JP6101620B2 - Purchase forecasting apparatus, method, and program - Google Patents

Purchase forecasting apparatus, method, and program Download PDF

Info

Publication number
JP6101620B2
JP6101620B2 JP2013234396A JP2013234396A JP6101620B2 JP 6101620 B2 JP6101620 B2 JP 6101620B2 JP 2013234396 A JP2013234396 A JP 2013234396A JP 2013234396 A JP2013234396 A JP 2013234396A JP 6101620 B2 JP6101620 B2 JP 6101620B2
Authority
JP
Japan
Prior art keywords
product
customer
price
purchase
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013234396A
Other languages
Japanese (ja)
Other versions
JP2015095120A (en
Inventor
熊谷 雄介
雄介 熊谷
典子 高屋
典子 高屋
澤田 宏
宏 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013234396A priority Critical patent/JP6101620B2/en
Publication of JP2015095120A publication Critical patent/JP2015095120A/en
Application granted granted Critical
Publication of JP6101620B2 publication Critical patent/JP6101620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、購買予測装置、方法、及びプログラムに係り、特に、過去の購買行動に基づいて顧客の次の購買を予測するための購買予測装置、方法、及びプログラムに関する。   The present invention relates to a purchase prediction apparatus, method, and program, and more particularly, to a purchase prediction apparatus, method, and program for predicting a customer's next purchase based on past purchase behavior.

顧客が興味を示す商品の購買予測技術は、商品の仕入れや広告戦略を検討する上で重要な要素技術である。   The purchase forecasting technology for products that the customer is interested in is an important elemental technology when considering the purchase of products and advertising strategies.

この分野における従来技術として、商品の価格と顧客の購買行動に注目したものが存在する。例えば、非特許文献1には、商品の値引きが短期及び長期の売上にどのように影響するかをモデリングするものである。しかし、この手法は売上全体を予測するものであり、顧客の誰がどのような価格の場合に商品を購入するのか、という点が分からないという問題点が存在する。   As conventional technology in this field, there is one that pays attention to product prices and customer purchasing behavior. For example, Non-Patent Document 1 models how product discounts affect short-term and long-term sales. However, this method predicts overall sales, and there is a problem that it is not known who the customer purchases the product at what price.

一方、非特許文献2には、顧客の購買行動を、買った商品とその価格でモデリングする手法が開示されている。しかし、この手法は、商品についてのみ購買されやすい価格帯を仮定するモデルであり,顧客がどの価格帯の商品を購入しやすいかを明示的にモデリングできないという問題点が存在する。   On the other hand, Non-Patent Document 2 discloses a method of modeling customer purchasing behavior with purchased products and their prices. However, this method is a model that assumes a price range that is easy to purchase only for products, and there is a problem that it is not possible to explicitly model which price range a customer is likely to purchase.

また、非特許文献3には、文書集合の背後に潜む潜在的なトピック構造を変分ベイズに基づく学習によって推定する手法が開示されている。   Non-Patent Document 3 discloses a technique for estimating a potential topic structure hidden behind a document set by learning based on variational Bayes.

Nijs VR, Dekimpe MG, Steenkamps JBE, Hanssens DM, “The category-demand effects of price promotions,” Marketing Science 20(1), pp.1-22 (2001).Nijs VR, Dekimpe MG, Steenkamps JBE, Hanssens DM, “The category-demand effects of price promotions,” Marketing Science 20 (1), pp.1-22 (2001). Tomoharu Iwata and Hiroshi Sawada, “Topic model for analyzing purchase data with price information,” Data Mining and Knowledge Discovery, 26, 3, pp.559-573 (May 2013).Tomoharu Iwata and Hiroshi Sawada, “Topic model for analyzing purchase data with price information,” Data Mining and Knowledge Discovery, 26, 3, pp.559-573 (May 2013). David M. Blei,Andrew Y. Ng,Michael I. Jordan, “Latent Dirichlet Allocation”The Journal of Machine Learning Research, 3, pp.993-1022 (March 2003).David M. Blei, Andrew Y. Ng, Michael I. Jordan, “Latent Dirichlet Allocation” The Journal of Machine Learning Research, 3, pp.993-1022 (March 2003).

このように、従来技術では、顧客を個々の単位ではなく顧客群としてまとめた上で、顧客群の購買行動に係る分析が行われていた。そのため、顧客単位で次にどの価格帯の商品が購入されるか等といった分析をすることができなかった。   As described above, in the prior art, the customers are collected as a customer group, not as individual units, and an analysis related to the purchase behavior of the customer group is performed. For this reason, it has not been possible to analyze, for example, which price range will be purchased next for each customer.

本発明は上記の事情を鑑みてなされたもので、顧客毎の購買行動をより高精度に予測することができる購買予測装置、方法、及びプログラムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a purchase prediction apparatus, method, and program capable of predicting purchase behavior for each customer with higher accuracy.

上記の目的を達成するために本発明に係る購買予測装置は、顧客を識別するための顧客識別情報と、前記顧客が購入した商品を識別するための商品識別情報と、前記顧客が購入した前記商品の商品価格とを含む顧客購買情報の集合を取得する取得手段と、前記取得手段によって取得された前記顧客購買情報の集合に基づいて、前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品価格を表す商品価格情報、前記商品の各々についての、前記商品が購入されたときの各々の商品価格を表す購入価格情報、及び前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品識別情報を表す購買数情報を生成するデータ生成手段と、前記顧客の各々について、前記データ生成手段によって生成された前記顧客の前記商品価格情報に基づいて、前記顧客が購入を検討する価格帯である内的参照価格として、前記商品価格の確率分布を推定する内的参照価格学習手段と、前記商品の各々について、前記データ生成手段によって生成された前記商品の前記購入価格情報に基づいて、前記商品の価格帯として、前記商品価格の確率分布を推定する商品価格帯学習手段と、前記顧客及び前記商品の組み合わせの各々について、前記データ生成手段によって生成された前記購買数情報に基づいて求められた、前記顧客の興味に基づく各トピックに帰属する確率を表す確率分布と、各トピックについて前記トピックにおける前記商品が購入される確率を表す確率分布とに基づいて、前記組み合わせの前記顧客が前記商品を購入する確率を推定する顧客興味学習手段と、前記商品の各々について、予測対象の顧客について前記内的参照価格として推定された前記商品価格の確率分布と、前記商品について前記購入価格情報として推定された前記商品価格の確率分布との類似度を計算する類似度計算手段と、前記商品の各々について、前記類似度計算手段によって計算された前記商品に対する前記類似度と、前記商品と前記予測対象の顧客との組み合わせについて推定された前記商品を購入する確率とに基づいて、前記予測対象の顧客が前記商品を購入する可能性を示すスコアを計算するスコア計算手段と、を含んで構成されている。   In order to achieve the above object, a purchase prediction apparatus according to the present invention includes customer identification information for identifying a customer, product identification information for identifying a product purchased by the customer, and the customer purchased An acquisition unit that acquires a set of customer purchase information including a product price of the product, and the product purchased by the customer for each of the customers based on the set of customer purchase information acquired by the acquisition unit Product price information representing each product price, purchase price information representing each product price when the product is purchased for each of the products, and the customer purchased for each of the customers Data generation means for generating purchase quantity information representing each product identification information of the product, and for each of the customers, the product price of the customer generated by the data generation means Based on the information, an internal reference price learning means for estimating a probability distribution of the product price as an internal reference price that is a price range that the customer considers purchasing, and for each of the products, the data generation means Based on the generated purchase price information of the product, the product price range learning means for estimating a probability distribution of the product price as the price range of the product, and the data for each combination of the customer and the product A probability distribution representing the probability of belonging to each topic based on the customer's interest, obtained based on the number-of-purchase information generated by the generating means, and a probability of purchasing the product in the topic for each topic A customer interest learning means for estimating a probability that the customer of the combination purchases the product based on a probability distribution; and the product For each, a similarity for calculating the similarity between the probability distribution of the product price estimated as the internal reference price for the customer to be predicted and the probability distribution of the product price estimated as the purchase price information for the product A degree calculation means, for each of the products, the similarity to the product calculated by the similarity calculation means, and the probability of purchasing the product estimated for the combination of the product and the customer to be predicted; And a score calculation means for calculating a score indicating the possibility that the prediction target customer purchases the product.

本発明に係る購買予測方法は、取得手段と、データ生成手段と、内的参照価格学習手段と、商品価格帯学習手段と、顧客興味学習手段と、類似度計算手段と、スコア計算手段とを含む購買予測装置における購買予測方法であって、前記取得手段によって、顧客を識別するための顧客識別情報と、前記顧客が購入した商品を識別するための商品識別情報と、前記顧客が購入した前記商品の商品価格とを含む顧客購買情報の集合を取得し、前記データ生成手段によって、前記取得手段によって取得された前記顧客購買情報の集合に基づいて、前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品価格を表す商品価格情報、前記商品の各々についての、前記商品が購入されたときの各々の商品価格を表す購入価格情報、及び前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品識別情報を表す購買数情報を生成し、前記内的参照価格学習手段によって、前記顧客の各々について、前記データ生成手段によって生成された前記顧客の前記商品価格情報に基づいて、前記顧客が購入を検討する価格帯である内的参照価格として、前記商品価格の確率分布を推定し、前記商品価格帯学習手段によって、前記商品の各々について、前記データ生成手段によって生成された前記商品の前記購入価格情報に基づいて、前記商品の価格帯として、前記商品価格の確率分布を推定し、前記顧客興味学習手段によって、前記顧客及び前記商品の組み合わせの各々について、前記データ生成手段によって生成された前記購買数情報に基づいて求められた、前記顧客の興味に基づく各トピックに帰属する確率を表す確率分布と、各トピックについて前記トピックにおける前記商品が購入される確率を表す確率分布とに基づいて、前記組み合わせの前記顧客が前記商品を購入する確率を推定し、前記類似度計算手段によって、前記商品の各々について、予測対象の顧客について前記内的参照価格として推定された前記商品価格の確率分布と、前記商品について前記購入価格情報として推定された前記商品価格の確率分布との類似度を計算し、前記スコア計算手段によって、前記商品の各々について、前記類似度計算手段によって計算された前記商品に対する前記類似度と、前記商品と前記予測対象の顧客との組み合わせについて推定された前記商品を購入する確率とに基づいて、前記予測対象の顧客が前記商品を購入する可能性を示すスコアを計算する   A purchase prediction method according to the present invention includes an acquisition unit, a data generation unit, an internal reference price learning unit, a product price range learning unit, a customer interest learning unit, a similarity calculation unit, and a score calculation unit. A purchase prediction method in a purchase prediction apparatus including: customer identification information for identifying a customer; product identification information for identifying a product purchased by the customer; and the customer purchased by the acquisition unit A set of customer purchase information including a product price of a product is acquired, and the customer purchases each of the customers based on the set of customer purchase information acquired by the acquisition unit by the data generation unit. Product price information representing the product price of each of the products, purchase price information representing the product price of each of the products when the product is purchased, and the customer For each of the products, the purchase number information representing the product identification information of each of the products purchased by the customer is generated, and the data is generated by the data generation unit for each of the customers by the internal reference price learning unit. Based on the product price information of the customer, the probability distribution of the product price is estimated as an internal reference price that is a price range that the customer considers purchasing, and each of the products is estimated by the product price range learning means. The probability distribution of the product price is estimated as the price range of the product based on the purchase price information of the product generated by the data generation unit, and the customer and the product are estimated by the customer interest learning unit. For each of the combinations, based on the customer's interest determined based on the purchase quantity information generated by the data generation means. The probability that the customer of the combination purchases the product is estimated based on a probability distribution representing the probability belonging to each topic and a probability distribution representing the probability that the product in the topic is purchased for each topic. , For each of the products, the product price probability distribution estimated as the internal reference price for the prediction target customer and the product price estimated as the purchase price information for the product. The degree of similarity with the probability distribution of the product is calculated, and the score calculation unit calculates the similarity for the product calculated by the similarity calculation unit for each of the products, and the product and the prediction target customer. Based on the probability of purchasing the product estimated for the combination, the prediction target customer purchases the product. Calculate a score indicating the likelihood

本発明に係るプログラムは、上記の購買予測装置の各手段としてコンピュータを機能させるためのプログラムである。   The program according to the present invention is a program for causing a computer to function as each unit of the purchase prediction apparatus.

以上説明したように、本発明の購買予測装置、方法、及びプログラムによれば、顧客が購入した商品とその価格との組み合わせを含む顧客購買情報の集合に基づいて、顧客毎に購入した商品の価格帯の確率分布、購入された商品毎の価格の確率分布、及び顧客の商品に対する興味の確率分布を推定し、これら推定した複数の確率分布に基づいて、商品毎に予測対象の顧客が次に当該商品を購入する可能性を表すスコアを計算することにより、顧客毎の購買行動をより高精度に予測することができる、という効果が得られる。   As described above, according to the purchase prediction apparatus, method, and program of the present invention, based on a set of customer purchase information including a combination of a product purchased by a customer and its price, Estimate the probability distribution of the price range, the probability distribution of the price for each purchased product, and the probability distribution of the interest of the customer's product, and based on these estimated probability distributions, By calculating a score representing the possibility of purchasing the product, it is possible to predict the purchase behavior for each customer with higher accuracy.

本実施の形態の購買予測装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the purchase prediction apparatus of this Embodiment. 本実施の形態における購買行動予測モデル学習部の出力例を示す図である。It is a figure which shows the example of an output of the purchase action prediction model learning part in this Embodiment. 本発明の実施の形態に係る購買予測装置における購買行動予測モデル学習ルーチンの内容を示すフローチャートである。It is a flowchart which shows the content of the purchase action prediction model learning routine in the purchase prediction apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る購買予測装置における購買行動予測ルーチンの内容を示すフローチャートである。It is a flowchart which shows the content of the purchase action prediction routine in the purchase prediction apparatus which concerns on embodiment of this invention. 各種データのデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of various data. 本発明の実施の形態に係る購買予測装置における購買予測処理ルーチンを実行した際に出力される購買予測例を示す図である。It is a figure which shows the example of a purchase prediction output when performing the purchase prediction process routine in the purchase prediction apparatus which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施の形態に係る購買予測装置100は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、後述する購買予測処理ルーチンを実行するためのプログラムを記憶したROM(Read Only Memory)とを備えたコンピュータで構成されている。このコンピュータは、機能的には、図1に示すように、取得部10と、演算部20と、記憶部30と、出力部40とを含んだ構成で表すことができる。   The purchase prediction apparatus 100 according to the present embodiment includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory) that stores a program for executing a purchase prediction processing routine to be described later. It is composed of a computer with As shown in FIG. 1, this computer can be functionally represented by a configuration including an acquisition unit 10, a calculation unit 20, a storage unit 30, and an output unit 40.

取得部10は、顧客が購買した商品と、その価格と、商品を購入した顧客の情報との組み合わせを示す顧客購買情報の集合を取得する。   The acquisition unit 10 acquires a set of customer purchase information indicating a combination of a product purchased by a customer, its price, and information of a customer who purchased the product.

演算部20は、購買行動予測モデル学習部21及び購買行動予測部22を備える。また、購買行動予測モデル学習部21は、データ生成部21a、内的参照価格学習処理部21b、商品価格帯学習処理部21c、及び顧客興味学習処理部21dを備え、購買行動予測部22は、類似度計算部22a及びスコア計算部22bを備える。   The calculation unit 20 includes a purchase behavior prediction model learning unit 21 and a purchase behavior prediction unit 22. The purchase behavior prediction model learning unit 21 includes a data generation unit 21a, an internal reference price learning processing unit 21b, a product price range learning processing unit 21c, and a customer interest learning processing unit 21d. A similarity calculation unit 22a and a score calculation unit 22b are provided.

<購買行動予測モデル学習部> <Purchasing Behavior Prediction Model Learning Department>

購買行動予測モデル学習部21では、取得部10により取得した顧客購買情報の集合を入力とし、学習の結果として、顧客毎に購入した商品の価格帯(以下、内的参照価格という)の確率分布、購入された商品毎の価格の確率分布、及び顧客の商品に対する興味の確率分布を出力する。   In the purchase behavior prediction model learning unit 21, a set of customer purchase information acquired by the acquisition unit 10 is input, and as a result of learning, a probability distribution of a price range (hereinafter referred to as an internal reference price) of a product purchased for each customer. The probability distribution of the price for each purchased product and the probability distribution of the interest of the customer's product are output.

まず、図1のデータ生成部21aは、取得部10が取得した顧客id(変数u)、商品id(変数b)、及び商品の価格(変数v)から成る各組L=<u,b,v>で構成された顧客購買情報の集合AllLogs=<L,L,...,L,...,L>を受け付ける。ここでMは、顧客n(n=1,...,N)のN人全体でK種類の商品k(k=1,...,K)を購入する全ての購入数を表している。同じ顧客が同一商品を何度も購入することがあるため、Mは(N×K)の値に限定されず、(N×K)以上の値を取り得る場合もある。 First, the data generation unit 21a in FIG. 1 sets each set L i = <consisting of the customer id (variable u i ), the product id (variable b i ), and the product price (variable v i ) acquired by the acquisition unit 10. A set of customer purchase information AllLogs = <L 1 , L 2 ,..., L i ,..., L M > configured by u i , b i , v i > Here, M represents the total number of purchases where K types of products k (k = 1,..., K) are purchased by all N customers n (n = 1,..., N). . Since the same customer may purchase the same product many times, M is not limited to the value of (N × K) and may take a value of (N × K) or more.

そして、データ生成部21aでは、顧客購買情報の集合AllLogsから、顧客n毎の購入した商品価格を表す商品価格情報UserLogs=<U,...,U>、U={v|u=n、i∈1,...,M}、商品k毎の購入された価格を表す購入価格情報ItemLogs=<B,...,B>、B={v|b=k、i∈1,...,M}、及び顧客n毎の購入した商品の購買数情報UserPurchase=<Upurchase,...,Upurchase>、Upurchase={b|u=n、i∈1,...,M}を生成する。 Then, in the data generation unit 21a, product price information UserLogs = <U 1 ,..., U N >, U n = {v i | u i = n, i∈1,..., M}, purchase price information indicating the purchased price for each product k ItemLogs = <B 1 , ..., B K >, B k = {v i | b i = k, i ∈ 1,..., M}, and purchase quantity information UserPurchase = <Upurchase 1 ,..., Upurchase N >, Upurchase n = {b i | u i = n, i∈1,..., M} is generated.

そして、顧客n毎の購入した商品価格を表す商品価格情報UserLogsを内的参照価格学習処理部21bへ出力し、商品k毎の購入された価格を表す購入価格情報ItemLogsを商品価格帯学習処理部21cへ出力し、顧客n毎の購入した商品の購買数情報UserPurchaseを顧客興味学習処理部21dへ出力する。   Then, the product price information UserLogs representing the product price purchased for each customer n is output to the internal reference price learning processing unit 21b, and the purchase price information ItemLogs representing the price purchased for each product k is output to the product price range learning processing unit. It outputs to 21c, and the purchase number information UserPurchase of the purchased goods for every customer n is output to the customer interest learning process part 21d.

内的参照価格学習処理部21bでは、データ生成部21aから出力された顧客n毎の商品価格情報UserLogs=<U,...,U>を受け付ける。その後、それぞれの顧客nが購入した商品価格情報Uについて、内的参照価格を、価格Priceを変数に取る確率分布Pinnerとして推定する。この確率分布Pinnerの推定には、例えば、混合ガウス分布が用いられる。これにより、顧客nの内的参照価格の確率分布Pinnerは、価格Priceを変数に取る確率分布である有限個(I個)の一次元正規分布の重み付き和として、(1)式のように表される。 The internal reference price learning processing unit 21b accepts product price information UserLogs = <U 1 ,..., U N > for each customer n output from the data generation unit 21a. Then, about the product price information U n that each customer n has purchased, to estimate the internal reference price, as the probability distribution Pinner n take the price Price in variable. For example, a mixed Gaussian distribution is used for estimating the probability distribution Pinner n . As a result, the probability distribution Pinner n of the internal reference price of customer n is, as a weighted sum of the one-dimensional normal distribution of a finite number is the probability distribution to take the price Price in variable (I number), (1) as of the formula It is expressed in

Figure 0006101620
Figure 0006101620

ここで、N(・)は正規分布を表す。また、μとσ は、それぞれ顧客nの内的参照価格の価格帯を表現するための正規分布iの平均値と分散値であり、πは正規分布iの乗数である。 Here, N (•) represents a normal distribution. Further, μ i and σ i 2 are the average value and variance value of the normal distribution i for representing the price range of the internal reference price of the customer n, respectively, and π i is a multiplier of the normal distribution i.

なお、この確率分布Pinnerの推定に用いられる分布は混合ガウス分布に限られず、例えば、対数正規分布やワイブル分布等、その他の確率分布を用いてもよい。 The distribution used for estimating the probability distribution Pinner n is not limited to the mixed Gaussian distribution, and other probability distributions such as a lognormal distribution and a Weibull distribution may be used.

このように、内的参照価格学習処理部21bは、顧客n毎に、顧客nが任意の商品価格に対して購入する確率を表すモデル曲線である、顧客nの内的参照価格の確率分布Pinnerを推定し、購買行動予測部22へ出力する。 In this way, the internal reference price learning processing unit 21b is a model curve representing the probability that the customer n purchases an arbitrary product price for each customer n, and the probability distribution Pinner of the internal reference price of the customer n. n is estimated and output to the purchase behavior prediction unit 22.

次に、商品価格帯学習処理部21cでは、データ生成部21aから出力された商品k毎の購入された価格を表す購入価格情報ItemLogs=<B,...,B>を受け付ける。 Next, the product price range learning processing unit 21c receives purchase price information ItemLogs = <B 1 ,..., B K > representing the purchased price for each product k output from the data generation unit 21a.

その後、それぞれの商品k毎の購入された価格の情報Bについて、その商品の価格帯を、価格Priceを変数に取る確率分布Pbとして推定する。この確率分布Pbの推定には、例えば、混合ガウス分布が用いられる。これにより、商品kの価格帯の確率分布Pbは、価格Priceを変数に取る確率分布である有限個(J個)の一次元正規分布の重み付き和として、(2)式のように表される。 After that, for the purchased price information B k for each product k, the price range of the product is estimated as a probability distribution Pb k taking the price Price as a variable. For example, a mixed Gaussian distribution is used for estimating the probability distribution Pb k . Table as a result, the probability distribution Pb k of the price range of commodity k is, as a weighted sum of the one-dimensional normal distribution of a finite number (J pieces) is the probability distribution to take the price Price in variable, equation (2) Is done.

Figure 0006101620
Figure 0006101620

ここで、γとδ は、それぞれ商品kの価格帯を表現するための正規分布jの平均値と分散値であり、ζは正規分布jの乗数である。 Here, γ j and δ j 2 are the average value and variance value of the normal distribution j for representing the price range of the product k, respectively, and ζ j is a multiplier of the normal distribution j.

なお、この確率分布Pbの推定に用いられる分布は混合ガウス分布に限られず、例えば、対数正規分布やワイブル分布等、その他の確率分布を用いてもよい。 The distribution used for estimating the probability distribution Pb k is not limited to the mixed Gaussian distribution, and other probability distributions such as a lognormal distribution and a Weibull distribution may be used.

このように、商品価格帯学習処理部21cは、商品k毎に、商品kがある価格で購入される確率を表すモデル曲線である、商品kの価格帯の確率分布Pbを推定し、購買行動予測部22へ出力する。 In this way, the product price range learning processing unit 21c estimates the probability distribution Pb k of the price range of the product k, which is a model curve representing the probability that the product k is purchased at a certain price for each product k. Output to the behavior prediction unit 22.

顧客興味学習処理部21dでは、データ生成部21aから出力された顧客n毎の購入した商品の購買数情報UserPurchase=<Upurchase,...,Upurchase>を受け付ける。その後、それぞれの顧客n及び商品kの組み合わせ毎に、当該顧客nが商品kを購入する確率Qを推定し、顧客の興味に基づく顧客が商品を購入する確率分布を推定する。 The customer interest learning processing unit 21d receives the number-of-purchase information UserPurchase = <Upurchase 1 ,..., Upurchase N > of products purchased for each customer n output from the data generation unit 21a. Thereafter, for each combination of the customer n and the product k, the probability Q that the customer n purchases the product k is estimated, and the probability distribution that the customer based on the customer's interest purchases the product is estimated.

顧客の商品に対する興味については、非特許文献3に記載されるLDA(Latent Dirichlet Allocation)が用いられる。LDAによって、顧客nの興味に基づく商品集合(トピック)zの各々の確率分布θ(z|n)と、各トピックzにおける商品kの確率分布φ(k|z)が得られる。ここで、zは顧客nが商品kを購入する行動における顧客の興味である。すなわち、LDAを用いることによって、顧客nが持つ各興味zの度合いθ(z|n)と、各興味zにおける商品kの購入されやすさφ(k|z)との積で、顧客nによる商品kの購買を推定することができる。   LDA (Latent Dirichlet Allocation) described in Non-Patent Document 3 is used for customer interest in products. With LDA, a probability distribution θ (z | n) of each product set (topic) z based on the interest of customer n and a probability distribution φ (k | z) of product k in each topic z are obtained. Here, z is the customer's interest in the behavior of customer n purchasing product k. In other words, by using LDA, the product of the degree of interest z of each customer n θ (z | n) and the ease of purchase of the product k in each interest z φ (k | z) The purchase of the item k can be estimated.

顧客の興味に基づく顧客nが商品kを購入する確率Q(k|n)は、(3)式のように表される。   The probability Q (k | n) that the customer n based on the customer's interest purchases the product k is expressed by the following equation (3).

Figure 0006101620
Figure 0006101620

このように、顧客興味学習処理部21dは、顧客n及び商品kの組み合わせ毎に、顧客の興味に基づく当該顧客nが商品kを購入する確率Q(k|n)を推定し、顧客の興味に基づく顧客が商品を購入する確率分布を購買行動予測部22へ出力する。   As described above, the customer interest learning processing unit 21d estimates, for each combination of the customer n and the product k, the probability Q (k | n) that the customer n purchases the product k based on the customer's interest. The probability distribution that the customer based on the purchase of the product is output to the purchase behavior prediction unit 22.

図2は、購買行動予測モデル学習部21の出力例を示した図である。図2(A)は、内的参照価格学習処理部21bにおいて推定された、顧客user_1の内的参照価格の確率分布Pinneruser_1の一例を示し、図2(B)は、商品価格帯学習処理部21cにおいて推定された、商品B_1の価格帯の確率分布PbB_1を示し、図2(C)は、顧客興味学習処理部21dにおいて推定された、顧客の興味に基づく顧客user_1が各商品kを購入する確率分布Q(k|user_1)を示している。 FIG. 2 is a diagram illustrating an output example of the purchase behavior prediction model learning unit 21. 2 (A) is estimated in the internal reference price learning processing section 21b, illustrates an example of a probability distribution Pinner user_1 the internal reference price customer user_1, FIG. 2 (B), commodity price learning processing unit FIG. 2C shows the probability distribution Pb B_1 of the price range of the product B_1 estimated in 21c, and FIG. 2C shows that the customer user_1 based on the customer's interest estimated by the customer interest learning processing unit 21d purchases each product k. The probability distribution Q (k | user_1) is shown.

図2(A)〜図2(C)からわかるように、確率分布Pinneruser_1及び確率分布PbB_1は、連続型の確率分布となり、確率Q(k|user_1)は、離散型の確率分布に従う。 As can be seen from FIGS. 2A to 2C, the probability distribution Piner user_1 and the probability distribution Pb B_1 are continuous probability distributions, and the probability Q (k | user_1) follows a discrete probability distribution.

<購買行動予測部> <Purchase Behavior Prediction Department>

購買行動予測部22では、予測対象の顧客idを入力として、顧客idに対応する顧客が各商品を購買する可能性を表すスコアを計算する。   The purchase behavior prediction unit 22 calculates a score representing the possibility that the customer corresponding to the customer id will purchase each product, using the customer id to be predicted as an input.

まず、類似度計算部22aでは、入力された顧客id:ninに基づいて、顧客id:ninに対応する顧客の内的参照価格の確率分布Pinnerninを得る。次に、全ての商品id:k(k∈1,...,K)に対して、商品kの価格帯の確率分布Pbと、顧客ninの内的参照価格の確率分布Pinnerninとの類似度を計算する。 First, the similarity calculation unit 22a obtains a probability distribution Pinin nin of the customer's internal reference price corresponding to the customer id: n in based on the input customer id: n in . Next, for all product id: k (kε1,..., K), the probability distribution Pb k of the price range of the product k and the probability distribution Pinin nin of the internal reference price of the customer n in Calculate the similarity of.

この類似度の計算は、KL Divergenceを用いて(4)式のように表される。   The calculation of the similarity is expressed as in equation (4) using KL Divergence.

Figure 0006101620
Figure 0006101620

このように、Pinnernin及びPbが、価格Priceに対する確率分布であることから、(4)式に示されるように、KL Divergenceは価格Priceを用いた積分関数として表される。なお、確率分布Pbと確率分布Pinnerninとの類似度KL(Pinnernin, Pb)の計算は、KL Divergenceに限らず、例えば、Cauchy Schwarz DivergenceやJensen Shannon Divergence等を用いてもよい。 Thus, since Pinner nin and Pb k are probability distributions with respect to the price Price, KL Divergence is expressed as an integral function using the price Price as shown in the equation (4). Note that the calculation of the similarity KL (Pinner nin , Pb k ) between the probability distribution Pb k and the probability distribution Pinin nin is not limited to KL Divergence, and for example, Cauchy Schwarz Divergence, Jensen Shannon Divergence, or the like may be used.

そして、顧客購買予測値sim(nin,k)は、KL Divergenceを用いて(5)式のように表される。 Then, the customer purchase forecast value sim (n in , k) is expressed as in equation (5) using KL Divergence.

Figure 0006101620
Figure 0006101620

このように、類似度計算部22aは、全ての商品id:k(k∈1,...,K)に対して、顧客の購買行動が商品の価格に起因するものとして予測した顧客購買予測値sim(nin,k)を計算し、スコア計算部22bへ出力する。 As described above, the similarity calculation unit 22a predicts the customer purchase prediction that the purchase behavior of the customer is attributed to the price of the product for all the product id: k (kε1,..., K). The value sim (n in , k) is calculated and output to the score calculation unit 22b.

スコア計算部22bは、類似度計算部22aから出力された商品k毎の顧客購買予測値sim(nin,k)を受け付ける。そして、商品k毎に、この顧客購買予測値sim(nin,k)に、顧客興味学習処理部21dで得られた、顧客の興味に基づく顧客ninが商品kを購入する確率Q(k|nin)を加味して、顧客ninが商品kを購入する可能性を表すスコアScore(k|nin)を(6)式に従って計算する。なお、顧客購買予測値sim(nin,k)に確率Q(k|nin)を加味する処理をスムージングという。 The score calculation unit 22b receives the customer purchase prediction value sim (n in , k) for each product k output from the similarity calculation unit 22a. Then, for each product k, the probability Q (k) that the customer n in based on the customer's interest obtained by the customer interest learning processing unit 21d purchases the product k in the customer purchase forecast value sim (n in , k). In consideration of | n in ), score Score (k | n in ) representing the possibility that customer n in purchases product k is calculated according to equation (6). The process of adding the probability Q (k | n in ) to the customer purchase forecast value sim (n in , k) is called smoothing.

Figure 0006101620
Figure 0006101620

ここで、αはスムージングのための処理であり、0≦α≦1の値をとる。αの値を調整することで、スコアScore(k|nin)に占める商品の価格に基づく購買行動の割合と、商品に対する興味に基づく購買行動の割合とを調整する。 Here, α is a process for smoothing and takes a value of 0 ≦ α ≦ 1. By adjusting the value of α, the proportion of purchase behavior based on the price of the product in the score Score (k | n in ) and the proportion of purchase behavior based on interest in the product are adjusted.

なお、ここでは(6)式で表される線形補間によって、スコアScore(k|nin)のスムージングを行ったが、非線形補間やUnigram Rescaling等のスムージング手法を用いてもよい。 Here, the score Score (k | n in ) is smoothed by the linear interpolation expressed by the equation (6), but a smoothing method such as nonlinear interpolation or Unigram Rescaling may be used.

そして、出力部40は、購買行動予測部22で商品k毎に予測された、顧客ninが商品kを購入する可能性を表すスコアScore(k|nin)を出力する。 Then, the output unit 40 outputs a score Score (k | n in ) that is predicted for each product k by the purchase behavior prediction unit 22 and represents the possibility that the customer n in purchases the product k.

次に、本実施の形態に係る購買予測装置100の作用について説明する。   Next, the operation of purchase prediction apparatus 100 according to the present embodiment will be described.

図3は、本実施の形態に係る購買予測装置100において実行される、購買行動予測モデル学習ルーチンのフローチャートである。   FIG. 3 is a flowchart of a purchase behavior prediction model learning routine executed in the purchase prediction apparatus 100 according to the present embodiment.

まず、ステップS101では、顧客id、商品id、及び商品の価格から成る各組Lを要素とする顧客購買情報の集合AllLogs=<L,L,...,L,...,L>を取得し、記憶部30に記憶する。図5に示す顧客購買情報50は、AllLogsのデータ構造を示したものである。 First, in step S101, customer id, item id, and customer purchase information set AllLogs = <L 1, L 2 of that with each set L i element consisting of the price of goods, ..., L i, ... , L M > and store it in the storage unit 30. The customer purchase information 50 shown in FIG. 5 shows the data structure of AllLogs.

次にステップS102では、記憶部30に記憶されている顧客購買情報の集合AllLogsから、顧客n毎の購入した商品価格を表す商品価格情報UserLogs=<U,...,U>を生成し、記憶部30に記憶する。 Next, in step S102, product price information UserLogs = <U 1 ,..., U N > representing the product price purchased for each customer n is generated from the set AllLogs of customer purchase information stored in the storage unit 30. And stored in the storage unit 30.

次にステップS103では、記憶部30に記憶されている顧客購買情報の集合AllLogsから、商品毎の購入された価格を表す購入価格情報ItemLogs=<B,...,B>を生成し、記憶部30に記憶する。 Next, in step S103, purchase price information ItemLogs = <B 1 ,..., B K > representing the purchase price for each product is generated from the set AllLogs of customer purchase information stored in the storage unit 30. And stored in the storage unit 30.

次にステップS104では、記憶部30に記憶されている顧客購買情報の集合AllLogsから、顧客毎の購入した商品の購買数情報UserPurchase=<Upurchase,...,Upurchase>を生成し、記憶部30に記憶する。 Next, in step S104, the purchase quantity information UserPurchase = <Upurchase 1 ,..., Upurchase N > of the products purchased for each customer is generated from the set AllLogs of customer purchase information stored in the storage unit 30 and stored. Store in unit 30.

なお、本実施の形態に係る購買予測装置100の購買行動予測モデル学習ルーチンでは、顧客毎の商品価格情報UserLogs、商品毎の購入価格情報ItemLogs、顧客毎の購入した商品の購買数情報UserPurchaseの順に生成したが、これらの各情報の生成順序に制限はなく、例えば、UserPurchase、ItemLogs、UserLogsの順に生成するようにしてもよい。   In the purchase behavior prediction model learning routine of the purchase prediction apparatus 100 according to the present embodiment, the product price information UserLogs for each customer, the purchase price information ItemLogs for each product, and the purchase number information UserPurchase for the product purchased for each customer. Although generated, there is no limitation on the generation order of these pieces of information. For example, the pieces of information may be generated in the order of UserPurchase, ItemLogs, and UserLogs.

そして、ステップS105では、ステップS102で生成した顧客毎の商品価格情報UserLogsを記憶部30から読み出し、顧客n毎に、顧客nの商品価格情報に基づいて、上記(1)式に示す顧客nの内的参照価格の確率分布Pinnerを推定して、記憶部30に記憶する。なお、図5に表した顧客の内的参照価格52は、ステップS105において算出された確率分布Pinnerの一例を示したものである。 In step S105, the product price information UserLogs for each customer generated in step S102 is read from the storage unit 30, and for each customer n, based on the product price information of the customer n, the customer n shown in the above equation (1). The probability distribution Pinner n of the internal reference price is estimated and stored in the storage unit 30. The customer's internal reference price 52 shown in FIG. 5 is an example of the probability distribution Pinner n calculated in step S105.

ここで、顧客の内的参照価格52のパラメータ1、パラメータ2、・・・、パラメータrの並びは、例えば、複数の一次元正規分布の各々を規定する(乗数π、平均値μ、分散値σ )の組を繰り返し示したものになる。 Here, the arrangement of the parameter 1, parameter 2,..., Parameter r of the customer's internal reference price 52 defines, for example, each of a plurality of one-dimensional normal distributions (multiplier π i , average value μ i , A set of dispersion values σ i 2 ) is repeatedly shown.

次にステップS106では、ステップS103で生成した商品毎の購入価格情報ItemLogsを記憶部30から読み出し、商品k毎に、商品kの購入価格情報に基づいて、上記(2)式に示す商品kの価格帯の確率分布Pbを推定して、記憶部30に記憶する。なお、図5に表した商品の価格帯54は、ステップS106において算出された確率分布Pbの一例を示したものである。 Next, in step S106, the purchase price information ItemLogs for each product generated in step S103 is read from the storage unit 30, and for each product k, based on the purchase price information of the product k, the product k shown in the above equation (2). The probability distribution Pb k of the price range is estimated and stored in the storage unit 30. The price range 54 of the product shown in FIG. 5 is an example of the probability distribution Pb k calculated in step S106.

ここで、商品の価格帯54のパラメータ1、パラメータ2、・・・、パラメータsの並びは、内的参照価格52のデータ構造と同様に、例えば、複数の一次元正規分布の各々を規定する(乗数ζ、平均値γ、分散値δ )の組を繰り返し示したものになる。 Here, the arrangement of the parameter 1, the parameter 2,..., The parameter s of the product price range 54 defines, for example, each of a plurality of one-dimensional normal distributions as in the data structure of the internal reference price 52. A set of (multiplier ζ j , average value γ j , variance value δ j 2 ) is repeatedly shown.

次にステップS107では、ステップS104で生成した顧客毎の購入した商品の購買数情報UserPurchaseを記憶部30から読み出し、非特許文献3で示されるLDAに基づいた学習方法により、顧客nが持つ各興味zの度合いを表す確率分布θ(z|n)と、各興味zにおける商品kの購入されやすさを表す確率分布φ(k|z)を算出する。   Next, in step S107, the purchase quantity information UserPurchase of the product purchased for each customer generated in step S104 is read from the storage unit 30, and each interest of the customer n is obtained by the learning method based on LDA shown in Non-Patent Document 3. A probability distribution θ (z | n) representing the degree of z and a probability distribution φ (k | z) representing the ease of purchase of the product k for each interest z are calculated.

例えば、購買数情報UserPurchaseの要素Upurchaseで示される各顧客nの購買データの各々に対して、トピック(興味)zを割り当てる処理を、尤度が収束するまで繰り返し実施し、最終的に得られた各顧客nの購買データの各々に対するトピックの割り当てに基づいて、確率分布θ(z|n)及び確率分布φ(k|z)を算出すればよい。 For example, the process of assigning a topic (interest) z to each purchase data of each customer n indicated by the element Upurchase N of the purchase quantity information UserPurchase is repeatedly performed until the likelihood converges, and finally obtained. The probability distribution θ (z | n) and the probability distribution φ (k | z) may be calculated based on the topic assignment to each of the purchase data of each customer n.

そして、顧客nと商品kとの組み合わせの各々について、顧客nに関する確率分布θ(z|n)と、商品kに関する確率分布φ(k|z)と、に基づいて、上記(3)式に従って、顧客の興味に基づく顧客nが商品kを購入する確率Q(k|n)を算出して、各組み合わせに対する確率Q(k|n)を、顧客の興味に基づく顧客が商品を購入する確率分布として記憶部30に記憶する。なお、図5に表した、顧客の興味に基づく商品の購入確率56は、ステップS107において算出された確率Q(k|n)の一例を示すものである。   Then, for each combination of customer n and product k, according to the above equation (3), based on probability distribution θ (z | n) for customer n and probability distribution φ (k | z) for product k The probability Q (k | n) that the customer n based on the customer's interest calculates the product k is calculated, and the probability Q (k | n) for each combination is calculated as the probability that the customer based on the customer's interest purchases the product. The distribution is stored in the storage unit 30. The product purchase probability 56 based on the customer's interest shown in FIG. 5 is an example of the probability Q (k | n) calculated in step S107.

なお、本実施の形態に係る購買予測装置100の購買予測処理ルーチンでは、確率分布Pinner、確率分布Pb、確率Q(k|n)の分布の順に生成したが、これらの確率分布の生成順序に制限はなく、例えば、確率Q(k|n)の分布、確率分布Pb、確率分布Pinnerの順に生成するようにしてもよい。 In the purchase prediction processing routine of the purchase prediction apparatus 100 according to the present embodiment, the probability distribution Pinn n , the probability distribution Pb k , and the probability Q (k | n) are generated in this order. The order is not limited, and for example, the distribution may be generated in the order of probability Q (k | n) distribution, probability distribution Pb k , and probability distribution Pinn n .

以上の処理によって、顧客購買情報の集合AllLogsから、顧客n毎の内的参照価格の確率分布Pinner、商品k毎の価格帯の確率分布Pb、及び顧客の興味に基づく顧客nが商品kを購入する確率Q(k|n)の分布を算出する。 By the above process, from the set AllLogs of customer purchase information, customer probability distribution of the internal reference price of each n Pinner n, commodity probability distribution Pb k of the price range of each k, and customers n commodity k based on the interest of the customer The distribution of the probability Q (k | n) of purchasing is calculated.

一方、図4は、本実施の形態に係る購買予測装置100において実行される、購買行動予測ルーチンのフローチャートである。本フローチャートは、図3に示す購買行動予測モデル学習ルーチン終了後に実施される。   On the other hand, FIG. 4 is a flowchart of a purchase behavior prediction routine executed in the purchase prediction apparatus 100 according to the present embodiment. This flowchart is performed after the purchase behavior prediction model learning routine shown in FIG.

まず、ステップS201では、商品に対する購買予測の対象となる顧客id:ninを取得し、記憶部30に記憶する。この場合、取得する顧客id:ninは、1つでも複数でもよい。 First, in step S <b> 201, customer id: n in which is a target of purchase prediction for a product is acquired and stored in the storage unit 30. In this case, the customer id: n in to be acquired may be one or plural.

次にステップS202では、ステップS201で取得した顧客id:ninに対応する顧客の内的参照価格の確率分布Pinnerninを記憶部30から読み出すと共に、図3のステップS106で算出した、全ての商品kの価格帯の確率分布Pbを記憶部30から読み出す。 Next, in step S202, the probability distribution Pinin nin of the customer's internal reference price corresponding to the customer id: n in acquired in step S201 is read from the storage unit 30, and all the products calculated in step S106 of FIG. The probability distribution Pb k of the price range of k is read from the storage unit 30.

そして、商品k毎に、ステップS201で取得した顧客id:ninに対応する確率分布Pinnerninと、当該商品kの確率分布Pbと、に基づいて、上記(4)式に従って、確率分布Pbと、顧客の内的参照価格の確率分布Pinnerninとの類似度KL(Pinnernin, Pb)を算出する。 Then, for each product k, the probability distribution Pb according to the above equation (4) based on the probability distribution Pinin nin corresponding to the customer id: n in acquired in step S201 and the probability distribution Pb k of the product k. The degree of similarity KL (Pinner nin , Pb k ) between k and the probability distribution Pinin nin of the customer's internal reference price is calculated.

更に、商品k毎に、この算出した類似度KL(Pinnernin, Pb)に基づいて、上記(5)式に従って、商品kに対する顧客購買予測値sim(nin,k)を算出し、記憶部30に記憶する。 Further, for each product k, based on the calculated similarity KL (Pinner nin , Pb k ), the customer purchase forecast value sim (n in , k) for the product k is calculated according to the above equation (5) and stored. Store in unit 30.

ステップS203では、商品k毎に、記憶部30に記憶されている実数α(0≦α≦1)、上記ステップS202で算出された商品kに対するsim(nin,k)、図3のステップS107で算出した、商品k及び顧客id:ninに対応するQ(k|nin)に基づいて、上記(6)式に従って、顧客id:ninに対応する顧客が商品kを購入する可能性を表すスコアScore(k|nin)を算出し、記憶部30に記憶する。そして、例えば、購買予測装置100に備えられた図示しない表示部に、記憶部30に記憶されている商品k毎のスコアScore(k|nin)を表示する。なお、図5に表した商品購買スコア58は、ステップS202において計算されたスコアの一例を示したものである。 In step S203, for each product k, the real number α (0 ≦ α ≦ 1) stored in the storage unit 30, sim (n in , k) for the product k calculated in step S202, step S107 in FIG. Based on Q (k | n in ) corresponding to the product k and the customer id: n in calculated in step (2), the customer corresponding to the customer id: n in may purchase the product k according to the above equation (6). The score Score (k | n in ) representing is calculated and stored in the storage unit 30. For example, the score Score (k | n in ) for each product k stored in the storage unit 30 is displayed on a display unit (not shown) provided in the purchase prediction device 100. The product purchase score 58 shown in FIG. 5 is an example of the score calculated in step S202.

なお、スコアScore(k|nin)の出力先は表示部に限らず、例えば、図示しない通信回線を介して図示しない情報端末へスコアScore(k|nin)を出力し、当該図示しない情報端末でスコアScore(k|nin)を表示するようにしてもよく、またプリンタ等の画像形成装置にスコアScore(k|nin)を出力するようにしてもよい。 The output destination of the score Score (k | n in ) is not limited to the display unit. For example, the score Score (k | n in ) is output to an information terminal (not shown) via a communication line (not shown), and the information (not shown) score terminal score (k | n in) may be displayed, also the score in an image forming apparatus such as a printer score (k | n in) may be output.

<実施結果> <Results>

図6は、本実施の形態に係る購買予測装置100の図3で示された購買行動予測モデル学習ルーチンを実施した後、図4で示された購買予測処理ルーチンを実施した際、図4のステップS201の処理にて顧客id:user_1を取得した場合のスコアScore(k|user_1)の出力例を示した図である。この場合、図6に示すように、顧客id:user_1に対して、商品k毎のスコアが、商品idと共に出力される。   FIG. 6 illustrates a case where the purchase prediction processing routine shown in FIG. 4 is executed after the purchase behavior prediction model learning routine shown in FIG. 3 of the purchase prediction apparatus 100 according to the present embodiment is executed. It is the figure which showed the example of an output of score Score (k | user_1) at the time of acquiring customer id: user_1 in the process of step S201. In this case, as shown in FIG. 6, the score for each product k is output together with the product id to the customer id: user_1.

ここで、スコアは非負値であり、スコアの値が大きい程、顧客user_1が次の購買機会に該当の商品idで示される商品を購入する可能性が高いことを示している。また、スコアの値を降順、すなわち、スコアの値を大きいものから小さいものに順に並べ替えることによって、顧客user_1が購入する可能性の高い商品を、ランキング形式で出力することも可能である。なお、スコアの出力順は降順に限られず、スコアの値を目的に沿った順に並べ替えてもよいことは言うまでもない。   Here, the score is a non-negative value, and the larger the score value, the higher the possibility that the customer user_1 purchases the product indicated by the corresponding product id at the next purchase opportunity. Further, by rearranging the score values in descending order, that is, in order from the largest score value to the smallest value, it is also possible to output products that are likely to be purchased by the customer user_1 in a ranking format. Needless to say, the score output order is not limited to descending order, and the score values may be rearranged in the order in accordance with the purpose.

このように、購買予測装置100では、顧客単位で次にどの商品が購入されるか分析をすることが可能となり、顧客毎の購買行動をより高精度に予測することができるようになった。   As described above, the purchase prediction apparatus 100 can analyze which product is to be purchased next for each customer, and can predict purchase behavior for each customer with higher accuracy.

以上説明したように、本発明の実施の形態に係る購買予測装置によれば、顧客の購買行動を、顧客が購入した商品とその価格との組み合わせで記述し、その集合を入力として受け取る。その後、受け付けた情報に基づいて、顧客毎に購入した商品の内的参照価格の確率分布、購入された商品毎の価格の確率分布、及び顧客の興味に基づく顧客が商品を購入する確率を推定する。そして、顧客毎の内的参照価格と商品毎の価格の確率分布を入力として、商品の価格に基づく顧客購買予測値を算出すると共に、当該顧客予測値と顧客の興味に基づく顧客が商品を購入する確率とをスムージングして、商品毎に顧客が次に購入すると思われる可能性を表すスコアを出力することにより、より高精度に顧客毎の購買行動を予測することができる。   As described above, according to the purchase prediction apparatus according to the embodiment of the present invention, the purchase behavior of the customer is described by the combination of the product purchased by the customer and its price, and the set is received as an input. Then, based on the received information, estimate the probability distribution of the internal reference price of the product purchased for each customer, the probability distribution of the price for each purchased product, and the probability that the customer will purchase the product based on the customer's interest To do. Then, using the internal reference price for each customer and the probability distribution of the price for each product as input, the customer purchase forecast value based on the price of the product is calculated, and the customer purchases the product based on the customer forecast value and the customer's interest The purchase behavior for each customer can be predicted with higher accuracy by smoothing the probability of performing and outputting a score representing the possibility that the customer will purchase next for each product.

これにより、商品の仕入れや広告戦略を顧客毎に最適化することができると共に、各々の顧客がどの価格帯の商品を購入しやすいか、また、各々の商品がどの価格帯で購入されやすいかといった情報を把握できるようになり、自顧客の購買行動の把握及び商品毎のブランド価値の把握を実現することができる。   This makes it possible to optimize product purchases and advertising strategies for each customer, as well as what price range each customer is likely to purchase, and at what price range each product is likely to be purchased. Such information can be grasped, and the purchase behavior of the customer and the brand value for each product can be grasped.

なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.

例えば、上述の購買予測装置は、内部にコンピュータシステムを有しているが、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。   For example, the purchase forecasting apparatus described above has a computer system inside, but the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.

また、本願明細書中において、プログラムが予めインストールされている実施形態として説明したが、当該プログラムを、コンピュータ読み取り可能な記録媒体に格納して提供することも可能である。   In the present specification, the embodiment has been described in which the program is installed in advance. However, the program can be provided by being stored in a computer-readable recording medium.

10 入力部
20 演算部
21 購買行動予測モデル学習部
22 購買行動予測部
30 記憶部
40 出力部
100 購買予測装置
DESCRIPTION OF SYMBOLS 10 Input part 20 Calculation part 21 Purchasing behavior prediction model learning part 22 Purchasing behavior prediction part 30 Storage part 40 Output part 100 Purchasing prediction apparatus

Claims (3)

顧客を識別するための顧客識別情報と、前記顧客が購入した商品を識別するための商品識別情報と、前記顧客が購入した前記商品の商品価格とを含む顧客購買情報の集合を取得する取得手段と、
前記取得手段によって取得された前記顧客購買情報の集合に基づいて、前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品価格を表す商品価格情報、前記商品の各々についての、前記商品が購入されたときの各々の商品価格を表す購入価格情報、及び前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品識別情報を表す購買数情報を生成するデータ生成手段と、
前記顧客の各々について、前記データ生成手段によって生成された前記顧客の前記商品価格情報に基づいて、前記顧客が購入を検討する価格帯である内的参照価格として、前記商品価格の確率分布を推定する内的参照価格学習手段と、
前記商品の各々について、前記データ生成手段によって生成された前記商品の前記購入価格情報に基づいて、前記商品の価格帯として、前記商品価格の確率分布を推定する商品価格帯学習手段と、
前記顧客及び前記商品の組み合わせの各々について、前記データ生成手段によって生成された前記購買数情報に基づいて求められた、前記顧客の興味に基づく各トピックに帰属する確率を表す確率分布と、各トピックについて前記トピックにおける前記商品が購入される確率を表す確率分布とに基づいて、前記組み合わせの前記顧客が前記商品を購入する確率を推定する顧客興味学習手段と、
前記商品の各々について、予測対象の顧客について前記内的参照価格として推定された前記商品価格の確率分布と、前記商品について前記購入価格情報として推定された前記商品価格の確率分布との類似度を計算する類似度計算手段と、
前記商品の各々について、前記類似度計算手段によって計算された前記商品に対する前記類似度と、前記商品と前記予測対象の顧客との組み合わせについて推定された前記商品を購入する確率とに基づいて、前記予測対象の顧客が前記商品を購入する可能性を示すスコアを計算するスコア計算手段と、
を含む購買予測装置。
Acquisition means for acquiring a set of customer purchase information including customer identification information for identifying a customer, product identification information for identifying a product purchased by the customer, and a product price of the product purchased by the customer When,
Based on the set of customer purchase information acquired by the acquisition means, for each of the customers, product price information representing the product price of each of the products purchased by the customer, for each of the products, Data generation means for generating purchase price information representing each product price when the product is purchased, and purchase number information representing each product identification information of each of the products purchased by the customer for each of the customers; ,
For each of the customers, based on the product price information of the customer generated by the data generation means, the probability distribution of the product price is estimated as an internal reference price that is a price range that the customer considers purchasing. An internal reference price learning means to
Product price range learning means for estimating a probability distribution of the product price as the price range of the product based on the purchase price information of the product generated by the data generation means for each of the products,
For each of the combination of the customer and the product, a probability distribution representing the probability attributed to each topic based on the customer's interest, obtained based on the purchase quantity information generated by the data generation means, and each topic Customer interest learning means for estimating a probability that the customer of the combination will purchase the product based on a probability distribution representing a probability that the product in the topic will be purchased.
For each of the products, the degree of similarity between the probability distribution of the product price estimated as the internal reference price for the customer to be predicted and the probability distribution of the product price estimated as the purchase price information for the product Similarity calculation means for calculating;
For each of the products, based on the similarity to the product calculated by the similarity calculation means, and the probability of purchasing the product estimated for the combination of the product and the prediction target customer, A score calculation means for calculating a score indicating a possibility that the prediction target customer purchases the product;
A purchase forecasting device including
取得手段と、データ生成手段と、内的参照価格学習手段と、商品価格帯学習手段と、顧客興味学習手段と、類似度計算手段と、スコア計算手段とを含む購買予測装置における購買予測方法であって、
前記取得手段によって、顧客を識別するための顧客識別情報と、前記顧客が購入した商品を識別するための商品識別情報と、前記顧客が購入した前記商品の商品価格とを含む顧客購買情報の集合を取得し、
前記データ生成手段によって、前記取得手段によって取得された前記顧客購買情報の集合に基づいて、前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品価格を表す商品価格情報、前記商品の各々についての、前記商品が購入されたときの各々の商品価格を表す購入価格情報、及び前記顧客の各々についての、前記顧客が購入した前記商品の各々の商品識別情報を表す購買数情報を生成し、
前記内的参照価格学習手段によって、前記顧客の各々について、前記データ生成手段によって生成された前記顧客の前記商品価格情報に基づいて、前記顧客が購入を検討する価格帯である内的参照価格として、前記商品価格の確率分布を推定し、
前記商品価格帯学習手段によって、前記商品の各々について、前記データ生成手段によって生成された前記商品の前記購入価格情報に基づいて、前記商品の価格帯として、前記商品価格の確率分布を推定し、
前記顧客興味学習手段によって、前記顧客及び前記商品の組み合わせの各々について、前記データ生成手段によって生成された前記購買数情報に基づいて求められた、前記顧客の興味に基づく各トピックに帰属する確率を表す確率分布と、各トピックについて前記トピックにおける前記商品が購入される確率を表す確率分布とに基づいて、前記組み合わせの前記顧客が前記商品を購入する確率を推定し、
前記類似度計算手段によって、前記商品の各々について、予測対象の顧客について前記内的参照価格として推定された前記商品価格の確率分布と、前記商品について前記購入価格情報として推定された前記商品価格の確率分布との類似度を計算し、
前記スコア計算手段によって、前記商品の各々について、前記類似度計算手段によって計算された前記商品に対する前記類似度と、前記商品と前記予測対象の顧客との組み合わせについて推定された前記商品を購入する確率とに基づいて、前記予測対象の顧客が前記商品を購入する可能性を示すスコアを計算する
購買予測方法。
A purchase prediction method in a purchase prediction apparatus including an acquisition means, a data generation means, an internal reference price learning means, a product price range learning means, a customer interest learning means, a similarity calculation means, and a score calculation means There,
A set of customer purchase information including customer identification information for identifying a customer by the acquisition means, product identification information for identifying a product purchased by the customer, and a product price of the product purchased by the customer Get
Product price information representing the product price of each of the products purchased by the customer for each of the customers based on the set of customer purchase information acquired by the acquisition unit by the data generating unit, the product Purchase price information representing each product price when each of the products is purchased, and purchase number information representing each product identification information of each of the products purchased by the customer for each of the customers. Generate
As the internal reference price that is a price range that the customer considers purchasing based on the product price information of the customer generated by the data generating means for each of the customers by the internal reference price learning means. , Estimate the probability distribution of the product price,
The product price range learning means estimates the probability distribution of the product price as the price range of the product based on the purchase price information of the product generated by the data generation means for each of the products,
The probability of belonging to each topic based on the customer's interest, determined based on the purchase quantity information generated by the data generation unit, for each combination of the customer and the product by the customer interest learning unit. Estimating the probability that the customer of the combination will purchase the product based on the probability distribution that represents and the probability distribution that represents the probability that the product on the topic will be purchased for each topic;
For each of the products, a probability distribution of the product price estimated as the internal reference price for each of the products, and the product price estimated as the purchase price information for the product. Calculate the similarity with the probability distribution,
Probability of purchasing the product estimated by the score calculation means for each of the products for the combination of the similarity calculated by the similarity calculation means with the product and the prediction target customer Based on the above, a purchase prediction method for calculating a score indicating a possibility that the prediction target customer purchases the product.
コンピュータを、請求項1記載の購買予測装置の各手段として機能させるためのプログラム。   The program for functioning a computer as each means of the purchase prediction apparatus of Claim 1.
JP2013234396A 2013-11-12 2013-11-12 Purchase forecasting apparatus, method, and program Active JP6101620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234396A JP6101620B2 (en) 2013-11-12 2013-11-12 Purchase forecasting apparatus, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234396A JP6101620B2 (en) 2013-11-12 2013-11-12 Purchase forecasting apparatus, method, and program

Publications (2)

Publication Number Publication Date
JP2015095120A JP2015095120A (en) 2015-05-18
JP6101620B2 true JP6101620B2 (en) 2017-03-22

Family

ID=53197476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234396A Active JP6101620B2 (en) 2013-11-12 2013-11-12 Purchase forecasting apparatus, method, and program

Country Status (1)

Country Link
JP (1) JP6101620B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781906B2 (en) * 2015-05-22 2020-11-11 株式会社LeapOne Sales information usage device, sales information usage method, and program
KR102478736B1 (en) * 2015-08-06 2022-12-19 에스케이플래닛 주식회사 System for recommending optimal card, apparatus of recommending optimal card based on payment time and method using the same
KR102616251B1 (en) * 2015-08-06 2023-12-21 에스케이플래닛 주식회사 System for recommending optimal card, apparatus of recommending optimal card using change in the recommended card and method using the same
JP6965713B2 (en) * 2017-12-12 2021-11-10 富士フイルムビジネスイノベーション株式会社 Information processing equipment and programs
JP6744882B2 (en) 2018-02-26 2020-08-19 株式会社日立製作所 Action pattern search system and action pattern search method
KR102587120B1 (en) * 2019-04-05 2023-10-31 주식회사 비즈모델라인 Method for Processing Intention Index Information

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200698A (en) * 1993-12-29 1995-08-04 Nec Corp Deciding system for optimum price
US8458012B2 (en) * 2009-10-02 2013-06-04 Truecar, Inc. System and method for the analysis of pricing data including a sustainable price range for vehicles and other commodities
JP5530394B2 (en) * 2011-04-14 2014-06-25 日本電信電話株式会社 Purchase data analysis apparatus, method, and program
JP5331159B2 (en) * 2011-05-17 2013-10-30 日本電信電話株式会社 Product recommendation method, product recommendation device, and product recommendation program

Also Published As

Publication number Publication date
JP2015095120A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6101620B2 (en) Purchase forecasting apparatus, method, and program
US10776816B2 (en) System and method for building a targeted audience for an online advertising campaign
CN111008858A (en) Commodity sales prediction method and system
CA3007338A1 (en) Method and system for purchase behavior prediction of customers
JP5490298B1 (en) In-store information distribution apparatus, in-store information distribution method, and in-store information distribution program
CN112330358A (en) Method and apparatus for product sales prediction, storage medium, and electronic device
JP2020087023A (en) Order acceptance prediction model generating method, order acceptance prediction model, order acceptance predicting apparatus, order acceptance predicting method, and order acceptance predicting program
CN111400613A (en) Article recommendation method, device, medium and computer equipment
US20190080352A1 (en) Segment Extension Based on Lookalike Selection
JP5251217B2 (en) Sales number prediction system, operation method of sales number prediction system, and sales number prediction program
US10832283B1 (en) System, method, and computer program for providing an instance of a promotional message to a user based on a predicted emotional response corresponding to user characteristics
JP2015166989A (en) information processing apparatus and information analysis method
JP2019215862A (en) Action analysis system using action history data and program therefor
Jowaheer et al. A BINAR (1) time-series model with cross-correlated COM–Poisson innovations
KR20150122307A (en) Method and server apparatus for advertising
CN110348947B (en) Object recommendation method and device
JP6169511B2 (en) Apparatus, program, and method for analyzing poster&#39;s psychological transition based on comment text
CN111476613A (en) Shopping guide auxiliary method and device based on passenger flow analysis, server and storage medium
CN113886697A (en) Clustering algorithm based activity recommendation method, device, equipment and storage medium
US10362129B2 (en) Optimizing value of content items delivered for a content provider
KR20220082603A (en) Advertising method and apparatus for generating advertising strategy
Abbas et al. Active learning empowered sentiment analysis: An approach for optimizing smartphone customer’s review sentiment classification
JP5603678B2 (en) Demand forecasting apparatus and demand forecasting method
KR101603977B1 (en) Prediction system for business ordering possibillity
JP2013156691A (en) Purchase prediction device, method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6101620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150