JP6102726B2 - Method for manufacturing positive terminal - Google Patents

Method for manufacturing positive terminal Download PDF

Info

Publication number
JP6102726B2
JP6102726B2 JP2013267241A JP2013267241A JP6102726B2 JP 6102726 B2 JP6102726 B2 JP 6102726B2 JP 2013267241 A JP2013267241 A JP 2013267241A JP 2013267241 A JP2013267241 A JP 2013267241A JP 6102726 B2 JP6102726 B2 JP 6102726B2
Authority
JP
Japan
Prior art keywords
terminal
positive electrode
positive
positive terminal
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013267241A
Other languages
Japanese (ja)
Other versions
JP2015125797A (en
Inventor
三好 学
学 三好
木下 恭一
恭一 木下
雅巳 冨岡
雅巳 冨岡
山本 めぐみ
めぐみ 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013267241A priority Critical patent/JP6102726B2/en
Publication of JP2015125797A publication Critical patent/JP2015125797A/en
Application granted granted Critical
Publication of JP6102726B2 publication Critical patent/JP6102726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、正極端子の製造方法に関する。 The present invention relates to a method for manufacturing a positive electrode terminal.

蓄電装置の一種であるリチウムイオン二次電池は、例えば、ハイブリット自動車、電気自動車、フォークリフト等の重機、電子機器又はスマートグリットの技術分野において実用化されている。高電圧又は大容量の電池が必要となる技術分野では、接続部材(バスバー)によって電気的に接続された複数のリチウムイオン二次電池を備える蓄電モジュールが用いられる。   A lithium ion secondary battery, which is a kind of power storage device, has been put into practical use in the technical field of heavy equipment such as hybrid cars, electric cars, forklifts, electronic devices, or smart grids. In a technical field that requires a high-voltage or large-capacity battery, a power storage module including a plurality of lithium ion secondary batteries electrically connected by a connecting member (bus bar) is used.

リチウムイオン二次電池は、正極と、負極と、正極及び負極に挟まれたセパレータと、を有する電極組立体と、電極組立体を収容するケースと、正極に電気的に接続され、ケースの蓋部を貫通する正極端子と、負極に電気的に接続され、ケースの蓋部を貫通する負極端子と、を備える。蓄電モジュールにおいては、接続部材が、各リチウムイオン二次電池の正極端子又は負極端子を、他のリチウムイオン二次電池の正極端子又は負極端子と電気的に接続する。接続部材は、例えば、電気抵抗が低くジュール熱の小さい銅を主成分とする導電材料(Cu系材料)からなる。   A lithium ion secondary battery includes a positive electrode, a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, a case that houses the electrode assembly, a positive electrode that is electrically connected to the positive electrode, And a negative electrode terminal that is electrically connected to the negative electrode and penetrates the lid of the case. In the power storage module, the connection member electrically connects the positive electrode terminal or the negative electrode terminal of each lithium ion secondary battery to the positive electrode terminal or the negative electrode terminal of another lithium ion secondary battery. The connection member is made of, for example, a conductive material (Cu-based material) whose main component is copper having low electrical resistance and low Joule heat.

正極は、金属箔と、金属箔を覆う正極活物質と、を備える。正極用の金属箔としては、正極活物質と反応し難いアルミニウムが適している。一方、負極は、金属箔と、金属箔を覆う負極活物質と、を備える。負極用の金属箔としては、例えば、電気抵抗の低い銅が使用される。正極端子は、例えば、正極用金属箔に溶接し易いアルミニウムを主成分とする導電材料(Al系材料)からなる。同様の理由から、負極端子は、例えば、Cu系材料からなる。   The positive electrode includes a metal foil and a positive electrode active material that covers the metal foil. As the metal foil for the positive electrode, aluminum that does not easily react with the positive electrode active material is suitable. On the other hand, the negative electrode includes a metal foil and a negative electrode active material covering the metal foil. As the metal foil for the negative electrode, for example, copper having a low electric resistance is used. The positive electrode terminal is made of, for example, a conductive material (Al-based material) whose main component is aluminum that is easily welded to the positive electrode metal foil. For the same reason, the negative electrode terminal is made of, for example, a Cu-based material.

正極端子の製造では、ダイカスト、押出成形、切削又はねじ切り等の加工によって、Al系材料から成形体を作製する。加工時には成形体にバリが形成されるので、バリを除去する必要がある。   In the manufacture of the positive electrode terminal, a molded body is produced from an Al-based material by processing such as die casting, extrusion molding, cutting, or threading. Since burrs are formed on the molded body during processing, it is necessary to remove the burrs.

下記特許文献1には、ステンレス鋼、ガラス、セラミックス又はポリカーボネイト等からなる投射材(ショット材)を、ダイカスト製品に投射するショットブラストにより、バリをダイカスト製品から除去する方法が開示されている。   Patent Document 1 below discloses a method of removing burrs from a die-cast product by shot blasting a shot material (shot material) made of stainless steel, glass, ceramics, polycarbonate, or the like onto the die-cast product.

特開2001−105317号公報JP 2001-105317 A

正極端子の製造では、成形体に投射材を投射すると、投射材が成形体に付着し、完成後の正極端子の表面に残存することがある。投射材が、ステンレス鋼のように、Al系材料よりも高い自然電位(腐食電位)を有する金属からなる場合、水又は電解質の溶液(例えば塩水)の存在下において、Al系材料からなる正極端子は投射材よりも腐食し易い。Al系材料と投射材との自然電位差が大きいほど、正極端子は腐食し易い。正極端子が腐食すると、正極端子と接続部材との間の電気抵抗値が高くなる。また正極端子と接続部材との間の自然電位差が大きいほど、正極端子は腐食し易い。例えば、接続部材が自然電位の高いCu系材料からなる場合、正極端子が腐食し易い。   In the manufacture of the positive electrode terminal, when the projection material is projected onto the molded body, the projection material may adhere to the molded body and remain on the surface of the completed positive electrode terminal. When the projection material is made of a metal having a higher natural potential (corrosion potential) than the Al-based material, such as stainless steel, the positive electrode terminal made of the Al-based material in the presence of water or an electrolyte solution (for example, salt water) Is more susceptible to corrosion than blasting material. The larger the natural potential difference between the Al-based material and the projection material, the easier the positive electrode terminal corrodes. When the positive electrode terminal corrodes, the electrical resistance value between the positive electrode terminal and the connection member increases. Further, the larger the natural potential difference between the positive electrode terminal and the connection member, the easier the positive electrode terminal corrodes. For example, when the connecting member is made of a Cu-based material having a high natural potential, the positive electrode terminal is easily corroded.

自然電位の高い投射材の代わりに、ガラス、セラミックス又はポリカーボネイト等の絶縁性材料からなる投射材を用いた場合、投射材が正極端子と接続部材との間に介在し、正極端子と接続部材との間の電気抵抗値が高くなる。   When a projection material made of an insulating material such as glass, ceramics or polycarbonate is used instead of the projection material having a high natural potential, the projection material is interposed between the positive electrode terminal and the connection member, and the positive electrode terminal and the connection member The electrical resistance value during the period increases.

ステンレス鋼、ガラス又はセラミックスのように硬い材料からなる投射材を用いた場合、投射材の衝突によって正極端子の表面が変形し、正極端子の表面粗さが大きくなる。正極端子の粗い表面には多数の尖った部分が存在し、尖った部分を起点して正極端子が腐食し易い。また正極端子の表面粗さが大きくなると、正極端子の表面積が増加する。正極端子の表面積の増加に伴い、正極端子の耐食性は低下する。   When a projection material made of a hard material such as stainless steel, glass, or ceramics is used, the surface of the positive electrode terminal is deformed by the collision of the projection material, and the surface roughness of the positive electrode terminal is increased. A large number of pointed portions exist on the rough surface of the positive electrode terminal, and the positive electrode terminal is easily corroded starting from the pointed portion. Moreover, when the surface roughness of the positive electrode terminal increases, the surface area of the positive electrode terminal increases. As the surface area of the positive electrode terminal increases, the corrosion resistance of the positive electrode terminal decreases.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、正極端子の腐食を抑制することができ、且つ正極端子からバリを除去することができる正極端子の製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, it is possible to suppress corrosion of the positive electrode terminal, provides a process for producing a positive electrode terminal capable of removing burrs and from the positive terminal For the purpose.

本発明の一側面に係る正極端子の製造方法は、突出部を有する成形体を作製する成形工程と、投射材を成形体へ投射して、投射材の一部を突出部の端面に付着させるショットブラスト工程と、を備え、成形体が、純アルミニウムからなり、投射材が、亜鉛又は亜鉛合金からなる。   The manufacturing method of the positive electrode terminal which concerns on 1 side of this invention is a manufacturing process which produces the molded object which has a protrusion part, a projection material is projected on a molded object, and a part of projection material is made to adhere to the end surface of a protrusion part. A shot blasting step, the molded body is made of pure aluminum, and the projection material is made of zinc or a zinc alloy.

本発明の一側面に係る正極端子の製造方法が備えるショットブラスト工程では、成形体からバリを除去することができる。また、亜鉛又は亜鉛合金からなる保護層を、成形体の突出部の端面の少なくとも一部に形成し、正極端子の腐食を抑制することができる。   In the shot blasting process included in the method for manufacturing a positive electrode terminal according to one aspect of the present invention, burrs can be removed from the molded body. Moreover, the protective layer which consists of zinc or a zinc alloy can be formed in at least one part of the end surface of the protrusion part of a molded object, and corrosion of a positive electrode terminal can be suppressed.

本発明によれば、正極端子の腐食を抑制することができ、且つ正極端子からバリを除去することができる正極端子の製造方法が提供される。 According to the present invention, it is possible to suppress corrosion of the positive electrode terminal, manufacturing method of the positive electrode terminal capable of removing burrs is provided and the positive terminal.

図1は、本発明の一実施形態に係る蓄電モジュールの模式的斜視図である。FIG. 1 is a schematic perspective view of a power storage module according to an embodiment of the present invention. 図2は、図1の蓄電モジュールが備える蓄電装置の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a power storage device provided in the power storage module of FIG. 図3は、図2のIII−III線に沿った蓄電装置の模式的断面図である。FIG. 3 is a schematic cross-sectional view of the power storage device taken along line III-III in FIG. 2. 図4は、図2の蓄電装置が備える正極端子の模式的断面図である。FIG. 4 is a schematic cross-sectional view of a positive electrode terminal included in the power storage device of FIG. 図5は、図2の蓄電装置において正極端子が位置する部分の拡大面である。FIG. 5 is an enlarged view of a portion where the positive electrode terminal is located in the power storage device of FIG.

以下、図面を参照して本発明の実施形態について説明する。図面の説明において、同一又は同等の構成要素には同一符号を付す。本発明は、以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same or equivalent components are denoted by the same reference numerals. The present invention is not limited to the following embodiments.

(蓄電モジュール)
図1に示すように、蓄電モジュール86は、複数の蓄電装置10と、複数の接続部材74(バスバー)と、を備える。複数の蓄電装置10は接続部材74によって電気的に接続される。接続部材74は、例えば板状であってよい。蓄電装置10間には、隔壁部88が設けられていてもよい。隔壁部88は、蓄電装置10同士の短絡を防止し、蓄電装置10の放熱を促す。複数の蓄電装置10は、ケース12の蓋部18の短辺方向に沿って重なるように配置されていればよい。図1に示された蓄電モジュール86の一例では、5個の蓄電装置10が直列接続されている。
(Power storage module)
As shown in FIG. 1, the power storage module 86 includes a plurality of power storage devices 10 and a plurality of connection members 74 (bus bars). The plurality of power storage devices 10 are electrically connected by connection members 74. The connection member 74 may be plate-shaped, for example. A partition wall 88 may be provided between the power storage devices 10. The partition wall portion 88 prevents a short circuit between the power storage devices 10 and promotes heat dissipation of the power storage device 10. The plurality of power storage devices 10 may be arranged so as to overlap along the short side direction of the lid portion 18 of the case 12. In the example of the power storage module 86 shown in FIG. 1, five power storage devices 10 are connected in series.

蓄電装置10の数は、限定されず、2個以上であればよい。説明のために、隣接する一対の蓄電装置10のうち一方の蓄電装置10を第一の蓄電装置10Aと記載し、他方の蓄電装置10を第二の蓄電装置10Bと記載する。   The number of power storage devices 10 is not limited and may be two or more. For the sake of explanation, one of the adjacent power storage devices 10 is referred to as a first power storage device 10A, and the other power storage device 10 is referred to as a second power storage device 10B.

複数の蓄電装置10の電気的な接続形態は、直列接続でもよく、並列接続でもよい。複数の蓄電装置10が直列接続されている場合、第一の蓄電装置10Aの正極端子22と、第二の蓄電装置10Bの負極端子22とが、接続部材74によって物理的に接続されていればよい。複数の蓄電装置10が並列接続されている場合、第一の蓄電装置10Aの正極端子22と、第二の蓄電装置10Bの正極端子22とが接続部材74によって物理的に接続され、第一の蓄電装置10Aの負極端子22と、第二の蓄電装置10Bの負極端子22とが、接続部材74によって物理的に接続されていればよい。 The electrical connection form of the plurality of power storage devices 10 may be a series connection or a parallel connection. When a plurality of power storage devices 10 are connected in series, a positive terminal 22 P of the first power storage device 10A, a negative terminal 22 N of the second power storage device 10B is, is physically connected by a connecting member 74 Just do it. When a plurality of power storage devices 10 are connected in parallel, the positive terminal 22 P of the first electric storage apparatus 10A, a positive terminal 22 P of the second power storage device 10B are physically connected by a connecting member 74, the and the negative terminal 22 N of the one power storage device 10A, a negative terminal 22 N of the second power storage device 10B is, only to be physically connected by a connecting member 74.

以下では、蓄電装置10がリチウムイオン二次電池である場合について説明する。図2及び図3に示すように、蓄電装置10は、正極32と、負極34と、正極32及び負極34に挟まれたセパレータ36と、を有する電極組立体14と、電極組立体14を収容するケース12と、正極32に電気的に接続され、ケース12の蓋部18を貫通する正極端子22と、負極34に電気的に接続され、ケース12の蓋部18を貫通する負極端子22と、を備える。 Below, the case where the electrical storage apparatus 10 is a lithium ion secondary battery is demonstrated. As shown in FIGS. 2 and 3, the power storage device 10 accommodates the electrode assembly 14 having the positive electrode 32, the negative electrode 34, and the separator 36 sandwiched between the positive electrode 32 and the negative electrode 34, and the electrode assembly 14. a case 12 which is electrically connected to the positive electrode 32, a positive terminal 22 P passing through the lid 18 of the case 12 is electrically connected to the negative electrode 34, negative electrode terminal extending through the lid 18 of the case 12 22 N.

正極32は、金属箔と金属箔を覆う正極活性物質層とを備える。正極活性物質層は金属箔の片面又は両面を覆っている。正極32の一縁部には、正極活性物質で覆われていない金属箔からなるタブ38がある。正極32は、タブ38を介して導電部材40に接続されていている。タブ38に接続された導電部材40は、正極端子22に接続されている。すなわち、正極端子22は、タブ38及び導電部材40を介して、正極32に電気的に接続されている。正極活物質は、例えば、リチウム及び遷移金属を含む複合酸化物(Li、Ni、Co及びMnを含む酸化物等)であってよい。正極32はシート状であってよい。 The positive electrode 32 includes a metal foil and a positive electrode active material layer covering the metal foil. The positive electrode active material layer covers one side or both sides of the metal foil. At one edge of the positive electrode 32 is a tab 38 made of a metal foil that is not covered with the positive electrode active material. The positive electrode 32 is connected to the conductive member 40 via the tab 38. Conductive member 40 connected to the tab 38 is connected to the positive terminal 22 P. In other words, the positive terminal 22 P is electrically connected to the positive electrode 32 through the tab 38 and the conductive member 40. The positive electrode active material may be, for example, a composite oxide containing lithium and a transition metal (such as an oxide containing Li, Ni, Co, and Mn). The positive electrode 32 may have a sheet shape.

負極34は、金属箔と金属箔を覆う負極活性物質層とを備える。負極活性物質層は金属箔の片面又は両面を覆っている。負極34の一縁部には、負極活性物質層で覆われていない金属箔からなるタブ44がある。負極34は、タブ44を介して導電部材46に接続されている。タブ44に接続された導電部材46は、負極端子22に接続されている。すなわち、負極端子22は、タブ44及び導電部材46を介して、負極34に電気的に接続されている。負極活物質は、例えばグラファイト若しくはハードカーボン等の炭素系材料、リチウムと合金化する元素(Sn若しくはSi)、リチウムと合金化する元素を有する元素化合物、又は、ポリアセチレン若しくはポリピロール等の高分子材料であってよい。負極34はシート状であってよい。 The negative electrode 34 includes a metal foil and a negative electrode active material layer that covers the metal foil. The negative electrode active material layer covers one side or both sides of the metal foil. At one edge of the negative electrode 34 is a tab 44 made of a metal foil that is not covered with the negative electrode active material layer. The negative electrode 34 is connected to the conductive member 46 via the tab 44. Conductive member 46 connected to the tab 44 is connected to the negative terminal 22 N. In other words, the negative electrode terminal 22 N is electrically connected to the negative electrode 34 via the tab 44 and the conductive member 46. The negative electrode active material is, for example, a carbon-based material such as graphite or hard carbon, an element alloying with lithium (Sn or Si), an elemental compound having an element alloying with lithium, or a polymer material such as polyacetylene or polypyrrole. It may be. The negative electrode 34 may have a sheet shape.

セパレータ36は、例えば、ポリテトラフルオロエチレン、ポリプロピレン若しくはポリエチレン等の合成樹脂から構成された多孔質膜、又はセラミックスから構成された多孔質膜であればよい。   For example, the separator 36 may be a porous film made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics.

電極組立体14においては、正極32の正極活物質層、及び負極34の負極活物質層の各々は、セパレータ36に対向している。電極組立体14において、複数の正極32と、複数の負極34とが、セパレータ36を介して交互に積層されてもよい。   In the electrode assembly 14, each of the positive electrode active material layer of the positive electrode 32 and the negative electrode active material layer of the negative electrode 34 faces the separator 36. In the electrode assembly 14, a plurality of positive electrodes 32 and a plurality of negative electrodes 34 may be alternately stacked via separators 36.

ケース12は、電極組立体14を収容するケース本体16と、ケース本体16の開口した一端部を塞ぐ蓋部18と、を備える。蓋部18は、例えば、レーザ溶接等によってケース本体16の開口した端部に接合されていてよい。ケース12の形状は、例えば、直方体であってよい。ケース本体16及び蓋部18は、例えば、アルミニウム又はステンレス等の金属から構成されていてよい。ケース12の内部には、電極組立体14と共に、非水電解液20が充填されている。蓋部18には、一対の正極端子22及び負極端子22が互いに離間して配置されている。 The case 12 includes a case main body 16 that accommodates the electrode assembly 14, and a lid portion 18 that closes one open end of the case main body 16. The lid 18 may be joined to the open end of the case body 16 by, for example, laser welding. The shape of the case 12 may be a rectangular parallelepiped, for example. The case body 16 and the lid 18 may be made of a metal such as aluminum or stainless steel, for example. The case 12 is filled with the non-aqueous electrolyte 20 together with the electrode assembly 14. The lid portion 18, a pair of positive terminal 22 P and the negative terminal 22 N are spaced apart from each other.

図4及び図5に示すように、正極端子22は、例えば、基端部50と、突出部52と、突出部52の端面58の少なくとも一部を覆う保護層68と、を備える。基端部50は、ケース12の内側に配置されている。突出部52は、蓋部18に形成されている挿通孔24を通して、基端部50からケース12の外側へ突出している。突出部52の端面58は接続部材74に対向している。保護層68が、正極端子22の突出部52と接続部材74との間に介在し、接続部材74と接触することにより、正極端子22が接続部材74と電気的に接続している。保護層68は、突出部52の端面58全体を覆っていてもよい。正極端子22の突出部52の一部が接続部材74と直接接触していてもよい。正極端子22の基端部50は、導電部材40に接続される。基端部50は、柱状(例えば、円柱状)であってよい。基端部50の径は、挿通孔24の径より大きい。突出部52は、柱状(例えば円柱状)であってよい。突出部52は、挿通孔24の径より小さい。正極端子22には、突出部52の端面58から基端部50に向けて延びる挿入孔62が形成されている。挿入孔62の長さ(深さ)は、正極端子22の長さよりも短くてよい。 As shown in FIGS. 4 and 5, the positive electrode terminal 22 </ b> P includes, for example, a base end portion 50, a protruding portion 52, and a protective layer 68 that covers at least a part of the end surface 58 of the protruding portion 52. The base end portion 50 is disposed inside the case 12. The protruding portion 52 protrudes from the base end portion 50 to the outside of the case 12 through the insertion hole 24 formed in the lid portion 18. The end surface 58 of the protruding portion 52 faces the connection member 74. Protective layer 68 is interposed between the connecting member 74 and the projecting portion 52 of the positive terminal 22 P, connected by contact with the member 74, a positive terminal 22 P are connected to connecting member 74 electrically. The protective layer 68 may cover the entire end surface 58 of the protruding portion 52. Some of the protruding portion 52 of the positive terminal 22 P may be in direct contact with the connecting member 74. Proximal end 50 of the positive terminal 22 P is connected to the conductive member 40. The base end part 50 may be columnar (for example, cylindrical). The diameter of the base end portion 50 is larger than the diameter of the insertion hole 24. The protrusion 52 may be columnar (for example, columnar). The protrusion 52 is smaller than the diameter of the insertion hole 24. The positive terminal 22 P, the insertion hole 62 extending toward the base end portion 50 from the end face 58 of the projecting portion 52 is formed. The length of the insertion hole 62 (depth) may be shorter than the length of the positive terminal 22 P.

正極端子22の基端部50及び突出部52は、純アルミニウム(Al)からなる。純アルミニウムとは、例えば、純度が99.00質量%以上100質量%以下であるアルミニウムである。純アルミニウムは、微量の不純物として、シリコン(Si)又は鉄(Fe)等を含んでもよい。純アルミニウムは、例えば、JIS(日本工業規格,JIS H4100)に基づく1000番台の記号で表示される。JIS H4100に準拠する純アルミニウムは、例えば、A1085、A1080、A1070、A1050、A1050A、A1060、A1100、A1200、A1N00、又はA1N30であってよい。 Proximal end 50 and the projection 52 of the positive terminal 22 P is made of pure aluminum (Al). Pure aluminum is, for example, aluminum having a purity of 99.00% by mass to 100% by mass. Pure aluminum may contain silicon (Si) or iron (Fe) as a trace amount of impurities. Pure aluminum is displayed with, for example, 1000s of symbols based on JIS (Japanese Industrial Standard, JIS H4100). The pure aluminum according to JIS H4100 may be, for example, A1085, A1080, A1070, A1050, A1050A, A1060, A1100, A1200, A1N00, or A1N30.

保護層68は、亜鉛単体(Zn)又は亜鉛合金からなる。亜鉛合金は、例えば、鉄、ニッケル、銅、アルミニウム、錫及びマグネシウムからなる群より選ばれる少なくとも一種の金属(副成分)と、亜鉛(主成分)とを含む合金であってよい。亜鉛合金における亜鉛の含有率は92質量%以上であってよい。   The protective layer 68 is made of zinc alone (Zn) or a zinc alloy. The zinc alloy may be an alloy containing, for example, at least one metal (subcomponent) selected from the group consisting of iron, nickel, copper, aluminum, tin, and magnesium, and zinc (main component). The zinc content in the zinc alloy may be 92% by mass or more.

接続部材74において正極端子22の突出部52の端面58に対向する部分74bは、錫(Sn)からなる。つまり、接続部材74において錫からなる部分が、端面58を覆う保護層68に接触する。接続部材74が、錫以外の金属(例えばCu系材料又はAl系材料)からなる基材74aと、基材の表面を覆う錫めっき層(74b)と、を備えてもよい。錫めっき層は、基材74aの表面のうち端面58と接触する部分のみを覆っていてよい。錫めっき層は、基材74aの表面全体を覆っていてもよい。接続部材74全体がスズからなっていてよい。 Portion 74b which faces the end face 58 of the projecting portion 52 of the positive terminal 22 P in the connecting member 74 is composed of tin (Sn). That is, the portion made of tin in the connection member 74 contacts the protective layer 68 that covers the end surface 58. The connection member 74 may include a base material 74a made of a metal other than tin (for example, a Cu-based material or an Al-based material) and a tin plating layer (74b) that covers the surface of the base material. The tin plating layer may cover only the portion of the surface of the base material 74a that contacts the end surface 58. The tin plating layer may cover the entire surface of the base material 74a. The entire connecting member 74 may be made of tin.

負極端子22は、例えば、Cu系材料(例えば銅又は銅合金)からなっていてよい。負極端子22がCu系材料からなる場合、Cu系材料の自然電位は純アルミニウムに比べて高いので、負極端子22は正極端子22よりも腐食し難い。したがって、負極端子22がCu系材料からなる場合、負極端子22は、保護層68を備えなくてよい。負極端子22の構造及び寸法は、保護層68を備えないこと以外は、正極端子22と同じであってよい。つまり、負極端子22は、基端部50と、突出部52と、を備える。基端部50は、ケース12の内側に配置されている。突出部52は、蓋部18に形成されている挿通孔24を通して、基端部50からケース12の外側へ突出している。負極端子22の突出部52の端面58が接続部材74と接触することにより、負極端子22が接続部材74と電気的に接続している。負極端子22の基端部50は、導電部材46に接続されている。基端部50は。柱状(例えば、円柱状)であってよい。基端部50の径は、挿通孔24の径より大きい。突出部52は、柱状(例えば円柱状)であってよい。突出部52は、挿通孔24の径より小さい。負極端子22には、突出部52の端面58から基端部50に向けて延びる挿入孔62が形成されている。挿入孔62の長さ(深さ)は、負極端子22の長さより短くてよい。 The negative terminal 22 N, for example, may consist Cu-based material (e.g., copper or copper alloy). If the negative terminal 22 N being Cu based material, since the self-potential of the Cu-based material is higher than that of pure aluminum, the negative electrode terminal 22 N is hard to corrode than the positive terminal 22 P. Therefore, when the negative electrode terminal 22 N being Cu based material, the negative electrode terminal 22 N may not include the protective layer 68. Configuration and dimensions of the negative electrode terminal 22 N, except that without the protective layer 68 may be the same as the positive terminal 22 P. That is, the negative electrode terminal 22 </ b> N includes the base end portion 50 and the protruding portion 52. The base end portion 50 is disposed inside the case 12. The protruding portion 52 protrudes from the base end portion 50 to the outside of the case 12 through the insertion hole 24 formed in the lid portion 18. By the end face 58 of the projecting portion 52 of the negative electrode terminal 22 N is in contact with the connecting member 74 connects the negative terminal 22 N is connected to member 74 electrically. Proximal end 50 of the negative electrode terminal 22 N is connected to the conductive member 46. The base end part 50 is. It may be columnar (for example, cylindrical). The diameter of the base end portion 50 is larger than the diameter of the insertion hole 24. The protrusion 52 may be columnar (for example, columnar). The protrusion 52 is smaller than the diameter of the insertion hole 24. The negative terminal 22 N, the insertion hole 62 extending toward the base end portion 50 from the end face 58 of the projecting portion 52 is formed. The length of the insertion hole 62 (depth) may be shorter than the length of the negative terminal 22 N.

負極端子22が純アルミニウムからなる場合、負極端子22も保護層68を備えてよく、負極端子22の形状は正極端子22と同じであればよい。 If the negative terminal 22 N consists of pure aluminum, the negative electrode terminal 22 N may comprise a protective layer 68, the shape of the negative electrode terminal 22 N may be any identical to the positive terminal 22 P.

図5に示すように、ボルト76(第一の固定部材)は、正極端子22の挿入孔62に挿入される。ボルト76の軸は、接続部材74に形成された穴84(又は切欠き部)に嵌合する。接続部材74は、ボルト76の頭部と、正極端子22の端面58を覆う保護層68と、の間に挟まれる。このように、接続部材74はボルト76(第一の固定部材)によって正極端子22に固定される。挿入孔62は、ボルト76の軸(雄ネジ部)と螺合する雌ネジ部である。すなわち、挿入孔62は、ボルトが螺合するネジ穴である。 As shown in FIG. 5, the bolt 76 (first fixed member) is inserted into the insertion hole 62 of the positive terminal 22 P. The shaft of the bolt 76 is fitted into a hole 84 (or a notch) formed in the connection member 74. Connecting member 74, a head of the bolt 76, a protective layer 68 covering the end face 58 of the positive terminal 22 P, sandwiched between. Thus, the connecting member 74 is fixed to the positive electrode terminal 22 P by a bolt 76 (first fixing member). The insertion hole 62 is a female screw portion that is screwed with the shaft (male screw portion) of the bolt 76. That is, the insertion hole 62 is a screw hole into which a bolt is screwed.

正極端子22の突出部52は、蓋部18の挿通孔24を通じて、固定ナット28(第二の固定部材)の開口部に嵌合する。正極端子22の基端部50と固定ナット28との間に蓋部18が挟まれる。このように、正極端子22は固定ナット28(第二の固定部材)によって蓋部18に固定される。突出部52の側周面(外周面)54には、雄ネジ部(ネジ領域56)が形成されていてよい。ネジ領域56は、側周面54において突出部52の端面58に寄った領域に設けられていてよい。側周面54においてネジ領域56と基端部50との間には、ネジ溝が形成されていない非ネジ領域があってよい。この非ネジ領域は、ケース12の蓋部18に形成された挿通孔24に嵌合してよい。固定ナット28の開口部の内面にネジ部(雌ネジ部)が形成されていてよい。正極端子22の突出部52のネジ領域56(雄ネジ部)と固定ナット28の雌ネジ部が螺合してよい。 The protruding portion 52 of the positive terminal 22 P is fitted into the opening of the fixing nut 28 (second fixing member) through the insertion hole 24 of the lid portion 18. The lid portion 18 is sandwiched between the base end portion 50 of the positive electrode terminal 22 P and the fixing nut 28. Thus, the positive terminal 22 P is fixed to the lid 18 by a fixing nut 28 (second fixing member). A male screw portion (screw region 56) may be formed on the side peripheral surface (outer peripheral surface) 54 of the protruding portion 52. The screw region 56 may be provided in a region near the end surface 58 of the protruding portion 52 on the side peripheral surface 54. There may be a non-screw region where no screw groove is formed between the screw region 56 and the base end portion 50 on the side peripheral surface 54. This non-screw region may be fitted into an insertion hole 24 formed in the lid portion 18 of the case 12. A screw portion (female screw portion) may be formed on the inner surface of the opening of the fixing nut 28. The female screw portion of the fixing nut 28 threaded region 56 of the positive terminal 22 P of the protruding portion 52 (male screw portion) may be screwed.

固定ナット28と蓋部18との間、及び突出部52と蓋部18との間には、第一の絶縁部材26が介在している。第一の絶縁部材26は、例えば、絶縁性を有する環状の部材であってよく、例えば樹脂製であってよい。第一の絶縁部材26が、固定ナット28と蓋部18との間、及び突出部52と蓋部18との間に介在する。   The first insulating member 26 is interposed between the fixing nut 28 and the lid portion 18 and between the protruding portion 52 and the lid portion 18. The first insulating member 26 may be, for example, an annular member having insulating properties, and may be made of resin, for example. The first insulating member 26 is interposed between the fixing nut 28 and the lid portion 18 and between the protruding portion 52 and the lid portion 18.

正極端子22の基端部50と蓋部18との間には、第二の絶縁部材30が介在している。第二の絶縁部材30は、突出部52の付け根部分を囲んでいてよい。第二の絶縁部材30は、例えば、弾性及び絶縁性を有する部材であればよい。第二の絶縁部材30が、正極端子22の基端部50と蓋部18との間に介在することにより、ケース12内が密封される。 Between the positive terminal 22 proximal end 50 of the P and the lid portion 18, the second insulating member 30 is interposed. The second insulating member 30 may surround the base portion of the protruding portion 52. The second insulating member 30 may be a member having elasticity and insulation, for example. Second insulating member 30, by interposing between the positive terminal 22 proximal end 50 of the P lid 18, the case 12 is sealed.

負極端子22と他の部材(接続部材74、ボルト76(第一の固定部材)、固定ナット28(第二の固定部材)、蓋部18、第一の絶縁部材26及び第二の絶縁部材30)との位置関係は、正極端子22の場合と同様であればよい。 Negative terminal 22 N and the other member (connecting member 74, a bolt 76 (first fixed member), a fixing nut 28 (second fixing member), the lid portion 18, the first insulating member 26 and the second insulating member the positional relationship between the 30) may be the same as the case of the positive terminal 22 P.

正極端子22を構成する純アルミニウムは、大気中の酸素と反応する。したがって、正極端子22の突出部52の端面58上にはアルミニウムの酸化皮膜が形成されている。この酸化皮膜は、純アルミニウムの酸化を抑制する機能を有するため、純アルミニウムからなる正極端子22は元来耐食性に優れる。しかし、振動等による力が、正極端子22又は正極端子22に接触する接続部材74に対して作用すると、接続部材74に対向する正極端子22の表面において酸化皮膜が破壊され、純アルミニウムが露出する。仮に保護層68がない場合、純アルミニウムの自然電位は、従来のCu系材料のみからなる接続部材に比べて低いため、水又は電解質の溶液(例えば塩水)の存在下において、純アルミニウムが露出した部分を起点として正極端子22が腐食する。その結果、正極端子22と接続部材74との間の電気抵抗値が高くなる。 Pure aluminum constituting the positive electrode terminal 22 P reacts with oxygen in the atmosphere. Therefore, on the end face 58 of the positive terminal 22 P of the protruding portion 52 is an oxide film of aluminum is formed. The oxide film, because it has a function of suppressing oxidation of pure aluminum, a positive terminal 22 P made of pure aluminum originally excellent in corrosion resistance. However, the force due to vibration or the like, to act against the connecting member 74 in contact with the positive terminal 22 P or positive terminals 22 P, the oxide film in the positive terminal 22 P surface that faces the connecting member 74 is broken, pure aluminum Is exposed. If the protective layer 68 is not provided, the pure aluminum is exposed in the presence of water or an electrolyte solution (for example, salt water) because the natural potential of pure aluminum is lower than that of a conventional connection member made of only a Cu-based material. the positive terminal 22 P corrodes the parts as a starting point. As a result, the electric resistance value between the positive terminal 22 P and the connecting member 74 is increased.

しかし、本実施形態では、純アルミニウムとの自然電位の差が小さい亜鉛単体又は亜鉛合金からなる保護層68が、突出部52の端面58を覆っている。そして、保護層68が突出部52の端面58と接続部材74との間に介在する。つまり、保護層68が接続部材74と直接接触する。また、本実施形態では、接続部材74において正極端子22と接触する部分が、Cu系材料よりも自然電位の低い錫からなる。つまり、本実施形態では、Cu系材料のみからなる接続部材74を用いる場合に比べて、接続部材74と正極端子22との間の自然電位の差が小さい。例えば、銅の自然電位は0.345V程度であり、錫の自然電位は−0.146V程度であり、純アルミニウムの自然電位は−1.337V程度である。以上の理由から、本実施形態では、保護層68がない場合、又は接続部材74がCu系材料のみからなる場合に比べて、純アルミニウムからなる正極端子22の突出部52の腐食を抑制することができる。 However, in the present embodiment, a protective layer 68 made of zinc alone or a zinc alloy having a small difference in natural potential from pure aluminum covers the end surface 58 of the protruding portion 52. A protective layer 68 is interposed between the end surface 58 of the protrusion 52 and the connection member 74. That is, the protective layer 68 is in direct contact with the connection member 74. Further, in this embodiment, the portion which contacts the connecting member 74 and the positive terminal 22 P is made of a tin lower natural potential than Cu-based material. That is, in this embodiment, as compared with the case of using the connecting member 74 made of only Cu-based material, the difference in natural potential between the connecting member 74 and the positive terminal 22 P is small. For example, the natural potential of copper is about 0.345V, the natural potential of tin is about -0.146V, and the natural potential of pure aluminum is about -1.337V. For these reasons, in the present embodiment, when there is no protective layer 68, or the connection member 74 as compared with a case made of only Cu-based material, inhibiting corrosion of the projecting portion 52 of the positive terminal 22 P made of pure aluminum be able to.

(正極端子の製造方法)
上記蓄電装置10が備える正極端子22の製造方法は、成形工程とショットブラスト工程とを備える。
(Method for manufacturing positive electrode terminal)
Method for producing a positive terminal 22 P of the electric storage device 10 is provided is provided with a shaping step and a shot blasting process.

成形工程では、例えば、基端部と、基端部から突出する突出部と、を備える成形体を作製する。成形体の基端部は、図4及び図5に示す正極端子22の基端部50に対応する。成形体の突出部は、図4及び図5に示す正極端子22の突出部52に対応する。成形体には、突出部の端面から基端部に向けて延びる挿入孔が形成されていてよい。成形体の挿入孔は、図4及び図5に示す正極端子22の挿入孔62に対応する。 In the molding step, for example, a molded body including a base end portion and a protruding portion protruding from the base end portion is produced. Proximal end of the molded body corresponds to the proximal end portion 50 of the positive terminal 22 P shown in FIGS. Protrusion of the molded body corresponds to the protruding portion 52 of the positive terminal 22 P shown in FIGS. The molded body may be formed with an insertion hole extending from the end surface of the protruding portion toward the base end portion. Insertion hole of the molded body corresponds to the insertion hole 62 of the positive terminal 22 P shown in FIGS.

成形体は、ダイカスト、押出成形、切削又はねじ切り等の加工によって作製される。加工時には成形体にバリが形成される。成形体は、純アルミニウムから作製される。純アルミニウムの硬度は、金属材料の中でも比較的低いため、成形し易い。成形体の原料である純アルミニウムは、上記の正極端子22を構成する純アルミニウムと同じである。 The molded body is produced by a process such as die casting, extrusion molding, cutting or threading. During processing, burrs are formed on the molded body. The molded body is made from pure aluminum. Since the hardness of pure aluminum is relatively low among metal materials, it is easy to mold. Pure aluminum, which is a raw material of the molded body is the same as the pure aluminum constituting the positive terminal 22 P of the.

ショットブラスト工程では、投射材を成形体へ投射する。投射材が成形体のバリと衝突してバリが除去され、正極端子22が得られる。投射材は、亜鉛単体又は亜鉛合金からなる粒子である。投射材を構成する亜鉛単体又は亜鉛合金は、上記の保護層68を構成する亜鉛単体又は亜鉛合金と同じである。 In the shot blast process, the projection material is projected onto the molded body. Projection material burrs collide with burr of the molded body is removed, the positive terminal 22 P can be obtained. The projection material is particles made of zinc alone or a zinc alloy. The zinc simple substance or zinc alloy constituting the projection material is the same as the zinc simple substance or zinc alloy constituting the protective layer 68 described above.

投射材が成形体の突出部の端面に衝突すると、成形体を構成する純アルミニウムと一部の投射材との機械的合金化(メカニカルアロイニング)が起こり、投射材が成形体の突出部の端面に機械的に付着する。その結果、正極端子22の突出部52の端面58に強固に密着した保護層68が形成される。ショットブラスト工程によって形成された保護層68は、正極端子22の突出部52の端面58から剥離し難く、機械的耐久性に優れている。 When the projecting material collides with the end face of the projecting portion of the molded body, mechanical alloying of pure aluminum constituting the molded body and a part of the projecting material occurs (mechanical alloying), and the projecting material of the projecting portion of the molded body It adheres mechanically to the end face. As a result, the protective layer 68 which is firmly adhered to the end surface 58 of the positive terminal 22 P of the protruding portion 52 is formed. Protective layer 68 formed by the shot blast process, easily separated from the end face 58 of the positive terminal 22 P of the protruding portion 52 is excellent in mechanical durability.

保護層68は、亜鉛単体又は亜鉛合金からなる。亜鉛単体又は亜鉛合金の自然電位は、従来の投射材を構成するステンレス鋼の自然電位(例えば、−0.57V程度)よりも低い。例えば、亜鉛単体の自然電位は、−0.762V程度である。一方、正極端子22の突出部52を構成する純アルミニウムの自然電位は、例えば−1.337V程度である。したがって、保護層68と突出部52との間の自然電位の差は、ステンレス鋼からなる従来の投射材と突出部52との自然電位との差よりも小さい。このように、本実施形態では、正極端子22との自然電位差が小さい投射材を用いることにより、正極端子22と投射材との自然電位差に起因する正極端子22の腐食を抑制することができる。 The protective layer 68 is made of zinc alone or a zinc alloy. The natural potential of zinc alone or a zinc alloy is lower than the natural potential (for example, about −0.57 V) of stainless steel constituting the conventional projection material. For example, the natural potential of zinc alone is about −0.762V. On the other hand, the natural potential of the pure aluminum constituting the projecting portion 52 of the positive terminal 22 P is, for example, about -1.337V. Therefore, the difference in natural potential between the protective layer 68 and the protrusion 52 is smaller than the difference in natural potential between the conventional projection material made of stainless steel and the protrusion 52. Thus, in the present embodiment, by using the natural potential difference is small shot material the positive terminal 22 P, suppressing the corrosion of the positive terminal 22 P due to the natural potential difference between the positive terminal 22 P and the projection member Can do.

亜鉛単体又は亜鉛合金からなる投射材は導電性を有する。したがって、本実施形態では、ガラス、セラミックス又はポリカーボネイト等の絶縁性材料からなる投射材を用いる場合に比べて、投射材の付着に伴う正極端子22の導電性の低下を抑制することができる。 A projection material made of zinc alone or a zinc alloy has conductivity. Therefore, in the present embodiment, it is possible to glass, as compared with the case of using a shot material made of ceramic or insulating material such as polycarbonate, to suppress a decrease in conductivity of the positive terminal 22 P accompanying the deposition of the shot material.

投射材を構成する亜鉛単体又は亜鉛合金の硬度は、ステンレス鋼、ガラス又はセラミックス等の従来の投射材よりも低く、純アルミニウムよりも低い。したがって、本実施形態では、従来の投射材を用いる場合に比べて、バリ取りに伴う成形体の表面(突出部の端面)の変形が抑制され、正極端子22の表面粗さ及び表面積の増加が抑制される。正極端子の表面粗さ及び表面積の増加を抑制することにより、正極端子22の耐食性が向上する。つまり、亜鉛単体又は亜鉛合金からなる投射材は柔らかく変形し易いため、柔らかい純アルミニウムからなる成形体の表面を過度に傷付けることなく、成形体の表面において保護層68を形成し易い。 The hardness of the zinc simple substance or zinc alloy constituting the projection material is lower than that of a conventional projection material such as stainless steel, glass or ceramics, and is lower than that of pure aluminum. Thus, in this embodiment, compared with the case of using the conventional shot material, deformation of the surface of the molded body due to deburring (end face of the projection) is suppressed, the increase in the surface roughness and surface area of the positive terminal 22 P Is suppressed. By suppressing the increase in the surface roughness and surface area of the positive terminal, the corrosion resistance of the positive terminal 22 P is improved. That is, since the projection material made of zinc alone or zinc alloy is soft and easily deformed, the protective layer 68 can be easily formed on the surface of the molded body without excessively damaging the surface of the molded body made of soft pure aluminum.

投射材のビッカース硬度は、例えば、40〜50HVであればよい。投射材のビッカース硬度は、純アルミニウムのビッカース硬度の0.3〜0.43倍であってよく、0.35〜0.38倍であってもよい。このようなビッカース硬度を有する投射材を用いた場合、バリを除去し易く、バリ取りに伴う成形体の表面の変形(粗面化)を抑制し易く、正極端子22の突出部52の端面58を保護層68で被覆し易い。投射材の硬度が大きいほど、バリが除去され易く、バリ取りに伴って成形体の表面が変形し易い傾向がある。投射材の硬度が小さいほど、成形体の表面が変形し難く、バリが除去され難く、投射材が成形体の表面に残存し易い傾向がある。 The Vickers hardness of a projection material should just be 40-50HV, for example. The Vickers hardness of the projection material may be 0.3 to 0.43 times or 0.35 to 0.38 times the Vickers hardness of pure aluminum. When using a shot material having such a Vickers hardness, easy to remove burrs, easy to suppress deformation of the surface of the molded body due to deburring the (roughening), the end surface of the projecting portion 52 of the positive terminal 22 P 58 is easily covered with the protective layer 68. The larger the hardness of the projection material, the easier the burrs are removed, and the surface of the molded body tends to be deformed with deburring. As the hardness of the projection material is smaller, the surface of the molded body is less likely to be deformed, burrs are more difficult to remove, and the projection material tends to remain on the surface of the molded body.

投射材の粒径は、例えば150〜750μmであってよい。投射材を成形体へ投射するための空気圧は、例えば0.1〜0.3MPaであってよい。ショットブラスト装置における投射材の噴射口と成形体との距離は、例えば50〜150mmであってよい。投射時間は、例えば5〜45秒であってよい。これらの条件下でショットブラスト工程を実施する場合、バリを除去し易く、バリ取りに伴う成形体の表面の変形(粗面化)を抑制し易く、正極端子22の突出部52の端面58を保護層68で被覆し易い。 The particle size of the projection material may be, for example, 150 to 750 μm. The air pressure for projecting the projection material onto the molded body may be, for example, 0.1 to 0.3 MPa. The distance between the injection port of the projection material and the molded body in the shot blasting apparatus may be, for example, 50 to 150 mm. The projection time may be, for example, 5 to 45 seconds. When carrying out shot blasting process under these conditions, it is easy to remove burrs, easy to suppress deformation of the surface of the molded body due to deburring the (roughening), the end faces of the positive terminal 22 P of the projections 52 58 Is easily covered with the protective layer 68.

ショットブラスト工程で得られた正極端子22の突出部52の端面58(保護層68を含む面)の表面粗さRaは、1.0μm以下であってよく、0.7μm以下であってもよい。端面58の表面粗さRaが小さいほど、端面58の耐食性が向上する傾向がある。 Surface roughness Ra of the end surface 58 of the projecting portion 52 of the positive terminal 22 P obtained in the shot blasting process (the plane including the protective layer 68) may be at 1.0μm or less, even 0.7μm or less Good. As the surface roughness Ra of the end face 58 is smaller, the corrosion resistance of the end face 58 tends to be improved.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明は以下の形態であってもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, the present invention may be in the following forms.

正極端子22又は負極端子22に形成された挿入孔62と、第一の固定部材との結合形態は、ネジによる締結に限定されない。例えば、第一の固定部材が、頭部と、頭部から延びる軸部とを有し、軸部にネジ溝が切られていなくてもよい。つまり、第一の固定部材の軸の表面が平滑であってもよい。挿入孔62の内面にはネジ溝が形成されていなくてもよい。この場合、第一の固定部材の軸部が挿入孔62に圧入される。 An insertion hole 62 formed in the positive terminal 22 P or the negative terminal 22 N, bound form of the first fixing member is not limited to fastening by screws. For example, the first fixing member has a head portion and a shaft portion extending from the head portion, and the screw groove may not be cut in the shaft portion. That is, the surface of the shaft of the first fixing member may be smooth. A screw groove may not be formed on the inner surface of the insertion hole 62. In this case, the shaft portion of the first fixing member is press-fitted into the insertion hole 62.

正極端子22の突出部52又は負極端子22の突出部52と、第二の固定部材との結合形態は、ネジによる締結に限定されない。例えば、突出部52の側周面54にネジ溝が形成されていなくてもよい。第二の固定部材の開口部の内面にはネジ溝が形成されていなくてもよい。つまり、第二の固定部材の開口部の内面は平滑であってもよい。この場合、突出部52が第二の固定部材の開口部に圧入される。 The projecting portion 52 of the positive terminal 22 P protrusions 52 or the negative terminal 22 N, the bound form of the second fixing member is not limited to fastening by screws. For example, the thread groove may not be formed on the side peripheral surface 54 of the protrusion 52. No thread groove may be formed on the inner surface of the opening of the second fixing member. That is, the inner surface of the opening of the second fixing member may be smooth. In this case, the protrusion 52 is press-fitted into the opening of the second fixing member.

正極端子は、基端部を備えず、突出部及び保護層からなる柱状の端子であってよい。この場合、蓄電装置は、ケースの外側を向く蓋部の表面に載置された接続板と、蓋部を貫通してケースの内側に突出する柱状の接続部と、を備えてよい。正極端子の一端面(保護層で覆われていない端面)は、接続板の一方の端部の表面に接してよい。つまり、正極端子は接続板の一方の端部の表面に立っていてよい。接続部の一方の端部(蓋部を貫通する端部)の端面は、接続板の他方の端部の裏面と接していてよい。正極端子の一端面(保護層で覆われていない端面)が、接続板の一方の端部に形成された貫通穴又は切欠き部に嵌合していてもよい。接続部の一方の端部が、接続板の他方の端部に形成された貫通穴又は切欠き部に嵌合していてもよい。正極端子が接続板に溶接されていてもよい。接続部が接続板に溶接されていてもよい。正極端子が接続板に接着されていてもよい。接続部が接続板に接着されていてもよい。正極端子は、接続板を介して、接続部と電気的に接続されてよい。接続部は、ケース内の正極と電気的に接続されてよい。このような正極端子、接続板、及び接続部から構成される構造体は、Z端子と呼ばれる。   The positive electrode terminal may not be provided with a base end portion but may be a columnar terminal including a protruding portion and a protective layer. In this case, the power storage device may include a connection plate placed on the surface of the lid portion facing the outside of the case, and a columnar connection portion that penetrates the lid portion and protrudes to the inside of the case. One end face of the positive electrode terminal (end face not covered with the protective layer) may be in contact with the surface of one end of the connection plate. That is, the positive electrode terminal may stand on the surface of one end of the connection plate. The end surface of one end of the connecting portion (the end passing through the lid) may be in contact with the back surface of the other end of the connecting plate. One end surface (the end surface not covered with the protective layer) of the positive electrode terminal may be fitted into a through hole or a notch formed in one end of the connection plate. One end of the connecting portion may be fitted into a through hole or a notch formed in the other end of the connecting plate. The positive electrode terminal may be welded to the connection plate. The connection part may be welded to the connection plate. The positive terminal may be bonded to the connection plate. The connecting portion may be bonded to the connecting plate. The positive electrode terminal may be electrically connected to the connection portion via the connection plate. The connecting portion may be electrically connected to the positive electrode in the case. A structure including such a positive electrode terminal, a connection plate, and a connection portion is called a Z terminal.

蓄電装置は、正極及び負極を備えるものであればよく、リチウムイオン二次電池に限定されない。例えば、蓄電装置は、金属リチウム二次電池、ニッケル水素二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタであってもよい。   The power storage device only needs to include a positive electrode and a negative electrode, and is not limited to a lithium ion secondary battery. For example, the power storage device may be a metal lithium secondary battery, a nickel hydride secondary battery, an electric double layer capacitor, or a lithium ion capacitor.

[実験例1]
純アルミニウム(JIS H4100に準拠したA1100)からなる板状の試験片を作製した。試験片の寸法は、5mm×20mm×50mmであった。試験片(純アルミニウム)のビッカース硬度は115〜130HVであった。20℃における試験片の電気抵抗率は、28.2nΩ・mであった。亜鉛単体又は亜鉛合金からなる投射材を試験片へ投射するショットブラスト工程を実施した。実験例1で用いた投射材のビッカース硬度、平均粒径、及び電気抵抗率は下記表1に示す値であった。ショットブラスト工程では、新東ブレータ社製のブラスト装置(遠心投射機)を用いた。
[Experiment 1]
A plate-like test piece made of pure aluminum (A1100 based on JIS H4100) was produced. The dimension of the test piece was 5 mm × 20 mm × 50 mm. The Vickers hardness of the test piece (pure aluminum) was 115 to 130 HV. The electrical resistivity of the test piece at 20 ° C. was 28.2 nΩ · m. A shot blasting process for projecting a projecting material made of zinc alone or a zinc alloy onto a test piece was performed. The Vickers hardness, average particle diameter, and electrical resistivity of the projection material used in Experimental Example 1 were values shown in Table 1 below. In the shot blasting process, a blasting device (centrifugal projector) manufactured by Shinto Blator was used.

ショットブラスト工程後、投射材を投射した試験片の表面(投射面)の表面粗さRaを測定した。表面粗さRaの測定は、JIS B0601の規格に準拠して行った。実験例1の試験片の表面粗さRaを下記表1に示す。   After the shot blasting process, the surface roughness Ra of the surface (projection surface) of the test piece on which the projection material was projected was measured. The surface roughness Ra was measured according to the standard of JIS B0601. Table 1 shows the surface roughness Ra of the test piece of Experimental Example 1.

JIS Z2371に規定された塩水噴霧試験を行い、ショットブラスト工程後の試験片の耐食性を評価した。試験では、250時間にわたり、試験片を塩水に曝した。下記式に基づき、試験片の腐蝕減量比(単位:重量%)を算出した。実験例1の試験片の腐蝕減量比を下記表1に示す。
腐蝕減量比={(W−W)/W}×100
上記式中、Wは、ショットブラスト工程後であって塩水噴霧試験前の試験片の重量である。Wは、塩水噴霧試験後の試験片の重量である。
A salt spray test specified in JIS Z2371 was conducted to evaluate the corrosion resistance of the test piece after the shot blasting process. In the test, the specimens were exposed to salt water for 250 hours. Based on the following formula, the corrosion weight loss ratio (unit:% by weight) of the test piece was calculated. The corrosion weight loss ratio of the test piece of Experimental Example 1 is shown in Table 1 below.
Corrosion weight loss ratio = {(W 0 −W 1 ) / W 0 } × 100
In the above formula, W 0 is the weight of the test piece after the shot blasting process and before the salt spray test. W 1 is the weight of the test piece after the salt spray test.

[実験例2]
実験例2では、亜鉛単体又は亜鉛合金からなる投射材の代わりに、下記表1に示す酸化ジルコニウム(ZrO)からなる投射材を用いた。投射材が異なること以外は実験例1の同様の方法で、実験例2のショットブラスト工程を行った。実験例1と同様の方法で測定した実験例2の試験片の表面粗さRaを下記表1に示す。実験例1と同様の方法で測定した実験例2の腐蝕減量比を下記表1に示す。
[Experiment 2]
In Experimental Example 2, a projection material made of zirconium oxide (ZrO 2 ) shown in Table 1 below was used instead of the projection material made of zinc alone or a zinc alloy. The shot blasting process of Experimental Example 2 was performed in the same manner as in Experimental Example 1 except that the projection material was different. Table 1 below shows the surface roughness Ra of the test piece of Experimental Example 2 measured by the same method as Experimental Example 1. The corrosion weight loss ratio of Experimental Example 2 measured by the same method as Experimental Example 1 is shown in Table 1 below.

[実験例3]
実験例3では、亜鉛単体又は亜鉛合金からなる投射材の代わりに、下記表1に示す酸化アルミニウム(Al)からなる投射材を用いた。投射材が異なること以外は実験例1の同様の方法で、実験例3のショットブラスト工程を行った。実験例1と同様の方法で測定した実験例3の試験片の表面粗さRaを下記表1に示す。実験例1と同様の方法で測定した実験例3の腐蝕減量比を下記表1に示す。
[Experiment 3]
In Experimental Example 3, a projection material made of aluminum oxide (Al 2 O 3 ) shown in Table 1 below was used instead of the projection material made of zinc alone or a zinc alloy. The shot blasting process of Experimental Example 3 was performed in the same manner as in Experimental Example 1 except that the projection material was different. Table 1 below shows the surface roughness Ra of the test piece of Experimental Example 3 measured by the same method as Experimental Example 1. The corrosion weight loss ratio of Experimental Example 3 measured by the same method as Experimental Example 1 is shown in Table 1 below.

[実験例4]
実験例4では、亜鉛単体又は亜鉛合金からなる投射材の代わりに、下記表1に示すステンレス鋼(SUS430)からなる投射材を用いた。投射材が異なること以外は実験例1の同様の方法で、実験例4のショットブラスト工程を行った。実験例1と同様の方法で測定した実験例4の試験片の表面粗さRaを下記表1に示す。実験例1と同様の方法で測定した実験例4の腐蝕減量比を下記表1に示す。
[Experimental Example 4]
In Experimental Example 4, a projection material made of stainless steel (SUS430) shown in Table 1 below was used instead of the projection material made of zinc alone or a zinc alloy. The shot blasting process of Experimental Example 4 was performed in the same manner as in Experimental Example 1 except that the projection material was different. Table 1 below shows the surface roughness Ra of the test piece of Experimental Example 4 measured by the same method as Experimental Example 1. The corrosion weight loss ratio of Experimental Example 4 measured by the same method as Experimental Example 1 is shown in Table 1 below.

Figure 0006102726
Figure 0006102726

表1に示すように、亜鉛単体又は亜鉛合金からなる投射材を用いた実験例1の試験片の表面粗さRa及び腐食減量比のいずれも、他の試験片よりも小さいことが確認された。   As shown in Table 1, it was confirmed that both the surface roughness Ra and the corrosion weight loss ratio of the test piece of Experimental Example 1 using the projection material made of zinc alone or a zinc alloy were smaller than the other test pieces. .

実験例1〜3の試験片の表面粗さRa及び腐食減量比を比較することにより、試験片の表面粗さRaが小さいほど腐食減量比も小さい傾向が確認された。つまり、試験片の腐食減量比は、ショットブラスト工程後の試験片の表面粗さに依ることが確認された。   By comparing the surface roughness Ra and the corrosion weight loss ratio of the test pieces of Experimental Examples 1 to 3, it was confirmed that the smaller the surface roughness Ra of the test piece, the smaller the corrosion weight loss ratio. That is, it was confirmed that the corrosion weight loss ratio of the test piece depends on the surface roughness of the test piece after the shot blasting process.

実験例2の試験片の表面粗さは、実験例4の試験片の表面粗さと同じであった。しかし、実験例2の試験片の腐食減量比は、実験例4の試験片の腐食減量比よりも小さかった。つまり、自然電位の高いSUS430からなる投射材を用いた実験例4の試験片の腐食減量比は、実験例2の試験片よりも大きかった。このことから、試験片の腐食減量比は、ショットブラスト工程後の試験片の表面粗さのみならず、試験片の組成(試験片の自然電位)に依ることが確認された。   The surface roughness of the test piece of Experimental Example 2 was the same as the surface roughness of the test piece of Experimental Example 4. However, the corrosion weight loss ratio of the test piece of Experimental Example 2 was smaller than the corrosion weight loss ratio of the test piece of Experimental Example 4. That is, the corrosion weight loss ratio of the test piece of Experimental Example 4 using the projection material made of SUS430 having a high natural potential was larger than that of the test piece of Experimental Example 2. From this, it was confirmed that the corrosion weight loss ratio of the test piece depends not only on the surface roughness of the test piece after the shot blasting process but also on the composition of the test piece (natural potential of the test piece).

10・・・蓄電装置、12・・・ケース、18・・・蓋部、14・・・電極組立体、22・・・正極端子、22・・・負極端子、32・・・正極、34・・・負極、36・・・セパレータ、50・・・基端部、52・・・突出部、58・・・端面、68・・・保護層、74・・・接続部材(バスバー)、74b・・・接続部材において突出部の端面に対向する部分、86・・・蓄電モジュール。 10 ... electric storage unit, 12 ... case, 18 ... lid portion, 14 ... electrode assembly, 22 P ... positive terminal, 22 N ... negative terminal, 32 ... positive electrode, 34 ... Negative electrode, 36 ... Separator, 50 ... Base end, 52 ... Projection, 58 ... End face, 68 ... Protective layer, 74 ... Connection member (bus bar), 74b... Part of the connecting member that faces the end face of the projecting portion, 86.

Claims (1)

突出部を有する成形体を作製する成形工程と、
投射材を前記成形体へ投射して、前記投射材の一部を前記突出部の端面に付着させるショットブラスト工程と、
を備え、
前記成形体が、純アルミニウムからなり、
前記投射材が、亜鉛又は亜鉛合金からなる、
正極端子の製造方法。
A molding step for producing a molded body having a protrusion, and
A shot blasting step of projecting a projection material onto the molded body and attaching a part of the projection material to an end surface of the projecting portion;
With
The molded body is made of pure aluminum,
The projection material is made of zinc or a zinc alloy.
Manufacturing method of positive electrode terminal.
JP2013267241A 2013-12-25 2013-12-25 Method for manufacturing positive terminal Expired - Fee Related JP6102726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267241A JP6102726B2 (en) 2013-12-25 2013-12-25 Method for manufacturing positive terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267241A JP6102726B2 (en) 2013-12-25 2013-12-25 Method for manufacturing positive terminal

Publications (2)

Publication Number Publication Date
JP2015125797A JP2015125797A (en) 2015-07-06
JP6102726B2 true JP6102726B2 (en) 2017-03-29

Family

ID=53536398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267241A Expired - Fee Related JP6102726B2 (en) 2013-12-25 2013-12-25 Method for manufacturing positive terminal

Country Status (1)

Country Link
JP (1) JP6102726B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872897B2 (en) * 2016-12-22 2021-05-19 三菱電機株式会社 Storage battery and power storage module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339760A (en) * 1998-05-28 1999-12-10 Japan Storage Battery Co Ltd Battery
FR2915626B1 (en) * 2007-04-24 2010-10-29 Batscap Sa MODULE FOR ELECTRIC ENERGY STORAGE ASSEMBLY
EP2602846B1 (en) * 2011-06-30 2017-08-02 LG Chem, Ltd. Electrode terminal for secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP2015125797A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
KR100740126B1 (en) Cell barrier for secondary battery module and secondary battery module
JP5256589B2 (en) An assembled battery in which a plurality of film-clad batteries are arranged adjacent to each other
US11283140B2 (en) Secondary battery including terminal having first region formed of material with different ionization tendency than material of second region of terminal
JP2011077039A (en) Battery and battery module
JP2011076731A (en) Battery cover member
JP2006269425A (en) Secondary battery and its manufacturing method
JP2009076385A (en) Electrode terminal fitting structure and nonaqueous electrolyte secondary battery
JP2012151097A (en) Electricity storage element
JP6794741B2 (en) Module battery
JP2007220576A (en) Battery pack
JP6102726B2 (en) Method for manufacturing positive terminal
JP6044454B2 (en) Power storage module
CN112310573B (en) Lead wire for electrical component and electrical component
JP5276029B2 (en) Secondary battery
JP5472284B2 (en) Film outer battery and battery pack
JP6048341B2 (en) Terminal structure
JP2015115311A (en) Electricity storage device
JP5569483B2 (en) Assembled battery
JP2008078083A (en) Battery state detection device
JP2012190587A (en) Secondary battery
CN109755449A (en) The manufacturing method and battery pack of battery pack
JP2016046388A (en) Capacitor and method of manufacturing the same
JP6217066B2 (en) Storage element, power supply module, and storage element manufacturing method
JP5512332B2 (en) Method for designing negative electrode for secondary battery, method for producing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery
JP2017084733A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees