JP6099362B2 - Method for manufacturing silicon substrate laminate - Google Patents
Method for manufacturing silicon substrate laminate Download PDFInfo
- Publication number
- JP6099362B2 JP6099362B2 JP2012244286A JP2012244286A JP6099362B2 JP 6099362 B2 JP6099362 B2 JP 6099362B2 JP 2012244286 A JP2012244286 A JP 2012244286A JP 2012244286 A JP2012244286 A JP 2012244286A JP 6099362 B2 JP6099362 B2 JP 6099362B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon substrate
- conductive polymer
- solar cell
- conversion efficiency
- graphene oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 title claims description 81
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 77
- 229910052710 silicon Inorganic materials 0.000 title claims description 77
- 239000010703 silicon Substances 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229920001940 conductive polymer Polymers 0.000 claims description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 37
- 229910021389 graphene Inorganic materials 0.000 claims description 36
- 238000000889 atomisation Methods 0.000 claims description 15
- 239000012670 alkaline solution Substances 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 40
- 239000010408 film Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 15
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 10
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- 238000004528 spin coating Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000003595 mist Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000004770 highest occupied molecular orbital Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011970 polystyrene sulfonate Substances 0.000 description 3
- 229960002796 polystyrene sulfonate Drugs 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- -1 alkali metal salt Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YMMGRPLNZPTZBS-UHFFFAOYSA-N 2,3-dihydrothieno[2,3-b][1,4]dioxine Chemical compound O1CCOC2=C1C=CS2 YMMGRPLNZPTZBS-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は、テクスチャー構造面上に、酸化グラフェンが分散した導電性高分子層が積層されてなるシリコン基板積層体およびその製造方法に関する。 The present invention relates to a silicon substrate laminate in which a conductive polymer layer in which graphene oxide is dispersed is laminated on a texture structure surface, and a method for manufacturing the same.
近年、太陽電池の製造プロセスの簡素化を達成するために、太陽電池の原料をシリコン系原料から有機系材料へ転換する技術開発が盛んに行われている。しかしながら、有機系材料を用いた太陽電池では、有機材料の導電性が低いなどの理由のために、シリコン系太陽電池と比較して変換効率が低く、また、耐久性に劣るなどの課題があった。 2. Description of the Related Art In recent years, in order to achieve simplification of solar cell manufacturing processes, technological development for converting solar cell materials from silicon-based materials to organic materials has been actively conducted. However, solar cells using organic materials have problems such as low conversion efficiency and inferior durability compared to silicon solar cells because of the low conductivity of organic materials. It was.
そこで、有機系太陽電池の課題を解決するために、シリコン系原料の高い変換効率と有機系材料の簡素な製造プロセスの両方の特徴を併せ持つ有機無機ハイブリッド太陽電池の開発も盛んに行われている。(例えば、特許文献1など) Therefore, in order to solve the problems of organic solar cells, organic-inorganic hybrid solar cells having both characteristics of high conversion efficiency of silicon raw materials and simple manufacturing processes of organic materials have been actively developed. . (For example, Patent Document 1)
一般に有機無機ハイブリッド太陽電池では、N型のシリコン基板上にP型の有機電導層を成膜、P−N接合を形成させ、太陽電池として機能させる。従って、光電変換効率が高い太陽電池とするためには、シリコン基板上に均一に導電性が高い有機電導層を成膜することが大きな技術的課題となっていた。 In general, in an organic-inorganic hybrid solar cell, a P-type organic conductive layer is formed on an N-type silicon substrate, and a PN junction is formed to function as a solar cell. Therefore, in order to obtain a solar cell with high photoelectric conversion efficiency, it has been a major technical problem to form an organic conductive layer having high conductivity uniformly on a silicon substrate.
これまでに、シリコン基板上に有機電導層を成膜する方法としては、スピンコーティング法が一般に知られている。スピンコーティング法は、シリコン基板を高速回転させることにより遠心力で薄膜を成膜する方法であり、特に、平滑性が高いシリコン基板上に成膜する場合は、回転速度と成膜される薄膜の膜厚が比例することから、半導体製造工程において、実用化されている。 So far, a spin coating method is generally known as a method of forming an organic conductive layer on a silicon substrate. The spin coating method is a method of forming a thin film by centrifugal force by rotating a silicon substrate at a high speed. In particular, when forming a film on a silicon substrate having high smoothness, the rotation speed and the thin film to be formed are determined. Since the film thickness is proportional, it has been put to practical use in the semiconductor manufacturing process.
また、有機電導層を塗布する方法として、超音波を利用して、有機電導層の原料となる溶液を霧化し、薄膜を形成する方法も知られている。(特許文献2参照) Further, as a method of applying the organic conductive layer, a method of forming a thin film by atomizing a solution as a raw material of the organic conductive layer using ultrasonic waves is also known. (See Patent Document 2)
一方で、近年、シリコン系太陽電池の性能を向上させるために、シリコン基板をテクスチャー構造とすることも知られており、太陽電池の表面をテクスチャー構造とすることで、表面での多重反射による表面反射率低下(表面凹凸により表面で1度反射した光を再び入射させる。)、光路長の拡大(凹凸により、光の進行方向が斜めになり、その結果、シリコン内部を光が進む距離が長くなる。)の効果が得られる。 On the other hand, in recent years, in order to improve the performance of silicon-based solar cells, it is also known that the silicon substrate has a textured structure. By making the surface of the solar cell a textured structure, the surface by multiple reflection on the surface Reduced reflectivity (light that has been reflected once on the surface due to surface irregularities is incident again), and increased optical path length (because the irregularities make the light traveling direction oblique, resulting in a longer distance for the light to travel inside the silicon. Effect) is obtained.
また、前述したようにシリコン内部を光が斜めに進行するので、その光の一部が裏面で反射されて再び表面に達したとき、入射角が臨界角以上になり、光は全てシリコン基板内に閉じ込められ、その結果、シリコン系太陽電池の性能が向上する。 In addition, as described above, the light travels obliquely inside the silicon, so when a part of the light is reflected by the back surface and reaches the surface again, the incident angle becomes greater than the critical angle, and all the light is within the silicon substrate. As a result, the performance of the silicon-based solar cell is improved.
したがって、有機無機ハイブリッド太陽電池の特性を向上させようとした場合に、太陽電池の表面をテクスチャー構造とする手法が簡便である。 Therefore, when it is going to improve the characteristic of an organic inorganic hybrid solar cell, the method of making the surface of a solar cell into a texture structure is simple.
しかしながら、本発明者らは有機無機ハイブリッド系太陽電池の光電変換効率を向上させるため、テクスチャー構造を形成したシリコン基板表面にスピンコーティング法で有機電導層を成膜してみたが、良好な光電変換効率の太陽電池を得ることができなかった。 However, in order to improve the photoelectric conversion efficiency of the organic-inorganic hybrid solar cell, the present inventors tried to form an organic conductive layer on the silicon substrate surface on which the texture structure was formed by a spin coating method. An efficient solar cell could not be obtained.
また、特許文献2に記載されている成膜法を採用しても、スピンコーティング法と同様に、太陽電池の光電変換効率が悪いという課題があった。 Moreover, even if the film-forming method described in Patent Document 2 is adopted, there is a problem that the photoelectric conversion efficiency of the solar cell is poor as in the spin coating method.
本発明は、このような事情に鑑みてなされたもので、テクスチャー構造を有するシリコン基板のテクスチャー構造面上に、酸化グラフェンが分散した導電性高分子層が霧化製膜法により積層されてなるシリコン基板積層体を提供し、また、その製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a conductive polymer layer in which graphene oxide is dispersed is laminated on a texture structure surface of a silicon substrate having a texture structure by an atomization film forming method. It is an object of the present invention to provide a silicon substrate laminate and to provide a manufacturing method thereof.
このようにして製造されたシリコン基板積層体を用いることで、光電変換効率の高い有機無機ハイブリッド系太陽電池を提供することが可能となる。 By using the thus-produced silicon substrate laminate, an organic-inorganic hybrid solar cell with high photoelectric conversion efficiency can be provided.
このような課題の解決を目的とした本発明は以下のとおりである。
即ち、本発明は、テクスチャー構造を有するシリコン基板のテクスチャー構造面上に、酸化グラフェンを分散した導電性高分子層が霧化製膜法により積層されてなるシリコン基板積層体である。
The present invention aimed at solving such problems is as follows.
That is, the present invention is a silicon substrate laminate in which a conductive polymer layer in which graphene oxide is dispersed is laminated on a texture structure surface of a silicon substrate having a texture structure by an atomization film forming method.
また、本発明は、シリコン基板をアルカリ溶液でエッチングし、テクスチャー構造を形成させる工程(1)と、前記テクスチャー構造を形成後に、テクスチャー構造面上に酸化グラフェンが分散した導電性高分子層を霧化製膜法により積層する工程(2)と、を有する上記シリコン基板積層体の製造方法である。 The present invention also includes a step (1) of etching a silicon substrate with an alkaline solution to form a texture structure, and a conductive polymer layer in which graphene oxide is dispersed on the texture structure surface after the texture structure is formed. And a step (2) of laminating by a chemical film-forming method.
本発明によれば、テクスチャー構造を有するシリコン基板上に、酸化グラフェンを分散した導電性高分子層が積層されたシリコン基板積層体を得ることができる。そして、得られたシリコン基板積層体上に、銀などの金属を使用して電極パターンを形成すれば、光電変換効率が約9%の太陽電池とすることが可能である。 ADVANTAGE OF THE INVENTION According to this invention, the silicon substrate laminated body by which the conductive polymer layer which disperse | distributed the graphene oxide on the silicon substrate which has a texture structure was laminated | stacked can be obtained. If an electrode pattern is formed using a metal such as silver on the obtained silicon substrate laminate, a solar cell having a photoelectric conversion efficiency of about 9% can be obtained.
また、シリコン系太陽電池の製造プロセスと比較して、形成した導電性高分子層を焼成するだけで、P型電導層を作成することが出来るので、製造プロセスのコストを低減することも可能となる。 In addition, compared to the silicon solar cell manufacturing process, the P-type conductive layer can be created simply by firing the formed conductive polymer layer, which can reduce the cost of the manufacturing process. Become.
1 酸化グラフェンが分散した導電性高分子の溶液
2 内容器
3 外容器
4 キャリアガス
5 霧
6 連通管
7 シリコン基板
8 メッシュ電極
9 電圧発生器
10 超音波発生装置
DESCRIPTION OF SYMBOLS 1 Conductive polymer solution in which graphene oxide is dispersed 2 Inner container 3 Outer container 4 Carrier gas 5 Fog 6 Communication pipe 7 Silicon substrate 8 Mesh electrode 9 Voltage generator 10 Ultrasonic generator
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
<シリコン基板積層体>
本発明のシリコン基板積層体は、テクスチャー構造面上に、酸化グラフェンが分散した導電性高分子層が積層されてなる。
<Silicon substrate laminate>
The silicon substrate laminate of the present invention is formed by laminating a conductive polymer layer in which graphene oxide is dispersed on a texture structure surface.
本発明において、シリコン基板は厚みや形状に制限されることなく公知のものを使用することができる。また、P型、N型のシリコン基板であっても、表面にテクスチャー構造が形成可能であれば、本発明におけるシリコン基板として使用することが可能である。このように、様々なシリコン基板を使用することが可能であるが、容易に表面にテクスチャー構造を形成可能であるという点から、シリコン基板表面が(100)面である単結晶シリコン基板が好ましい。このような面方位の単結晶シリコン基板表面とアルカリ溶液を接触させると、アルカリ溶液によるシリコン基板のエッチング速度が(111)面と(100)面で異なるために、エッチング速度の遅い(111)面が残り、該表面に良好なテクスチャー(ピラミッド状の凹凸部)が形成される。 In the present invention, a known silicon substrate can be used without being limited by thickness or shape. Moreover, even if it is a P-type and an N-type silicon substrate, if a texture structure can be formed in the surface, it can be used as a silicon substrate in this invention. As described above, various silicon substrates can be used, but a single crystal silicon substrate having a (100) plane of the silicon substrate surface is preferable because a texture structure can be easily formed on the surface. When the surface of the single crystal silicon substrate having such a plane orientation is brought into contact with the alkali solution, the etching rate of the silicon substrate by the alkali solution is different between the (111) plane and the (100) plane, and therefore the (111) plane having a slow etching rate. Remains, and a good texture (pyramidal irregularities) is formed on the surface.
本発明において、シリコン基板表面に形成されたテクスチャー構造は、凹凸部が形成されていればよい。特に、該凹凸部は、多数のピラミッド構造を有し、そのうちの一つのピラミッド構造は1〜50μmの高さであり、1〜1000μm2の平面面積を持つものであることが好ましい。このような凹凸部を有するテクスチャー構造を形成すれば、シリコン基板表面における光の反射率をより低くすることが可能となり、太陽電池を作製した場合に、光電変換効率を向上させることが可能となる。 In the present invention, the texture structure formed on the surface of the silicon substrate only needs to have an uneven portion. In particular, the concavo-convex portion has a large number of pyramid structures, one of which has a height of 1 to 50 μm and preferably has a planar area of 1 to 1000 μm 2 . If a texture structure having such an uneven portion is formed, the reflectance of light on the surface of the silicon substrate can be further lowered, and when a solar cell is manufactured, the photoelectric conversion efficiency can be improved. .
本発明において、導電性高分子層に分散させる酸化グラフェンは、特に制限されることなく、公知の酸化グラフェンを使用することができる。例えば、特許第4527194号に記載されている酸化グラフェンやジャーナル・オブ・アメリカン・ケミカル・ソサイエティ80巻(1958年)1339頁に記載されている改良ハマーズ(Modified Hummers)法で製造された酸化グラフェンが何ら制限なく使用できる。 In the present invention, the graphene oxide dispersed in the conductive polymer layer is not particularly limited, and known graphene oxide can be used. For example, graphene oxide described in Japanese Patent No. 4527194 and graphene oxide produced by the modified Hummers method described in Journal of American Chemical Society Vol. 80 (1958), p. 1339 Can be used without any restrictions.
なお、酸化グラフェンは、上記した方法で作製した段階では、一辺が0.5〜10μmである四辺形状であるが、非常に脆いため、後述する導電性高分子の溶液に分散させ、超音波が印加された段階で、粒子径が10nm程度の微粒子状となる。 Note that graphene oxide has a quadrilateral shape with a side of 0.5 to 10 μm at the stage of manufacturing by the above-described method. However, since it is very brittle, it is dispersed in a conductive polymer solution described later, and ultrasonic waves are generated. When it is applied, it becomes fine particles with a particle size of about 10 nm.
本発明において、導電性高分子層を構成する導電性高分子は、導電性を有する公知の高分子であれば特に制限されないが、ポリエチレンジオキシチオフェンとポリスルホン酸塩の混合物が、水溶性で、且つ、導電性が高いという観点から好ましい。特に、ポリ3,4−エチレンジオキシチオフェンとポリスチレンスルホン酸塩の混合物(以下、PEDOT−PSSともいう。)が好ましい。 In the present invention, the conductive polymer constituting the conductive polymer layer is not particularly limited as long as it is a known polymer having conductivity, but the mixture of polyethylene dioxythiophene and polysulfonate is water-soluble, And it is preferable from a viewpoint that electroconductivity is high. In particular, a mixture of poly 3,4-ethylenedioxythiophene and polystyrene sulfonate (hereinafter also referred to as PEDOT-PSS) is preferable.
この理由として、Siの価電子帯とPEDOT−PSSの最高被占分子軌道(Highest Occupied Molecular Orbital:HOMO準位、真空準位とイオン化ポテンシャルとの差)がシリコンの価電子帯とほぼ等しいエネルギーレベルを示すことから、シリコンと接触させた場合にキャリアーのエネルギー障壁を形成せず、太陽電池の光電変換効率が向上する点が挙げられる。 The reason for this is that the valence band of Si and the highest occupied molecular orbital of PEDOT-PSS (High Occupied Molecular Orbital: difference between HOMO level and vacuum level and ionization potential) are almost equal to the valence band of silicon. Therefore, it is possible to improve the photoelectric conversion efficiency of the solar cell without forming a carrier energy barrier when contacting with silicon.
ポリエチレンジオキシチオフェンとポリスルホン酸塩の混合比は、ポリエチレンジオキシチオフェン1質量部に対して、ポリスルホン酸塩が0.1〜5質量部であることが好ましく、0.5〜2質量部がより好ましい。 The mixing ratio of polyethylene dioxythiophene and polysulfonate is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 1 part by mass of polyethylene dioxythiophene. preferable.
導電性高分子は各種溶媒に溶解させて用いることができる。溶媒としては、水、アルコール、アセトン等を挙げることができるが、前述の酸化グラフェンの分散性を均一にするためには水を用いることが好ましい。溶媒に溶解した時の導電性高分子の濃度は、導電性高分子が溶解すればよく、通常、0.1〜3質量%の範囲であることが好ましい。導電性高分子の溶液は、ヘラウス(Heraeus)社から商品名「クレヴィオス(Clevios)」として市販されている。 The conductive polymer can be used by being dissolved in various solvents. Examples of the solvent include water, alcohol, acetone, and the like, but it is preferable to use water in order to make the dispersibility of the graphene oxide uniform. The concentration of the conductive polymer when dissolved in the solvent is only required to dissolve the conductive polymer, and is usually preferably in the range of 0.1 to 3% by mass. A solution of the conductive polymer is commercially available from Heraeus under the trade name “Clevios”.
さらに、前記方法で作製した酸化グラフェンが導電性高分子層に分散することによって、エチレンジオキシチオフェンの共有結合から余った電子が、分散した酸化グラフェンを通して導電するために、導電性高分子層の最高被占分子軌道(Highest Occupied Molecular Orbital:HOMO)−最低空分子軌道(Lowest Unoccupied Molecular Orbital:LUMO)エネルギーが増大し、結晶Siとの界面において内部電界が増強され、本発明のシリコン基板積層体を用いて太陽電池を作製した場合に、光電変換効率が向上するという効果を得ることが出来る。 Furthermore, since the graphene oxide produced by the above method is dispersed in the conductive polymer layer, electrons remaining from the covalent bond of ethylenedioxythiophene are conducted through the dispersed graphene oxide. Highest occupied molecular orbital (HOMO) -lowest unoccupied molecular orbital (LUMO) energy is increased, the internal electric field is enhanced at the interface with crystalline Si, and the silicon substrate laminate of the present invention In the case where a solar cell is manufactured using the above, an effect that the photoelectric conversion efficiency is improved can be obtained.
導電性高分子層を形成する導電性高分子に分散させる酸化グラフェンの割合は特に制限されないが、通常、導電性高分子1質量部に対して5〜20質量部とすることが、本発明のシリコン基板積層体を太陽電池として用いたときに、解放電圧が増加し光電変換効率が向上するために好適である。 The ratio of the graphene oxide dispersed in the conductive polymer forming the conductive polymer layer is not particularly limited, but it is usually 5 to 20 parts by mass with respect to 1 part by mass of the conductive polymer. When the silicon substrate laminate is used as a solar cell, the release voltage is increased and the photoelectric conversion efficiency is improved.
本発明において、酸化グラフェンが分散した導電性高分子層の形成は、霧化製膜法が用いられる。従来のスピンコーティング法を用いたのでは、得られるシリコン基板積層体を太陽電池としたときの光電変換効率が低いために好ましくない。 In the present invention, the formation of the conductive polymer layer in which graphene oxide is dispersed uses an atomization film forming method. The use of the conventional spin coating method is not preferable because the photoelectric conversion efficiency when the obtained silicon substrate laminate is a solar cell is low.
霧化製膜法は、酸化グラフェンを分散した導電性高分子の溶液を超音波照射して霧化させ、さらに発生した霧に電圧を印加することにより、シリコン基板上に酸化グラフェンを分散した導電性高分子層を形成する方法である。詳細は後述する。 In the atomization film forming method, a conductive polymer solution in which graphene oxide is dispersed is ultrasonically irradiated to atomize, and a voltage is applied to the generated mist to conduct conductivity in which graphene oxide is dispersed on a silicon substrate. This is a method for forming a conductive polymer layer. Details will be described later.
本発明において、酸化グラフェンが分散した導電性高分子層の厚みは、特に制限されないが、膜の強度、均一性、太陽電池とした場合の光電変換効率などの観点から5〜500nmであることが好ましい。 In the present invention, the thickness of the conductive polymer layer in which the graphene oxide is dispersed is not particularly limited, but is 5 to 500 nm from the viewpoint of film strength, uniformity, photoelectric conversion efficiency in the case of a solar cell, and the like. preferable.
本発明のシリコン基板積層体は、その上に電極を形成し、さらに50〜180℃で焼成することにより導電性高分子層をP型有機電導層にすることができ、太陽電池として動作する。 The silicon substrate laminate of the present invention can be formed into an P-type organic conductive layer by forming electrodes thereon and firing at 50 to 180 ° C., and operates as a solar cell.
このように作製された、光電変換効率に優れた太陽電池は、製造プロセスの簡素化に伴って、製造コストを低減できるので、幅広い用途に使用することが可能である。 The solar cell manufactured in this way and excellent in photoelectric conversion efficiency can be used in a wide range of applications because the manufacturing cost can be reduced with the simplification of the manufacturing process.
一方で、スピンコーティング法などの従来技術で、導電性高分子層を成膜し、太陽電池とした場合は本発明と比較して光電変換効率が低い。このような原因としては、本発明者らは、スピンコーティング法などの従来技術で、テクスチャー構造を有するシリコン基板上に導電性高分子層を成膜した場合には、導電性高分子層の膜厚が不均一になるために太陽電池の光電変換効率が低下すると推測している。 On the other hand, when a conductive polymer layer is formed by a conventional technique such as spin coating to form a solar cell, the photoelectric conversion efficiency is lower than that of the present invention. As a cause of this, the present inventors, when the conductive polymer layer is formed on the silicon substrate having the texture structure by the conventional technique such as the spin coating method, the film of the conductive polymer layer. It is estimated that the photoelectric conversion efficiency of the solar cell is lowered due to the non-uniform thickness.
<シリコン基板積層体の製造方法>
次に、本発明のシリコン基板積層体を製造する方法について説明する。
<Method for producing silicon substrate laminate>
Next, a method for producing the silicon substrate laminate of the present invention will be described.
工程(1)
まず、シリコン基板をアルカリ溶液でエッチングし、シリコン基板表面にテクスチャー構造を形成させる。
アルカリ溶液は、アルカリ金属塩とアルコールとの1:1〜5(質量比)の混合物を用いることが好ましく、アルカリ金属塩としては水酸化ナトリウムが好ましく、アルコールとしてはイソプロピルアルコールが好ましい。
Process (1)
First, the silicon substrate is etched with an alkaline solution to form a texture structure on the silicon substrate surface.
The alkali solution is preferably a mixture of an alkali metal salt and an alcohol in a ratio of 1: 1 to 5 (mass ratio). The alkali metal salt is preferably sodium hydroxide, and the alcohol is preferably isopropyl alcohol.
シリコン基板をアルカリ溶液と接触させる方法としては、例えば、アルカリ溶液が導入された処理槽にシリコン基板を浸漬させればよい。このとき、シリコン基板表面に均一にテクスチャー(凹凸部)を形成させるため、処理槽中でシリコン基板を揺動させたり、振動することもできる。また、処理槽中のアルカリ溶液を撹拌したり、循環混合を行いながら、シリコン基板と接触させることもできる。 As a method for bringing the silicon substrate into contact with the alkaline solution, for example, the silicon substrate may be immersed in a treatment tank into which the alkaline solution has been introduced. At this time, since the texture (uneven portion) is uniformly formed on the surface of the silicon substrate, the silicon substrate can be swung or vibrated in the treatment tank. Moreover, it can also be made to contact with a silicon substrate, stirring the alkaline solution in a processing tank, or performing circulation mixing.
工程(2)
次に、テクスチャー構造面上に酸化グラフェンが分散した導電性高分子層を積層するが、その前にテクスチャー構造を形成した面を洗浄することが好ましい。洗浄する方法としては特に制限されないが、シリコン基板を希フッ酸水溶液中に入れ、シリコン基板の表面の酸化膜を溶解させ、その後、アンモニアと過酸化水素の混合溶液で有機物等を除去し、次いで、塩酸と過酸化水素の混合溶液で、シリコン基板に付着した金属類を溶解させ、最後に超純水で洗浄する方法(一般にRCA処理と呼ばれる方法)で、有機物や重金属を除去、洗浄することが好ましい。
Process (2)
Next, a conductive polymer layer in which graphene oxide is dispersed is laminated on the texture structure surface, but it is preferable to clean the surface on which the texture structure is formed before that. The cleaning method is not particularly limited, but the silicon substrate is placed in a dilute hydrofluoric acid aqueous solution, the oxide film on the surface of the silicon substrate is dissolved, and then organic substances and the like are removed with a mixed solution of ammonia and hydrogen peroxide. Remove and clean organic substances and heavy metals by dissolving the metals attached to the silicon substrate with a mixed solution of hydrochloric acid and hydrogen peroxide, and finally cleaning with ultrapure water (a method commonly called RCA treatment). Is preferred.
上記の洗浄の後、テクスチャー構造面上に酸化グラフェンが分散した導電性高分子層を霧化成膜法により積層する。 After the above cleaning, a conductive polymer layer in which graphene oxide is dispersed is laminated on the texture structure surface by an atomization film forming method.
霧化成膜法(Chemical Mist Deposition、以下、CMD法ともいう。)は、例えば、図1に示した霧化製膜装置を使用して実施される。酸化グラフェンが分散した導電性高分子の溶液(以下、原料溶液ともいう)1を入れた内容器2を、水を満たした外容器3中に浸し、外容器3中の水に超音波発生装置10で超音波を照射することによって原料溶液1を霧化する。内容器2中にはキャリアガス4を流し、生成した霧5を連通管6を通してシリコン基板7上に導く。さらに、シリコン基板7の上方の連通管6に設けたメッシュ電極8とシリコン基板7間で電圧発生器9により電圧を印加し、シリコン基板7上に均一な導電性高分子層を堆積させる。 The atomization film-forming method (Chemical Mist Deposition, hereinafter also referred to as CMD method) is performed using, for example, the atomization film forming apparatus shown in FIG. An inner container 2 containing a conductive polymer solution (hereinafter also referred to as a raw material solution) 1 in which graphene oxide is dispersed is immersed in an outer container 3 filled with water, and an ultrasonic generator is added to the water in the outer container 3. The raw material solution 1 is atomized by irradiating ultrasonic waves at 10. A carrier gas 4 is caused to flow into the inner container 2, and the generated mist 5 is guided onto the silicon substrate 7 through the communication pipe 6. Further, a voltage is applied between the mesh electrode 8 provided on the communication pipe 6 above the silicon substrate 7 and the silicon substrate 7 by the voltage generator 9 to deposit a uniform conductive polymer layer on the silicon substrate 7.
CMD法を採用することにより、テクスチャー構造が形成されたシリコン基板のように凹凸が表面に存在する基板上に薄膜が形成可能となる。上記の霧化製膜法においては、酸化グラフェンが分散した導電性高分子の溶液に超音波が照射されると、酸化グラフェンが微粒子状となり、導電性高分子に酸化グラフェンが分散された状態で霧状となる。霧の大きさが、形成される導電性高分子層の均一性に影響を与えることから、2〜5MHzの超音波を照射することが好ましい。 By adopting the CMD method, a thin film can be formed on a substrate having irregularities on the surface, such as a silicon substrate on which a texture structure is formed. In the above atomization film-forming method, when a conductive polymer solution in which graphene oxide is dispersed is irradiated with ultrasonic waves, the graphene oxide becomes fine particles, and the graphene oxide is dispersed in the conductive polymer. It becomes foggy. Since the size of the mist affects the uniformity of the conductive polymer layer to be formed, it is preferable to irradiate ultrasonic waves of 2 to 5 MHz.
キャリアガスは、超音波によって発生させた霧を、成膜される基板上に輸送する。キャリアガスは、不活性であれば特に制限されないが、取り扱いが容易であるという点から窒素が好ましい。キャリアガスの流量も特に制限されないが、基板上に均一な成膜が可能であるという点から、5〜1000sccm(標準状態のときの1分あたりの流量)の流量を採用することが好ましい。ただし、キャリアガスの流量は、霧を供給する連通管の径、及び、成膜される基板の直径、霧化成膜装置の装置構成等によって大きな影響を受けるので、実際に採用する条件に応じて適宜調整すればよい。 The carrier gas transports fog generated by ultrasonic waves onto a substrate on which a film is formed. The carrier gas is not particularly limited as long as it is inert, but nitrogen is preferable because it is easy to handle. The flow rate of the carrier gas is not particularly limited, but a flow rate of 5 to 1000 sccm (flow rate per minute in the standard state) is preferably employed from the viewpoint that uniform film formation is possible on the substrate. However, the flow rate of the carrier gas is greatly affected by the diameter of the communication pipe that supplies the mist, the diameter of the substrate on which the film is formed, the device configuration of the atomization film forming apparatus, etc. May be adjusted accordingly.
本発明においては、シリコン基板上方の連通管に設置されたメッシュ電極とシリコン基板間で、電圧が印加される。電圧は±1〜10kVの範囲から選択することが、超音波によって発生した霧の流れを制御して均一な膜とすることが可能であるために好ましい。 In the present invention, a voltage is applied between the mesh electrode installed in the communication pipe above the silicon substrate and the silicon substrate. The voltage is preferably selected from a range of ± 1 to 10 kV because it is possible to control the flow of fog generated by ultrasonic waves to form a uniform film.
本発明においては、成膜時間は所望する導電性高分子層の厚みにもよるが、5〜500nmの厚みの導電性高分子層を形成する場合は、10分〜20時間を採用することが好ましい。 In the present invention, the film formation time depends on the desired thickness of the conductive polymer layer, but when a conductive polymer layer having a thickness of 5 to 500 nm is formed, 10 minutes to 20 hours may be employed. preferable.
また、成膜時の基板温度は、霧を供給する連通管からシリコン基板に到達する霧の流れを整流して均一な成膜を可能とするために20〜80℃であることが好ましい。 Further, the substrate temperature during film formation is preferably 20 to 80 ° C. in order to rectify the flow of the mist that reaches the silicon substrate from the communication pipe that supplies the mist, thereby enabling uniform film formation.
本発明においては、工程(2)の後に、シリコン基板積層体上に電極を形成する。電極の金属は、アルミニウム又は銀がオーミック特性を示すという理由から好ましい。また、電極の形状は、集電という理由から、櫛形あるいはアンテナ型が好ましい。電極に使用される金属をシリコン基板積層体上に形成する方法は、特に制限されないが、プロセスが容易であり、電極のパターンを形成しやすいという観点から、蒸着法や印刷法を採用することが好ましい。電極形成後、必要に応じて乾燥を行えばよい。 In the present invention, an electrode is formed on the silicon substrate laminate after the step (2). The metal of the electrode is preferable because aluminum or silver exhibits ohmic characteristics. Further, the shape of the electrode is preferably a comb shape or an antenna type for the reason of current collection. The method for forming the metal used for the electrode on the silicon substrate laminate is not particularly limited, but it is possible to employ a vapor deposition method or a printing method from the viewpoint of easy process and easy formation of the electrode pattern. preferable. After electrode formation, drying may be performed as necessary.
その後、50〜180℃で焼成することによって、導電性高分子層をP型有機電導層に変換できる。焼成温度が50℃未満の場合は、導電性高分子層に残留する溶媒を除去できず有機電導層がP型半導体として機能しないため好ましくない。焼成温度が180℃より高い場合は、有機電導層を構成する有機物質の劣化が進むために好ましくない。 Thereafter, the conductive polymer layer can be converted into a P-type organic conductive layer by baking at 50 to 180 ° C. When the firing temperature is less than 50 ° C., it is not preferable because the solvent remaining in the conductive polymer layer cannot be removed and the organic conductive layer does not function as a P-type semiconductor. When the firing temperature is higher than 180 ° C., the deterioration of the organic material constituting the organic conductive layer is not preferable.
このようにして光電変換効率が優れた太陽電池とすることが出来る。 Thus, it can be set as the solar cell excellent in photoelectric conversion efficiency.
本発明は上記した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で適宜変更して実施し得るものである。 The present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications within the scope not departing from the gist of the present invention.
以下に、シリコン基板積層体および太陽電池の評価方法を示した。 Below, the evaluation method of a silicon substrate laminated body and a solar cell was shown.
(シリコン基板積層体上の導電性高分子層の厚み)
導電性高分子層の厚み測定は、導電性高分子層部分とシリコン部分との境界を、日立製作所製走査型電子顕微鏡SU-8030を使用して、断面観察することによって行った。代表的な観察例を図2に示した。図2の導電性高分子層の厚みは100nmである。
(Thickness of conductive polymer layer on silicon substrate laminate)
The thickness of the conductive polymer layer was measured by observing a cross section of the boundary between the conductive polymer layer portion and the silicon portion using a scanning electron microscope SU-8030 manufactured by Hitachi, Ltd. A typical observation example is shown in FIG. The thickness of the conductive polymer layer in FIG. 2 is 100 nm.
(シリコン基板積層体上の導電性高分子層の同定)
堀場製作所製エネルギー分散型X線分析装置X−Maxを使用してシリコン基板積層体上に形成した導電性高分子層の元素分析を行った。また、島津製作所製X線光電子分光分析装置AXIS−HSiを使用して、導電性高分子層を構成する原子間の結合エネルギーを測定することにより、化合物を同定した。
(Identification of conductive polymer layer on silicon substrate laminate)
Elemental analysis of the conductive polymer layer formed on the silicon substrate laminate was performed using an energy dispersive X-ray analyzer X-Max manufactured by HORIBA, Ltd. Moreover, the compound was identified by measuring the bond energy between the atoms which comprise a conductive polymer layer using Shimadzu X-ray photoelectron spectroscopy analyzer AXIS-HSi.
(太陽電池の光電変換効率の算出方法)
エアマス1.5、強度100mW/cm2の白色光を照射したときに得られる、電流電圧特性より、光電変換効率を算出した。
(Calculation method of photovoltaic cell photoelectric conversion efficiency)
The photoelectric conversion efficiency was calculated from the current-voltage characteristics obtained when white light having an air mass of 1.5 and an intensity of 100 mW / cm 2 was irradiated.
次に、本発明を実施例及び比較例により、さらに詳細に説明するが、本発明は、これら実施例によってなんら限定されるものではない。 EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these Examples.
(実施例1)
面方位(100)、抵抗率1−5Ω・cmの単結晶シリコン基板(φ4インチ)より約4cm2の大きさに切りだした試験片を準備し、水酸化ナトリウムおよびイソプロピルアルコールを1:2(質量比)で混合した混合溶液中に40分間浸漬することによって、テクスチャー構造を形成した。その後、有機溶剤による洗浄及びRCA洗浄を行ない、本試験片を霧化成膜装置の試料台へセットした。
Example 1
A test piece cut to a size of about 4 cm 2 from a single crystal silicon substrate (φ4 inch) having a plane orientation (100) and a resistivity of 1-5 Ω · cm was prepared, and sodium hydroxide and isopropyl alcohol were added 1: 2 ( A texture structure was formed by immersing in a mixed solution mixed at a mass ratio of 40 minutes. Thereafter, cleaning with an organic solvent and RCA cleaning were performed, and this test piece was set on the sample stage of the atomization film forming apparatus.
次に、ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ80巻(1958年)1339頁に記載されている方法にしたがって酸化グラフェンを調製した。酸化グラフェンの形状は薄片状であり、1辺の長さは約0.5〜10μmとなっていることが確認された。 Next, graphene oxide was prepared according to the method described in Journal of American Chemical Society Volume 80 (1958), page 1339. The shape of graphene oxide was flaky, and it was confirmed that the length of one side was about 0.5 to 10 μm.
次に、ポリ3.4−エチレンジオキシチオフェン0.5質量%、ポリスチレンスルホン酸塩0.8質量%、残部が水の混合溶液(Heraeus社製 Clevios 1000)100質量部に、酸化グラフェン粉末を12質量部の割合で分散させ、原料溶液を作製した。得られた原料溶液を光学顕微鏡にて分散状態を確認した。その結果を図3に示した。図3からPEDOT−PSSの水溶液中に酸化グラフェンが均一に分散していることが確認された。 Next, graphene oxide powder is added to 100 parts by mass of a mixed solution of poly 3.4-ethylenedioxythiophene 0.5% by mass, polystyrene sulfonate 0.8% by mass, and the balance being water (Clevios 1000 manufactured by Heraeus). A raw material solution was prepared by dispersing at a rate of 12 parts by mass. The dispersion of the obtained raw material solution was confirmed with an optical microscope. The results are shown in FIG. From FIG. 3, it was confirmed that the graphene oxide was uniformly dispersed in the aqueous solution of PEDOT-PSS.
原料溶液を霧化製膜装置に注入し、メッシュ電極から試料片までの間隔を10cmとして、シリコン基板の温度を40℃、窒素流量を60sccm、メッシュ電極印加電圧を−5kV、超音波の周波数を3MHzとして、霧化成膜装置を30分運転した。 The raw material solution is injected into the atomization film forming apparatus, the distance from the mesh electrode to the sample piece is 10 cm, the temperature of the silicon substrate is 40 ° C., the nitrogen flow rate is 60 sccm, the mesh electrode applied voltage is −5 kV, and the ultrasonic frequency is The atomization film forming apparatus was operated for 30 minutes at 3 MHz.
PEDOT−PSS中に酸化グラフェンが分散した導電性高分子層を、テクスチャー構造が形成された単結晶シリコン基板上に形成した。本条件で形成されるPEDOT−PSS膜の厚みは、電子顕微鏡観察で測定した結果、100nmであった(図1参照)。また、エネルギー分散型X線分析装置で、主元素が炭素、酸素、イオウが主体であることが確認でき、また、X線光電子分光分析装置により測定した各原子間結合エネルギーから、単結晶シリコン基板上に形成された薄膜が、PEDOT−PSSであると評価した。 A conductive polymer layer in which graphene oxide was dispersed in PEDOT-PSS was formed over a single crystal silicon substrate on which a texture structure was formed. The thickness of the PEDOT-PSS film formed under these conditions was 100 nm as a result of measurement with an electron microscope (see FIG. 1). In addition, with an energy dispersive X-ray analyzer, it can be confirmed that the main elements are mainly carbon, oxygen, and sulfur, and from the interatomic bond energy measured by the X-ray photoelectron spectrometer, a single crystal silicon substrate The thin film formed on top was evaluated as PEDOT-PSS.
次に、PEDOT−PSS膜上に口型形状の銀電極を印刷法により形成し、100℃で5分間銀電極を乾燥した。最後に、空気中で140℃、30分間焼成して、太陽電池を完成させた。 Next, a mouth-shaped silver electrode was formed on the PEDOT-PSS film by a printing method, and the silver electrode was dried at 100 ° C. for 5 minutes. Finally, it was baked in air at 140 ° C. for 30 minutes to complete the solar cell.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は9.2%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 9.2%.
(実施例2)
実施例1において、テクスチャー構造を施した単結晶シリコン基板上に形成する酸化グラフェン分散導電性高分子膜の厚みを50nmとした以外は、すべての条件を実施例1と同じにして太陽電池を形成した。
(Example 2)
In Example 1, a solar cell is formed under the same conditions as in Example 1 except that the thickness of the graphene oxide-dispersed conductive polymer film formed on the textured single crystal silicon substrate is 50 nm. did.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は8.9%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 8.9%.
(実施例3)
実施例1において、テクスチャー構造を施した単結晶シリコン基板上に形成する酸化グラフェン分散導電性高分子膜の厚みを300nmとした以外は、すべての条件を実施例1と同じにして太陽電池を形成した。
(Example 3)
In Example 1, a solar cell was formed under the same conditions as in Example 1 except that the thickness of the graphene oxide-dispersed conductive polymer film formed on the textured single crystal silicon substrate was 300 nm. did.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は8.8%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 8.8%.
(実施例4)
実施例1において、電極作製後、空気中で170℃、30分間焼成した以外は、すべての条件を実施例1と同じにして太陽電池を形成した。
Example 4
In Example 1, a solar cell was formed under the same conditions as in Example 1 except that after the electrode was prepared, the sample was baked in air at 170 ° C. for 30 minutes.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は8.3%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 8.3%.
(実施例5)
実施例1において、電極作製後、空気中で70℃、30分間焼成した以外は、すべての条件を実施例1と同じにして太陽電池を形成した。
(Example 5)
In Example 1, a solar cell was formed under the same conditions as in Example 1 except that after the electrode was fabricated, the sample was baked in air at 70 ° C. for 30 minutes.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は8.0%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 8.0%.
(比較例1)
実施例1において、テクスチャー構造を施した単結晶シリコン基板上に酸化グラフェン分散導電性高分子膜をスピンコート法で成膜した以外は、すべての条件を実施例1と同じにして太陽電池を形成した。
(Comparative Example 1)
In Example 1, a solar cell was formed in the same manner as in Example 1 except that a graphene oxide-dispersed conductive polymer film was formed on a textured single crystal silicon substrate by spin coating. did.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は7.0%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 7.0%.
(比較例2)
実施例1において、表面が平坦な単結晶シリコン基板上に酸化グラフェン分散導電性高分子膜を成膜した以外は、すべての条件を実施例1と同じにして太陽電池を形成した。
(Comparative Example 2)
In Example 1, a solar cell was formed in the same manner as in Example 1 except that a graphene oxide-dispersed conductive polymer film was formed on a single crystal silicon substrate having a flat surface.
作製した太陽電池を光電変換効率測定装置にセットして、変換効率を測定した。その結果、変換効率は5.4%であった。 The produced solar cell was set in a photoelectric conversion efficiency measuring device, and the conversion efficiency was measured. As a result, the conversion efficiency was 5.4%.
Claims (2)
前記テクスチャー構造を形成後に、テクスチャー構造面上に酸化グラフェンが分散した導電性高分子層を霧化製膜法により積層する工程(2)と、
を有し、
霧化製膜法において、2〜5MHzの超音波を照射することを特徴とする
シリコン基板積層体の製造方法。 Etching the silicon substrate with an alkaline solution to form a texture structure (1);
After forming the texture structure, a step (2) of laminating a conductive polymer layer in which graphene oxide is dispersed on the texture structure surface by an atomization film forming method;
I have a,
In the atomization film forming method, an ultrasonic wave of 2 to 5 MHz is irradiated . A method for manufacturing a silicon substrate laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012244286A JP6099362B2 (en) | 2012-11-06 | 2012-11-06 | Method for manufacturing silicon substrate laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012244286A JP6099362B2 (en) | 2012-11-06 | 2012-11-06 | Method for manufacturing silicon substrate laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014093472A JP2014093472A (en) | 2014-05-19 |
JP6099362B2 true JP6099362B2 (en) | 2017-03-22 |
Family
ID=50937335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012244286A Expired - Fee Related JP6099362B2 (en) | 2012-11-06 | 2012-11-06 | Method for manufacturing silicon substrate laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6099362B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015013244A (en) * | 2013-07-04 | 2015-01-22 | カルソニックカンセイ株式会社 | Deposition apparatus and deposition method |
-
2012
- 2012-11-06 JP JP2012244286A patent/JP6099362B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014093472A (en) | 2014-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Performance‐enhancing approaches for PEDOT: PSS‐Si hybrid solar cells | |
RU2578664C2 (en) | Transparent conducting large-area coatings, including doped carbon nanotubes and nano-wire composite materials, and methods for obtaining thereof | |
Zhang et al. | High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping | |
TWI535800B (en) | Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same | |
Gouda et al. | Efficient fabrication methodology of wide angle black silicon for energy harvesting applications | |
Li et al. | Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting | |
Lee et al. | Enhanced efficiency and air-stability of NiO X-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100 | |
JP6373552B2 (en) | Photoelectric conversion element | |
Ku et al. | Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photo‐Electrochemical Efficiency and Stability | |
Ramizy et al. | The effect of porosity on the properties of silicon solar cell | |
Bai et al. | A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications | |
CN110923817A (en) | Pyramid silicon-based photocathode with uniform pn homojunction layer and preparation method thereof | |
Kato et al. | Metal-assisted chemical etching using silica nanoparticle for the fabrication of a silicon nanowire array | |
Dagar et al. | Low-temperature solution-processed thin SnO 2/Al 2 O 3 double electron transport layers toward 20% efficient perovskite solar cells | |
Chen et al. | Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties | |
JP2022545188A (en) | Perovskite/silicon tandem photovoltaic device | |
Choi et al. | Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation | |
Shin et al. | A highly ordered and damage-free Ge inverted pyramid array structure for broadband antireflection in the mid-infrared | |
Park et al. | Surface‐Passivated Vertically Oriented Sb2S3 Nanorods Photoanode Enabling Efficient Unbiased Solar Fuel Production | |
Shao et al. | One-step integration of a multiple-morphology gold nanoparticle array on a TiO 2 film via a facile sonochemical method for highly efficient organic photovoltaics | |
Tung et al. | Tunable electrodeposition of Ni electrocatalysts onto Si microwires array for photoelectrochemical water oxidation | |
Bhujel et al. | Synthesis and characterization of silicon nanowires by electroless etching | |
JP6099362B2 (en) | Method for manufacturing silicon substrate laminate | |
US20190319161A1 (en) | Organic-inorganic hybrid material and method for silicon surface passivation | |
Sutthana et al. | Enhancement of ZnO dye-sensitized solar cell performance by modifying photoelectrodes using an acid vapor texturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6099362 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |