JP6101441B2 - Large current coil - Google Patents

Large current coil Download PDF

Info

Publication number
JP6101441B2
JP6101441B2 JP2012153573A JP2012153573A JP6101441B2 JP 6101441 B2 JP6101441 B2 JP 6101441B2 JP 2012153573 A JP2012153573 A JP 2012153573A JP 2012153573 A JP2012153573 A JP 2012153573A JP 6101441 B2 JP6101441 B2 JP 6101441B2
Authority
JP
Japan
Prior art keywords
output side
input
coil
input side
toroidal core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012153573A
Other languages
Japanese (ja)
Other versions
JP2014017365A (en
Inventor
武治 依田
武治 依田
猫塚 克行
克行 猫塚
横田 英俊
英俊 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soshin Electric Co Ltd
Original Assignee
Soshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soshin Electric Co Ltd filed Critical Soshin Electric Co Ltd
Priority to JP2012153573A priority Critical patent/JP6101441B2/en
Publication of JP2014017365A publication Critical patent/JP2014017365A/en
Application granted granted Critical
Publication of JP6101441B2 publication Critical patent/JP6101441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、例えば高電力電気装置あるいはインバータ等の電力変換装置等に使用されるノイズフィルタ等に用いられる大電流用コイルに関する。   The present invention relates to a high-current coil used for a noise filter or the like used in, for example, a high-power electric device or a power converter such as an inverter.

ノイズフィルタは、コイル及びコンデンサから構成され、電源回路のノイズ抑制を目的に使用される。近年、これらの電源回路を使用する装置においては、大電流化及び小型化が進んでおり、同装置に使用されるノイズフィルタもその例外でない。   The noise filter includes a coil and a capacitor, and is used for the purpose of suppressing noise in the power supply circuit. In recent years, devices using these power supply circuits have been increased in current and size, and noise filters used in the devices are no exception.

従来、大電流化させる方法としては、例えば特許文献1の図10に示すように、コアにコイル形成用金属板(ブスバー)を貫通させてコイルを構成する方法があり、さらに小型化させる方法として、特許文献1の図1及び図2等並びに特許文献2の図1及び図2等のようにコイル形成用金属板を巻回してコイルを構成する方法が提案されている。特許文献1記載のコイルは、コイル形成用金属板をねじ止めにより巻線化させた構造を採用し、特許文献2記載のコイルは、コイル形成用金属板をはんだ付けにより巻線化させた構造を採用しており、いずれも大電流化及び一定の小型化を達成することができるようになった。   Conventionally, as a method of increasing the current, for example, as shown in FIG. 10 of Patent Document 1, there is a method of forming a coil by passing a coil forming metal plate (bus bar) through the core. 1 and 2 of Patent Document 1 and FIGS. 1 and 2 of Patent Document 2 have proposed a method of forming a coil by winding a coil forming metal plate. The coil described in Patent Document 1 employs a structure in which a coil forming metal plate is wound by screwing, and the coil described in Patent Document 2 has a structure in which the coil forming metal plate is wound by soldering. In both cases, a large current and a certain size reduction can be achieved.

コイルのインダクタンス値Lは、L=Lx×N×Dで計算される(Lx:コア1貫通あたりのインダクタンス値、N:コイル巻き数、D:コア使用数)。従って、コア貫通タイプにおいては、コア数を増加させることで、また、コア巻きタイプでは、巻数を増加させることで、インダクタンス値Lを大きくすることができる。また、コア巻きタイプは、コア数削減によるスペース縮小により、製品を小さくすることが可能となる。また、コイルの許容電流は、コイル形成用金属板(ブスバー)の断面積に比例する。 The inductance value L of the coil is calculated as L = Lx × N 2 × D (Lx: inductance value per core penetration, N: number of coil turns, D: number of cores used). Therefore, the inductance value L can be increased by increasing the number of cores in the core penetration type, and by increasing the number of turns in the core winding type. Further, the core winding type can reduce the size of the product by reducing the space by reducing the number of cores. The allowable current of the coil is proportional to the cross-sectional area of the coil forming metal plate (bus bar).

特開平10−106861号公報Japanese Patent Laid-Open No. 10-106861 特開2001−274030号公報JP 2001-274030 A

ところで、上述した従来のコイルは、コイル形成用金属板の板面同士をねじ止めしたりはんだ付けするようにしている。この場合、金属板の板面の幅を広くすると、コアの径を大きくする必要があり、その分、コイル全体のサイズが大きくなり、実装スペースも大きくなる。そこで、コイル全体の小型化を狙ってコイル形成用金属板の板面の幅を小さくすると、それに応じてコイル形成用金属板の表面積が小さくなり、放熱性が悪化する。そのため、コイル形成用金属板の板面の狭小化には限界があり、小型化並びに実装スペースの省スペース化を促進させることができない。また、従来のコイルは、コイル形成用金属板をL字形やそれ以上の複雑な形状に加工しなければならず、市販の金属板からの切り出し工数や材料ロスが大きい。   By the way, in the conventional coil described above, the plate surfaces of the coil forming metal plate are screwed together or soldered. In this case, if the width of the plate surface of the metal plate is increased, it is necessary to increase the diameter of the core, and accordingly, the size of the entire coil increases and the mounting space also increases. Therefore, if the width of the plate surface of the coil-forming metal plate is reduced with the aim of reducing the size of the entire coil, the surface area of the coil-forming metal plate is reduced accordingly, and the heat dissipation is deteriorated. Therefore, there is a limit to narrowing the plate surface of the coil forming metal plate, and it is not possible to promote downsizing and space saving of the mounting space. Moreover, the conventional coil has to process the coil forming metal plate into an L shape or a more complicated shape, and has a large number of man-hours for cutting out from a commercially available metal plate and material loss.

本発明はこのような課題を考慮してなされたものであり、簡単な構成を採用しながらも、放熱効果を向上させることができ、さらなる大電流化及び小型化の要請に対応することができ、しかも、加工工数の削減及び材料の有効利用を図ることができる大電流用コイルを提供することを目的とする。   The present invention has been made in consideration of such problems, and while adopting a simple configuration, it is possible to improve the heat dissipation effect, and to meet the demand for further increase in current and size. And it aims at providing the coil for large currents which can aim at reduction of a process man-hour and effective utilization of material.

] 本発明に係る大電流用コイルは、実装面を有するトロイダルコアと、前記トロイダルコアに巻線される2以上の巻回部とを有する大電流用コイルにおいて、前記巻回部は、第1巻回部及び第2巻回部を有し、前記第1巻回部は、入力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、出力側に延びる第1入力側部材と、前記第1入力側部材の端部から、前記実装面とほぼ平行に第1方向に延びる第1入力側折り返し部材と、出力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、入力側に延びる第1出力側部材と、前記第1出力側部材の端部から、前記第1方向に延びる第1出力側折り返し部材と、前記第1入力側折り返し部材と前記第1出力側折り返し部材とを連結する第1連結部材とを有し、前記第2巻回部は、入力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、出力側に延びる第2入力側部材と、前記第入力側部材の端部から、前記第1方向と反対方向の第2方向に延びる第2入力側折り返し部材と、出力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、入力側に延びる第2出力側部材と、前記第2出力側部材の端部から、前記第2方向に延びる第2出力側折り返し部材と、前記第2入力側折り返し部材と前記第2出力側折り返し部材とを連結する第2連結部材とを有し、前記第1巻回部における前記第1連結部材の板面の幅は、前記第1入力側部材、前記第1入力側折り返し部材、前記第1出力側部材及び前記第1出力側折り返し部材の各板面の幅よりも広く、前記第2巻回部における前記第2連結部材の板面の幅は、前記第2入力側部材、前記第2入力側折り返し部材、前記第2出力側部材及び前記第2出力側折り返し部材の各板面の幅よりも広いことを特徴とする
[1 large-current coil according to the present invention, Oite a toroidal core having a mounting surface, a large current coil having a 2 or more wound portion which is wound on the toroidal core, the winding unit Has a first winding part and a second winding part, and the first winding part is inserted into the toroidal core from the input side along the central axis of the toroidal core and extends to the output side. A first input-side member, a first input-side folded member extending in a first direction from the end of the first input-side member in a first direction substantially parallel to the mounting surface, and a central axis of the toroidal core from the output side. A first output member extending through the toroidal core and extending to the input side; a first output folding member extending in the first direction from an end of the first output member; and the first input folding member And the first output side folded member And a member, said second winding portion is inserted through the said toroidal core along from the input side to the central axis of the toroidal core, and a second input-side member extending on the output side, the second input A second input-side folded member extending in the second direction opposite to the first direction from the end of the member; and the inside of the toroidal core is inserted from the output side along the central axis of the toroidal core; A second output side member extending; a second output side folding member extending in the second direction from an end of the second output side member; the second input side folding member; and the second output side folding member. A width of the plate surface of the first connecting member in the first winding portion is the first input side member, the first input side folded member, and the first output side. Width of each plate surface of the member and the first output side folded member The width of the plate surface of the second connecting member in the second winding portion is wider than the second input side member, the second input side folded member, the second output side member, and the second output side. than the width of each plate surface of the folded member and said wide Ikoto.

] この場合、前記巻回部は、さらに第3巻回部を有し、入力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、出力側に延びる第3入力側部材と、前記第3入力側部材の端部から、前記実装面から離間する方向に延びる第3入力側折り返し部材と、出力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、入力側に延びる第3出力側部材と、前記第3出力側部材の端部から、前記実装面から離間する方向に延びる第3出力側折り返し部材と、前記第3入力側折り返し部材と前記第3出力側折り返し部材とを連結する第3連結部材とを有し、前記第3連結部材の板面の幅は、前記第3入力側部材、前記第入力側折り返し部材、前記第3出力側部材及び前記第3出力側折り返し部材の各板面の幅よりも広くしてもよい。
[ 2 ] In this case, the winding part further has a third winding part, and is inserted into the toroidal core along the central axis of the toroidal core from the input side, and extends to the output side. A member, a third input-side folded member extending in a direction away from the mounting surface from the end of the third input-side member, and the inside of the toroidal core from the output side along the central axis of the toroidal core A third output side member extending to the input side; a third output side folding member extending from the end of the third output side member in a direction away from the mounting surface; the third input side folding member; A third connecting member that connects the three output side folding members, and the width of the plate surface of the third connecting member is the third input side member, the third input side folding member, and the third output side. Each of the member and the third output side folding member It may be wider than the width of the surface.

] 本発明において、前記連結部材の板面の幅をWa、前記入力側部材、前記入力側折り返し部材、前記出力側部材及び前記出力側折り返し部材の各板面の幅のうち、最大の幅をWbとしたとき、
Wa≧1.5×Wb
であってもよい。
[ 3 ] In the present invention, the width of the plate surface of the connecting member is Wa, and is the largest of the widths of the plate surfaces of the input side member, the input side folded member, the output side member, and the output side folded member. When the width is Wb,
Wa ≧ 1.5 × Wb
It may be.

] さらに好ましくは、Wa≧1.7×Wbである。
[ 4 ] More preferably, Wa ≧ 1.7 × Wb.

] []又は[]において、前記実装面の幅をWcとしたとき、
Wa≦3×Wc
であることが好ましい。
[ 5 ] In [ 3 ] or [ 4 ], when the width of the mounting surface is Wc,
Wa ≦ 3 × Wc
It is preferable that

] 本発明において、前記入力側部材と前記入力側折り返し部材とが一体化され、前記出力側部材と前記出力側折り返し部材とが一体化されていてもよい。
[ 6 ] In the present invention, the input side member and the input side folded member may be integrated, and the output side member and the output side folded member may be integrated.

本発明に係る大電流用コイルによれば、以下の効果を奏する。
(1) 簡単な構成を採用しながらも、さらなる大電流化及び小型化の要請に対応することができる。
(2) 連結部材の板面の幅を広くし、表面積を大きくしたので、放熱効果が向上し、コイルの温度上昇を抑制することができる。
(3) 市販のブスバーの長さ及び一部折り曲げ加工のみで、コイル形成用金属板を構成することができ、加工工数の削減、材料の有効利用を図ることができる。
The coil for large current according to the present invention has the following effects.
(1) While adopting a simple configuration, it is possible to meet demands for further increase in current and size.
(2) Since the width of the plate surface of the connecting member is increased and the surface area is increased, the heat dissipation effect is improved and the temperature rise of the coil can be suppressed.
(3) The metal plate for coil formation can be comprised only by the length and partial bending process of a commercially available bus bar, and reduction of a process man-hour and effective utilization of a material can be aimed at.

本実施の形態に係る大電流用コイルが適用されるインバータの一例を示す回路図である。It is a circuit diagram which shows an example of the inverter to which the coil for large currents concerning this Embodiment is applied. 第1の実施の形態に係る大電流用コイル(第1コイル)の構成を示す斜視図である。It is a perspective view which shows the structure of the coil for large currents (1st coil) which concerns on 1st Embodiment. 図3Aは第2の実施の形態に係る大電流用コイル(第2コイル)の構成を示す斜視図であり、図3Bは第1方向を説明するための図である。FIG. 3A is a perspective view showing a configuration of a large current coil (second coil) according to the second embodiment, and FIG. 3B is a diagram for explaining a first direction. 図4Aは第2コイルを示す正面図であり、図4Bは第2コイルを示す背面図である。4A is a front view showing the second coil, and FIG. 4B is a rear view showing the second coil. 図5Aは第2コイルを示す右側面図であり、図5Bは第2コイルを示す左側面図である。FIG. 5A is a right side view showing the second coil, and FIG. 5B is a left side view showing the second coil. 図6Aは第2コイルを示す平面図であり、図6Bは第2コイルを示す底面図である。6A is a plan view showing the second coil, and FIG. 6B is a bottom view showing the second coil. 第3の実施の形態に係る大電流用コイル(第3コイル)の構成を示す斜視図である。It is a perspective view which shows the structure of the coil for large currents (3rd coil) which concerns on 3rd Embodiment. 図8Aは第3コイルを示す正面図であり、図8Bは第3コイルを示す背面図である。FIG. 8A is a front view showing the third coil, and FIG. 8B is a rear view showing the third coil. 図9Aは第3コイルを示す右側面図であり、図9Bは第3コイルを示す左側面図である。9A is a right side view showing the third coil, and FIG. 9B is a left side view showing the third coil. 図10Aは第3コイルを示す平面図であり、図10Bは第3コイルを示す底面図である。FIG. 10A is a plan view showing the third coil, and FIG. 10B is a bottom view showing the third coil. 第4の実施の形態に係る大電流用コイル(第4コイル)の構成を示す斜視図である。It is a perspective view which shows the structure of the coil for large currents (4th coil) which concerns on 4th Embodiment. 図12Aは第4コイルを示す正面図であり、図12Bは第4コイルを示す背面図である。12A is a front view showing the fourth coil, and FIG. 12B is a rear view showing the fourth coil. 図13Aは第4コイルを示す右側面図であり、図13Bは第4コイルを示す左側面図である。FIG. 13A is a right side view showing the fourth coil, and FIG. 13B is a left side view showing the fourth coil. 図14Aは第4コイルを示す平面図であり、図14Bは第4コイルを示す底面図である。14A is a plan view showing the fourth coil, and FIG. 14B is a bottom view showing the fourth coil.

以下、本発明に係る大電流用コイルの実施の形態例を図1〜図14Bを参照しながら説明する。   Hereinafter, an embodiment of a large current coil according to the present invention will be described with reference to FIGS.

先ず、本実施の形態に係る大電流用コイル10が適用される例えばインバータ100について図1を参照しながら簡単に説明する。   First, for example, an inverter 100 to which the large current coil 10 according to the present embodiment is applied will be briefly described with reference to FIG.

このインバータ100は、バッテリ102とモータ104間に、本実施の形態に係る大電流用コイル10、アクロス・ザ・ライン・コンデンサ(Xコンデンサ)及びラインバイパスコンデンサ(Yコンデンサ)等を有するEMIフィルタ106と、例えば2個のスイッチング素子等を有する整流回路108と、放電用の抵抗(放電抵抗)と平滑コンデンサとが並列に接続された平滑コンデンサ部110と、例えば6個のスイッチング素子を有する三相出力のインバータ回路112とを有する。   The inverter 100 includes an EMI filter 106 having a large current coil 10, an across-the-line capacitor (X capacitor), a line bypass capacitor (Y capacitor), and the like between the battery 102 and the motor 104. A rectifier circuit 108 having, for example, two switching elements, a smoothing capacitor unit 110 in which a discharging resistor (discharge resistor) and a smoothing capacitor are connected in parallel, and a three-phase having, for example, six switching elements And an output inverter circuit 112.

本実施の形態に係る大電流用コイル10は、図1に示すように、単相二線式のチョークコイルや、三相三線式のチョークコイル(図示せず)等が挙げられる。   As shown in FIG. 1, the large current coil 10 according to the present embodiment includes a single-phase two-wire choke coil, a three-phase three-wire choke coil (not shown), and the like.

そして、第1の実施の形態に係る大電流用コイル(以下、第1コイル10Aと記す)は、図2に示すように、実装面12(底面)を有する矩形状のトロイダルコア14(コア数=1)と、該トロイダルコア14に巻線される1つの巻回部16とを有する。   As shown in FIG. 2, the large current coil according to the first embodiment (hereinafter referred to as the first coil 10 </ b> A) has a rectangular toroidal core 14 (number of cores) having a mounting surface 12 (bottom surface). = 1) and one winding portion 16 wound around the toroidal core 14.

巻回部16は、入力側部材18と、入力側折り返し部材20と、出力側部材22と、出力側折り返し部材24と、連結部材26とを有する。各部材は、許容電流に対応した断面積以上の断面積を有する。   The winding unit 16 includes an input side member 18, an input side folding member 20, an output side member 22, an output side folding member 24, and a connecting member 26. Each member has a cross-sectional area equal to or larger than the cross-sectional area corresponding to the allowable current.

入力側部材18は、入力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、出力側に延びる平板状の金属板にて構成されている。入力側部材18の入力側端部には、図示しない入力端子台に接続するための貫通孔28が形成されている。入力側部材18の出力側端部18aは、トロイダルコア14の中心軸Lcを直交するように断面L字状に屈曲され、後述する入力側折り返し部材20の取り付け部を構成している。   The input side member 18 is configured by a flat metal plate that extends from the input side along the central axis Lc of the toroidal core 14 through the toroidal core 14 and extends to the output side. A through hole 28 for connection to an input terminal block (not shown) is formed at the input side end of the input side member 18. The output side end portion 18a of the input side member 18 is bent in an L-shaped cross section so as to be orthogonal to the central axis Lc of the toroidal core 14, and constitutes an attachment portion for the input side folding member 20 described later.

入力側折り返し部材20は、入力側部材18の出力側端部18a(取り付け部)から、実装面12から離間する方向に延びる角柱状の金属板にて構成されている。この入力側折り返し部材20は、入力側部材18の出力側端部18aに、例えばボルト(図示せず)により固定される。   The input-side folded member 20 is configured by a prismatic metal plate extending in a direction away from the mounting surface 12 from the output-side end portion 18 a (attachment portion) of the input-side member 18. The input side folding member 20 is fixed to the output side end portion 18a of the input side member 18 by, for example, a bolt (not shown).

出力側部材22は、出力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、入力側に延びる平板状の金属板にて構成されている。出力側部材22の出力側端部には、図示しない出力端子台に接続するための貫通孔30が形成されている。出力側部材22の入力側端部22aは、トロイダルコア14の中心軸Lcを直交するように断面L字状に屈曲され、後述する出力側折り返し部材24の取り付け部を構成している。   The output side member 22 is configured by a flat metal plate that extends from the output side along the central axis Lc of the toroidal core 14 through the toroidal core 14 and extends to the input side. A through hole 30 for connection to an output terminal block (not shown) is formed at the output side end of the output side member 22. The input side end portion 22a of the output side member 22 is bent into an L-shaped cross section so as to be orthogonal to the central axis Lc of the toroidal core 14, and constitutes a mounting portion for the output side folding member 24 described later.

出力側折り返し部材24は、出力側部材22の入力側端部22a(取り付け部)から、実装面12から離間する方向に延びる角柱状の金属板にて構成されている。この出力側折り返し部材24は、出力側部材22の入力側端部22aに、例えばボルト32により固定される。入力側部材18及び出力側部材22は、入力側及び出力側の端子台の位置、寸法により、一部屈曲させてもよい。これにより、第1コイル10Aの取付け位置及び端子台の取付け位置の自由度を向上させることができる。また、入力側部材18及び出力側部材22は、出力側端部18a及び入力側端部22aを屈曲せずに、入力側折り返し部材20及び出力側折り返し部材24を取り付けてもよい。   The output side folding member 24 is configured by a prismatic metal plate extending in a direction away from the mounting surface 12 from the input side end 22 a (attachment portion) of the output side member 22. The output side folding member 24 is fixed to the input side end portion 22 a of the output side member 22 with, for example, a bolt 32. The input side member 18 and the output side member 22 may be partially bent depending on the positions and dimensions of the input side and output side terminal blocks. Thereby, the freedom degree of the attachment position of 10 A of 1st coils, and the attachment position of a terminal block can be improved. Further, the input side folding member 20 and the output side folding member 24 may be attached to the input side member 18 and the output side member 22 without bending the output side end 18a and the input side end 22a.

連結部材26は、入力側折り返し部材20と出力側折り返し部材24とを連結する平板状の金属板にて構成されている。断面積は、上述した入力側部材18や出力側部材22の断面積とほぼ同じである。この連結部材26は、入力側折り返し部材20の上端面及び出力側折り返し部材24の上端面にそれぞれ例えばボルト32により固定される。   The connecting member 26 is configured by a flat metal plate that connects the input side folding member 20 and the output side folding member 24. The cross-sectional area is substantially the same as the cross-sectional areas of the input side member 18 and the output side member 22 described above. The connecting member 26 is fixed to the upper end surface of the input side folding member 20 and the upper end surface of the output side folding member 24 by, for example, bolts 32.

各部材において、電流の流れる方向の大きさ(寸法)を各部材の板面の長さ、それと直交する方向の大きさ(寸法)を各部材の板面の幅としたとき、連結部材26の板面の幅は、入力側部材18、入力側折り返し部材20、出力側部材22及び出力側折り返し部材24の各板面の幅より広い。   In each member, when the size (dimension) in the direction of current flow is the length of the plate surface of each member and the size (dimension) in the direction perpendicular to the member is the width of the plate surface of each member, The width of the plate surface is wider than the width of each plate surface of the input side member 18, the input side folded member 20, the output side member 22, and the output side folded member 24.

具体的には、連結部材26の板面の幅をWa(図2参照)、入力側部材18、入力側折り返し部材20、出力側部材22及び出力側折り返し部材24の各板面の幅のうち、最大の幅をWb(図示せず)としたとき、
Wa≧1.5×Wb
が好ましく、さらに好ましくは、
Wa≧1.7×Wb
である。
Specifically, the width of the plate surface of the connecting member 26 is Wa (see FIG. 2), and the width of each plate surface of the input side member 18, the input side folded member 20, the output side member 22, and the output side folded member 24. When the maximum width is Wb (not shown),
Wa ≧ 1.5 × Wb
Is more preferable,
Wa ≧ 1.7 × Wb
It is.

また、トロイダルコア14の実装面12において、該実装面12の長辺と直交する方向の大きさ(寸法)を、実装面12の幅Wc(図示せず)としたとき、
Wa≦3×Wc
である。連結部材26の板面の幅Waが3×Wcよりも大きくなると、第1コイル10A全体のサイズが大きくなり、サイズの小型化要請に対応できなくなるからである。
Further, in the mounting surface 12 of the toroidal core 14, when the size (dimension) in the direction orthogonal to the long side of the mounting surface 12 is the width Wc (not shown) of the mounting surface 12,
Wa ≦ 3 × Wc
It is. This is because if the width Wa of the plate surface of the connecting member 26 is larger than 3 × Wc, the size of the entire first coil 10A increases, and it becomes impossible to meet the demand for size reduction.

このように、第1コイル10Aにおいては、連結部材26の板面の幅Waを上述のように広く設定し、連結部材26の表面積を大きくしたので、連結部材26での放熱効果が向上し、巻回部16での温度上昇を抑制することができる。そのため、巻回スペースの狭い箇所で、幅の狭い部材を使用することが可能となる。これは、トロイダルコア14の径の縮小化及び実装面12の縮小化につながり、第1コイル10Aの小型化並びに実装スペースの省スペース化を促進させることができる。また、簡単な構成を採用しながらも、さらなる大電流化及び小型化の要請に対応することができる。しかも、市販のブスバーの長さ及び一部折り曲げ加工のみで、各部材(入力側部材18、入力側折り返し部材20、出力側部材22、出力側折り返し部材24、連結部材26)を構成することができ、加工工数の削減、材料の有効利用を図ることができる。なお、入力側部材18及び出力側部材22の配置は上下逆でもよい。   Thus, in the first coil 10A, since the width Wa of the plate surface of the connecting member 26 is set wide as described above and the surface area of the connecting member 26 is increased, the heat dissipation effect at the connecting member 26 is improved. The temperature rise at the winding part 16 can be suppressed. Therefore, it is possible to use a member having a narrow width at a location where the winding space is narrow. This leads to a reduction in the diameter of the toroidal core 14 and a reduction in the mounting surface 12, and can promote the downsizing of the first coil 10A and the saving of the mounting space. In addition, while adopting a simple configuration, it is possible to meet the demand for further increase in current and size. In addition, each member (the input side member 18, the input side folded member 20, the output side member 22, the output side folded member 24, and the connecting member 26) can be configured only by the length and partial folding of the commercially available bus bar. It is possible to reduce processing man-hours and effectively use materials. The arrangement of the input side member 18 and the output side member 22 may be upside down.

次に、第2の実施の形態に係る大電流用コイル(以下、第2コイル10Bと記す)について図3A〜図6Bを参照しながら説明する。   Next, a large current coil (hereinafter referred to as a second coil 10B) according to a second embodiment will be described with reference to FIGS. 3A to 6B.

この第2コイル10Bは、二相二線式のチョークコイルの一例を示し、コア数が2のトロイダルコア14と、2つの巻回部16(第1巻回部16A及び第2巻回部16B)とを有する。なお、図1と対応する部材については、それぞれ同じ参照符号を付してその重複説明を省略する。   The second coil 10B is an example of a two-phase two-wire choke coil. The toroidal core 14 has two cores and two winding portions 16 (the first winding portion 16A and the second winding portion 16B). ). In addition, about the member corresponding to FIG. 1, the same referential mark is attached | subjected respectively and the duplication description is abbreviate | omitted.

第1巻回部16Aは、図3A、図4A〜図6Bに示すように、第1入力側部材18Aと、第1入力側折り返し部材20Aと、第1出力側部材22Aと、第1出力側折り返し部材24Aと、第1連結部材26Aとを有する。   As shown in FIGS. 3A and 4A to 6B, the first winding portion 16A includes a first input side member 18A, a first input side folding member 20A, a first output side member 22A, and a first output side. It has a folding member 24A and a first connecting member 26A.

第1入力側部材18Aは、入力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、出力側に延びる平板状の金属板にて構成されている。   18 A of 1st input side members are comprised in the toroidal core 14 along the central axis Lc of the toroidal core 14 from the input side, and are comprised by the flat metal plate extended to the output side.

第1入力側折り返し部材20Aは、第1入力側部材18Aの端部から、実装面12とほぼ平行な第1方向x1に延びる平板状の金属板にて構成されている。ほぼ平行とは、図3Bに示すように、実装面12の長辺12aと平行な線Laと第1方向x1とのなす角θが上方向に0°以上5°以下、下方向に0°以上5°以下の範囲にあることを示す。この第1入力側折り返し部材20Aは、第1入力側部材18Aの出力側端面に、例えばボルト32により固定される。   The first input side folding member 20A is configured by a flat metal plate extending from the end of the first input side member 18A in a first direction x1 substantially parallel to the mounting surface 12. 3B, as shown in FIG. 3B, an angle θ formed by a line La parallel to the long side 12a of the mounting surface 12 and the first direction x1 is 0 ° or more and 5 ° or less in the upward direction, and 0 ° in the downward direction. It indicates that it is in the range of 5 ° or less. The first input side folding member 20A is fixed to the output side end face of the first input side member 18A by, for example, a bolt 32.

第1出力側部材22Aは、出力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、入力側に延びる平板状の金属板にて構成されている。   22 A of 1st output side members are comprised in the toroidal core 14 along the central axis Lc of the toroidal core 14 from the output side, and are comprised by the flat metal plate extended to the input side.

第1出力側折り返し部材24Aは、第1出力側部材22Aの端部から、上述の第1方向x1に延びる平板状の金属板にて構成されている。この第1出力側折り返し部材24Aは、第1出力側部材22Aの入力側端面に、例えばボルト32により固定される。   The first output side folding member 24A is configured by a flat metal plate extending in the first direction x1 from the end of the first output side member 22A. The first output side folding member 24A is fixed to the input side end face of the first output side member 22A by, for example, a bolt 32.

第1連結部材26Aは、第1入力側折り返し部材20Aと第1出力側折り返し部材24Aとを連結する平板状の金属板にて構成されている。断面積は、上述した第1入力側部材18Aや第1出力側部材22Aの断面積とほぼ同じである。第1連結部材26Aは、該第1連結部材26Aの入力側の側面と第1入力側折り返し部材20Aの出力側主面とが例えばボルト32によって固定され、さらに、第1連結部材26Aの出力側の側面と第1出力側折り返し部材24Aの入力側主面とが例えばボルト32によって固定されることで、第1入力側折り返し部材20Aと第1出力側折り返し部材24Aとに固定される。   26 A of 1st connection members are comprised by the flat metal plate which connects 20 A of 1st input side folding | returning members, and 24 A of 1st output side folding | returning members. The cross-sectional area is substantially the same as the cross-sectional area of the first input side member 18A and the first output side member 22A described above. In the first connecting member 26A, the side surface on the input side of the first connecting member 26A and the output side main surface of the first input side folding member 20A are fixed by, for example, bolts 32, and further, the output side of the first connecting member 26A Are fixed to the first input-side folding member 20A and the first output-side folding member 24A, for example, by fixing the input-side main surface of the first output-side folding member 24A with a bolt 32.

第2巻回部16Bも、上述した第1巻回部16Aと同様の構成を有し、入力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、出力側に延びる平板状の金属板による第2入力側部材18Bと、該第2入力側部材18Bの端部から、第1方向x1と反対方向の第2方向x2に延びる平板状の金属板による第2入力側折り返し部材20Bと、出力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、入力側に延びる平板状の金属板による第2出力側部材22Bと、該第2出力側部材22Bの端部から、第2方向x2に延びる平板状の金属板による第2出力側折り返し部材24Bと、第2入力側折り返し部材20Bと第2出力側折り返し部材24Bとを連結する平板状の金属板による第2連結部材26Bとを有する。   The second winding portion 16B also has the same configuration as the first winding portion 16A described above, and is a flat plate that extends from the input side through the toroidal core 14 along the central axis Lc of the toroidal core 14 and extends to the output side. Second input-side member 18B made of a metal plate, and a second input-side fold by a flat metal plate extending in the second direction x2 opposite to the first direction x1 from the end of the second input-side member 18B A member 20B, a second output side member 22B made of a flat metal plate extending from the output side along the central axis Lc of the toroidal core 14 and extending to the input side, and the second output side member 22B The flat plate-shaped metal plate which connects the 2nd output side folding member 24B, the 2nd input side folding member 20B, and the 2nd output side folding member 24B by the flat metal plate extended in the 2nd direction x2 from the edge part of this Second by And a binding member 26B.

この場合も、第2入力側折り返し部材20Bは、第2入力側部材18Bの出力側端面に、例えばボルト32により固定され、第2出力側折り返し部材24Bは、第2出力側部材22Bの入力側端面に、例えばボルト32により固定される。また、第2連結部材26Bは、該第2連結部材26Bの入力側の側面と第2入力側折り返し部材20Bの出力側主面とが例えばボルト32によって固定され、さらに、第2連結部材26Bの出力側の側面と第2出力側折り返し部材24Bの入力側主面とが例えばボルト32によって固定されることで、第2入力側折り返し部材20Bと第2出力側折り返し部材24Bとに固定される。   Also in this case, the second input side folding member 20B is fixed to the output side end face of the second input side member 18B, for example, by a bolt 32, and the second output side folding member 24B is the input side of the second output side member 22B. For example, the bolt 32 is fixed to the end face. The second connecting member 26B has an input side surface of the second connecting member 26B and an output side main surface of the second input side folding member 20B fixed by, for example, a bolt 32. The output side surface and the input side main surface of the second output side folding member 24B are fixed to the second input side folding member 20B and the second output side folding member 24B, for example, by bolts 32.

そして、第1連結部材26Aの板面の幅は、第1入力側部材18A、第1入力側折り返し部材20A、第1出力側部材22A及び第1出力側折り返し部材24Aの各板面の幅よりも広い。同様に、第2連結部材26Bの板面の幅は、第2入力側部材18B、第2入力側折り返し部材20B、第2出力側部材22B及び第2出力側折り返し部材24Bの各板面の幅よりも広い。   The width of the plate surface of the first connecting member 26A is larger than the width of each plate surface of the first input side member 18A, the first input side folded member 20A, the first output side member 22A, and the first output side folded member 24A. Is also wide. Similarly, the width of the plate surface of the second connecting member 26B is the width of each plate surface of the second input side member 18B, the second input side folded member 20B, the second output side member 22B, and the second output side folded member 24B. Wider than.

具体的には、第1連結部材26A及び第2連結部材26Bの各板面の幅をWa1及びWa2(図4A及び図4B参照)、第1入力側部材18A、第1入力側折り返し部材20A、第1出力側部材22A及び第1出力側折り返し部材24Aの各板面の幅のうち、最大の幅をWb1(図示せず)、第2入力側部材18B、第2入力側折り返し部材20B、第2出力側部材22B及び第2出力側折り返し部材24Bの各板面の幅のうち、最大の幅をWb2(図示せず)としたとき、
Wa1≧1.5×Wb1
Wa2≧1.5×Wb2
が好ましく、さらに好ましくは、
Wa1≧1.7×Wb1
Wa2≧1.7×Wb2
である。
Specifically, the width of each plate surface of the first connecting member 26A and the second connecting member 26B is set to Wa1 and Wa2 (see FIGS. 4A and 4B), the first input side member 18A, the first input side folding member 20A, Among the widths of the plate surfaces of the first output side member 22A and the first output side folding member 24A, the maximum width is Wb1 (not shown), the second input side member 18B, the second input side folding member 20B, Among the widths of the plate surfaces of the two output side members 22B and the second output side folded member 24B, when the maximum width is Wb2 (not shown),
Wa1 ≧ 1.5 × Wb1
Wa2 ≧ 1.5 × Wb2
Is more preferable,
Wa1 ≧ 1.7 × Wb1
Wa2 ≧ 1.7 × Wb2
It is.

また、トロイダルコア14の実装面12の幅(コア数=2を含めた全体の幅)をWc(図6B参照)としたとき、
Wa1≦3×Wd
Wa2≦3×Wd
である。
When the width of the mounting surface 12 of the toroidal core 14 (the total width including the number of cores = 2) is Wc (see FIG. 6B),
Wa1 ≦ 3 × Wd
Wa2 ≦ 3 × Wd
It is.

このように、第2コイル10Bにおいて、第1連結部材26A及び第2連結部材26Bの各板面の幅Wa1及びWa2を上述のように広く設定し、第1連結部材26A及び第2連結部材26Bの各表面積を大きくしたので、第1連結部材26A及び第2連結部材26Bでの放熱効果が向上し、第1巻回部16A及び第2巻回部16Bでの温度上昇を抑制することができる。そのため、巻回スペースの狭い箇所で、幅の狭い部材を使用することが可能となる。これは、トロイダルコア14の径の縮小化及び実装面12の縮小化につながり、第2コイル10Bの小型化並びに実装スペースの省スペース化を促進させることができる。また、簡単な構成を採用しながらも、さらなる大電流化及び小型化の要請に対応することができる。しかも、市販のブスバーの長さ及び一部折り曲げ加工のみで、各部材を構成することができ、加工工数の削減、材料の有効利用を図ることができる。   As described above, in the second coil 10B, the widths Wa1 and Wa2 of the plate surfaces of the first connecting member 26A and the second connecting member 26B are set wide as described above, and the first connecting member 26A and the second connecting member 26B are set. Since each surface area is increased, the heat dissipation effect in the first connecting member 26A and the second connecting member 26B is improved, and the temperature rise in the first winding part 16A and the second winding part 16B can be suppressed. . Therefore, it is possible to use a member having a narrow width at a location where the winding space is narrow. This leads to a reduction in the diameter of the toroidal core 14 and a reduction in the mounting surface 12, and can promote the downsizing of the second coil 10B and the space saving of the mounting space. In addition, while adopting a simple configuration, it is possible to meet the demand for further increase in current and size. In addition, each member can be configured only by the length and partial bending of a commercially available bus bar, and the number of processing steps can be reduced and the material can be effectively used.

特に、第2コイル10Bにおいては、第1連結部材26A及び第2連結部材26Bを、トロイダルコア14の上面(又は実装面)に対向する部分ではなく、トロイダルコア14の側面に対向する部分に配置することができるため、トロイダルコア14の実装面12のうち、コアの配列方向と直交する辺の長さ(長辺12a)及びトロイダルコア14の高さを短くすることが可能となり、実装面12の面積をさらに縮小化でき、第2コイル10Bの小型化並びに実装スペースの省スペース化をさらに促進させることができる。図5A及び図5Bでは、トロイダルコア14の実装面12の長辺12aを短くした例を示す。   In particular, in the second coil 10 </ b> B, the first connecting member 26 </ b> A and the second connecting member 26 </ b> B are disposed not on the portion facing the upper surface (or mounting surface) of the toroidal core 14 but on the portion facing the side surface of the toroidal core 14. Therefore, among the mounting surface 12 of the toroidal core 14, the length of the side (long side 12a) orthogonal to the arrangement direction of the cores and the height of the toroidal core 14 can be shortened. Can be further reduced, and further downsizing of the second coil 10B and space saving of the mounting space can be further promoted. 5A and 5B show an example in which the long side 12a of the mounting surface 12 of the toroidal core 14 is shortened.

次に、第3の実施の形態に係る大電流用コイル(以下、第3コイル10Cと記す)について図7〜図10Bを参照しながら説明する。   Next, a large current coil (hereinafter referred to as a third coil 10C) according to a third embodiment will be described with reference to FIGS.

この第3コイル10Cは、上述した第2コイル10Bとほぼ同様の構成を有するが、第1巻回部16Aにおける第1入力側部材18Aと第1入力側折り返し部材20Aとが一体化されて構成され、同様に、第1出力側部材22Aと第1出力側折り返し部材24Aとが一体化されて構成され、第2巻回部16Bにおける第2入力側部材18Bと第2入力側折り返し部材20Bとが一体化されて構成され、同様に、第2出力側部材22Bと第2出力側折り返し部材24Bとが一体化されて構成されている点で異なる。   The third coil 10C has substantially the same configuration as the second coil 10B described above, but is configured by integrating the first input side member 18A and the first input side folding member 20A in the first winding portion 16A. Similarly, the first output side member 22A and the first output side folding member 24A are integrally formed, and the second input side member 18B and the second input side folding member 20B in the second winding portion 16B are configured. Similarly, the second output side member 22B and the second output side folding member 24B are differently configured in an integrated manner.

具体的には、第1入力側部材18A、第1出力側部材22A、第2入力側部材18B及び第2出力側部材22Bの各長さが第2コイル10Bの場合よりもそれぞれ長く設定されている。そして、第1入力側部材18Aの出力側端部及び第1出力側部材22Aの入力側端部が、それぞれ第1方向x1に向くように断面L字状に屈曲され、これら屈曲された部分が第1入力側折り返し部材20A及び第1出力側折り返し部材24Aとして構成される。同様に、第2入力側部材18Bの出力側端部及び第2出力側部材22Bの入力側端部が、それぞれ第2方向x2に向くように断面L字状に屈曲され、これら屈曲された部分が第2入力側折り返し部材20B及び第2出力側折り返し部材24Bとして構成される。   Specifically, each length of the first input side member 18A, the first output side member 22A, the second input side member 18B, and the second output side member 22B is set longer than that of the second coil 10B. Yes. The output-side end portion of the first input-side member 18A and the input-side end portion of the first output-side member 22A are bent in an L-shaped cross section so as to face the first direction x1, respectively. The first input side folding member 20A and the first output side folding member 24A are configured. Similarly, the output side end of the second input side member 18B and the input side end of the second output side member 22B are bent in an L-shaped cross section so as to face the second direction x2, respectively, and these bent portions Are configured as a second input-side folding member 20B and a second output-side folding member 24B.

この第3コイル10Cにおいては、上述した第2コイル10Bと同様の効果を有し、トロイダルコア14の実装面12の長辺12a及びトロイダルコア14の高さを短くすることが可能となり、実装面12の面積をさらに縮小化でき、第2コイル10Bの小型化並びに実装スペースの省スペース化をさらに促進させることができる。図9A及び図9Bでは、トロイダルコア14の高さを短くした例を示す。特に、この第3コイル10Cでは、ボルト32の部品点数を減らすことができるため、コストの低減に有利である。   The third coil 10C has the same effect as that of the second coil 10B described above, and it is possible to shorten the long side 12a of the mounting surface 12 of the toroidal core 14 and the height of the toroidal core 14, and the mounting surface. The area of 12 can be further reduced, and the downsizing of the second coil 10B and the space saving of the mounting space can be further promoted. 9A and 9B show an example in which the height of the toroidal core 14 is shortened. In particular, the third coil 10C is advantageous in reducing the cost because the number of parts of the bolt 32 can be reduced.

次に、第4の実施の形態に係る大電流用コイル(以下、第4コイル10Dと記す)について図11〜図14Bを参照しながら説明する。   Next, a large current coil (hereinafter referred to as a fourth coil 10D) according to a fourth embodiment will be described with reference to FIGS.

この第4コイル10Dは、三相三線式のチョークコイルの一例を示し、コア数が2のトロイダルコア14と、3つの巻回部16(第1巻回部16A〜第3巻回部16C)とを有する。なお、図2、図7〜図10Bと対応する部材については、それぞれ同じ参照符号を付してその重複説明を省略する。   The fourth coil 10D is an example of a three-phase three-wire choke coil, and has a toroidal core 14 having two cores and three winding portions 16 (first winding portion 16A to third winding portion 16C). And have. In addition, about the member corresponding to FIG. 2, FIG. 7-10B, the same referential mark is attached | subjected respectively and the duplication description is abbreviate | omitted.

第1巻回部16Aは、上述した第3コイル10Cにおける第1巻回部16Aと同じ構成を有し、第1入力側部材18Aと第1入力側折り返し部材20Aとが一体化され、第1出力側部材22Aと第1出力側折り返し部材24Aとが一体化されている。第2巻回部16Bも、第3コイル10Cにおける第2巻回部16Bと同じ構成を有し、第2入力側部材18Bと第2入力側折り返し部材20Bとが一体化され、第2出力側部材22Bと第2出力側折り返し部材24Bとが一体化されている。   The first winding portion 16A has the same configuration as the first winding portion 16A in the third coil 10C described above, and the first input side member 18A and the first input side folding member 20A are integrated, and the first winding portion 16A is integrated. The output side member 22A and the first output side folding member 24A are integrated. The second winding portion 16B also has the same configuration as the second winding portion 16B in the third coil 10C, and the second input side member 18B and the second input side folding member 20B are integrated, and the second output side The member 22B and the second output side folding member 24B are integrated.

第3巻回部16Cは、上述した図2の第1コイル10Aにおける巻回部16と同じ構成を有し、入力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、出力側に延びる第3入力側部材18Cと、該第3入力側部材18Cの端部から、実装面12から離間する方向に延びる第3入力側折り返し部材20Cと、出力側からトロイダルコア14の中心軸Lcに沿ってトロイダルコア14内を挿通し、入力側に延びる第3出力側部材22Cと、該第3出力側部材22Cの端部から、実装面12から離間する方向に延びる第3出力側折り返し部材24Cと、第3入力側折り返し部材20Cと第3出力側折り返し部材24Cとを連結する第3連結部材26Cとを有する。   The third winding portion 16C has the same configuration as the winding portion 16 in the first coil 10A of FIG. 2 described above, and is inserted through the toroidal core 14 along the central axis Lc of the toroidal core 14 from the input side. The third input side member 18C extending to the output side, the third input side folding member 20C extending from the end of the third input side member 18C in a direction away from the mounting surface 12, and the center of the toroidal core 14 from the output side A third output side member 22C extending through the toroidal core 14 along the axis Lc and extending toward the input side, and a third output side extending in a direction away from the mounting surface 12 from the end of the third output side member 22C The folding member 24C includes a third connecting member 26C that couples the third input-side folding member 20C and the third output-side folding member 24C.

第3連結部材26Cの板面の幅は、第3入力側部材18C、第3入力側折り返し部材20C、第3出力側部材22C及び第3出力側折り返し部材24Cの各板面の幅よりも広い。具体的には、第3連結部材26Cの板面の幅をWa3(図14A参照)、第3入力側部材18C、第3入力側折り返し部材20C、第3出力側部材22C及び第3出力側折り返し部材24Cの各板面の幅のうち、最大の幅をWb3としたとき、
Wa3≧1.5×Wb3
が好ましく、さらに好ましくは、
Wa3≧1.7×Wb3
である。
The width of the plate surface of the third connecting member 26C is wider than the width of each plate surface of the third input side member 18C, the third input side folded member 20C, the third output side member 22C, and the third output side folded member 24C. . Specifically, the width of the plate surface of the third connecting member 26C is Wa3 (see FIG. 14A), the third input side member 18C, the third input side folding member 20C, the third output side member 22C, and the third output side folding. Of the widths of the plate surfaces of the member 24C, when the maximum width is Wb3,
Wa3 ≧ 1.5 × Wb3
Is more preferable,
Wa3 ≧ 1.7 × Wb3
It is.

また、トロイダルコア14の実装面12の幅(コア数=2を含めた全体の面積)をWc(図14B参照)としたとき、
Wa3≦3×Wc
である。
Further, when the width of the mounting surface 12 of the toroidal core 14 (the entire area including the number of cores = 2) is Wc (see FIG. 14B),
Wa3 ≦ 3 × Wc
It is.

このように、第4コイル10Dにおいて、第1連結部材26A〜第3連結部材26Cの各板面の幅Wa1〜Wa3を上述のように広く設定し、第1連結部材26A〜第3連結部材26Cの各表面積を大きくしたので、第1連結部材26A〜第3連結部材26Cでの放熱効果が向上し、第1巻回部16A〜第3巻回部16Cでの温度上昇を抑制することができる。そのため、巻回スペースの狭い箇所で、幅の狭い部材を使用することが可能となる。これは、トロイダルコア14の径の縮小化及び実装面12の縮小化につながり、第4コイル10Dの小型化並びに実装スペースの省スペース化を促進させることができる。また、簡単な構成を採用しながらも、さらなる大電流化及び小型化の要請に対応することができる。しかも、市販のブスバーの長さ及び一部折り曲げ加工のみで、各部材を構成することができ、加工工数の削減、材料の有効利用を図ることができる。また、第1巻回部16A及び第2巻回部16Bが第3コイル10Cと同様の構成を有するため、トロイダルコア14の高さを小さくすることができ、しかも、ボルトの部品点数を減らすことができるため、コストの低減に有利である。もちろん、第1巻回部16A及び第2巻回部16Bの構成を第2コイル10Bと同様の構成を有するようにしてもよい。   As described above, in the fourth coil 10D, the widths Wa1 to Wa3 of the plate surfaces of the first connecting member 26A to the third connecting member 26C are set wide as described above, and the first connecting member 26A to the third connecting member 26C. Therefore, the heat dissipation effect in the first connecting member 26A to the third connecting member 26C is improved, and the temperature rise in the first winding part 16A to the third winding part 16C can be suppressed. . Therefore, it is possible to use a member having a narrow width at a location where the winding space is narrow. This leads to a reduction in the diameter of the toroidal core 14 and a reduction in the mounting surface 12, and can promote the downsizing of the fourth coil 10D and the saving of the mounting space. In addition, while adopting a simple configuration, it is possible to meet the demand for further increase in current and size. In addition, each member can be configured only by the length and partial bending of a commercially available bus bar, and the number of processing steps can be reduced and the material can be effectively used. Moreover, since the 1st winding part 16A and the 2nd winding part 16B have the same structure as the 3rd coil 10C, the height of the toroidal core 14 can be made small, and also the number of parts of a bolt can be reduced. This is advantageous in reducing costs. Of course, the configuration of the first winding part 16A and the second winding part 16B may be the same as that of the second coil 10B.

実施例1及び2と比較例について、周波数50/60Hz、振幅1000Aの電流を流し、そのときの発熱温度(温度差)を測定した。発熱温度は、測定開始から温度がほぼ一定になった段階の温度と、測定開始時の温度との差(温度差)を採用した。   About Example 1 and 2 and a comparative example, the electric current of frequency 50 / 60Hz and the amplitude of 1000 A was sent, and the heat_generation | fever temperature (temperature difference) at that time was measured. As the exothermic temperature, the difference (temperature difference) between the temperature at which the temperature became almost constant from the start of measurement and the temperature at the start of measurement was adopted.

(実施例1)
実施例1に係るコイルは、図2に示す第1コイル10Aと同様の構成を有し、連結部材26の板面の幅Waと、入力側部材18、入力側折り返し部材20、出力側部材22及び出力側折り返し部材24の各板面の幅のうち、最大の幅をWbとの関係が
Wa/Wb=1.5
である。
Example 1
The coil according to the first embodiment has the same configuration as the first coil 10A shown in FIG. 2, and includes the width Wa of the plate surface of the connecting member 26, the input side member 18, the input side folding member 20, and the output side member 22. Of the widths of the plate surfaces of the output side folding member 24, the maximum width is related to Wb. Wa / Wb = 1.5
It is.

(実施例2)
幅Wa及びWbの関係が、
Wa/Wb=1.7
である点以外は、実施例1と同じである。
(Example 2)
The relationship between the widths Wa and Wb is
Wa / Wb = 1.7
Except for this point, the second embodiment is the same as the first embodiment.

(比較例)
幅Wa及びWbの関係が、
Wa/Wb=1.0
である点以外は、実施例1と同じである。
(Comparative example)
The relationship between the widths Wa and Wb is
Wa / Wb = 1.0
Except for this point, the second embodiment is the same as the first embodiment.

発熱温度(温度差)の測定結果を下記表1に示す。   The measurement results of the exothermic temperature (temperature difference) are shown in Table 1 below.

Figure 0006101441
Figure 0006101441

表1から、Wa/Wbの値が大きくなるほど発熱温度が下がっていることがわかる。実施例1では、発熱温度が51.5[℃]であり、比較例の55.2[℃]と比して放熱効果が高く、巻回部16での温度上昇を抑制することができていることがわかる。従って、Wa/Wb≧1.5であれば、巻回スペースの狭い箇所で、幅の狭い部材を使用することが可能となる。さらに好ましくはWa/Wb≧1.7である。これにより、トロイダルコア14の径の縮小化及び実装面12の縮小化につながり、本実施の形態に係る大電流用コイル10の小型化並びに実装スペースの省スペース化を促進させることができる。しかし、連結部材26の板面の幅Waがあまりに大きくなると、コイル全体のサイズが大きくなることから、トロイダルコア14の実装面12の幅の3倍以下にすることが好ましい。   From Table 1, it can be seen that the heat generation temperature decreases as the value of Wa / Wb increases. In Example 1, the heat generation temperature is 51.5 [° C.], and the heat dissipation effect is higher than that of 55.2 [° C.] in the comparative example, and the temperature rise at the winding part 16 can be suppressed. I understand that. Therefore, when Wa / Wb ≧ 1.5, it is possible to use a member having a narrow width at a narrow winding space. More preferably, Wa / Wb ≧ 1.7. This leads to a reduction in the diameter of the toroidal core 14 and a reduction in the mounting surface 12, and can promote a reduction in size and a reduction in mounting space of the large current coil 10 according to the present embodiment. However, if the width Wa of the plate surface of the connecting member 26 becomes too large, the size of the entire coil becomes large. Therefore, it is preferable that the width of the mounting surface 12 of the toroidal core 14 is three times or less.

なお、本発明に係る大電流用コイルは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   The large current coil according to the present invention is not limited to the above-described embodiment, but can of course have various configurations without departing from the gist of the present invention.

10…大電流用コイル 10A〜10D…第1コイル〜第4コイル
12…実装面 14…トロイダルコア
16…巻回部 18…入力側部材
18A〜18C…第1入力側部材〜第3入力側部材
20…入力側折り返し部材
20A〜20C…第1入力側折り返し部材〜第3入力側折り返し部材
22…出力側部材
22A〜22C…第1出力側部材〜第3出力側部材
24…出力側折り返し部材
24A〜24C…第1出力側折り返し部材〜第3出力側折り返し部材
26…連結部材
26A〜26C…第1連結部材〜第3連結部材
DESCRIPTION OF SYMBOLS 10 ... Coil for large currents 10A-10D ... 1st coil-4th coil 12 ... Mounting surface 14 ... Toroidal core 16 ... Winding part 18 ... Input side member 18A-18C ... 1st input side member-3rd input side member DESCRIPTION OF SYMBOLS 20 ... Input side folding member 20A-20C ... 1st input side folding member-3rd input side folding member 22 ... Output side member 22A-22C ... 1st output side member-3rd output side member 24 ... Output side folding member 24A -24C: first output side folding member to third output side folding member 26: coupling members 26A-26C: first coupling member to third coupling member

Claims (6)

実装面を有するトロイダルコアと、前記トロイダルコアに巻線される2以上の巻回部とを有する大電流用コイルにおいて、
前記巻回部は、第1巻回部及び第2巻回部を有し、
前記第1巻回部は、
入力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、出力側に延びる第1入力側部材と、
前記第1入力側部材の端部から、前記実装面とほぼ平行に第1方向に延びる第1入力側折り返し部材と、
出力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、入力側に延びる第1出力側部材と、
前記第1出力側部材の端部から、前記第1方向に延びる第1出力側折り返し部材と、
前記第1入力側折り返し部材と前記第1出力側折り返し部材とを連結する第1連結部材とを有し、
前記第2巻回部は、
入力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、出力側に延びる第2入力側部材と、
前記第入力側部材の端部から、前記第1方向と反対方向の第2方向に延びる第2入力側折り返し部材と、
出力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、入力側に延びる第2出力側部材と、
前記第2出力側部材の端部から、前記第2方向に延びる第2出力側折り返し部材と、
前記第2入力側折り返し部材と前記第2出力側折り返し部材とを連結する第2連結部材とを有し、
前記第1巻回部における前記第1連結部材の板面の幅は、前記第1入力側部材、前記第1入力側折り返し部材、前記第1出力側部材及び前記第1出力側折り返し部材の各板面の幅よりも広く、
前記第2巻回部における前記第2連結部材の板面の幅は、前記第2入力側部材、前記第2入力側折り返し部材、前記第2出力側部材及び前記第2出力側折り返し部材の各板面の幅よりも広いことを特徴とする大電流用コイル。
In a large current coil having a toroidal core having a mounting surface and two or more winding portions wound around the toroidal core,
The winding part has a first winding part and a second winding part,
The first winding part is
A first input member extending from the input side along the central axis of the toroidal core through the toroidal core and extending to the output side;
A first input-side folded member extending in a first direction substantially parallel to the mounting surface from an end of the first input-side member;
A first output side member extending from the output side along the central axis of the toroidal core through the toroidal core and extending to the input side;
A first output side folding member extending in the first direction from an end of the first output side member;
A first connecting member that connects the first input-side folded member and the first output-side folded member;
The second winding part is
A second input side member extending from the input side along the central axis of the toroidal core through the toroidal core and extending to the output side;
A second input-side folding member extending from an end of the second input-side member in a second direction opposite to the first direction;
A second output side member extending from the output side along the central axis of the toroidal core through the toroidal core and extending to the input side;
A second output side folding member extending in the second direction from an end of the second output side member;
A second connecting member that connects the second input-side folded member and the second output-side folded member;
The width of the plate surface of the first connecting member in the first winding part is determined by each of the first input side member, the first input side folded member, the first output side member, and the first output side folded member. Wider than the width of the plate surface,
The width of the plate surface of the second connecting member in the second winding part is the width of each of the second input side member, the second input side folded member, the second output side member, and the second output side folded member. A large current coil characterized by being wider than the width of the plate surface.
請求項1記載の大電流用コイルにおいて、
前記巻回部は、さらに第3巻回部を有し、
入力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、出力側に延びる第3入力側部材と、
前記第3入力側部材の端部から、前記実装面から離間する方向に延びる第3入力側折り返し部材と、
出力側から前記トロイダルコアの中心軸に沿って前記トロイダルコア内を挿通し、入力側に延びる第3出力側部材と、
前記第3出力側部材の端部から、前記実装面から離間する方向に延びる第3出力側折り返し部材と、
前記第3入力側折り返し部材と前記第3出力側折り返し部材とを連結する第3連結部材とを有し、
前記第3連結部材の板面の幅は、前記第3入力側部材、前記第入力側折り返し部材、前記第3出力側部材及び前記第3出力側折り返し部材の各板面の幅よりも広いことを特徴とする大電流用コイル。
The high current coil according to claim 1,
The winding part further has a third winding part,
A third input side member extending from the input side through the toroidal core along the central axis of the toroidal core and extending to the output side;
A third input-side folded member extending from the end of the third input-side member in a direction away from the mounting surface;
A third output side member extending from the output side through the inside of the toroidal core along the central axis of the toroidal core and extending to the input side;
A third output-side folding member extending from the end of the third output-side member in a direction away from the mounting surface;
A third connecting member that connects the third input side folding member and the third output side folding member;
The width of the plate surface of the third connecting member is wider than the width of each plate surface of the third input side member, the third input side folded member, the third output side member, and the third output side folded member. A large current coil.
請求項1又は2記載の大電流用コイルにおいて、
前記連結部材の板面の幅をWa、前記入力側部材、前記入力側折り返し部材、前記出力側部材及び前記出力側折り返し部材の各板面の幅のうち、最大の幅をWbとしたとき、
Wa≧1.5×Wb
であることを特徴とする大電流用コイル。
The large current coil according to claim 1 or 2,
When the width of the plate surface of the connecting member is Wa, the maximum width of the plate surfaces of the input side member, the input side folded member, the output side member and the output side folded member is Wb,
Wa ≧ 1.5 × Wb
A coil for large current, which is characterized by
請求項3記載の大電流用コイルにおいて、
Wa≧1.7×Wb
であることを特徴とする大電流用コイル。
The high current coil according to claim 3,
Wa ≧ 1.7 × Wb
A coil for large current, which is characterized by
請求項3又は4記載の大電流用コイルにおいて、
前記実装面の幅をWcとしたとき、
Wa≦3×Wc
であることを特徴とする大電流用コイル。
The large current coil according to claim 3 or 4,
When the width of the mounting surface is Wc,
Wa ≦ 3 × Wc
A coil for large current, which is characterized by
請求項1〜5のいずれか1項に記載の大電流用コイルにおいて、
前記入力側部材と前記入力側折り返し部材とが一体化され、
前記出力側部材と前記出力側折り返し部材とが一体化されていることを特徴とする大電流用コイル。
The large current coil according to any one of claims 1 to 5,
The input side member and the input side folded member are integrated,
The large current coil, wherein the output side member and the output side folded member are integrated.
JP2012153573A 2012-07-09 2012-07-09 Large current coil Active JP6101441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153573A JP6101441B2 (en) 2012-07-09 2012-07-09 Large current coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153573A JP6101441B2 (en) 2012-07-09 2012-07-09 Large current coil

Publications (2)

Publication Number Publication Date
JP2014017365A JP2014017365A (en) 2014-01-30
JP6101441B2 true JP6101441B2 (en) 2017-03-22

Family

ID=50111808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153573A Active JP6101441B2 (en) 2012-07-09 2012-07-09 Large current coil

Country Status (1)

Country Link
JP (1) JP6101441B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813160B2 (en) * 2014-03-17 2015-11-17 三菱電機株式会社 Noise filter
JP6439289B6 (en) * 2014-06-20 2019-01-30 Tdk株式会社 Winding parts and power supply
CN106663677B (en) 2014-08-22 2019-07-16 三菱电机株式会社 Power-converting device
US11373799B2 (en) 2016-09-08 2022-06-28 Mitsubishi Electric Corporation Choke coil
KR101897904B1 (en) * 2017-02-28 2018-09-12 장정모 Bobbin for trans
JP6630315B2 (en) * 2017-06-27 2020-01-15 矢崎総業株式会社 Noise reduction unit
DE102018111468A1 (en) * 2018-05-14 2019-11-14 Schaffner International AG Throttle with busbar windings

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106861A (en) * 1996-09-30 1998-04-24 Soshin Denki Kk Noise filter
JP2004200309A (en) * 2002-12-17 2004-07-15 Matsushita Electric Works Ltd Choke coil unit
JP4793758B2 (en) * 2007-04-16 2011-10-12 Tdkラムダ株式会社 Inductance element
JP5418195B2 (en) * 2009-12-15 2014-02-19 株式会社豊田自動織機 Coil heat dissipation structure

Also Published As

Publication number Publication date
JP2014017365A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6101441B2 (en) Large current coil
EP2577691B1 (en) Two-phase coupled inductors which promote improved printed circuit board layout
JP5154676B2 (en) Capacitor
JP5062439B2 (en) PFC choke coil for interleaving
US20130188329A1 (en) Transformer with externally-mounted rectifying circuit board
US10276288B2 (en) Coupled inductors with non-uniform winding terminal distributions
JP6642006B2 (en) Coil component and circuit board having the same
US10347410B2 (en) Composite smoothing inductor and smoothing circuit
JP6041583B2 (en) Power converter
JP6451681B2 (en) Power converter
JP6113292B2 (en) Noise filter
JP2012044812A (en) Noise filter and emc filter using the same
JP5030157B2 (en) Switching power supply
JP2019198033A (en) Noise filter
JP2012110156A (en) Power conversion device
JP7251279B2 (en) coil parts
JP6586178B2 (en) Dielectric components for busbars
JP2007236137A (en) Noise filter
JP2012019504A (en) Noise filter
JP6765553B1 (en) Noise filter
TWI627642B (en) Variable coupled inductor manufacturing the same
JP5164133B2 (en) Power converter
WO2019102937A1 (en) Noise filter circuit and power supply circuit
JP6495807B2 (en) Common mode choke coil
CN209982033U (en) Filter with self-protection function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6101441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250