JP6099133B2 - Method for producing ketol compound - Google Patents

Method for producing ketol compound Download PDF

Info

Publication number
JP6099133B2
JP6099133B2 JP2013047687A JP2013047687A JP6099133B2 JP 6099133 B2 JP6099133 B2 JP 6099133B2 JP 2013047687 A JP2013047687 A JP 2013047687A JP 2013047687 A JP2013047687 A JP 2013047687A JP 6099133 B2 JP6099133 B2 JP 6099133B2
Authority
JP
Japan
Prior art keywords
copper
compound
reaction
alcohol
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013047687A
Other languages
Japanese (ja)
Other versions
JP2014172874A (en
Inventor
金田 清臣
清臣 金田
洋和 松田
洋和 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Osaka University NUC
Original Assignee
Daicel Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Osaka University NUC filed Critical Daicel Corp
Priority to JP2013047687A priority Critical patent/JP6099133B2/en
Publication of JP2014172874A publication Critical patent/JP2014172874A/en
Application granted granted Critical
Publication of JP6099133B2 publication Critical patent/JP6099133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、温和な条件下で1級水酸基及び2級水酸基を少なくとも有するアルコールを酸化して、対応するケトール化合物を選択的に製造するケトール化合物の製造方法に関する。   The present invention relates to a method for producing a ketol compound in which an alcohol having at least a primary hydroxyl group and a secondary hydroxyl group is oxidized under mild conditions to selectively produce a corresponding ketol compound.

ジヒドロキシアセトンは化粧品や食品添加物として有用な化合物である。ジヒドロキシアセトンの製造方法としては、Gluconobacter属の細菌を使用して発酵法によりグリセロールから製造する方法が知られている。その他、高価なパラジウムを含む均一系触媒を使用してグリセロールを酸化する方法が知られている。これらの方法ではジヒドロキシアセトンを高収率で製造することはできるが、反応生成物と細菌や触媒を分離することが困難であり、細菌や触媒を回収して再利用することが困難であるため、製造コストが嵩むことが問題であった(非特許文献1、2)。   Dihydroxyacetone is a useful compound as a cosmetic or food additive. As a method for producing dihydroxyacetone, a method of producing from glycerol by fermentation using bacteria of the genus Gluconobacter is known. In addition, a method for oxidizing glycerol using a homogeneous catalyst containing expensive palladium is known. Although these methods can produce dihydroxyacetone in high yield, it is difficult to separate reaction products from bacteria and catalysts, and it is difficult to recover and reuse bacteria and catalysts. The problem is that the manufacturing cost increases (Non-Patent Documents 1 and 2).

反応生成物と触媒との分離性を改善する方法としては、不均一系触媒を使用することが考えられる。非特許文献3〜5には、白金とビスマスを活性炭に担持して得られる触媒や、金若しくは金とパラジウムを活性炭に担持して得られる触媒等の不均一系触媒を使用してグリセロールを酸化することによりジヒドロキシアセトンを製造する方法が記載されている。しかし、ジヒドロキシアセトンの収率は40%程度であった。すなわち、容易に回収することができ、再利用することができる不均一系触媒を使用して、選択的且つ高収率にジヒドロキシアセトンを製造する方法は未だ見いだされていないのが現状である。   As a method for improving the separation between the reaction product and the catalyst, it is conceivable to use a heterogeneous catalyst. Non-patent documents 3 to 5 describe that glycerol is oxidized using a heterogeneous catalyst such as a catalyst obtained by supporting platinum and bismuth on activated carbon or a catalyst obtained by supporting gold or gold and palladium on activated carbon. A process for producing dihydroxyacetone is described. However, the yield of dihydroxyacetone was about 40%. That is, at present, no method has been found for producing dihydroxyacetone selectively and in high yield using a heterogeneous catalyst that can be easily recovered and reused.

J.Ferment. Bioeng. 1994, 78(5), p351-355J. Ferment. Bioeng. 1994, 78 (5), p351-355 Angew. Chem. Int. Ed. 2010. 49, p9456-9459Angew. Chem. Int. Ed. 2010. 49, p9456-9459 Ind. Eng. Chem. Res. 2010, 49, p10876-10882Ind. Eng. Chem. Res. 2010, 49, p10876-10882 Appl. Catal., A 1993, 96(2), p217-228Appl. Catal., A 1993, 96 (2), p217-228 Appl. Catal., B 2007, 70(1-4), p637-643Appl. Catal., B 2007, 70 (1-4), p637-643

従って、本発明の目的は、反応生成物から容易に分離して回収することができ、再利用することができる不均一系触媒を使用して、1級水酸基及び2級水酸基を少なくとも有するアルコールから、対応するケトール化合物を選択的且つ高収率に製造する方法を提供することにある。   Accordingly, an object of the present invention is to use a heterogeneous catalyst that can be easily separated and recovered from a reaction product and reused from an alcohol having at least a primary hydroxyl group and a secondary hydroxyl group. Another object of the present invention is to provide a method for selectively producing a corresponding ketol compound in a high yield.

本発明者等は上記課題を解決するため鋭意検討した結果、担体に担持した銅触媒を使用すると、温和な条件下で1級水酸基及び2級水酸基を少なくとも有するアルコールを酸化して、対応するケトール化合物を選択的且つ高収率に製造することができること、反応後は濾過等の簡便な方法で触媒を回収し、再利用することができるため、コストの削減が可能であることを見いだした。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive investigations by the present inventors to solve the above problems, when a copper catalyst supported on a support is used, an alcohol having at least a primary hydroxyl group and a secondary hydroxyl group is oxidized under a mild condition, and a corresponding ketol is obtained. It was found that the compound can be selectively produced in a high yield, and that the catalyst can be recovered and reused by a simple method such as filtration after the reaction, so that the cost can be reduced. The present invention has been completed based on these findings.

すなわち、本発明は、担体に担持した銅触媒の存在下で、1級水酸基及び2級水酸基を少なくとも有するアルコールを酸化して、対応するケトール化合物を製造するケトール化合物の製造方法を提供する。   That is, the present invention provides a method for producing a ketol compound in which a corresponding ketol compound is produced by oxidizing an alcohol having at least a primary hydroxyl group and a secondary hydroxyl group in the presence of a copper catalyst supported on a carrier.

本発明は、また、1級水酸基及び2級水酸基を少なくとも有するアルコールがグリセロールであり、対応するケトール化合物がジヒドロキシアセトンである前記のケトール化合物の製造方法を提供する。   The present invention also provides the method for producing the ketol compound, wherein the alcohol having at least a primary hydroxyl group and a secondary hydroxyl group is glycerol, and the corresponding ketol compound is dihydroxyacetone.

本発明は、また、担体がベーマイト又はハイドロタルサイトである前記のケトール化合物の製造方法を提供する。   The present invention also provides a method for producing the ketol compound, wherein the carrier is boehmite or hydrotalcite.

本発明は、銅触媒と共に、2,2,6,6−テトラメチルピペリジン−N−オキシル及び/又はベンゾキノンを使用する前記のケトール化合物の製造方法を提供する。   The present invention provides a method for producing the above ketol compound using 2,2,6,6-tetramethylpiperidine-N-oxyl and / or benzoquinone together with a copper catalyst.

本発明は、また、水及び/又はニトリルの存在下で反応を行う前記のケトール化合物の製造方法を提供する。   The present invention also provides a method for producing the ketol compound, wherein the reaction is carried out in the presence of water and / or nitrile.

尚、本明細書において、1級水酸基とは水酸基が結合している炭素原子に1個の炭素原子が結合しているものいう。また、2級水酸基とは水酸基が結合している炭素原子に2個の炭素原子が結合しているものをいう。   In the present specification, the primary hydroxyl group means that one carbon atom is bonded to the carbon atom to which the hydroxyl group is bonded. A secondary hydroxyl group refers to a group in which two carbon atoms are bonded to a carbon atom to which a hydroxyl group is bonded.

本発明のケトール化合物の製造方法は、担体に担持した銅触媒を使用するため、温和な条件下で1級水酸基及び2級水酸基を少なくとも有するアルコールを酸化して、対応するケトール化合物を選択的且つ高収率に製造することができる。例えば、バイオディーゼル燃料の製造過程ではグリセロールが大量に副生するが、そのグリセロールを原料として使用すると、化粧品や食品添加物として有用なジヒドロキシアセトンを選択的且つ高収率に製造することができる。また、反応後は、濾過等の簡便な操作により触媒と反応生成物を分離することができるため、反応生成物の精製が容易であり、且つ触媒の回収・再利用が容易である。そのため、大幅にコストを削減することが可能であり、ケトール化合物を安価に提供することが可能である。   Since the method for producing a ketol compound of the present invention uses a copper catalyst supported on a carrier, an alcohol having at least a primary hydroxyl group and a secondary hydroxyl group is oxidized under mild conditions to selectively select the corresponding ketol compound. It can be produced in high yield. For example, a large amount of glycerol is produced as a by-product in the production process of biodiesel fuel. When the glycerol is used as a raw material, dihydroxyacetone useful as a cosmetic or food additive can be selectively produced in a high yield. Further, after the reaction, the catalyst and the reaction product can be separated by a simple operation such as filtration, so that the reaction product can be easily purified and the catalyst can be easily recovered and reused. Therefore, the cost can be significantly reduced, and the ketol compound can be provided at a low cost.

[1級水酸基及び2級水酸基を少なくとも有するアルコール]
本発明の1級水酸基及び2級水酸基を少なくとも有するアルコール(以後「原料アルコール」と称する場合がある)は、例えば下記式(1)で表される。式(1)中、Rとしては、例えば炭素数3〜10のn価の直鎖状又は分岐差状の飽和脂肪族炭化水素基を挙げることができる。また、nは、例えば2以上(好ましくは2〜3)の整数である。
R(OH)n (1)
[Alcohol having at least a primary hydroxyl group and a secondary hydroxyl group]
The alcohol having at least a primary hydroxyl group and a secondary hydroxyl group of the present invention (hereinafter sometimes referred to as “raw alcohol”) is represented by the following formula (1), for example. In the formula (1), examples of R include an n-valent linear or branched saturated aliphatic hydrocarbon group having 3 to 10 carbon atoms. N is an integer of 2 or more (preferably 2 to 3), for example.
R (OH) n (1)

原料アルコールとしては、1,2−プロパンジオール、1,3−ブタンジオール等のジオール;グリセロール、1,2,4−ブタントリオール等のトリオールが好ましく、特に好ましくはグリセロールである。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。   As the raw material alcohol, diols such as 1,2-propanediol and 1,3-butanediol; triols such as glycerol and 1,2,4-butanetriol are preferable, and glycerol is particularly preferable. These can be used alone or in combination of two or more.

[触媒]
本発明のケトール化合物の製造方法では、担体に担持した銅触媒を使用することを特徴とする。
[catalyst]
The method for producing a ketol compound of the present invention is characterized by using a copper catalyst supported on a carrier.

担体としては、例えば、ベーマイト、ハイドロタルサイト、フルオロアパタイト、アルミナ、シリカ等を挙げることができる。本発明においては、なかでも、原料アルコールから、対応するケトール化合物を選択的且つ高収率に製造することができる点で、ベーマイト又はハイドロタルサイトが好ましく、特に好ましくはベーマイトである。   Examples of the carrier include boehmite, hydrotalcite, fluoroapatite, alumina, silica and the like. In the present invention, among them, boehmite or hydrotalcite is preferable and boehmite is particularly preferable in that the corresponding ketol compound can be selectively produced from the raw material alcohol in a high yield.

ベーマイトはアルミナ1水和物であり、AlO(OH)又はAl23・H2Oで示される。ベーマイトは、例えば、アルミナ3水和物を空気中で加熱処理又は水熱処理することにより製造することができる。 Boehmite is an alumina monohydrate, represented by AlO (OH) or Al 2 O 3 · H 2 O . Boehmite can be produced, for example, by subjecting alumina trihydrate to heat treatment or hydrothermal treatment in air.

ハイドロタルサイトは、例えば、下記式(2)で表される。
[MII 1-XIII X(OH)2][A2- x/2]・n'H2O (2)
(式中、MIIは、Mg2+、Fe2+、Zn2+、Ca2+、Li2+、Ni2+、Co2+、Cu2+、Mn2+から選択される少なくとも1種の二価の金属である。MIIIはAl3+、Fe3+、Mn3+、Ru3+から選択される少なくとも1種の三価の金属である。xは0以上、1未満を示す。A2-は二価のアニオンを示し、n'は0〜30の整数を示す)
Hydrotalcite is represented by the following formula (2), for example.
[M II 1-X M III X (OH) 2 ] [A 2− x / 2 ] · n′H 2 O (2)
( Wherein M II is at least one selected from Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Li 2+ , Ni 2+ , Co 2+ , Cu 2+ , and Mn 2+. M III is at least one trivalent metal selected from Al 3+ , Fe 3+ , Mn 3+ , Ru 3+ , x is 0 or more and less than 1 A 2− represents a divalent anion, and n ′ represents an integer of 0 to 30)

本発明におけるハイドロタルサイトとしては、なかでも、Cu4Al2(OH)12CO3・n’H2Oで示される化合物が好ましい。ハイドロタルサイトは、例えば、Cu(NO32、Cu(OAc)2、CuCl2、CuSO4等の銅化合物の水溶液と、硝酸アルミニウム、硝酸マグネシウム、塩化アルミニウム、塩化マグネシウム、硫酸アルミニウム、硫酸マグネシウム等から選択される1種以上の水溶液、及びアルカリ(例えば、NaOH、Na2CO3等の塩基性水溶液)を同時に滴下し、続いて、熟成処理(例えば、60〜80℃の温度で1〜5時間程度静置)を施す方法(同時滴下法)により製造することができる。 As the hydrotalcite in the present invention, a compound represented by Cu 4 Al 2 (OH) 12 CO 3 .n′H 2 O is particularly preferable. Hydrotalcite is, for example, an aqueous solution of a copper compound such as Cu (NO 3 ) 2 , Cu (OAc) 2 , CuCl 2 , CuSO 4 , aluminum nitrate, magnesium nitrate, aluminum chloride, magnesium chloride, aluminum sulfate, magnesium sulfate. one or more aqueous solutions selected from the like, and alkali (e.g., NaOH, Na 2 basic aqueous solution of CO 3, etc.) was added dropwise at the same time, followed by aging treatment (e.g., 1 at a temperature of 60-80 ° C. It can be produced by a method (simultaneous dropping method) of applying the solution for 5 hours.

担体の形状としては、例えば、粉末状、粒状、繊維状、成型体状等を挙げることができる。担体の平均細孔径は、例えば30〜120nm程度、好ましくは50〜100nmである。担体の比表面積は、例えば100〜400m2/g程度、好ましくは150〜300m2/gである。 Examples of the shape of the carrier include powder, granule, fiber, and molded body. The average pore diameter of the carrier is, for example, about 30 to 120 nm, preferably 50 to 100 nm. The specific surface area of the carrier is, for example, about 100 to 400 m 2 / g, preferably 150 to 300 m 2 / g.

ベーマイトとしては、例えば、商品名「ベーマイト」(和光純薬工業(株)製)、商品名「ベーマイト」(大明化学工業(株)製)、商品名「boehmite」(Aldrich社製)等の市販品を使用してもよい。   Examples of the boehmite include commercial names such as “Boehmite” (manufactured by Wako Pure Chemical Industries, Ltd.), “Boehmite” (manufactured by Daimei Chemical Co., Ltd.), and “boehmite” (manufactured by Aldrich). Goods may be used.

ハイドロタルサイトとしては、例えば、商品名「AD500NS」(富田製薬(株)製)等の市販品を使用してもよい。   As hydrotalcite, you may use commercial items, such as brand name "AD500NS" (Tonda Pharmaceutical Co., Ltd. product), for example.

担体に担持される銅触媒の態様としては、特に限定されることがなく、例えば、銅単体、銅塩、銅酸化物、銅水酸化物、又は銅錯体等を挙げることができる。本発明においては、なかでも、硝酸銅、塩化銅、酢酸銅、トリフルオロメタンスルホン酸銅等の銅(II)塩が好ましい。   The aspect of the copper catalyst supported on the carrier is not particularly limited, and examples thereof include a copper simple substance, a copper salt, a copper oxide, a copper hydroxide, or a copper complex. In the present invention, copper (II) salts such as copper nitrate, copper chloride, copper acetate, and copper trifluoromethanesulfonate are particularly preferable.

銅触媒の担持量(金属換算量)としては、例えば、担体1gに対して、例えば0.1〜10ミリモル程度、好ましくは0.5〜8ミリモル、特に好ましくは1〜5ミリモルである。銅触媒の担持量が上記範囲を上回ると、銅触媒が凝集する傾向がある。一方、銅触媒の担持量が上記範囲を下回ると、十分な触媒活性が得られない傾向がある。   The supported amount (metal equivalent amount) of the copper catalyst is, for example, about 0.1 to 10 mmol, preferably 0.5 to 8 mmol, particularly preferably 1 to 5 mmol with respect to 1 g of the support. If the supported amount of the copper catalyst exceeds the above range, the copper catalyst tends to aggregate. On the other hand, if the supported amount of the copper catalyst is less than the above range, sufficient catalytic activity tends to be not obtained.

銅触媒を担体に担持する方法としては、銅化合物(例えば、硝酸銅、塩化銅、酢酸銅、トリフルオロメタンスルホン酸銅等の銅(II)塩)を溶解する溶液(例えば、水溶液)中に担体を浸漬して前記銅化合物を含浸させた後、乾燥させる方法(いわゆる含浸法)により行うことが好ましい。また、銅化合物を含有する溶液の濃度や、担体への含浸時間、含浸処理回数等を調整することにより、担持量を制御することが好ましい。   As a method for supporting a copper catalyst on a support, the support is contained in a solution (for example, an aqueous solution) in which a copper compound (for example, copper (II) salt such as copper nitrate, copper chloride, copper acetate, copper trifluoromethanesulfonate) is dissolved. It is preferable to carry out by a method (so-called impregnation method) in which the copper compound is impregnated and dried after being soaked. Moreover, it is preferable to control the loading amount by adjusting the concentration of the solution containing the copper compound, the impregnation time on the carrier, the number of impregnation treatments, and the like.

銅化合物を溶解する溶液中に担体を浸漬する際の温度としては、例えば10〜80℃程度である。   As temperature at the time of immersing a support | carrier in the solution which melt | dissolves a copper compound, it is about 10-80 degreeC, for example.

銅化合物を溶解する溶液中に担体を浸漬する時間は、例えば1〜30時間程度、好ましくは10〜24時間である。含浸時間が上記範囲を下回ると、銅触媒の担持量が減少し、酸化反応を促進する効果が得られにくくなる傾向がある。   The time for immersing the carrier in the solution dissolving the copper compound is, for example, about 1 to 30 hours, preferably 10 to 24 hours. When the impregnation time is less than the above range, the supported amount of the copper catalyst decreases, and the effect of promoting the oxidation reaction tends to be difficult to obtain.

銅化合物を溶解する溶液中に浸漬した担体を乾燥させる際の温度は、例えば30〜80℃程度である。   The temperature at the time of drying the support | carrier immersed in the solution which melt | dissolves a copper compound is about 30-80 degreeC, for example.

また、銅化合物を担体に担持した後、更に還元処理を施してもよい。銅化合物の還元処理に使用する還元剤としては、例えば、水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素リチウム(LiBH4)、水素化ホウ素カリウム(KBH4)等の水素化ホウ素錯化合物、ヒドラジン、水素(H2)、ジメチルフェニルシラン等のシラン化合物、ヒドロキシ化合物等を挙げることができる。前記ヒドロキシ化合物としては、例えば、第1級アルコール、第2級アルコール等のアルコール化合物を挙げることができる。また、ヒドロキシ化合物は、1価アルコール、2価アルコール、多価アルコール(例えば、グリセロール)等の何れであってもよい。 Moreover, after carrying | supporting a copper compound on a support | carrier, you may give a reduction process further. Examples of the reducing agent used for the reduction treatment of the copper compound include borohydride complex compounds such as sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), and hydrazine. , Hydrogen (H 2 ), silane compounds such as dimethylphenylsilane, hydroxy compounds, and the like. Examples of the hydroxy compound include alcohol compounds such as a primary alcohol and a secondary alcohol. The hydroxy compound may be any of monohydric alcohol, dihydric alcohol, polyhydric alcohol (for example, glycerol) and the like.

還元処理温度及び時間としては、例えば0℃〜600℃(好ましくは、0℃〜400℃)の温度で、0.5〜5時間程度(好ましくは、2〜4時間)である。   The reduction treatment temperature and time are, for example, 0 to 600 ° C. (preferably 0 to 400 ° C.) and about 0.5 to 5 hours (preferably 2 to 4 hours).

上記製造方法により得られた触媒(=担体に担持した銅触媒)は、その後、洗浄処理(水や有機溶媒等により洗浄)、乾燥処理(真空乾燥等により乾燥)等を施してもよい。   The catalyst (= copper catalyst supported on the carrier) obtained by the above production method may be subjected to a washing treatment (washing with water or an organic solvent), a drying treatment (drying by vacuum drying or the like), and the like.

[ケトール化合物の製造方法]
本発明のケトール化合物の製造方法は、上記担体に担持した銅触媒の存在下で、原料アルコールを酸化して、対応するケトール化合物を製造することを特徴とする。
[Method for producing ketol compound]
The method for producing a ketol compound of the present invention is characterized in that a raw material alcohol is oxidized in the presence of a copper catalyst supported on the carrier to produce a corresponding ketol compound.

本発明では担体に担持した銅触媒を使用するため、原料アルコールの2級水酸基を選択的に酸化することができ、対応するケトール化合物を選択的に生成することが可能となる。例えば、原料アルコールとしてグリセロールを使用すると対応するケトール化合物としてジヒドロキシアセトンを、原料アルコールとして1,2−プロパンジオールを使用すると対応するケトール化合物としてアセトールを、原料アルコールとして1,3−ブタンジオールを使用すると対応するケトール化合物として1−ヒドロキシブタン−2−オンを製造することができる。   In the present invention, since the copper catalyst supported on the carrier is used, the secondary hydroxyl group of the raw alcohol can be selectively oxidized, and the corresponding ketol compound can be selectively produced. For example, when glycerol is used as the raw alcohol, dihydroxyacetone is used as the corresponding ketol compound, 1,2-propanediol is used as the raw alcohol, acetol is used as the corresponding ketol compound, and 1,3-butanediol is used as the raw alcohol. 1-Hydroxybutan-2-one can be produced as the corresponding ketol compound.

担体に担持した銅触媒の使用量(金属換算量)は、原料アルコール1モルに対して、例えば0.1〜50g程度、好ましくは0.5〜20g、特に好ましくは1〜10gである。担体に担持した銅触媒の使用量が上記範囲を下回ると、対応するケトール化合物を高収率で得ることが困難となる傾向がある。   The usage amount (metal equivalent amount) of the copper catalyst supported on the carrier is, for example, about 0.1 to 50 g, preferably 0.5 to 20 g, particularly preferably 1 to 10 g, per 1 mol of the raw material alcohol. When the amount of the copper catalyst supported on the support is less than the above range, it tends to be difficult to obtain the corresponding ketol compound in high yield.

原料アルコールを酸化する酸化剤としては、例えば、分子状酸素、過酸化水素、過酢酸等を使用することができる。本発明においては、なかでも、安価で取り扱いが容易な点で分子状酸素(特に、空気)を使用することが好ましい。   For example, molecular oxygen, hydrogen peroxide, peracetic acid, or the like can be used as an oxidizing agent that oxidizes the raw material alcohol. In the present invention, it is preferable to use molecular oxygen (particularly air) because it is inexpensive and easy to handle.

分子状酸素の供給方法としては、例えば、酸素雰囲気下で反応を行う方法や、酸素をバブリングする方法等を挙げることができる。また、酸素は窒素ガスなどの不活性ガスで希釈されていてもよい。本発明においては、なかでも空気中で反応を行うことが好ましい。空気中で反応を行う場合、反応時の圧力は、特に制限されず、常圧でも加圧でもよいが、好ましくは1〜5atmである。   Examples of the method for supplying molecular oxygen include a method of performing a reaction in an oxygen atmosphere, a method of bubbling oxygen, and the like. In addition, oxygen may be diluted with an inert gas such as nitrogen gas. In the present invention, the reaction is preferably performed in the air. When the reaction is performed in air, the pressure during the reaction is not particularly limited and may be normal pressure or increased pressure, but is preferably 1 to 5 atm.

また、本発明では銅触媒と共に、2,2,6,6−テトラメチルピペリジン−N−オキシル(以後、「TEMPO」と称する場合がある)及び/又はベンゾキノンを使用することが好ましい。前記化合物は共酸化剤として作用し、反応の進行により還元された銅触媒を再酸化することができるため、銅触媒と併用することにより、原料アルコールの酸化反応速度を促進し、対応するケトール化合物をより一層選択的且つ高収率に製造することができる。本発明においては、特に、原料の変換効率に優れる点で、銅触媒と共にTEMPOを使用することが好ましい。   In the present invention, it is preferable to use 2,2,6,6-tetramethylpiperidine-N-oxyl (hereinafter sometimes referred to as “TEMPO”) and / or benzoquinone together with the copper catalyst. Since the compound acts as a co-oxidant and can reoxidize the reduced copper catalyst as the reaction proceeds, by using it together with the copper catalyst, the oxidation reaction rate of the raw alcohol is accelerated, and the corresponding ketol compound Can be produced in a more selective and high yield. In the present invention, it is particularly preferable to use TEMPO together with the copper catalyst in terms of excellent raw material conversion efficiency.

前記化合物の使用量は、原料アルコール1モルに対して、例えば0.05〜10モル程度、好ましくは0.5〜5モル、特に好ましくは1〜3モルである。   The amount of the compound used is, for example, about 0.05 to 10 mol, preferably 0.5 to 5 mol, particularly preferably 1 to 3 mol, per 1 mol of the raw material alcohol.

上記反応は溶媒の存在下で行うことが好ましい。無溶媒下で反応させると、原料アルコールが担体に担持した銅触媒に吸着してダマになり反応の進行が阻害される場合があるためである。溶媒としては、例えば、水;アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル等のニトリル類;メタノール、エタノール等のアルコール類;1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、ジメチルエーテル等のエーテル類;アセトアミド、ジメチルアセトアミド、ジメチルホルムアミド、ジエチルホルムアミド、N−メチルピロリドン等のアミド;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル;これらの混合物等を挙げることができる。   The above reaction is preferably performed in the presence of a solvent. This is because when the reaction is carried out in the absence of a solvent, the raw material alcohol is adsorbed on the copper catalyst supported on the carrier and becomes lumpy and the reaction progress may be inhibited. Examples of the solvent include water; nitriles such as acetonitrile, propionitrile, benzonitrile, butyronitrile; alcohols such as methanol and ethanol; 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, tetrahydrofuran , Tetrahydropyran, diethyl ether, dimethyl ether and the like ethers; acetamide, dimethylacetamide, dimethylformamide, diethylformamide, N-methylpyrrolidone and other amides; ethyl acetate, propyl acetate, butyl acetate and other esters; be able to.

ベーマイトに担持した銅触媒の存在下で反応を行う場合、溶媒としては、水とニトリル類との混合物(=混合溶媒)を使用することが、選択的且つ優れた収率でケトール化合物を生成することができる点で好ましい。水とニトリル類との混合割合[前者:後者(体積比)]としては、例えば1:1〜1:100程度、好ましく1:1〜1:50、特に好ましくは1:1〜1:20である。混合割合が上記範囲を外れると、ケトール化合物の収率が低下する傾向がある。また、ハイドロタルサイトに担持した銅触媒の存在下で反応を行う場合、溶媒としては、水を使用することが、銅触媒の溶出を防止することができ、選択的且つ優れた収率でケトール化合物を生成することができる点で好ましい。   When the reaction is carried out in the presence of a copper catalyst supported on boehmite, the use of a mixture of water and nitriles (= mixed solvent) as a solvent produces a ketol compound in a selective and excellent yield. It is preferable in that it can be performed. The mixing ratio of the water and the nitrile [the former: the latter (volume ratio)] is, for example, about 1: 1 to 1: 100, preferably 1: 1 to 1:50, and particularly preferably 1: 1 to 1:20. is there. When the mixing ratio is out of the above range, the yield of the ketol compound tends to decrease. Also, when the reaction is carried out in the presence of a copper catalyst supported on hydrotalcite, the use of water as the solvent can prevent the elution of the copper catalyst, and enables selective and excellent yield of ketol. It is preferable at the point which can produce | generate a compound.

溶媒の使用量は、例えば、回分式で反応させる場合は原料アルコールの初期濃度が1〜10重量%程度となる範囲が好ましい。   The amount of the solvent used is preferably in the range where the initial concentration of the raw material alcohol is about 1 to 10% by weight, for example, when the reaction is carried out batchwise.

反応温度としては、例えば10〜200℃程度、好ましくは30〜180℃、特に好ましくは40〜100℃である。反応時間は、例えば1〜24時間程度、好ましくは5〜15時間である。   As reaction temperature, it is about 10-200 degreeC, for example, Preferably it is 30-180 degreeC, Most preferably, it is 40-100 degreeC. The reaction time is, for example, about 1 to 24 hours, preferably 5 to 15 hours.

反応はバッチ式、セミバッチ式、連続式などの何れの方法で行うこともできる。   The reaction can be carried out by any method such as batch, semi-batch and continuous methods.

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。   After completion of the reaction, the reaction product can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.

本発明のケトール化合物の製造方法によれば、原料アルコールを優れた転化率で転化して、対応するケトール化合物を選択的且つ高収率に製造することができる。原料アルコールの転化率としては、例えば70%以上、好ましくは80%以上、特に好ましくは95%以上である。また、対応するケトール化合物の収率は、例えば60%以上、好ましくは70%以上、特に好ましくは90%以上である。   According to the method for producing a ketol compound of the present invention, it is possible to selectively produce a corresponding ketol compound in a high yield by converting the raw alcohol at an excellent conversion rate. The conversion rate of the raw alcohol is, for example, 70% or more, preferably 80% or more, particularly preferably 95% or more. The yield of the corresponding ketol compound is, for example, 60% or more, preferably 70% or more, particularly preferably 90% or more.

更にまた、本発明では銅触媒を担体に担持した状態で使用するため、濾過、遠心分離等の物理的な分離手法により容易に反応生成物と分離することができる。そのため、反応生成物の精製が容易であり、且つ、分離・回収された触媒は、そのままで、又は洗浄、乾燥等を施した後、再利用することができる。洗浄処理は、適宜な溶媒(例えば、水)により数回(2〜3回程度)洗浄する方法により行うことができる。そのため、高価な触媒を繰り返し利用することができ、ケトール化合物の製造コストを大幅に削減することができる。   Furthermore, in the present invention, since the copper catalyst is supported on the carrier, it can be easily separated from the reaction product by a physical separation technique such as filtration or centrifugation. Therefore, the reaction product can be easily purified, and the separated / recovered catalyst can be reused as it is or after being washed, dried, or the like. The washing treatment can be performed by a method of washing several times (about 2-3 times) with an appropriate solvent (for example, water). Therefore, an expensive catalyst can be repeatedly used, and the production cost of the ketol compound can be greatly reduced.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

調製例1(触媒の調製)
100mLの水に硝酸銅5g(20.7mmol)を溶解した硝酸銅水溶液中に10gのベーマイト(商品名「ベーマイト」、和光純薬工業(株)製、平均細孔径:77nm、比表面積:214m2/g)を加えて60℃で24時間撹拌し、エバポレーターで水を留去した後、60℃で12時間乾燥することにより、銅触媒担持ベーマイト(Cu(II)−AlO(OH))(Cu2+:9重量%、ベーマイト1gに対してCu2+を1.6mmol担持)を得た。
Preparation Example 1 (Preparation of catalyst)
10 g of boehmite (trade name “Boehmite”, manufactured by Wako Pure Chemical Industries, Ltd., average pore diameter: 77 nm, specific surface area: 214 m 2 ) in an aqueous copper nitrate solution in which 5 g (20.7 mmol) of copper nitrate was dissolved in 100 mL of water. / G) and stirred at 60 ° C. for 24 hours, water was distilled off with an evaporator, and then dried at 60 ° C. for 12 hours to obtain a copper catalyst-supported boehmite (Cu (II) -AlO (OH)) (Cu 2+ : 9% by weight, 1.6 mmol of Cu 2+ supported per 1 g of boehmite).

調製例2(触媒の調製)
ベーマイトに代えて、ハイドロタルサイト(商品名「AD500NS」、富田製薬(株)製)を使用した以外は調製例1と同様に行って、銅触媒担持ハイドロタルサイト(Cu(II)−AlHT)(Cu2+:9重量%、ハイドロタルサイト1gに対してCu2+を1.6mmol担持)を得た。
Preparation Example 2 (Preparation of catalyst)
A copper catalyst-supported hydrotalcite (Cu (II) -AlHT) was prepared in the same manner as in Preparation Example 1 except that hydrotalcite (trade name “AD500NS”, manufactured by Tomita Pharmaceutical Co., Ltd.) was used instead of boehmite. (Cu 2+ : 9% by weight, 1.6 mmol of Cu 2+ supported on 1 g of hydrotalcite) was obtained.

実施例1
空気雰囲気下(1atm)で、グリセロール(1.0mmol)、TEMPO(2.0mmol)をフラスコに入れ、水1mLとアセトニトリル3mLの混合溶媒を加えて溶解した。
ここに、調製例1で得られた「Cu(II)−AlO(OH)」を50mg(Cu2+:4.5mg含有)加え、60℃で12時間反応を行った。反応の進行はTLC(I2発色)によりモニターした。
反応終了後、反応液を遠心分離処理に付すことにより「Cu(II)−AlO(OH)」を除去し、更に上澄み液をシリカゲルカラム(アセトン溶離液)に通してTEMPOを除去し、濃縮して淡黄色オイル状の反応生成物を単離した。反応生成物のHPLC、1H−NMR、及び13C−NMR分析を行ったところ、ジヒドロキシアセトンであることが確認され、原料転化率は100%、ジヒドロキシアセトンの収率は95%であった。
Example 1
Under an air atmosphere (1 atm), glycerol (1.0 mmol) and TEMPO (2.0 mmol) were placed in a flask, and a mixed solvent of 1 mL of water and 3 mL of acetonitrile was added and dissolved.
50 mg (containing Cu 2+ : 4.5 mg) of “Cu (II) -AlO (OH)” obtained in Preparation Example 1 was added thereto, and the reaction was performed at 60 ° C. for 12 hours. The progress of the reaction was monitored by TLC (I 2 color development).
After completion of the reaction, the reaction solution is centrifuged to remove “Cu (II) -AlO (OH)”, and the supernatant is passed through a silica gel column (acetone eluent) to remove TEMPO and concentrated. A light yellow oily reaction product was isolated. The reaction product was subjected to HPLC, 1 H-NMR, and 13 C-NMR analysis. As a result, it was confirmed that it was dihydroxyacetone, the raw material conversion was 100%, and the yield of dihydroxyacetone was 95%.

実施例2
水1mLとアセトニトリル3mLの混合溶媒に代えて、水4mLを使用した以外は実施例1と同様に行った。その結果、ジヒドロキシアセトンが得られた(原料転化率:73.1%)。
Example 2
The same procedure as in Example 1 was performed except that 4 mL of water was used instead of the mixed solvent of 1 mL of water and 3 mL of acetonitrile. As a result, dihydroxyacetone was obtained (raw material conversion rate: 73.1%).

実施例3(参考例とする)
空気雰囲気下(1atm)で、グリセロール(1.0mmol)、ベンゾキノン(2.0mmol)をフラスコに入れ、水4mLの混合溶媒を加えて溶解した。
ここに、調製例2で得られた「Cu(II)−AlHT」を50mg(Cu2+:4.5mg含有)加え、室温(25℃)で48時間反応を行った。反応の進行はTLC(I2発色)によりモニターした。
反応終了後、反応液を遠心分離処理に付すことにより「Cu(II)−AlHT」を除去し、更に上澄み液をシリカゲルカラム(アセトン溶離液)に通してベンゾキノンを除去し、濃縮して淡黄色オイル状の反応生成物を単離した。反応生成物のHPLC、1H−NMR、及び13C−NMR分析を行ったところ、ジヒドロキシアセトンであることが確認され、原料転化率は40%、ジヒドロキシアセトンの収率は32%であった。
Example 3 (referred to as a reference example)
Under an air atmosphere (1 atm), glycerol (1.0 mmol) and benzoquinone (2.0 mmol) were placed in a flask, and 4 mL of a mixed solvent of water was added and dissolved.
To this, 50 mg (containing Cu 2+ : 4.5 mg) of “Cu (II) -AlHT” obtained in Preparation Example 2 was added and reacted at room temperature (25 ° C.) for 48 hours. The progress of the reaction was monitored by TLC (I 2 color development).
After completion of the reaction, the reaction solution is centrifuged to remove “Cu (II) -AlHT”, and the supernatant is passed through a silica gel column (acetone eluent) to remove benzoquinone and concentrated to a pale yellow color. An oily reaction product was isolated. HPLC, 1 H-NMR, and 13 C-NMR analysis of the reaction product confirmed that it was dihydroxyacetone, the raw material conversion was 40%, and the yield of dihydroxyacetone was 32%.

実施例4
グリセロール(1.0mmol)に代えて1,2−プロパンジオール(1.0mmol)を使用した以外は実施例1と同様に行った。その結果、アセトールが得られた(原料転化率:100%)。
Example 4
The same procedure as in Example 1 was performed except that 1,2-propanediol (1.0 mmol) was used instead of glycerol (1.0 mmol). As a result, acetol was obtained (raw material conversion rate: 100%).

実施例5
グリセロール(1.0mmol)に代えて1,3−ブタンジオール(1.0mmol)を使用した以外は実施例1と同様に行った。その結果、1−ヒドロキシブタン−2−オンが得られた(原料転化率:39.2%)。
Example 5
The same procedure as in Example 1 was performed except that 1,3-butanediol (1.0 mmol) was used instead of glycerol (1.0 mmol). As a result, 1-hydroxybutan-2-one was obtained (raw material conversion rate: 39.2%).

比較例1
グリセロール(1.0mmol)に代えて1,3−プロパンジオール(1.0mmol)を使用した以外は実施例1と同様に行った。その結果、全く反応が進行しなかった(原料転化率:0%)。
Comparative Example 1
The same procedure as in Example 1 was performed except that 1,3-propanediol (1.0 mmol) was used instead of glycerol (1.0 mmol). As a result, the reaction did not proceed at all (raw material conversion rate: 0%).

Claims (5)

ベーマイトに担持した銅触媒の存在下で、原料アルコールとしての1級水酸基及び2級水酸基を少なくとも有するアルコールを酸化して、対応するケトール化合物を製造するケトール化合物の製造方法。 A method for producing a ketol compound, wherein a corresponding ketol compound is produced by oxidizing an alcohol having at least a primary hydroxyl group and a secondary hydroxyl group as a raw material alcohol in the presence of a copper catalyst supported on boehmite . 1級水酸基及び2級水酸基を少なくとも有するアルコールがグリセロールであり、対応するケトール化合物がジヒドロキシアセトンである請求項1に記載のケトール化合物の製造方法。   The method for producing a ketol compound according to claim 1, wherein the alcohol having at least a primary hydroxyl group and a secondary hydroxyl group is glycerol, and the corresponding ketol compound is dihydroxyacetone. 銅触媒と共に、2,2,6,6−テトラメチルピペリジン−N−オキシル及び/又はベンゾキノンを、原料アルコール1モルに対して0.05〜10モル使用する請求項1又は2に記載のケトール化合物の製造方法。 With copper catalyst, 2,2,6,6 tetramethylpiperidine -N- oxyl and / or benzoquinone, ketol compound according to claim 1 or 2, 0.05 to 10 moles relative to 1 mole of the raw material alcohol Manufacturing method. 水及び/又はニトリルの存在下で反応を行う請求項1〜の何れか1項に記載のケトール化合物の製造方法。 The method for producing a ketol compound according to any one of claims 1 to 3 , wherein the reaction is carried out in the presence of water and / or nitrile. 水及びニトリルの混合溶媒[混合割合(前者:後者、体積比)=1:1〜1:20]存在下で反応を行う請求項1〜3の何れか1項に記載のケトール化合物の製造方法。The method for producing a ketol compound according to any one of claims 1 to 3, wherein the reaction is performed in the presence of a mixed solvent of water and nitrile [mixing ratio (the former: the latter, volume ratio) = 1: 1 to 1:20]. .
JP2013047687A 2013-03-11 2013-03-11 Method for producing ketol compound Active JP6099133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047687A JP6099133B2 (en) 2013-03-11 2013-03-11 Method for producing ketol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047687A JP6099133B2 (en) 2013-03-11 2013-03-11 Method for producing ketol compound

Publications (2)

Publication Number Publication Date
JP2014172874A JP2014172874A (en) 2014-09-22
JP6099133B2 true JP6099133B2 (en) 2017-03-22

Family

ID=51694483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047687A Active JP6099133B2 (en) 2013-03-11 2013-03-11 Method for producing ketol compound

Country Status (1)

Country Link
JP (1) JP6099133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207380B (en) * 2014-10-30 2021-06-15 有机燃料瑞典公司 Mild catalytic reduction of C-O bonds and C ═ O bonds using a recyclable catalyst system
CN111484404A (en) * 2019-01-29 2020-08-04 复旦大学 Method for preparing aldehyde or ketone compound by oxidizing alcohol with oxygen as oxidant under catalysis of copper and application
CN110624592A (en) * 2019-09-29 2019-12-31 上海纳米技术及应用国家工程研究中心有限公司 Synthesis method of monoatomic metal-nitrogen doped graphene aggregate, product and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2313957C2 (en) * 1973-03-21 1975-05-07 Basf Ag, 6700 Ludwigshafen Process for the preparation of aliphatic 2-keto alcohols
JP3276413B2 (en) * 1991-08-30 2002-04-22 花王株式会社 Method for producing compound having carbonyl group and / or carboxyl group
BR0309023A (en) * 2002-04-05 2005-02-01 Ciba Sc Holding Ag Process for converting alcohols to carbonyl compounds
JP4359447B2 (en) * 2003-05-14 2009-11-04 広栄化学工業株式会社 Method for producing monohydroxyacetone
JP2005211881A (en) * 2004-02-02 2005-08-11 Chisso Corp Catalyst for producing hydroxy ketone and production method for hydroxy ketone using the same
JP4852266B2 (en) * 2005-06-30 2012-01-11 広栄化学工業株式会社 Production method of monohydroxyacetone
JP2007302612A (en) * 2006-05-12 2007-11-22 Nippon Shokubai Co Ltd Method for producing ketone
JP5265123B2 (en) * 2007-03-09 2013-08-14 株式会社ダイセル Method for producing carbonyl compound
JP5187675B2 (en) * 2007-06-12 2013-04-24 国立大学法人 千葉大学 Method for producing hydroxyketone from trivalent or higher alcohol and catalyst used therefor

Also Published As

Publication number Publication date
JP2014172874A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
Della Pina et al. Selective oxidation using gold
EP3427822B1 (en) Catalyst for preparing 2,5-furancarboxylic acid and method for preparing 2,5-furancarboxylic acid using catalyst
Sánchez et al. The effect of catalyst modification on the conversion of glycerol to allyl alcohol
JP6099133B2 (en) Method for producing ketol compound
EP2130583A1 (en) Method for producing carbonyl compound
Blokhina et al. Selective oxidation of alcohols over Si 3 N 4-supported silver catalysts
CN110327947B (en) Catalyst for continuously producing p-methoxycyclohexanone as well as preparation method and application thereof
KR102287643B1 (en) Preparation of methyl acrylate via an oxidative esterification process
Pan et al. Cu supported over Al-pillared interlayer clays catalysts for direct hydroxylation of benzene to phenol
EP3212608B1 (en) Oxidative esterification process for making methyl methacrylate
JP2014152153A (en) Method for producing 1,2-pentane diol
CN103204830A (en) Catalytic oxidation method of styrene
EP2305628B1 (en) Allylic Oxidation Method for the Preparation of Fragrances using Metal-Organic Compounds and Gold Catalysts
JP2012188390A (en) Method for producing 1,2-propanediol
TWI700273B (en) Catalytic oxidation of but-3-ene-1,2-diol
CN102249860A (en) Method for preparing dichlorobenzalcohol diisopropyl benzene by diisopropyl benzene catalytic oxidation
CN112570040B (en) Activation method of cumene catalyst, obtained cumene catalyst and application thereof
JP6245605B2 (en) Process for producing .ALPHA.,. BETA.-unsaturated carbonyl compounds.
Yongqi et al. Catalytic oxidation of cyclohexane over ZSM-5 catalyst in N-alkyl-N-methylimidazolium ionic liquids
CN103204775B (en) Oxidation method of acetophenone
CN108101770B (en) Method for regenerating catalyst for preparing unsaturated acid or unsaturated acid ester
JP6687813B2 (en) Method for producing 1,3-cyclohexanedicarboxylic acid
CN104262222A (en) Method for preparing tert-butyl hydroperoxide employing biomimetic catalysis and isobutane oxidation
JP7168565B2 (en) Method for producing bisacyloxylated exomethylene compound
CN102206146A (en) Preparation method of vanillin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6099133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250