列番号2に示される塩基配列の相補配列とストリンジェントな条件下でハイブリダイズする塩基配列からなる核酸。
〔2〕 木質形成細胞特異的に遺伝子発現を誘導するプロモータの下流に、以下の(a)〜(d)のいずれかに記載の木質形成の制御活性を有する転写制御因子をコードする核酸が配置されたコンストラクトを用いて形質転換されたことを特徴とする、木質が増強された形質転換植物もしくはその子孫;
(a)配列番号1に示されるアミノ酸配列をコードする核酸、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードする核酸、
(c)配列番号2に示される塩基配列からなる核酸、
(d)配列番号2に示される塩基配列の相補配列とストリンジェントな条件下でハイブリダイズする塩基配列からなる核酸。
〔3〕 木質形成細胞特異的に遺伝子発現を誘導するプロモータが、NST1又はNST3 遺伝子のプロモータである、前記〔2〕に記載の形質転換植物もしくはその子孫。
〔4〕 前記〔2〕又は〔3〕に記載の形質転換植物もしくはその子孫を用い、その少なくとも1部を取得して硫酸糖化処理を施す工程を含む処理が施されることを特徴とする、単糖類の製造方法。
〔5〕 前記〔2〕又は〔3〕に記載の形質転換植物もしくはその子孫を用い、その少なくとも1部を取得して苛性ソーダによる前処理工程、及びセルラーゼによる糖化工程を含む処理が施されることを特徴とする、グルコースの製造方法。
That is, the present invention is as follows.
[1] A nucleic acid encoding a transcriptional regulatory factor having the activity of controlling wood formation according to any one of the following (a) to (d) is arranged downstream of a promoter that specifically induces gene expression in woody cells. A method for enhancing the woody quality of a plant, comprising transforming the plant with the constructed construct;
(A) a nucleic acid encoding the amino acid sequence represented by SEQ ID NO: 1,
(B) a nucleic acid encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
(C) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2,
(D) A nucleic acid comprising a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
[2] A nucleic acid encoding a transcriptional regulatory factor having the activity of controlling wood formation according to any one of the following (a) to (d) is disposed downstream of a promoter that specifically induces gene expression in wood forming cells. A transformed plant with enhanced wood, or a progeny thereof, characterized by being transformed with the constructed construct;
(A) a nucleic acid encoding the amino acid sequence represented by SEQ ID NO: 1,
(B) a nucleic acid encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
(C) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2,
(D) A nucleic acid comprising a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
[3] The transformed plant or the progeny thereof according to [2] above, wherein the promoter that specifically induces gene expression in woody cells is the promoter of NST1 or NST3 gene.
[4] Using the transformed plant according to the above [2] or [3] or its progeny, a treatment including a step of obtaining a saccharification treatment by obtaining at least one part thereof is performed, Monosaccharide production method.
[5] Using the transformed plant or the progeny thereof according to [2] or [3], at least one part thereof is obtained and subjected to a treatment including a pretreatment step with caustic soda and a saccharification step with cellulase. A method for producing glucose, characterized in that

本発明の「OsNST2遺伝子」を用いて作出した木質増強植物により、1個体あたりから生産できる木質の量を増加させられる。木質を増加できればバイオエタノール生産量を増やすことができるだけでなく、木材としての価値を高めることもできる。   The amount of wood that can be produced from one individual can be increased by the wood-enhanced plant produced using the “OsNST2 gene” of the present invention. If the wood quality can be increased, not only can bioethanol production be increased, but the value as wood can be increased.

シロイヌナズナおよびイネのNST転写因子をシロイヌナズナにおいて過剰に異所発現させたときの様子。OsNST2遺伝子の過剰発現(b)はシロイヌナズナNST1遺伝子の過剰発現(a)より、より顕著に木質の異所形成を引き起こす。An overexpression of Arabidopsis and rice NST transcription factors in Arabidopsis. OsNST2 gene overexpression (b) causes woody ectopic formation more significantly than Arabidopsis thaliana NST1 gene overexpression (a). シロイヌナズナおよびイネのNST転写因子のNST結合配列(SNBE)に対する転写活性化能力の違い。OsNST2はシロイヌナズナNST3にくらべて高い転写活性化能力をもつ。Difference in transcriptional activation ability of NST transcription factor between Arabidopsis thaliana and rice to NST binding sequence (SNBE). OsNST2 has higher transcriptional activation ability than Arabidopsis NST3. OsNST2相補ラインにおける乾燥重量、曲げ強度、繊維細胞の様子、リグニン量OsNST2 complementary line dry weight, bending strength, fiber cell appearance, lignin amount OsNST2相補ラインにおける硫酸糖化性、酵素糖化性Sulfate saccharification and enzymatic saccharification on the OsNST2 complementary line

以下、本発明をさらに詳細に説明する。
1.本発明における木質を増強した植物について
(1)本発明における木質を増強する遺伝子について
本発明において植物に対して高い木質生産能を付与する遺伝子は、典型的にはイネ由来の配列番号2で表される「OsNST2遺伝子」であり、対応するアミノ酸配列は配列番号1で表される。当該遺伝子は、そのシロイヌナズナオルソログ遺伝子が木質形成のマスター転写制御因子であることが証明されている。
本発明では、イネ由来の当該「OsNST2遺伝子」を、典型的な双子葉植物であるシロイヌナズナにおいて過剰に異所発現させた場合に、異所的な木質形成を引き起こす能力が飛び抜けて高いことをはじめて見出した。そして、当該遺伝子を、木質細胞特異的なプロモータ、とりわけ双子葉植物由来の木質特異的に働くプロモータにつなげて発現させることで、その顕著に高い木質形成能を有効に制御でき、細胞壁増強効果を存分に発揮できることを見出したことに基づく。「OsNST2遺伝子」は、双子葉植物のシロイヌナズナなどのNST遺伝子群とはホモロジーが約70%と低いから、他の植物ゲノム好ましくはイネ科植物中の相同遺伝子、又は一部に変異が導入された遺伝子のうちでも「OsNST2遺伝子」と80%以上、好ましくは90%のホモロジーを有する類似遺伝子であれば同様に用いられることが明らかである。また同一機能を保持している限り、そのフラグメントでもよい。そのような遺伝子は、塩基配列では配列番号2とは80%以上、好ましくは90%以上、より好ましくは95%以上のホモロジーを有し、それがコードするアミノ酸配列では配列番号1と80%以上、好ましくは90%以上、より好ましくは95%以上のホモロジーを有する。
すなわち、本発明の木質増強形質を発現する遺伝子は、一般的には以下のように表現することができる。
(a)配列番号1に示されるアミノ酸配列をコードする遺伝子、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードする遺伝子、
(c)配列番号2に示される塩基配列からなる遺伝子、
(d)配列番号2に示される塩基配列の相補配列とストリンジェントな条件下でハイブリダイズする塩基配列からなる遺伝子。
ここで、1若しくは数個とは、1〜20個、より好ましくは1〜10個の変異が存在することを指す。また、ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、相同性が高い核酸、すなわち配列番号2に示す塩基配列と90%以上、好ましくは95%以上の相同性を有する塩基配列からなるDNAの相補鎖がハイブリダイズし、それより相同性が低い核酸の相補鎖がハイブリダイズしない条件が挙げられる。このようなストリンジェントな条件については、T.Maniatisら編、Molecular Cloning:A Laboratory Manual 2nd ed.(1989)Cold Spring Harbor Laboratoryなどに記載の通常のハイブリダイゼーション操作におけるTm値を高めた条件として当業者には自明である。例えば、0.5%SDS、5×デンハルツ[Denhardt’s,0.1%ウシ血清アルブミン(BSA)、0.1%ポリビニルピロリドン、0.1%フィコール400]及び100μg/mlサケ精子DNAを含む6×SSC(1×SSCは0.15M NaCl、0.015Mクエン酸ナトリウム、pH7.0)中で、50℃で4時間〜一晩保温を行う条件などである。
なお、以下の本発明の説明にあたっては、本発明の「木質増強形質」を付与する遺伝子として典型的な「OsNST2遺伝子」の名称を用いて説明する。
Hereinafter, the present invention will be described in more detail.
1. About the plant which strengthened the wood in this invention (1) About the gene which strengthens the wood in this invention The gene which provides the high woody production ability with respect to a plant in this invention is typically represented by sequence number 2 derived from rice. The corresponding amino acid sequence is represented by SEQ ID NO: 1. This gene has been proved that its Arabidopsis ortholog gene is a master transcriptional regulator of wood formation.
In the present invention, when the `` OsNST2 gene '' derived from rice is overexpressed in a typical dicotyledon, Arabidopsis thaliana, the ability to cause ectopic wood formation is exceptionally high for the first time. I found it. The gene can be expressed by connecting it to a wood cell-specific promoter, particularly a dicotyledon-derived promoter that works specifically for wood. Based on finding out that it can be fully utilized. The “OsNST2 gene” has a low homology of about 70% with NST gene groups such as Arabidopsis thaliana, which are dicotyledonous plants. Therefore, mutations have been introduced into homologous genes in some other plant genomes, preferably grasses, or in part. It is apparent that similar genes having a homology of 80% or more, preferably 90% with the “OsNST2 gene” can be used in the same manner. Moreover, as long as the same function is hold | maintained, the fragment may be sufficient. Such a gene has a homology of 80% or more, preferably 90% or more, more preferably 95% or more with SEQ ID NO: 2 in the base sequence, and 80% or more with SEQ ID NO: 1 in the amino acid sequence encoded by it. Preferably 90% or more, more preferably 95% or more.
That is, a gene that expresses the woody enhancing trait of the present invention can be generally expressed as follows.
(A) a gene encoding the amino acid sequence represented by SEQ ID NO: 1,
(B) a gene encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
(C) a gene consisting of the base sequence shown in SEQ ID NO: 2,
(D) A gene comprising a base sequence that hybridizes with a complementary sequence of the base sequence shown in SEQ ID NO: 2 under stringent conditions.
Here, 1 or several refers to the presence of 1 to 20, more preferably 1 to 10 mutations. Stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, a highly homologous nucleic acid, that is, a complementary strand of DNA consisting of a nucleotide sequence having a homology of 90% or more, preferably 95% or more, is hybridized with the nucleotide sequence shown in SEQ ID NO: 2 and has a lower homology. A condition in which the complementary strand of the nucleic acid does not hybridize is mentioned. Such stringent conditions are the conditions for increasing the Tm value in normal hybridization operations described in T. Maniatis et al., Molecular Cloning: A Laboratory Manual 2nd ed. (1989) Cold Spring Harbor Laboratory, etc. It is obvious to the contractor. For example, 6 × SSC containing 0.5% SDS, 5 × Denhartz [Denhardt's, 0.1% bovine serum albumin (BSA), 0.1% polyvinylpyrrolidone, 0.1% Ficoll 400] and 100 μg / ml salmon sperm DNA (1 × SSC is 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0), and the like.
In the following description of the present invention, the name “OsNST2 gene” that is typical as a gene that imparts the “woody enhancing trait” of the present invention will be used.

(2)本発明における木質増強形質を有する植物の作出方法
本発明において用いられる転写制御因子のOsNST2遺伝子を発現させるためのプロモータは、「木質形成細胞特異的に遺伝子発現を誘導するプロモータ」であり、具体的には、NST3プロモータもしくはそのオルソログ遺伝子のプロモータ、NST結合配列(SNBE)を繰り返してコアプロモーターの上流に配置した人工プロモータ、二次細胞壁セルロース合成酵素のプロモータ、リグニン合成に関与する酵素類のプロモータ、キシラン合成に関与する酵素類のプロモータである。特に、シロイヌナズナ由来のNST1及びNST3遺伝子のプロモータが好ましい。
OsNST2遺伝子を木質形成細胞特異的に発現するプロモータの下流に配置したコンストラクト(組換えベクター)を構築し、野生株もしくはNST転写因子もしくはそのオルソログ転写因子遺伝子の機能が抑制された植物に形質転換して作製する。
遺伝子又は組換えベクターを植物中に導入する方法としては、アグロバクテリウム法が典型的であるが、PEG-リン酸カルシウム法、エレクトロポレーション法、リポソーム法、パーティクルガン法、マイクロインジェクション法等が適用できる。
(2) Method for producing plant having woody-enhancing trait in the present invention The promoter for expressing the OsNST2 gene, a transcriptional regulator used in the present invention, is a “promoter that specifically induces gene expression in woody cells” Specifically, the NST3 promoter or its ortholog gene promoter, an artificial promoter in which the NST binding sequence (SNBE) is repeated and placed upstream of the core promoter, a promoter of secondary cell wall cellulose synthase, and enzymes involved in lignin synthesis Promoter of enzymes involved in xylan synthesis. In particular, promoters of NST1 and NST3 genes derived from Arabidopsis thaliana are preferred.
A construct (recombinant vector) is constructed downstream of a promoter that specifically expresses the OsNST2 gene in wood-forming cells, and transformed into a wild strain or a plant in which the function of the NST transcription factor or its ortholog transcription factor gene is suppressed. To make.
A typical method for introducing a gene or a recombinant vector into a plant is the Agrobacterium method, but the PEG-calcium phosphate method, electroporation method, liposome method, particle gun method, microinjection method, etc. can be applied. .

(3)対象となる植物の種類
本発明において用いる「OsNST2遺伝子」は、種を越えて発現でき「木質増強形質」を発現できる遺伝子であることが本発明において実証された。その対象となる植物は、イモ類、豆類、ナス科類などの双子葉植物一般に適用できるが、特にバイオマス資源の観点からは、ポプラ、ユーカリ、アカシアなどの双子葉木本植物が好ましい。ただし、本発明は、これらの植物に限定されるものではなく、ミスカンザス、エリアンサス、ダンチク、ソルガム、ススキなどの単子葉エネルギー植物の育種一般にも適用できる。
(3) Types of target plants It was demonstrated in the present invention that the “OsNST2 gene” used in the present invention is a gene that can be expressed across species and can express a “woody enhancing trait”. The target plant can be generally applied to dicotyledonous plants such as potatoes, beans, and solanaceae, but dicotyledonous plants such as poplar, eucalyptus, and acacia are particularly preferable from the viewpoint of biomass resources. However, the present invention is not limited to these plants, and can also be applied to general breeding of monocotyledonous energy plants such as Miscanthus, Elianthus, Danchiku, Sorghum and Susuki.

(4)「OsNST2遺伝子」による形質転換植物の形質的特徴
(4−1)乾燥重量の増加
「OsNST2遺伝子」を用いて形質転換したOsNST2相補ラインシロイヌナズナ植物の花茎の下部10cmをサンプリングして分析した結果、野生株に比べて乾燥重量が約50重量%も増加しており、曲げ強度が野生株よりも強くなっていった(図3)。
(4) Trait characteristics of transformed plants by “OsNST2 gene” (4-1) Increase in dry weight The lower 10 cm of the flower stems of OsNST2 complementary line Arabidopsis plants transformed by using “OsNST2 gene” were sampled and analyzed. As a result, the dry weight increased by about 50% by weight compared to the wild strain, and the bending strength became stronger than that of the wild strain (FIG. 3).

(4−2)リグニン量の増加
さらに、図3からは、通常では木化しない花茎の中心部分までリグニン様物質の沈着が起きていることがわかる(図3)。
「リグニン量の定量」は、一般的な「臭化アセチル法(Johnsonらの手法、非特許文献6)」でおこなった。具体的には、アミラーゼ、アミログルコシダーゼによる除デンプン処理後リグニンを酸加水分解して分光光度計によりリグニン量を測定する。その結果、OsNST2相補ラインにおいて野生株よりも約40%有意に高かった(図3)。
(4-2) Increase in amount of lignin Furthermore, it can be seen from FIG. 3 that lignin-like substances are deposited up to the central part of the flower stalk, which does not normally become wood (FIG. 3).
The “quantification of lignin amount” was performed by a general “acetyl bromide method (Johnson et al., Non-patent Document 6)”. Specifically, lignin is acid-hydrolyzed after starch removal treatment with amylase or amyloglucosidase, and the amount of lignin is measured with a spectrophotometer. As a result, the OsNST2 complementary line was significantly higher than the wild type by about 40% (FIG. 3).

(4−3)硫酸糖化処理による単糖類の製造
「硫酸糖化処理」は、細胞壁成分から大半の中性糖を抽出するための周知の手法であり、硫酸存在下で加熱炭化した後加水分解して単糖類を取得し、バイオエタノールなどの原料とする。
得られた形質転換植物の花茎の下部10cmを取得して細胞壁精製粉末を得た後、硫酸糖化処理を行い、鮮重量あたりで得られるグルコース、キシロースの量を比較したところ、OsNST2相補ラインでは野生株よりもグルコースは約45%、キシロースでは約80%もそれぞれ多く得られることがわかった(図4)。
(4-3) Manufacture of monosaccharides by sulfate saccharification treatment "Sulphate saccharification treatment" is a well-known technique for extracting most neutral sugars from cell wall components, which is hydrolyzed after heating and carbonization in the presence of sulfuric acid. Monosaccharides are obtained as raw materials such as bioethanol.
After obtaining the bottom 10 cm of the flower stalk of the resulting transformed plant to obtain a purified cell wall powder, saccharification was performed, and the amounts of glucose and xylose obtained per fresh weight were compared. It was found that about 45% glucose and about 80% more xylose were obtained than the strain (FIG. 4).

(4−4)「苛性ソーダ前処理+セルラーゼ糖化」によるグルコースの製造
バイオエタノール生産のための一般的な方法として「苛性ソーダ前処理+セルラーゼ糖化」法が周知であり、具体的には苛性ソーダ処理によってリグニン細胞壁を除去した残渣に対してセルラーゼによる酵素糖化反応を施す。
この酵素糖化で得られるグルコース含有溶液は、酵母を添加することでバイオエタノール原料となる。
実施例では、花茎の下部10cm部の細胞壁精製粉末を得た後、当該「苛性ソーダ前処理+セルラーゼ糖化」処理を施した結果、野生株よりも約20%多くのグルコースを得られることがわかった(図4)。
(4-4) Production of glucose by "caustic soda pretreatment + cellulase saccharification" As a general method for bioethanol production, the "caustic soda pretreatment + cellulase saccharification" method is well known. Specifically, lignin is produced by caustic soda treatment. The residue from which the cell wall has been removed is subjected to an enzymatic saccharification reaction with cellulase.
The glucose-containing solution obtained by this enzymatic saccharification becomes a bioethanol raw material by adding yeast.
In the Example, after obtaining the cell wall purified powder of the lower 10 cm part of the flower stem, it was found that about 20% more glucose than the wild strain can be obtained as a result of the “caustic soda pretreatment + cellulase saccharification” treatment. (Figure 4).

2.その他
本発明におけるその他の用語や概念は、当該分野において慣用的に使用される用語の意味に基づくものであり、本発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。例えば、遺伝子工学的技術はJ.Sambrook,E.F.Fritsch & T.Maniatis,Molecular Cloning:A Laboratory Manual(2nd edition),Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York(1989);D.M.Glover et al. ed.,DNA Cloning,2nd ed.,Vol.1 to 4,(The Practical Approach Series),IRL Press,Oxford University Press(1995)などに記載の方法により、またはそれらと実質的に同様な方法や改変法により行うことができる。また、本発明で使用する各種蛋白質やペプチド、あるいはそれらをコードするDNAについては、既存のデータベース(URL:http://www.arabidopsis.org/またはhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed等)から入手することができる。
なお、本明細書中に引用した技術文献、特許公報及び特許出願明細書中の記載内容は、本発明の記載内容として参照されるものとする。
2. Other terms and concepts in the present invention are based on the meanings of terms that are conventionally used in the field, and various techniques used to implement the present invention are those that specifically indicate the source. Except for, a person skilled in the art can easily and surely implement the method based on known documents and the like. For example, genetic engineering techniques are described in J. Sambrook, EFFritsch & T. Maniatis, Molecular Cloning: A Laboratory Manual (2nd edition), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989); DMGlover et al. Ed. , DNA Cloning, 2nd ed., Vol. 1 to 4, (The Practical Approach Series), IRL Press, Oxford University Press (1995), etc., or substantially similar methods or modification methods It can be carried out. In addition, various proteins and peptides used in the present invention, or DNAs encoding them, can be obtained from existing databases (URL: http://www.arabidopsis.org/ or http: //www.ncbi.nlm.nih. gov / sites / entrez? db = pubmed etc.).
In addition, the description content in the technical literature, the patent gazette, and the patent application specification cited in this specification shall be referred to as the description content of the present invention.

以下、本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to these examples.

(実施例1)ProNST3:OsNST2で形質転換したnst1 nst3二重変異体シロイヌナズナ植物体の作成
(1−1)形質転換ベクターProNST3:OsNST2の構築
以下のように形質転換ベクターを構築した。
非特許文献5に記載のp35SSRDXGベクターにおいてSRDXを省いて、attL1,attL2サイトの外側にあるHindIII認識配列およびEcoRI認識配列に変異を導入したものを、p35SG v2とした。このベクターをHindIIIおよびSalIで切断し、下記のオリゴヌクレオチドをアニーリングして挿入する。
5’-AGCTTAATTAAGGCGCGCCGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGGGTACCG-3’(配列番号3)
5’-TCGACGGTACCCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCGGCGCGCCTTAATTA-3’(配列番号4)
この工程でできたプラスミドをpNOS_Entryとした。つぎにNST3プロモータを下記のオリゴヌクレオチドペアをプライマーとしたPCRで増幅し、pNOS_EntryベクターをAscIおよびBamHIで切断して挿入した。
5’-TAACAAGGCGCGCCGATTCTACACATTCACAAAGTTTACTAC-3’(配列番号5)
5’-ATTCCTGGATCCATTAACGAAGATAGCAATATATTTTTGGG-3’(配列番号6)
この工程でできたプラスミドをpNST3_NOS_Entryとした。つぎにこのベクターをSmaIで切断し、下記のオリゴヌクレオチドペアをプライマーとしたPCRでOsNST2遺伝子を増幅して挿入した。
5’-GATGAGCATATCGGTGAACGGGCAGTCGGT-3’(配列番号7)
5’-TTATACGTTATTCATGGTCGTCAAGTCTGC-3’(配列番号8)
(Example 1) Production of nst1 nst3 double mutant Arabidopsis thaliana plant transformed with ProNST3: OsNST2 (1-1) Construction of transformation vector ProNST3: OsNST2 A transformation vector was constructed as follows.
In the p35SSRDXG vector described in Non-Patent Document 5, SRDX was omitted, and a mutation was introduced into the HindIII recognition sequence and EcoRI recognition sequence outside the attL1 and attL2 sites was designated as p35SG v2. This vector is cut with HindIII and SalI, and the following oligonucleotides are annealed and inserted.
5'-AGCTTAATTAAGGCGCGCCGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGGGTACCG-3 '(SEQ ID NO: 3)
5'-TCGACGGTACCCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCGGCGCGCCTTAATTA-3 '(SEQ ID NO: 4)
The plasmid generated in this step was designated as pNOS_Entry. Next, the NST3 promoter was amplified by PCR using the following oligonucleotide pair as a primer, and the pNOS_Entry vector was cleaved with AscI and BamHI and inserted.
5'-TAACAAGGCGCGCCGATTCTACACATTCACAAAGTTTACTAC-3 '(SEQ ID NO: 5)
5'-ATTCCTGGATCCATTAACGAAGATAGCAATATATTTTTGGG-3 '(SEQ ID NO: 6)
The plasmid generated in this step was designated as pNST3_NOS_Entry. Next, this vector was cleaved with SmaI, and the OsNST2 gene was amplified and inserted by PCR using the following oligonucleotide pair as a primer.
5'-GATGAGCATATCGGTGAACGGGCAGTCGGT-3 '(SEQ ID NO: 7)
5'-TTATACGTTATTCATGGTCGTCAAGTCTGC-3 '(SEQ ID NO: 8)

(1−2)フローラルディップ法を用いたProNST3:OsNST2によるシロイヌナズナnst1 nst3二重変異体の形質転換
上記実施例(1−1)で得られたプラスミドを、土壌細菌(Agrobacterium tumefaciens strain GV3101(C58C1Rifr)pMP90(Gmr)(koncz and Schell 1986))株にエレクトロポレーション法で導入した。導入した菌を200ミリリットルのLB培地で2日間培養した。
次いで、培養液から菌体を回収し、500ミリリットルの浸潤培地に懸濁し、これにシロイヌナズナnst1 nst3二重変異体を2分間浸して感染させた後、通常通り育成しT1種子を収穫した。そののち、T1種子を50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、30mg/lのハイグロマイシンを含むMS選択培地に播種した。
上記ハイグロマイシンプレートで生育する形質転換植物体(ProNST3:OsNST2 nst1 nst3,T1)を選抜し、土壌に植え換えて生育し、種子を採取して播種し、次世代(T2)のシロイヌナズナ植物を得た。
(1-2) Transformation of Arabidopsis thaliana nst1 nst3 double mutant with ProNST3: OsNST2 using floral dip method The plasmid obtained in Example (1-1) above was transformed into soil bacteria (Agrobacterium tumefaciens strain GV3101 (C58C1Rifr)). It was introduced into the pMP90 (Gmr) (koncz and Schell 1986) strain by electroporation. The introduced bacteria were cultured in 200 ml of LB medium for 2 days.
Subsequently, the cells were collected from the culture solution, suspended in 500 ml of infiltration medium, and immersed in Arabidopsis thaliana nst1 nst3 double mutant for 2 minutes, and then grown as usual to harvest T1 seeds. After that, T1 seeds were sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterilized water, and sown in MS selective medium containing 30 mg / l hygromycin.
Transformed plants (ProNST3: OsNST2 nst1 nst3, T1) that grow on the hygromycin plate are selected, replanted in soil, grown, seeded and sown to obtain the next generation (T2) Arabidopsis plants It was.

(実施例2)ProNST3:OsNST2 nst1 nst3シロイヌナズナ植物の形質評価
(2−1)ProNST3:OsNST2 nst1 nst3シロイヌナズナ植物の花茎の強度測定
上記実施例(1−2)で得られたProNST3:OsNST2 nst1 nst3シロイヌナズナT2植物において播種後約70日で花茎の下部3cmを採取し、メタノール溶液に浸し、80℃で10分間煮沸した後、蒸留水で3回リンスした。その後、50mMリン酸緩衝液(pH7.5)、5%エタノール0.02%プロナーゼ溶液37℃で18時間、花茎内のタンパク質を分解した後に、曲げ試験機で破断荷重の測定を行った。その結果ProNST3:OsNST2 nst1 nst3(サンプル数:70)では野生株(サンプル数:70)にくらべて破断荷重が約2倍に高まっていることを発見した(図3)。
(Example 2) ProNST3: OsNST2 nst1 nst3 Arabidopsis plant trait evaluation (2-1) ProNST3: OsNST2 nst1 nst3 Arabidopsis plant flower stem strength measurement ProNST3: OsNST2 nst1 nst3 nst3 Arabidopsis plant obtained in the above Example (1-2) About 70 days after sowing in T2 plants, the lower 3 cm of the flower stem was collected, immersed in a methanol solution, boiled at 80 ° C. for 10 minutes, and then rinsed 3 times with distilled water. Thereafter, the protein in the flower stem was decomposed for 18 hours at 37 ° C. in a 50 mM phosphate buffer (pH 7.5) and a 5% ethanol 0.02% pronase solution, and then the breaking load was measured with a bending tester. As a result, ProNST3: OsNST2 nst1 nst3 (sample number: 70) was found to have a rupture load approximately twice as high as that of the wild strain (sample number: 70) (FIG. 3).

(2−2)ProNST3:OsNST2 nst1 nst3シロイヌナズナ植物の花茎の切片観察
上記実施例(1−2)で得られたProNST3:OsNST2 nst1 nst3シロイヌナズナT1植物において播種後約40日で花茎を採取し、地上高約5cmのところで50μm厚の横断切片をバイブレーションミクロトームを用いて作成し、2%フロログルシノール塩酸でリグニンを染色した。その結果、野生株では維管束管繊維細胞と維管束細胞でしか染色が観察されないのに対し、ProNST3:OsNST2 nst1 nst3シロイヌナズナでは内部の柔細胞でも明らかな染色が認められリグニン様物質が異所蓄積していることがわかった(図3)。
(2-2) Section observation of flower stems of ProNST3: OsNST2 nst1 nst3 Arabidopsis plants Flower stems were collected about 40 days after sowing in the ProNST3: OsNST2 nst1 nst3 Arabidopsis T1 plants obtained in the above Example (1-2). At a height of about 5 cm, a 50 μm-thick cross section was prepared using a vibration microtome, and lignin was stained with 2% phloroglucinol hydrochloride. As a result, in the wild strain, staining was observed only in vascular fiber cells and vascular cells, whereas in ProNST3: OsNST2 nst1 nst3 Arabidopsis thaliana, clear staining was also observed in internal parenchyma, and lignin-like substances accumulated in different places. (Figure 3).

(実施例3)ProNST3:OsNST2 nst1 nst3シロイヌナズナ植物の細胞壁成分分析
(3−1)細胞壁成分の乾燥重量の比較
上記実施例(1−2)で得られたProNST3:OsNST2 nst1 nst3シロイヌナズナT2植物において播種後約80日で基部より3cmから10cmの部分を採取し、鮮重量を測定した。その次に、直ちに1cm以下の長さになるよう花茎を刻み、メタノールに浸し80℃で10分間煮沸した後、蒸留水で3回リンスした。その次に、50mMリン酸緩衝液(pH7.5)、5%エタノール0.02%プロナーゼ溶液で18時間、37℃で18時間、タンパク質を分解した。その次に、50%クロロホルム、50%メタノール溶液に浸し70℃で煮沸した後、新しい50%クロロホルム、50%メタノール溶液に交換した。この操作を3回繰り返した後、アセトン溶液に浸し、70℃で煮沸した後、新しいアセトン溶液に交換した。この操作を3回繰り返した後、100%エタノール溶液で3回リンスした後、70℃で2日間乾燥させて、乾燥重量を測定した。その結果ProNST3:OsNST2 nst1 nst3では野生株に比べて細胞壁成分の乾燥重量が鮮重量あたり約50%増加していることがわかった(図3)。
(Example 3) Cell wall component analysis of ProNST3: OsNST2 nst1 nst3 Arabidopsis plant (3-1) Comparison of dry weight of cell wall component Seed in ProNST3: OsNST2 nst1 nst3 Arabidopsis T2 plant obtained in Example (1-2) above About 80 days later, a 3 cm to 10 cm portion was sampled from the base and the fresh weight was measured. Next, the flower stalk was immediately cut into a length of 1 cm or less, soaked in methanol, boiled at 80 ° C. for 10 minutes, and then rinsed three times with distilled water. Next, the protein was degraded with 50 mM phosphate buffer (pH 7.5), 5% ethanol 0.02% pronase solution for 18 hours and at 37 ° C. for 18 hours. Next, it was immersed in a 50% chloroform / 50% methanol solution and boiled at 70 ° C., and then replaced with a new 50% chloroform / 50% methanol solution. This operation was repeated three times, then immersed in an acetone solution, boiled at 70 ° C., and then replaced with a new acetone solution. This operation was repeated 3 times, followed by rinsing 3 times with a 100% ethanol solution, followed by drying at 70 ° C. for 2 days, and the dry weight was measured. As a result, ProNST3: OsNST2 nst1 nst3 showed that the dry weight of the cell wall component increased by about 50% per fresh weight compared to the wild type strain (FIG. 3).

(3−2)リグニン含量の比較
乾燥した細胞壁残渣はシェイクマスターネオを用いて2000rpm 10分間の粉砕処理を行い、細胞壁粉末を得た。得られた細胞壁粉末100mgを1ミリリットルの50mMマレイン酸、2mM塩化カルシウム、0.02%アジ化ナトリウム溶液に懸濁し、70℃で10分間デンプンを糊化した後、4ミリリットルの50mMマレイン酸、2 mM塩化カルシウム、0.02%アジ化ナトリウム溶液を加えて、室温で10分間静置した。その次に、500U α-アミラーゼ(E-PANAA)、0.33Uアミログルコシダーゼ(E-AMGIF)、50mMマレイン酸、2mM塩化カルシウム、0.02%アジ化ナトリウム溶液を1ミリリットル加えた後、37℃で18時間、デンプンを加水分解し、除デンプンを行った。除デンプンを行った細胞壁粉末懸濁液は、10ミリリットルの蒸留水で3回、100%エタノールで2回リンスした後、70℃で2日間乾燥させ、細胞壁精製粉末を得た。得られた細胞壁精製粉末2mgを、1ミリリットルの75%酢酸、25%臭化アセチル溶液で懸濁した後、50℃で2時間リグニンを加水分解した。その次に、3ミリリットルの100%酢酸を加えて撹拌した後、2000×g、15分間遠心し、上清と残渣を分離した。得られた上清0.4ミリリットルに、0.5ミリリットルの100%酢酸と0.3ミリリットルの0.3M NaOH溶液をそれぞれ加えて撹拌した後、0.1ミリリットルの0.5M塩化ヒドロキシアンモニウム溶液を加えて撹拌した後、分光光度計にて吸光度280nmを測定し、リグニン含量を測定した。その結果、ProNST3:OsNST2 nst1 nst3では野生株に比べて乾燥重量あたり約40%リグニン量が増加していた(図4)。
(3-2) Comparison of lignin content The dried cell wall residue was crushed at 2000 rpm for 10 minutes using Shake Master Neo to obtain cell wall powder. 100 mg of the resulting cell wall powder was suspended in 1 ml of 50 mM maleic acid, 2 mM calcium chloride, 0.02% sodium azide solution, and starch was gelatinized at 70 ° C. for 10 minutes, followed by 4 ml of 50 mM maleic acid, 2 mM chloride. Calcium, 0.02% sodium azide solution was added and allowed to stand at room temperature for 10 minutes. Next, 1 ml of 500 U α-amylase (E-PANAA), 0.33 U amyloglucosidase (E-AMGIF), 50 mM maleic acid, 2 mM calcium chloride, 0.02% sodium azide solution was added, and then at 37 ° C. for 18 hours. The starch was hydrolyzed and destarched. The cell wall powder suspension subjected to destarching was rinsed 3 times with 10 ml of distilled water and twice with 100% ethanol, and then dried at 70 ° C. for 2 days to obtain a purified cell wall powder. 2 mg of the obtained cell wall purified powder was suspended in 1 ml of 75% acetic acid and 25% acetyl bromide solution, and then lignin was hydrolyzed at 50 ° C. for 2 hours. Next, 3 ml of 100% acetic acid was added and stirred, and then centrifuged at 2000 × g for 15 minutes to separate the supernatant and the residue. To 0.4 ml of the obtained supernatant, 0.5 ml of 100% acetic acid and 0.3 ml of 0.3 M NaOH solution were added and stirred. Then, 0.1 ml of 0.5 M hydroxyammonium chloride solution was added and stirred, then the spectrophotometer Absorbance was measured at 280 nm and the lignin content was measured. As a result, in ProNST3: OsNST2 nst1 nst3, the amount of lignin increased by about 40% per dry weight compared to the wild type strain (FIG. 4).

(3−3)硫酸糖化処理による単糖類の製造
前記(3−2)と同様の処理により得られた細胞壁精製粉末10mgを0.2ミリリットルの72%硫酸溶液で懸濁し、15分後毎に撹拌しながら、1時間室温で細胞壁を炭化させた。その次に、5.6ミリリットルの蒸留水を加えて硫酸濃度を4%に希釈した後、120℃、60分間細胞壁の加水分解を行った。加水分解後の懸濁液は、2000×g、15分間遠心し、上清と残渣を分離し、得られた上清は炭酸カルシウムでpHが5から7になるよう調整した後、溶液中に含まれるグルコース量、キシロース量をグルコーステストキット、キシローステストキットにより調べた。その結果、ProNST3:OsNST2 nst1 nst3では野生株に比べて鮮重量あたりグルコースでは45%、キシロースでは約80%も多くの単糖を得られることがわかった(図4)。
(3-3) Production of monosaccharides by sulfate saccharification treatment 10 mg of cell wall purified powder obtained by the same treatment as in (3-2) above was suspended in 0.2 ml of 72% sulfuric acid solution and stirred every 15 minutes. The cell wall was carbonized at room temperature for 1 hour. Next, 5.6 milliliters of distilled water was added to dilute the sulfuric acid concentration to 4%, and the cell wall was hydrolyzed at 120 ° C. for 60 minutes. The suspension after hydrolysis is centrifuged at 2000 × g for 15 minutes to separate the supernatant and the residue, and the resulting supernatant is adjusted with calcium carbonate so that the pH is 5 to 7, and is then added to the solution. The amount of glucose and the amount of xylose contained were examined using a glucose test kit and a xylose test kit. As a result, it was found that ProNST3: OsNST2 nst1 nst3 can obtain as many monosaccharides as 45% for glucose and about 80% for xylose per fresh weight compared to the wild type strain (FIG. 4).

(3−4)「苛性ソーダ前処理+セルラーゼ糖化」によるグルコースの製造
前記(3−2)と同様の処理により得られた細胞壁精製粉末2mgを0.5ミリリットルの2%NaOH溶液に懸濁し、95℃ 10分間の前処理を行った。その次に、1ミリリットルの蒸留水で3回、1ミリリットルの100%エタノールで2回リンスを行った後、70℃で24時間乾燥させ、脱リグニン細胞壁残渣を得た。得られた脱リグニン細胞壁残渣に1ミリリットルの5mMクエン酸緩衝液(pH4.8)、0.02%アジ化ナトリウム、10μg Accellulase 1500溶液を加えて、50℃、200rpmで24時間振盪しながら、酵素糖化反応を行い得られるグルコース量を調べた。その結果、ProNST3:OsNST2 nst1 nst3では野生株に比べて鮮重量あたり約20%多くのグルコースを得られることがわかった(図4)。これらのことから、本発明で開発したOsNST2を発現させた植物は、二次細胞壁量が増加しており木質が増強されたバイオ燃料の原料植物として優れた植物であることが実証された。
(3-4) Production of glucose by “caustic soda pretreatment + cellulase saccharification” 2 mg of cell wall purified powder obtained by the same treatment as in the above (3-2) was suspended in 0.5 ml of 2% NaOH solution, and 95 ° C. 10 Pre-treatment for minutes was performed. Next, rinsing was performed three times with 1 ml of distilled water and twice with 1 ml of 100% ethanol, and then dried at 70 ° C. for 24 hours to obtain a delignified cell wall residue. Add 1 ml of 5 mM citrate buffer (pH 4.8), 0.02% sodium azide, 10 μg Accellulase 1500 solution to the resulting delignified cell wall residue, and shake the enzyme saccharification reaction at 50 ° C. and 200 rpm for 24 hours. To determine the amount of glucose obtained. As a result, it was found that ProNST3: OsNST2 nst1 nst3 can obtain about 20% more glucose per fresh weight than the wild type strain (FIG. 4). From these facts, it was demonstrated that the plant expressed with OsNST2 developed in the present invention is an excellent plant as a biofuel raw material plant with an increased secondary cell wall amount and enhanced wood quality.

Claims (4)

木質形成細胞特異的に遺伝子発現を誘導するNST1又はNST3遺伝子のプロモータの下流に、以下の(a)〜(d)のいずれかに記載の木質形成の制御活性を有する転写制御因子をコードする核酸が配置されたコンストラクトを用いて植物を形質転換することを特徴とする、植物の木質を増強する方法;
(a)配列番号1に示されるアミノ酸配列をコードする核酸、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置
換若しくは付加されたアミノ酸配列をコードする核酸、
(c)配列番号2に示される塩基配列からなる核酸、
(d)配列番号2に示される塩基配列からなる遺伝子と90%以上の同一性を有する核酸
A nucleic acid encoding a transcriptional regulatory factor having a woody-forming regulatory activity according to any of the following (a) to (d) downstream of a promoter of the NST1 or NST3 gene that induces gene expression specifically in woody cells A method for enhancing the wood quality of a plant, comprising transforming the plant with a construct in which
(A) a nucleic acid encoding the amino acid sequence represented by SEQ ID NO: 1,
(B) a nucleic acid encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
(C) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2,
(D ) a nucleic acid having 90% or more identity with the gene consisting of the base sequence shown in SEQ ID NO: 2 .
木質形成細胞特異的に遺伝子発現を誘導するNST1又はNST3遺伝子のプロモータの下流に、以下の(a)〜(d)のいずれかに記載の木質形成の制御活性を有する転写制御因子をコードする核酸が配置されたコンストラクトを用いて形質転換されたことを特徴とする、木質が増強された形質転換植物もしくはその子孫;
(a)配列番号1に示されるアミノ酸配列をコードする核酸、
(b)配列番号1に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードする核酸、
(c)配列番号2に示される塩基配列からなる核酸、
(d)配列番号2に示される塩基配列からなる遺伝子と90%以上の同一性を有する核酸
A nucleic acid encoding a transcriptional regulatory factor having a woody-forming regulatory activity according to any of the following (a) to (d) downstream of a promoter of the NST1 or NST3 gene that induces gene expression specifically in woody cells A transformed plant with enhanced wood, or a progeny thereof, characterized by being transformed with a construct in which
(A) a nucleic acid encoding the amino acid sequence represented by SEQ ID NO: 1,
(B) a nucleic acid encoding an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1.
(C) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2,
(D) a nucleic acid having 90% or more identity with the gene consisting of the base sequence shown in SEQ ID NO: 2 .
請求項1又は2に記載の形質転換植物もしくはその子孫を用い、その少なくとも1部を取得して硫酸糖化処理を施す工程を含む処理が施されることを特徴とする、単糖類の製造方法。  A method for producing a monosaccharide, wherein the transformed plant according to claim 1 or 2 or a progeny thereof is used, and a treatment including a step of obtaining at least a part thereof and subjecting to a sulfated saccharification treatment is performed. 請求項2に記載の形質転換植物もしくはその子孫を用い、その少なくとも1部を取得して苛性ソーダによる前処理工程、及びセルラーゼによる糖化工程を含む処理が施されることを特徴とする、グルコースの製造方法。  A process for producing glucose, wherein the transformed plant according to claim 2 or its progeny is used, and at least a part thereof is obtained and subjected to a pretreatment step with caustic soda and a saccharification step with cellulase. Method.
JP2013002738A 2013-01-10 2013-01-10 High-efficiency production method for wood using transformed plants Active JP6103631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002738A JP6103631B2 (en) 2013-01-10 2013-01-10 High-efficiency production method for wood using transformed plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002738A JP6103631B2 (en) 2013-01-10 2013-01-10 High-efficiency production method for wood using transformed plants

Publications (2)

Publication Number Publication Date
JP2014132858A JP2014132858A (en) 2014-07-24
JP6103631B2 true JP6103631B2 (en) 2017-03-29

Family

ID=51411681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002738A Active JP6103631B2 (en) 2013-01-10 2013-01-10 High-efficiency production method for wood using transformed plants

Country Status (1)

Country Link
JP (1) JP6103631B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501105B2 (en) * 2015-01-09 2019-04-17 国立研究開発法人産業技術総合研究所 Production method of plant with enlarged stem
JP6713665B2 (en) * 2015-05-27 2020-06-24 国立研究開発法人産業技術総合研究所 A method for producing a plant that efficiently produces cellulose in a form that can be easily taken out by strengthening a transcription control factor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2007945T3 (en) * 2006-03-29 2011-06-30 Virginia Tech Intellectual Properties Inc Cellulose-solvent-based lignocellulose fractionation with modest reaction conditions and reagent cycling
JP2009240248A (en) * 2008-03-31 2009-10-22 Oji Paper Co Ltd Function-converting method of nac transcription factor family
JP5662724B2 (en) * 2010-07-28 2015-02-04 大成建設株式会社 Saccharification method of woody biomass

Also Published As

Publication number Publication date
JP2014132858A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
DK2041294T3 (en) CONSTRUCTION OF HIGH EFFECTIVE CELLULASE COMPOSITIONS FOR ENZYMATIC HYDROLYSIS OF CELLULOSE
JP4831370B2 (en) Plants in which the amount of lignin and the amount of cellulose are reduced without reducing the amount of glucan, the production method thereof, and use thereof
CN103443280B (en) Seed specific promoters in cotton
US20130280764A1 (en) Method of improving the activity of cellulase enzyme mixtures in the saccharification (ligno)cellulosic material
Stiff et al. Recent advances in cotton fiber development
MX2011008956A (en) Methods for increasing starch content in plant cobs.
CN106460004A (en) Biological platform for production of commodity chemicals
Huang et al. Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production
Wu et al. GhMYB30‐GhMUR3 affects fiber elongation and secondary wall thickening in cotton
WO2011160050A2 (en) Systems to reduce recalcitrance of cellulosic biomass and increase yields of fermentable sugars
JP6103631B2 (en) High-efficiency production method for wood using transformed plants
CN109661402A (en) The high-level protein production system of fungi
CN110612022B (en) Carbohydrate-producing plant material
JP6713665B2 (en) A method for producing a plant that efficiently produces cellulose in a form that can be easily taken out by strengthening a transcription control factor
Nunez-Lopez et al. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor
JP2016214218A (en) Method for modifying quantitative character of secondary cell wall of plant by utilizing transcription inhibitory factor
CN104981543A (en) Methods and compositions for processing biomass with elevated levels of starch
Iwase et al. A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls
JP6501105B2 (en) Production method of plant with enlarged stem
JP7028441B2 (en) Plants with modified cell walls, methods and nucleic acids for obtaining such plants, and methods for producing glucose using such plants.
JP7097547B2 (en) Plants with modified cell walls, methods and nucleic acids for obtaining such plants, and methods for producing glucose using such plants.
US20170107542A1 (en) Transgenic plants having altered expression of a xylan xylosyltransferase and methods of using same
JP5967674B2 (en) Transformed tree using RabG3bCA and use thereof
CN1330719A (en) Means and methods for influencing flowering behavious of plants
CN100494382C (en) Sucrose synthase gene of cotton

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6103631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250