JP6098918B2 - Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment - Google Patents

Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment Download PDF

Info

Publication number
JP6098918B2
JP6098918B2 JP2012091955A JP2012091955A JP6098918B2 JP 6098918 B2 JP6098918 B2 JP 6098918B2 JP 2012091955 A JP2012091955 A JP 2012091955A JP 2012091955 A JP2012091955 A JP 2012091955A JP 6098918 B2 JP6098918 B2 JP 6098918B2
Authority
JP
Japan
Prior art keywords
hch
tsk
strain
decomposing
degrading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012091955A
Other languages
Japanese (ja)
Other versions
JP2013220044A (en
Inventor
高木 和広
和広 高木
雅一 中里
雅一 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
KYB Corp
Original Assignee
National Agriculture and Food Research Organization
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, KYB Corp filed Critical National Agriculture and Food Research Organization
Priority to JP2012091955A priority Critical patent/JP6098918B2/en
Publication of JP2013220044A publication Critical patent/JP2013220044A/en
Application granted granted Critical
Publication of JP6098918B2 publication Critical patent/JP6098918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

本発明は、低塩素化PCBまたはHCHsを分解する能力を有するスフィンゴモナス属に属する分解菌を含む新規な有機塩素系化合物分解菌に関し、この分解菌を用いた有機塩素系化合物分解資材やその製造方法、汚染環境の浄化装置に関する。   The present invention relates to a novel organochlorine compound-degrading bacterium containing a degrading bacterium belonging to the genus Sphingomonas having the ability to degrade low-chlorinated PCBs or HCHs, and an organochlorine compound-decomposing material using this degrading bacterium and its production The present invention relates to a method and a purification apparatus for a polluted environment.

カネクロール等の商品名で販売されたPCBs、例えばカネクロールKC−300(商品名)に代表される低塩素化PCBs(Cl数2〜4)は廃コンデンサーやトランス内の絶縁油中に高濃度で含まれており、化学的処理法(脱塩素化分解方式等)を用いた処理が行われている。しかし、この処理法はコストが高く、その処理も殆ど進んでいない。また、この残留性有機汚染物質は、土壌などの環境中に放出されると分解されにくく、食物連鎖などを通じて生物の体内に蓄積しやすい。そのため、人の健康や生態系に対し有害であるにもかかわらず、微量ながらも土壌中に混入すれば有効な分解手段は無い。   PCBs sold under trade names such as Kanechlor, for example, low chlorinated PCBs represented by Kanechlor KC-300 (trade name) (Cl number 2 to 4) are highly concentrated in insulating oil in waste capacitors and transformers. In other words, treatment using chemical treatment methods (dechlorination decomposition method, etc.) is performed. However, this treatment method is expensive and the treatment has hardly progressed. In addition, this residual organic pollutant is not easily decomposed when released into the environment such as soil, and is likely to accumulate in the living body through a food chain or the like. Therefore, despite being harmful to human health and ecosystems, there is no effective degrading means if it is mixed in the soil even though it is in a trace amount.

一方、有機塩素系殺虫剤ヘキサクロロシクロヘキサン(HCHs)は、主に4つの異性体(α体、β体、γ体、δ体)が8:1:2:1の割合で含まれている残留性有機汚染物質である。毒性・生物濃縮性が強く難分解性であるため、我が国では1970年に使用が禁止された。現在、HCHsは埋設農薬処理事業の対象農薬であり、2009年にδ体を除く3種異性体が残留性有機汚染物質(POPs)に指定された。異性体の中でα体、γ体に関しては好気的に分解・無機化する細菌が単離され、代謝経路や分解酵素遺伝子も明らかになっている。しかし、化学的に最も安定なβ体や次に安定なδ体を完全脱塩素分解(無機化)する資化性菌は発見されていない。   On the other hand, the organochlorine insecticide hexachlorocyclohexane (HCHs) mainly contains four isomers (α-form, β-form, γ-form, delta-form) in a ratio of 8: 1: 2: 1. It is an organic pollutant. In Japan, its use was banned in 1970 due to its strong toxicity and bioaccumulation, and its indegradability. Currently, HCHs are target agricultural chemicals for buried agricultural chemical treatment business, and in 2009, three isomers excluding δ were designated as persistent organic pollutants (POPs). Among the isomers, α and γ isomers have been aerobically decomposed and mineralized bacteria, and metabolic pathways and degrading enzyme genes have been clarified. However, no assimilating bacteria have been found that completely dechlorinate (mineralize) the chemically most stable β-form and the next stable delta-form.

こうした汚染物質により汚染された土壌や地下水に対する浄化法に関しては、栄養素や酸素等を汚染現場に供給し土着の分解菌を増殖・活性化させて浄化を行うバイオスティミュレーション法や、外来から特定の機能を有する微生物を導入するバイオオーギュメンテーション法など、微生物等の生物機能(特に分解能)を利用する原位置バイオレメディエーションに期待が寄せられており、シマジンの分解に関するバイオレメディエーション技術が特開2005−27536号公報(特許文献1)に、PCNB分解に関するバイオレメディエーション技術が特開平11−318435号公報(特許文献2)等に開示されている。   Regarding the purification methods for soil and groundwater contaminated with these pollutants, biostimulation methods that supply nutrients, oxygen, etc. to the contaminated site and propagate and activate indigenous degrading bacteria to purify, and are specified from outside In-situ bioremediation utilizing biological functions (especially resolution) of microorganisms, such as a bioaugmentation method for introducing microorganisms having the above functions, is expected, and bioremediation techniques relating to the degradation of simazine are disclosed in JP-A-2005. Japanese Patent Application Laid-Open No. 11-318435 (Patent Document 2) and the like disclose a bioremediation technique related to PCNB degradation in Japanese Patent Application Laid-Open No. 27536 / Patent Document 1 (Patent Document 1).

特開2005−27536号公報Japanese Patent Laying-Open No. 2005-27536 特開平11−318435号公報JP 11-318435 A

このように、PCBsまたはHCHsは残留性有機汚染物質に指定されていながら、効果的な分解技術は確立されていない。
そこで本発明は、PCBsまたはHCHsを効果的に分解するバイオレメディエーション技術を提供することを目的としてなされたものである。
Thus, although PCBs or HCHs are designated as persistent organic pollutants, an effective decomposition technique has not been established.
Then, this invention is made | formed for the purpose of providing the bioremediation technique which decomposes | disassembles PCBs or HCHs effectively.

上記目的を達成するために、受領番号:FERM AP−22222(受託番号未定)として寄託された低塩素化PCBs分解能を有するスフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する有機塩素系化合物分解菌を提供する。   In order to achieve the above object, some or all of the bacteriological properties of the Sphingomonas sp. TSK-1 strain having low chlorinated PCBs deposited under the receipt number: FERM AP-22222 (Accession number TBD) Provided is an organochlorine compound-degrading bacterium having properties.

受領番号:FERM AP−22222として寄託された低塩素化PCBs分解能を有するスフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する有機塩素系化合物分解菌は、低塩素化PCBsを分解する新規に発見された菌株であるため、難分解性の低塩素化PCBsを含む汚染土壌に代表される汚染環境を効果的に浄化することが期待できる。ここで低塩素化PCBsとは、保有する塩素数が1〜10にあるPCBs異性体のうちその塩素数が4以下、好ましくは2〜4であるPCBsをいうものである。   Receipt number: FERM AP-22222, an organochlorine compound-degrading bacterium having a part or all of the mycological properties of Sphingomonas sp. Since it is a newly discovered strain that degrades chlorinated PCBs, it can be expected to effectively purify contaminated environments represented by contaminated soil containing persistent low-chlorinated PCBs. Here, low chlorinated PCBs refers to PCBs having a chlorine number of 4 or less, preferably 2 to 4 among PCBs isomers having 1 to 10 chlorine atoms.

そしてまた、受領番号:FERM AP−22222(受託番号未定)として寄託されたα−HCH、β−HCH、γ−HCHおよびδ−HCH分解能を有するスフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する有機塩素系化合物分解菌を提供する。
受領番号:FERM AP−22222として寄託されたα−HCH、β−HCH、γ−HCHおよびδ−HCH分解能を有するスフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する有機塩素系化合物分解菌は、α−HCHやγ−HCHのみならず、β−HCHやδ−HCHをも分解する新規に発見された菌株であるため、難分解性のβ−HCHやδ−HCHを含む汚染土壌に代表される汚染環境を効果的に浄化することが期待できる。
Also, the mycological properties of the Sphingomonas sp. TSK-1 strain having α-HCH, β-HCH, γ-HCH and δ-HCH resolution deposited under the receipt number: FERM AP-22222 (Accession number TBD) An organochlorine compound-degrading bacterium having a part or all of the properties of the present invention is provided.
A part or all of the bacteriological properties of the Sphingomonas sp. TSK-1 strain having α-HCH, β-HCH, γ-HCH and δ-HCH resolution deposited as FERM AP-22222 Since the organochlorine compound-degrading bacterium has a newly discovered strain that degrades not only α-HCH and γ-HCH but also β-HCH and δ-HCH, it is difficult to degrade β-HCH and δ. -It can be expected to effectively purify contaminated environments represented by contaminated soil containing HCH.

また、スフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する有機塩素系化合物分解菌を木質炭化素材等の多孔質材中に含んでなる有機塩素系化合物分解資材を提供する。
スフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する有機塩素系化合物分解菌を木質炭化素材等の多孔質材中に含むため、この分解菌を安定的に保持し、生育させることができる。また、多孔質材を有機塩素系化合物分解菌を含む担体として取り扱えるため、有機塩素系化合物分解菌の取扱いが容易である。
Organochlorine compound decomposing material comprising an organochlorine compound-degrading bacterium having a part or all of the mycological properties of Sphingomonas sp. TSK-1 strain in a porous material such as a wood carbonized material I will provide a.
Organochlorine compound-degrading bacteria having part or all of the mycological properties of Sphingomonas sp. Strain TSK-1 are contained in a porous material such as a wood carbonized material, so that these degrading bacteria can be retained stably. And can be grown. Moreover, since the porous material can be handled as a carrier containing organochlorine compound-decomposing bacteria, it is easy to handle organochlorine compound-degrading bacteria.

有機塩素系化合物分解資材は、FERM BP−10405として国際寄託されているβ−HCH分解能を有するノカルディオイデスエスピーPD653株の有する菌学的性質の一部または全部の性質を有する分解菌をさらに含む有機塩素系化合物分解資材とすることができる。
ノカルディオイデスエスピーPD653株の有する菌学的性質の一部または全部の性質を有する分解菌を、スフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する分解菌に加えてさらに含むため、HCHsのうち分解しにくいβ体を効果的に分解できる。そのため、HCHsの分解能に非常に優れた有機塩素系化合物分解資材である。
The organochlorine compound decomposing material further includes a degrading bacterium having part or all of the mycological properties of Nocardioides sp. PD653 strain having β-HCH resolution deposited internationally as FERM BP-10405. It can be used as an organic chlorine compound decomposition material.
Degrading bacteria having part or all of the mycological properties of Nocardioides sp. PD653 strain is converted into degrading bacteria having part or all of the mycological properties of Sphingomonas sp. In addition, since it is further included, it is possible to effectively decompose β-isomers that are difficult to decompose in HCHs. Therefore, it is an organochlorine-based compound decomposition material that is extremely excellent in resolution of HCHs.

ノカルディオイデスエスピーPD653株の有する菌学的性質の一部または全部の性質を有する分解菌に対して、スフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する分解菌を2倍〜6倍の割合で有している有機塩素系化合物分解資材とすることができる。
ノカルディオイデスエスピーPD653株の有する菌学的性質の一部または全部の性質を有する分解菌に対してスフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する分解菌を2倍〜6倍の割合で有している有機塩素系化合物分解資材としたため、前記PD653株の性質を有する分解菌と前記TSK−1株の性質を有する分解菌とを多孔質材中に共存させることができ、それぞれの分解菌によるHCHsの分解を効果的に行うことができる。TSK−1株の割合が2倍より少ないとTSK−1株の生育が劣りδ−HCHの分解が不十分になるおそれがある。また、TSK−1株の割合が5倍より多いとPD653株の生育が劣りβ−HCHの分解が不十分になるおそれがある。こうした割合は、3倍を超えて6倍以下とすることがさらに好ましい。
Degradation having some or all of the mycological properties of Sphingomonas sp. TSK-1 strain versus degrading bacteria having some or all of the mycological properties of Nocardioides sp. PD653 It can be set as the organochlorine compound decomposition material which has a microbe in the ratio of 2-6 times.
Degrading bacteria having some or all of the mycological properties of Sphingomonas sp. TSK-1 strain versus degrading bacteria having some or all of the mycological properties of Nocardioides sp. PD653 In the porous material, the decomposition bacteria having the properties of the PD653 strain and the decomposition bacteria having the properties of the TSK-1 strain are contained in the porous material. It can coexist and HCHs can be effectively decomposed by the respective decomposing bacteria. If the proportion of the TSK-1 strain is less than twice, the growth of the TSK-1 strain may be inferior and the decomposition of δ-HCH may be insufficient. Further, when the proportion of the TSK-1 strain is more than 5 times, the growth of the PD653 strain is inferior, and β-HCH may be insufficiently decomposed. Such a ratio is more preferably more than 3 times and 6 times or less.

この分解資材は、分解菌とともにその分解菌の炭素源または窒素源となる基質として、ピルビン酸またはその塩の少なくとも何れか一方とメチオニンとを含むものとすることができる。炭素源または窒素源となる基質として、ピルビン酸またはその塩の少なくとも何れか一方とメチオニンとを含むため、多孔質材中の分解菌の生育を良くすることができる。そのため、低塩素化PCBsまたはHCHsの分解能を高めることができる。   This degradation material may contain pyruvic acid or a salt thereof and methionine as a substrate that becomes a carbon source or nitrogen source of the degradation bacteria together with the degradation bacteria. Since at least one of pyruvic acid or a salt thereof and methionine are included as a substrate serving as a carbon source or nitrogen source, the growth of decomposing bacteria in the porous material can be improved. Therefore, the resolution of low chlorinated PCBs or HCHs can be increased.

さらに、こうした分解菌や分解資材を含有した汚染環境の浄化装置を提供する。低塩素化PCBsまたはHCHsを分解する能力のある分解菌や分解資材を含むため、汚染土壌や汚染水の浄化を行うことができる。   Furthermore, the contaminated environment purification apparatus containing such decomposing bacteria and decomposition materials is provided. Since it contains decomposing bacteria and decomposition materials capable of degrading low chlorinated PCBs or HCHs, it is possible to purify contaminated soil and contaminated water.

さらにまた、所定有機塩素系化合物を分解可能な分解菌が多孔質材中に集積した有機塩素系化合物分解資材の製造方法について、前記分解菌の窒素源または炭素源となる基質と、前記分解菌とを含む培養液を前記多孔質材中に浸漬させて、分解菌と基質とを多孔質材中に担持させることを特徴とする有機塩素系化合物分解資材の製造方法を提供する。
所定有機塩素系化合物を分解可能な分解菌の窒素源または炭素源となる基質と、前記分解菌とを含む培養液を多孔質材中に浸漬させて、分解菌と基質とを多孔質材中に担持させたため、分解菌と基質とを効率的に多孔質材中に含ませることができる。そのため、分解菌と基質とを含む分解資材を簡単に製造することができる。
Furthermore, regarding a method for producing an organochlorine compound decomposing material in which a degrading bacterium capable of degrading a predetermined organochlorine compound is accumulated in a porous material, a substrate serving as a nitrogen source or carbon source of the decomposing bacterium, and the decomposing bacterium A method for producing an organochlorine-based compound decomposing material, comprising immersing a culture solution containing a lysate in the porous material and supporting a decomposing bacterium and a substrate in the porous material.
A substrate containing a nitrogen source or a carbon source of a decomposing bacterium capable of degrading a predetermined organochlorine compound and a culture solution containing the decomposing bacterium is immersed in the porous material, so that the decomposing bacterium and the substrate are contained in the porous material. Therefore, the decomposing bacteria and the substrate can be efficiently contained in the porous material. Therefore, it is possible to easily produce a degradation material containing a degrading bacterium and a substrate.

所定有機化合物が低塩素化PCBsまたはHCHsであり、分解菌がスフィンゴモナスエスピーTSK−1株の有する菌学的性質の一部または全部の性質を有する分解菌やノカルディオイデスエスピーPD653株の有する菌学的性質の一部または全部の性質を有する分解菌とすれば、低塩素化PCBsまたはHCHを効果的に分解できる有機塩素系化合物分解資材を得ることができる。   The predetermined organic compound is low chlorinated PCBs or HCHs, and the degrading bacterium has a part or all of the bacteriological properties of Sphingomonas sp. TSK-1 strain or the bacterium possessed by Nocardioides sp. PD653 strain If it is a degrading bacterium having some or all of the chemical properties, an organochlorine compound decomposing material capable of effectively degrading low chlorinated PCBs or HCH can be obtained.

本発明の有機塩素系化合物分解菌、有機塩素系化合物分解資材、汚染環境の浄化装置によれば低塩素化PCBsやHCHsに汚染された土壌等の汚染環境を簡易に浄化することができる。
また、本発明の所定有機塩素系化合物を分解可能な分解菌が多孔質材中に集積した有機塩素系化合物分解資材の製造方法によれば、有機塩素系化合物分解資材や汚染環境の浄化装置を簡単に製造することができる。
According to the organochlorine compound decomposing bacteria, the organochlorine compound decomposing material, and the contaminated environment purification apparatus of the present invention, it is possible to easily purify contaminated environments such as soil contaminated with low chlorinated PCBs and HCHs.
Further, according to the method for producing an organic chlorine compound decomposing material in which the degrading bacteria capable of decomposing the predetermined organic chlorine compound of the present invention are accumulated in the porous material, the organic chlorine compound decomposing material and the purification apparatus for contaminated environment are provided. Easy to manufacture.

塩基配列をもとにしたTSK−1株の分子系統樹を示す説明図である。It is explanatory drawing which shows the molecular phylogenetic tree of TSK-1 stock | strain based on a base sequence. TSK培地とR2A培地でのTSK−1株の増殖程度を比較するグラフ図である。It is a graph which compares the growth degree of the TSK-1 strain | stump | stock in TSK culture medium and R2A culture medium. TSK培地でのTSK−1株による各種低塩素化PCBsの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of various low chlorinated PCBs by TSK-1 stock | strain in a TSK culture medium. TSK培地でのTSK−1株による各種低塩素化PCBs分解後のCl濃度を示すグラフ図である。It is a graph which shows Cl < - > density | concentration after various low-chlorination PCBs decomposition | disassembly by TSK-1 strain | stump | stock in TSK culture medium. TSK培地でのTSK−1株によるKC−300の脱塩素分解後のKC−300濃度を示すグラフ図である。It is a graph which shows KC-300 density | concentration after dechlorination decomposition | disassembly of KC-300 by TSK-1 strain | stump | stock in TSK culture medium. TSK培地でのTSK−1株によるKC−300の脱塩素分解後の塩素イオン濃度を示すグラフ図である。It is a graph which shows the chlorine ion density | concentration after the dechlorination decomposition | disassembly of KC-300 by the TSK-1 strain | stump | stock in a TSK culture medium. 無機塩培地でのTSK−1株によるα−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (alpha) -HCH by TSK-1 strain | stump | stock in an inorganic salt culture medium. 無機塩培地でのTSK−1株によるγ−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (gamma) -HCH by TSK-1 strain | stump | stock in an inorganic salt culture medium. 無機塩培地でのTSK−1株によるβ−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (beta) -HCH by TSK-1 strain | stump | stock in an inorganic salt culture medium. 無機塩培地でのTSK−1株によるδ−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (delta) -HCH by TSK-1 strain | stump | stock in an inorganic salt culture medium. TSK培地でのTSK−1株によるα−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (alpha) -HCH by the TSK-1 strain | stump | stock in a TSK culture medium. TSK培地でのTSK−1株によるβ−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (beta) -HCH by TSK-1 strain | stump | stock in TSK culture medium. TSK培地でのTSK−1株によるδ−HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of (delta) -HCH by TSK-1 strain | stump | stock in a TSK culture medium. TSK培地でのTSK−1株による4種HCHの同時分解を示すグラフ図である。It is a graph which shows simultaneous decomposition | disassembly of 4 types of HCH by the TSK-1 strain | stump | stock in a TSK culture medium. TSK培地でのTSK−1株による4種HCHの同時分解時におけるTSK−1株の増殖を示すグラフ図である。It is a graph which shows the proliferation of the TSK-1 strain at the time of simultaneous decomposition | disassembly of 4 types of HCH by the TSK-1 strain in a TSK culture medium. TSK培地での2種複合系による4種HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of 4 types HCH by 2 types complex system in a TSK culture medium. TSK培地での2種複合系による4種HCHの分解における濁度の変化を示すグラフ図である。It is a graph which shows the change of turbidity in decomposition | disassembly of 4 types HCH by 2 types complex system in a TSK culture medium. 汚染土壌での2種複合系による4種HCHの分解を示すグラフ図である。It is a graph which shows decomposition | disassembly of 4 types HCH by 2 types complex system in contaminated soil.

低塩素化PCBsまたはHCHsを分解するための技術について以下に詳細に説明する。   Techniques for decomposing low chlorinated PCBs or HCHs are described in detail below.

低塩素化PCBsまたはHCHsを分解するTSK−1株
バイオレメディエーションを行うためには低塩素化PCBsまたはHCHsに対する分解菌(以下「分解菌」という)の存在が不可欠である。この分解菌の取得については土壌木炭還流法を応用した手段を用い、この分解菌を含む分解資材を得た。
TSK-1 strain that degrades low chlorinated PCBs or HCHs :
In order to perform bioremediation, the presence of degrading bacteria (hereinafter referred to as “degrading bacteria”) for low-chlorinated PCBs or HCHs is indispensable. For obtaining the decomposing bacteria, a means applying the soil charcoal reflux method was used to obtain a decomposing material containing the decomposing bacteria.

γ−ヘキサクロロシクロヘキサン(γ−HCH)とクロロタロニル(TPN)の連用土壌を2mm以下に篩分した20gと、粉砕して4〜6mmに篩分けした木質炭化素材A100(広葉樹を400℃〜600℃で焼成、比表面積95〜120m/g、pH7.8)1gとを混和して還流装置であるパーコレータ(「分解菌迅速集積装置」藤原製作所社製)に充填し、炭素源がγ−HCH(5mg/L)のみである無機塩培地(5H)250mLを還流させ、25℃、暗所で3週間培養した。そして、経時的に還流液中のγ−HCHおよびCl(γ−HCHの代謝物)濃度をGC−ECD、ICで調べ、分解菌の集積状況を確認した。 20 g of γ-hexachlorocyclohexane (γ-HCH) and chlorothalonil (TPN) continuous soil sieved to 2 mm or less, and wood charcoal material A100 crushed and sieved to 4 to 6 mm (hardwood at 400 ° C to 600 ° C) Firing, mixing with 1 g of specific surface area 95-120 m 2 / g, pH 7.8) and filling the percolator as a reflux device (“degradable bacteria rapid accumulation device” manufactured by Fujiwara Seisakusho Co., Ltd.), the carbon source is γ-HCH ( 250 mL of an inorganic salt medium (5H) containing only 5 mg / L was refluxed and cultured at 25 ° C. in the dark for 3 weeks. Then, the concentration of γ-HCH and Cl (γ-HCH metabolite) in the reflux solution over time was examined by GC-ECD and IC to confirm the state of accumulation of the decomposed bacteria.

なお、無機塩培地の組成は以下のとおりである。
培地1Lあたり、NaHPO・12HOを1.2g、KHPOを0.5g、NHNOを100mg、Trace element を10mL、そしてここでは前記γ−HCHを5mg含み、pHは6.8である。
The composition of the inorganic salt medium is as follows.
Each 1 L of medium contains 1.2 g of Na 2 HPO 4 · 12H 2 O, 0.5 g of KH 2 PO 4 , 100 mg of NH 4 NO 3 , 10 mL of trace element, and here contains 5 mg of the above-mentioned γ-HCH, pH Is 6.8.

洗浄後オ−トクレーブ滅菌したA100を上述のパーコレータと同種で別のパーコレータに7.5g充填した。これに上記培養で分解菌の集積が進んだA100を0.25g接種し、前記と同様に、炭素源がγ−HCH(5mg/L)のみである無機塩培地(5H)250mLを還流させ、25℃、暗所で3週間培養した。
そして、分解菌が集積したA100をパーコレータから取り出し粉砕して、リン酸バッファーで10−4に希釈したものを無機塩培地(5H)に接種し、培養して、分解活性を確認した。
After washing, the autoclave-sterilized A100 was filled with 7.5 g in another percolator of the same type as the above-described percolator. To this, 0.25 g of A100 in which accumulation of degrading bacteria progressed in the above culture was inoculated, and as described above, 250 mL of an inorganic salt medium (5H) in which the carbon source was only γ-HCH (5 mg / L) was refluxed. The cells were cultured at 25 ° C. in the dark for 3 weeks.
Then, A100 in which degrading bacteria were accumulated was taken out from the percolator, ground, and diluted to 10 −4 with a phosphate buffer, inoculated into an inorganic salt medium (5H), cultured, and the decomposing activity was confirmed.

さらに、この培養液を限界希釈法により10−7倍まで段階希釈して分解菌の集積密度を高め、分解活性のある10−7希釈液での培養液を得た。この培養液をR2A寒天培地に平板塗抹後、5%γ−HCH含有エーテルを噴霧、培養し、形成されたクリアゾーンから分解菌を単離・同定した。ここで無機塩培地に代えてR2A寒天培地を用いたのは分解菌の生育を高めるためである。 Further, this culture solution was serially diluted to 10 −7 times by a limiting dilution method to increase the density of degrading bacteria, and a culture solution with a 10 −7 dilution having a degrading activity was obtained. The culture broth was smeared on an R2A agar medium, sprayed with 5% γ-HCH-containing ether, cultured, and the degrading bacteria were isolated and identified from the formed clear zone. The reason why the R2A agar medium was used in place of the inorganic salt medium was to increase the growth of degrading bacteria.

この分解菌の形態的特徴は、桿菌(0.7〜0.8×1.5〜5.0μm)であり、培養的性質はR2A寒天培地で30℃で可能であり、黄色で光沢“+”、色素産生“+”であり、R2A液体培地30℃で表面発育の有無“−”、培地の混濁の有無“+”であり、ゼラチン穿刺培地30℃で生育状態“−”、ゼラチン液化“−”、リトマス・ミルク30℃で凝固“−”、液化“−”である。
生理的性質は、グラム染色性“−”、硝酸塩の還元“−”、脱窒反応“−”、MRテスト“−”、VPテスト“−”、インドール産生“−”、硫化水素の生成“−”、デンプンの加水分解“−”、クエン酸の利用(Koser)“−”、クエン酸の利用(Christensen)“−”、無機窒素源の利用(硝酸塩)“−”、無機窒素源の利用(アンモニウム塩)“−”、ウレアーゼ活性“−”、カタラーゼ“−”、オキシダーゼ“+”、生育の範囲はpHについてpH5“−”、pH6“+w”、pH7〜9.5“+”、生育の範囲は温度について15℃“+w”、20℃“+”、25℃“+”、37℃“−”、嫌気的生育性“−”、O−Fテスト(酸化/発酵)“−/−”である。
The morphological characteristics of this degrading bacterium are Neisseria gonorrhoeae (0.7-0.8 × 1.5-5.0 μm), and the culture property is possible at 30 ° C. on R2A agar medium, yellow and glossy “+ ”, Pigment production“ + ”, presence / absence of surface growth“ − ”in R2A liquid medium 30 ° C., presence / absence of“ + ”in medium turbidity, growth state“ − ”in gelatin puncture medium 30 ° C., gelatin liquefaction“ -", Litmus milk coagulated at 30 ° C"-", liquefied"-".
Physiological properties include Gram stainability "-", nitrate reduction "-", denitrification "-", MR test "-", VP test "-", indole production "-", hydrogen sulfide production "- ”, Starch hydrolysis“-”, citric acid utilization (Koser)“-”, citric acid utilization (Christensen)“-”, inorganic nitrogen source utilization (nitrate)“-”, inorganic nitrogen source utilization ( Ammonium salt) "-", urease activity "-", catalase "-", oxidase "+", growth range is pH 5 "-", pH 6 "+ w", pH 7 to 9.5 "+" The ranges are 15 ° C. “+ w”, 20 ° C. “+”, 25 ° C. “+”, 37 ° C. “−”, anaerobic growth “-”, OF test (oxidation / fermentation) “-/-”. It is.

また、以下に示す酸産生試験培地組成において、糖類からの酸産生/ガス産生については、L−アラビノース“−/−”、D−グルコース“−/−”、D−フラノース“−/−”、マルトース“−/−”、ラクトース“−/−”、D−ソルビトール“−/−”、イノシトール“−/−”、D−キシロース“−/−”、D−マンノース“−/−”、D−ガラクトース“−/−”、サッカロース“−/−”、トレハロース“−/−”、D−マンニトール“−/−”、グリセリン“−/−”である。   In the acid production test medium composition shown below, for acid production / gas production from saccharides, L-arabinose “− / −”, D-glucose “− / −”, D-furanose “− / −”, Maltose "-/-", lactose "-/-", D-sorbitol "-/-", inositol "-/-", D-xylose "-/-", D-mannose "-/-", D- Galactose “− / −”, saccharose “− / −”, trehalose “− / −”, D-mannitol “− / −”, and glycerin “− / −”.

酸産生試験培地組成は、Yeast Extract 0.5g、Bacto Proteose Peptone No. 3 0.5g、Bacto Casamino Acid 0.5g、Soluble Starch 0.5g、Sodium Pyruvate 0.3g、K2HPO4 0.3g、MgSO4・7H2O 0.05g、寒天0.02g、超純水1000mL、0.2% Phenol Red 0.05mL、各糖10gでpHは8.0である。
その他の生理学的性質は、β−ガラクトシダーゼ活性“−”、アルギニンジヒドロラーゼ“−”、リジンデカルボキシラーゼ活性“−”、トリプトファンデアミナーゼ活性“−”、ゼラチナーゼ活性“−”である。
The acid production test medium composition is Yeast Extract 0.5 g, Bacto Proteose Peptone No. 3 0.5 g, Bacto Casamino Acid 0.5 g, Soluble Starch 0.5 g, Sodium Pyruvate 0.3 g, K 2 HPO 4 0.3 g, MgSO 4 .7H 2 O 0.05 g, agar 0.02 g, ultrapure water 1000 mL, 0.2% Phenol Red 0.05 mL, each sugar 10 g, and pH is 8.0.
Other physiological properties are [beta] -galactosidase activity "-", arginine dihydrolase "-", lysine decarboxylase activity "-", tryptophan deaminase activity "-", gelatinase activity "-".

なお“+”は「陽性」、“−”は「陰性」、“w”は「反応弱い」をそれぞれ表す。また、各試験の実施方法は、英国NCIMB研究所の試験方法および1)BARROW,(G.I.) and FELTHAM, (R.K.A): Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd edition. 1993, Cambridge University Press. 2)坂崎利一・吉崎悦郎・三木寛二:新細菌培地学講座・下(第二版). 1988, 近大出版 3)長谷川武治編著、微生物の分類と同定(下). 学会出版センター 1995. に基づき、また細菌同定キットAP120E,(bioMerieux, France)を用いている。   “+” Represents “positive”, “−” represents “negative”, and “w” represents “weak reaction”. In addition, each test is conducted at the NCIMB Laboratory in the UK and 1) BARROW, (GI) and FELTHAM, (RKA): Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd edition. 1993, Cambridge University Press 2) Toshikazu Sakazaki, Goro Yoshizaki, Kanji Miki: New Bacteriology and Culture Laboratory (2nd edition). 1988, published by Kyundai 3) Takeshi Hasegawa, edited and classified by microorganisms (below). And a bacterial identification kit AP120E, (bioMerieux, France).

得られた分解菌は、スフィンゴモナスエスピーTSK−1(Sphingomonas sp. TSK-1)(「TSK−1株」ともいう)と帰属した。その16S rRNA塩基配列(1482塩基)の塩基配列を配列番号1とした配列表に示す。TSK−1株は、独立行政法人産業技術総合研究所特許生物寄託センター 〒305-8566 茨城県つくば市東1−1−1に受領番号:FERM AP−22222、受託日:2012年3月1日(受託番号未定)として寄託されている。この塩基配列に基づくこの菌株の分子系統樹を図1に示す。この系統樹からわかるように、既存の分解菌とは系統的に大きく異なっている。 The obtained degrading bacteria were assigned as Sphingomonas sp. TSK-1 (also referred to as “TSK-1 strain”). The 16S rRNA base sequence (1482 bases) is shown in the sequence listing with the base sequence of SEQ ID NO: 1. The TSK-1 strain will be registered at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, 1-11-1 Higashi, Tsukuba City, Ibaraki Prefecture 305-8566, receipt number: FERM AP-22222, date of deposit: March 1, 2012 ( The deposit number is undecided. A molecular phylogenetic tree of this strain based on this base sequence is shown in FIG. As can be seen from this phylogenetic tree, it is systematically different from existing degrading bacteria.

β−HCHを分解するPD653株
PD653株は、ノカルディオイデスエスピーPD653(Nocardioides sp. PD653)として独立行政法人産業技術総合研究所特許生物寄託センターにFERM BP−10405として国際寄託されている分解菌であり、特開2007−14202号公報にも記載がある。
PD653 strain that degrades β-HCH :
The PD653 strain is a degrading bacterium that has been internationally deposited as FERM BP-10405 at the National Institute of Advanced Industrial Science and Technology (AIST) as Nocardioides sp. PD653 ( Nocardioides sp. PD653). There is also a description in the publication.

PD653株の菌学的性質は次のとおりである。形態的特徴は、桿菌(0.7〜0.8×1.0〜1.2μm)であり、胞子形成は無く、淡黄色、円形、半レンズ状隆起状態、全縁スムーズで不透明、バター様の粘稠度を有するコロニーを形成する。培養的性質はR2A寒天培地30℃にて3〜7日、好気培養を行う。変異や培養条件、生理的状態によるコロニー形態の変化は認められない。運動性“−”、グラム染色“−”である。生理的性質は、カタラーゼ“+”、オキシダーゼ“−”、酸/ガス産生(グルコース):“−/−”、O/Fテスト(グルコース)“−/−”、GC含量:70.8%である。“+”、“−”の表記は上記と同様である。
PD653株の16S rRNAの部分塩基配列に基づく分子系統解析を行い、PD653株の16S rRNAの塩基配列のうち連続した1487塩基を決定しているので、この1487塩基を配列番号2とした配列表に示す。
The mycological properties of the PD653 strain are as follows. Morphological features are Neisseria gonorrhoeae (0.7-0.8 × 1.0-1.2μm), no sporulation, pale yellow, round, semi-lens-like ridged state, smooth all edges, opaque, butter-like Colonies having a consistency of The culture property is aerobic culture for 3 to 7 days at 30 ° C. in an R2A agar medium. There is no change in colony morphology due to mutation, culture conditions, or physiological conditions. Motility "-", Gram staining "-". Physiological properties are catalase “+”, oxidase “−”, acid / gas production (glucose): “− / −”, O / F test (glucose) “− / −”, GC content: 70.8% is there. The notations “+” and “−” are the same as above.
Molecular phylogenetic analysis based on the partial base sequence of 16S rRNA of PD653 strain was carried out, and continuous 1487 bases were determined from the base sequence of 16S rRNA of PD653 strain. Show.

なお、PD653株は、単独でPCNBに対する分解能を有していることがわかっており、また、単独でHCBに対する分解能を有していることもわかっているが、各HCHに対する分解能を有することは知られていなかった。しかしながら、HCBとβ−HCHはともにCl基がすべてエクアトリアル位にある点で立体構造が似ていることに鑑み、PD653株によるβ−HCHの分解性能について検討したのである。   It is known that the PD653 strain alone has a resolution for PCNB and also has a resolution for HCB alone, but it is known that it has the resolution for each HCH. It was not done. However, considering that HCB and β-HCH are similar in three-dimensional structure in that all Cl groups are in the equatorial position, the degradation performance of β-HCH by the PD653 strain was examined.

有機塩素系化合物分解資材
有機汚染物質である低塩素化PCBsやHCHsを土壌中や水中などの汚染環境中で効果的に分解するためには、有機塩素系化合物分解菌を土壌中や水中に高密度で長期間存在させる必要がある。そのため、有機塩素系化合物分解菌の餌となる基質とともに有機塩素系化合物分解菌の住みかとなる木質炭化素材のような多孔質材に担持させることが好ましい。基質のうち炭素源としては、ピルビン酸やピルビン酸ナトリウムなどのその塩が好ましい。窒素源としてはメチオニンやチロシン等が好ましいが、メチオニンがより好ましい。
分解菌の住みかとなる担体としては木質炭化素材等に見られるような比表面積が50m/g〜600m /gである多孔質材が好ましい。分解菌が利用しやすい形態に資化材が吸着されやすく、また、担体への分解菌の安定的な集積が可能となるからである。
また、多孔質材は分解菌の含有率を高めるため、2μm〜50μm、より好ましくは5μm〜20μmの大きさの細孔が容積比率で10%以上あることが好ましい。
Organochlorine compound decomposition materials :
In order to effectively decompose organic pollutants such as low chlorinated PCBs and HCHs in contaminated environments such as soil and water, organochlorine-based compound-degrading bacteria are present in soil and water at high density for a long period of time. There is a need. Therefore, it is preferable to carry | support to the porous material like the wood carbonization material which becomes a living place of an organochlorine compound decomposing bacteria with the substrate used as the bait | organism of an organochlorine compound decomposing bacteria. Among the substrates, the carbon source is preferably pyruvic acid or a salt thereof such as sodium pyruvate. As the nitrogen source, methionine, tyrosine and the like are preferable, but methionine is more preferable.
The carrier which is a dwelling of degrading bacteria specific surface area as found in wood carbonization material or the like is 50m 2 / g~600m 2 / g porous material is preferable. This is because the assimilation material is easily adsorbed in a form in which the degrading bacteria can easily be used, and the degrading bacteria can be stably accumulated on the carrier.
In addition, since the porous material increases the content of degrading bacteria, it is preferable that pores having a size of 2 μm to 50 μm, more preferably 5 μm to 20 μm are 10% or more by volume ratio.

有機塩素系化合物分解資材を用いた汚染物質の浄化方法
有機塩素系化合物分解資材を用いて、低塩素化PCBsやHCHsによって汚染された物質を浄化するには次のような方法がある。
汚染土壌における低塩素化PCBsやHCHsの除去に関しては、有機塩素系化合物分解資材を汚染土壌中に埋設して混和する。土壌中に埋設しておくことで、土壌中に含まれている低塩素化PCBsやHCHsは分解菌によって分解される。この方法によれば、土壌中の低塩素化PCBsやHCHsが地下水に混入することを避けることができ、地下水汚染の防止を図ることが可能となる。
この技術の応用として、低塩素化PCBsやHCHsの存在する表層及び下層土壌への混入、ゴルフ場のグリーン面の下層土壌への混入、産業破棄物処理場の下層土壌への混入、工場等における有機廃液置き場の下層土壌への混入などが挙げられ、こうした応用により低塩素化PCBsやHCHsを処理することができる。
Purification method of pollutants using organochlorine compound decomposition materials :
There are the following methods for purifying substances contaminated with low chlorinated PCBs and HCHs using organochlorine compound decomposition materials.
For removal of low chlorinated PCBs and HCHs in contaminated soil, organochlorine compound decomposition materials are buried in the contaminated soil and mixed. By burying in the soil, low chlorinated PCBs and HCHs contained in the soil are decomposed by the decomposing bacteria. According to this method, it is possible to avoid low chlorinated PCBs and HCHs in the soil from being mixed into the groundwater, and it is possible to prevent groundwater contamination.
As an application of this technology, mixing into surface and lower soils where low chlorinated PCBs and HCHs exist, mixing into lower soils on the green surface of golf courses, mixing into lower soils at industrial waste disposal sites, in factories, etc. For example, it can be mixed into the lower layer soil of the organic waste liquid storage, and such applications can treat low chlorinated PCBs and HCHs.

汚染環境の浄化装置
有機塩素系化合物分解資材を通気性のある筐体内に詰め込むなどして有機塩素系化合物分解資材を土壌に含めた集積層を筐体内に保有すれば簡単にバイオリアクターとして、低塩素化PCBsやHCHsを分解除去する汚染環境の浄化装置(有機塩素系化合物分解除去装置)とすることができる。
該装置にHCHsで汚染された土壌を混入し水を還流させることでその土壌を浄化することもできる。また、該装置にHCHsで汚染された水を還流させることで、この汚染水を浄化することができる。なお、HCHsに代えて低塩素化PCBsについても同様に取り扱うことができる。
あるいはまた、この装置を、生活排水路、水田地帯の農業排水路、ゴルフ場の排水路などの水路の一部に設けることにより、水中に溶解、分散した低塩素化PCBsやHCHsを分解除去し、汚染環境を浄化する汚染環境の浄化装置として利用することができる。
Pollution environment purification equipment :
Low-chlorinated PCBs and HCHs can be easily used as bioreactors if an organic chlorinated compound decomposing material is packed in an air-permeable housing, and an accumulation layer containing the organic chlorinated compound decomposing material in the soil is held in the housing. It can be set as the purification apparatus (organochlorine compound decomposition removal apparatus) of the polluted environment which decomposes and removes.
The soil can be purified by mixing soil contaminated with HCHs into the apparatus and refluxing the water. Moreover, this contaminated water can be purified by refluxing water contaminated with HCHs to the apparatus. In addition, it can handle similarly about low chlorinated PCBs instead of HCHs.
Alternatively, by installing this device in a part of waterways such as domestic drainage channels, paddy field agricultural drainage channels, golf course drainage channels, etc., the low-chlorinated PCBs and HCHs dissolved and dispersed in water can be decomposed and removed. It can be used as a pollution environment purification device for purifying a pollution environment.

<実験例1>
[TSK培地の作製:図2]
TSK−1株が生育し、Cl濃度が低くTSK−1株による脱塩素分解が判別可能な半合成培地であるTSK培地を開発した。
TSK培地の組成は、その1Lにおいて、ペプトンCE90Mを1.0g、酵母エキスBSP−Bを0.25g、メチオニンを0.5g、ピルビン酸ナトリウムを0.6g、KHPOを0.08g、MgSO・7HOを0.05g含みpHは7.2〜7.4である。
<Experimental example 1>
[Preparation of TSK medium: Fig. 2]
A TSK medium, which is a semi-synthetic medium in which the TSK-1 strain grows and has a low Cl concentration and can be dechlorinated by the TSK-1 strain, was developed.
The composition of TSK medium is 1.0 g of peptone CE90M, 0.25 g of yeast extract BSP-B, 0.5 g of methionine, 0.6 g of sodium pyruvate, 0.08 g of K 2 HPO 4 in 1 L of the TSK medium. It contains 0.05 g of MgSO 4 .7H 2 O and has a pH of 7.2 to 7.4.

TSK培地は、TSK−1株の培養に適するR2A(Difco)液体培地の Proteose Peptone No.3 と Bacto Yeast Extract とカザミノ酸を、ペプトンCE90Mと酵母エキスBSP−Bとメチオニンに変えることで、培地中のCl濃度を約68.1mg/Lから約0.69mg/Lとして1/100に減少させ、可溶性デンプンとグルコースを除外してメチオニンを加え、さらにピルビン酸ナトリウムを2倍量にすることで、炭素源を変更しR2A液体培地よりも増殖を速めることに成功した(図2)。 The TSK medium is obtained by changing Proteose Peptone No.3, Bacto Yeast Extract and casamino acid in R2A (Difco) liquid medium suitable for culturing TSK-1 strain into peptone CE90M, yeast extract BSP-B and methionine. The Cl - concentration of the solution was reduced from about 68.1 mg / L to about 0.69 mg / L to 1/100, soluble starch and glucose were excluded, methionine was added, and sodium pyruvate was doubled. They succeeded in changing the carbon source to accelerate the growth compared to the R2A liquid medium (FIG. 2).

このように栄養源を変更したのは、TSK−1株は、可溶性デンプンとグルコースを炭素源として利用する能力がなく、他の栄養源としてはピルビン酸を利用できることができ、また、ピルビン酸量を増やすことで生育を向上させることがわかったからである。メチオニンについては、窒素源を20種類のアミノ酸の中から検討したところ、メチオニンが最も窒素源として優れており、またピルビン酸とメチオニンを組合せても生育に良い影響を与えることが判明したからである。   The nutrient source was changed in this way because the TSK-1 strain does not have the ability to use soluble starch and glucose as a carbon source, and can use pyruvic acid as another nutrient source. This is because it has been found that increasing the amount improves growth. As for methionine, the nitrogen source was examined from 20 kinds of amino acids, and it was found that methionine was the most excellent nitrogen source, and that the combination of pyruvic acid and methionine had a good effect on growth. .

<実験例2>
[TSK−1株による低塩素化PCBs分解試験:図3〜図4]
TSK培地を用いて低塩素化PCBs分解試験を行った。
まず、低塩素化PCBsとして、2,4’−ジクロロビフェニル(IUPAC#=#8)、2,2’,5−トリクロロビフェニル(IUPAC#=#18)、2,4’,5−トリクロロビフェニル(IUPAC#=#31)、2’,3,4−トリクロロビフェニル(IUPAC#=#33)、2,2’,3,5’−テトラクロロビフェニル(IUPAC#=#44)、2,2’,5,5’−テトラクロロビフェニル(IUPAC#=#52)、2,3’,4,4’−テトラクロロビフェニル(IUPAC#=#66)を混合した7種の低塩素化PCBsを各1000ppm含むアセトン溶液Aと、低塩素化PCBsとして2,4,4’−トリクロロビフェニル(IUPAC#=#28)を1000ppm含むアセトン溶液Bとを準備した。
<Experimental example 2>
[Degradation test of low chlorinated PCBs by TSK-1 strain: FIGS. 3 to 4]
A low chlorinated PCBs degradation test was performed using TSK medium.
First, as low chlorinated PCBs, 2,4′-dichlorobiphenyl (IUPAC # = # 8), 2,2 ′, 5-trichlorobiphenyl (IUPAC # = # 18), 2,4 ′, 5-trichlorobiphenyl ( IUPAC # = # 31), 2 ′, 3,4-trichlorobiphenyl (IUPAC # = # 33), 2,2 ′, 3,5′-tetrachlorobiphenyl (IUPAC # = # 44), 2,2 ′, Contains 1000 ppm each of seven low-chlorinated PCBs mixed with 5,5′-tetrachlorobiphenyl (IUPAC # = # 52) and 2,3 ′, 4,4′-tetrachlorobiphenyl (IUPAC # = # 66) An acetone solution A and an acetone solution B containing 1000 ppm of 2,4,4′-trichlorobiphenyl (IUPAC # = # 28) as low-chlorinated PCBs were prepared.

そして、TSK培地に上記アセトン溶液Aを各PCBsの終濃度が5ppmになるように添加した。同様に別のTSK培地にアセトン溶液BをPCBsの終濃度が5ppmになるように添加した。そして、アセトン溶液Aを加えたTSK培地とアセトン溶液Bを加えたTSK培地をそれぞれ同様に以下の手順で実験した。
こうしたPCBsを含むTSK培地には、TSK−1株培養液(組成は、培養液1Lあたり、NaHPO・12HOを1.2g、KHPOを0.5g含むリン酸バッファーにTSK−1株を含みOD600=1.0である)を、前記培地10mLに対し1mL添加した。対照としては1mLリン酸バッファーを添加したものを用いた。
And the said acetone solution A was added to TSK culture medium so that the final concentration of each PCBs might be set to 5 ppm. Similarly, acetone solution B was added to another TSK medium so that the final concentration of PCBs was 5 ppm. Then, the TSK medium to which the acetone solution A was added and the TSK medium to which the acetone solution B was added were respectively experimented in the following procedure.
The TSK medium containing PCBs contains TSK-1 strain culture solution (composition is phosphate buffer containing 1.2 g of Na 2 HPO 4 · 12H 2 O and 0.5 g of KH 2 PO 4 per liter of the culture solution). 1 mL of OD 600 = 1.0 including TSK-1 strain) was added to 10 mL of the medium. As a control, 1 mL of phosphate buffer was added.

それから、50mLの共栓つき三角フラスコで180rpm、30℃で10日間振とう培養した。1週間後に22mLのヘキサンを加え、10分間振とう後、ヘキサン層を10倍希釈してGC−ECDで各PCBs濃度を分析した。その結果を図3に示す。また、Cl濃度をイオンクロマトグラフィーで測定し、その結果を図4に示す。 Then, it was cultured with shaking in a 50 mL Erlenmeyer flask with a stopper at 180 rpm and 30 ° C. for 10 days. One week later, 22 mL of hexane was added, shaken for 10 minutes, the hexane layer was diluted 10-fold, and each PCBs concentration was analyzed by GC-ECD. The result is shown in FIG. Further, the Cl concentration was measured by ion chromatography, and the result is shown in FIG.

アセトン溶液Bでの#28のPCB(2,4,4’−トリクロロビフェニル)分解試験からは、図3より、培養10日間で#28が17%(0.95mg/L)分解し、図4より、塩素イオンが0.39mg/L生成したことがわかった。#28のPCBの分子量が257であり、塩素の占める割合が41.4%であるので、3塩素が脱離した。よって、#28は完全脱塩素分解したことがわかった。
また、アセトン溶液Aでの7種PCBs分解試験からは、4塩素を有するPCBsでは約25%〜30%、3塩素を有するPCBsでは約15%〜20%、2塩素を有するPCBsでは約10%分解していることがわかった。これにより、塩素数が多いPCBsの方をより分解し易いことがわかった。
From the PCB (2,4,4′-trichlorobiphenyl) degradation test of # 28 in acetone solution B, from FIG. 3, # 28 was degraded by 17% (0.95 mg / L) in 10 days of culture. From the results, it was found that 0.39 mg / L of chlorine ions was produced. Since the molecular weight of # 28 PCB was 257 and the proportion of chlorine was 41.4%, 3 chlorine was eliminated. Therefore, it was found that # 28 was completely dechlorinated.
Also, from the seven PCBs decomposition tests with acetone solution A, about 25% to 30% for PCBs with 4 chlorines, about 15% to 20% for PCBs with 3 chlorines, about 10% for PCBs with 2 chlorines It turns out that it has decomposed. Thereby, it turned out that PCBs with many chlorine numbers are easier to decompose | disassemble.

<実験例3>
[TSK−1株によるKC−300(商品名)の分解試験:図5〜図6]
TSK培地を用いてKC−300(商品名)の分解試験を行った。KC−300はカネクロールKC−300(商品名)として販売された各種PCBsの混合物であり、分子中に塩素を2塩素から4塩素含む低塩素化PCBsが約96%を占めた物質である。
このKC−300を1000ppm含むアセトン溶液を準備し、先の実施例12で用いたアセトン溶液Aに代えてこのアセトン溶液を用いた以外は実施例12と同様の実験を行った。その結果を図5、図6に示す。
図5、図6より、塩素イオンが0.64mg/L生成し、KC−300が26%分解したことがわかった。
<Experimental example 3>
[Degradation test of KC-300 (trade name) by TSK-1 strain: FIGS. 5 to 6]
A degradation test of KC-300 (trade name) was performed using TSK medium. KC-300 is a mixture of various PCBs sold as Kanechlor KC-300 (trade name), and is a substance in which about 96% of low-chlorinated PCBs containing 2 to 4 chlorine atoms in the molecule accounted for.
An acetone solution containing 1000 ppm of this KC-300 was prepared, and an experiment similar to that of Example 12 was performed except that this acetone solution was used instead of the acetone solution A used in Example 12 above. The results are shown in FIGS.
5 and 6, it was found that 0.64 mg / L of chlorine ions was generated and KC-300 was decomposed by 26%.

<実験例4>
[無機塩培地を用いたTSK−1株によるα−HCH分解試験:図7]
α−HCH、17.2μM(5mg/L)を唯一の炭素源とする無機塩培地20mL(組成は、培地1Lあたり、NaHPO・12HOを1.2g、KHPOを0.5g、NHNOを100mg、Trace element を10mL、そしてここではα−HCHを5mg含み、pHは6.8である)にTSK−1株培養液(組成は、培養液1Lあたり、NaHPO・12HOを1.2g、KHPOを0.5g含むリン酸バッファーにTSK−1株を含みOD600=2.04である)1mLを接種し、30℃、180rpmで10日間培養した。4、7、10日目にそれぞれヘキサンを20mL加えて全抽出し、ヘキサン層のα−HCH濃度をGC−ECDで、水層のCl濃度をイオンクロマトグラフィーで測定した。同時に培地の濁度(OD600)も測定した。
<Experimental example 4>
[Α-HCH degradation test with TSK-1 strain using inorganic salt medium: Fig. 7]
20 mL of inorganic salt medium containing α-HCH, 17.2 μM (5 mg / L) as a sole carbon source (composition is 1.2 g Na 2 HPO 4 · 12H 2 O and 0 KH 2 PO 4 per liter of medium) 0.5 g, NH 4 NO 3 100 mg, Trace element 10 mL, and here α-HCH 5 mg, pH is 6.8) in TSK-1 strain culture medium (composition is Na per 1 L culture medium) Inoculate 1 mL of phosphate buffer containing 1.2 g of 2 HPO 4 · 12H 2 O and 0.5 g of KH 2 PO 4 (including TSK-1 strain and OD 600 = 2.04) at 30 ° C. and 180 rpm Cultured for 10 days. On the 4th, 7th, and 10th days, 20 mL of hexane was added for total extraction, and the α-HCH concentration of the hexane layer was measured by GC-ECD, and the Cl concentration of the aqueous layer was measured by ion chromatography. At the same time, the turbidity (OD 600 ) of the medium was also measured.

上記無機塩培地を用いたα−HCHの分解試験の結果、図7で示すように、10日間の培養でα−HCHは消失し100%分解していることがわかった。また、4当量のClを検出したことから、TSK−1株はα−HCHの4塩素を脱離させることがわかった。 As a result of the degradation test of α-HCH using the inorganic salt medium, it was found that α-HCH disappeared and was decomposed 100% after 10 days of culture, as shown in FIG. Further, since 4 equivalents of Cl - was detected, it was found that the TSK-1 strain eliminated 4 chlorine of α-HCH.

<実験例5>
[無機塩培地を用いたTSK−1株によるγ−HCH分解試験:図8]
実験例4の無機塩培地において、α−HCHに代えてγ−HCHを用いた以外は実験例4と同様にしてγ−HCHの分解試験を行った。結果を図8に示す。
無機塩培地を用いたγ−HCHの分解試験の結果、10日間の培養で6当量のClを検出したことから、TSK−1株はγ−HCHを完全脱塩素して100%分解することがわかった。
<Experimental example 5>
[Γ-HCH degradation test by TSK-1 strain using inorganic salt medium: Fig. 8]
In the inorganic salt medium of Experimental Example 4, a γ-HCH decomposition test was performed in the same manner as in Experimental Example 4 except that γ-HCH was used instead of α-HCH. The results are shown in FIG.
As a result of the degradation test of γ-HCH using an inorganic salt medium, 6 equivalents of Cl was detected in 10 days of culture. Therefore, the TSK-1 strain must completely dechlorinate γ-HCH and degrade 100%. I understood.

<実験例6>
[無機塩培地を用いたTSK−1株によるβ−HCH分解試験:図9]
実験例4の無機塩培地において、α−HCHに代えてβ−HCHを用いた以外は実験例4と同様にしてβ−HCHの分解試験を行った。結果を図9に示す。
無機塩培地を用いたβ−HCHの分解試験の結果、10日間の培養でβ−HCHを分解し1当量のClを検出した。また、β−HCHは消失した。この結果、β−HCHを唯一の炭素源とする無機塩培地に接種したTSK−1株からは、β−HCHの脱塩素が生じβ−HCHを100%分解するものの、完全脱塩素を起こすまでには至らないことがわかった。
<Experimental example 6>
[Β-HCH degradation test by TSK-1 strain using inorganic salt medium: Fig. 9]
In the inorganic salt medium of Experimental Example 4, a β-HCH decomposition test was performed in the same manner as in Experimental Example 4 except that β-HCH was used instead of α-HCH. The results are shown in FIG.
As a result of the degradation test of β-HCH using an inorganic salt medium, β-HCH was degraded in 10 days of culture and 1 equivalent of Cl was detected. Further, β-HCH disappeared. As a result, from the TSK-1 strain inoculated into an inorganic salt medium containing β-HCH as the sole carbon source, β-HCH was dechlorinated and decomposed 100%, but until complete dechlorination occurred. I found out that

<実験例7>
[無機塩培地を用いたTSK−1株によるδ−HCH分解試験:図10]
実験例4の無機塩培地において、α−HCHに代えてδ−HCHを用いた以外は実験例4と同様にしてδ−HCHの分解試験を行った。また、残ったヘキサン層を100倍濃縮後、GC−MSで測定し、δ−HCHの代謝物を解析した。結果を図10に示す。
無機塩培地を用いたδ−HCHの分解試験の結果、10日間の培養でδ−HCHは80%分解し2当量のClを検出した。また、代謝物を解析したところ、ペンタクロロシクロヘキサノールとテトラクロロシクロヘキセノールと判明した。
この結果、δ−HCHを唯一の炭素源とする無機塩培地に接種したTSK−1株からは、δ−HCHの脱塩素は起きるものの、完全脱塩素を起こすまでには至らないことがわかった。
<Experimental example 7>
[Δ-HCH degradation test by TSK-1 strain using inorganic salt medium: Fig. 10]
In the inorganic salt medium of Experimental Example 4, a δ-HCH decomposition test was performed in the same manner as in Experimental Example 4 except that δ-HCH was used instead of α-HCH. The remaining hexane layer was concentrated 100 times and then measured by GC-MS to analyze the metabolite of δ-HCH. The results are shown in FIG.
As a result of the degradation test of δ-HCH using an inorganic salt medium, δ-HCH was degraded by 80% after 10 days of culture, and 2 equivalents of Cl - was detected. Analysis of metabolites revealed pentachlorocyclohexanol and tetrachlorocyclohexenol.
As a result, from the TSK-1 strain inoculated in an inorganic salt medium containing δ-HCH as the sole carbon source, it was found that δ-HCH was dechlorinated but not completely dechlorinated. .

<実験例8>
[TSK培地を用いたTSK−1株によるα−HCH分解試験:図11]
上記TSK培地を用い、α−HCH分解試験を行った。TSK培地30mLにα−HCH、13.8μM(4mg/L)含ませ、実験例4と同じTSK−1培養液(OD600=1.00)1.5mLを接種し、30℃、暗所、180rpmで10日間振とう培養した。4、7、10日目にサンプリング(破壊分析)し、培地中のα−HCH濃度と、Cl濃度、培地の濁度(OD600)を測定した。より具体的には、培地にヘキサンを30mL加えて全抽出し、ヘキサン層からGC−ECDでα−HCH濃度を測定し、水層からイオンクロマトグラフィーでCl濃度を測定した。その結果を図11で示す。
TSK培地を用いたα−HCHの分解試験の結果、10日間の培養で6当量のClを検出し、α−HCHを完全脱塩素して100%分解することがわかった。
<Experimental Example 8>
[Α-HCH degradation test with TSK-1 strain using TSK medium: FIG. 11]
An α-HCH degradation test was performed using the TSK medium. 30 mL of TSK medium is mixed with α-HCH, 13.8 μM (4 mg / L), inoculated with 1.5 mL of the same TSK-1 culture solution (OD 600 = 1.00) as in Experimental Example 4, at 30 ° C. in the dark, Cultured with shaking at 180 rpm for 10 days. Sampling was performed on 4th, 7th and 10th days (destructive analysis), and α-HCH concentration, Cl concentration and turbidity (OD 600 ) of the medium were measured. More specifically, 30 mL of hexane was added to the medium for total extraction, the α-HCH concentration was measured by GC-ECD from the hexane layer, and the Cl concentration was measured by ion chromatography from the aqueous layer. The result is shown in FIG.
As a result of the degradation test of α-HCH using TSK medium, it was found that 6 equivalents of Cl was detected after 10 days of culture, and α-HCH was completely dechlorinated to decompose 100%.

<実験例9>
[TSK培地を用いたTSK−1株によるβ−HCH分解試験:図12]
実験例8のTSK培地におけるα−HCHに代えてβ−HCHを用いた以外は実験例8と同様にしてβ−HCHの分解試験を行った。結果を図12に示す。
TSK培地を用いたβ−HCHの分解試験の結果、12日間の培養で分解菌の増殖を伴ってβ−HCHは90%分解し、2塩素脱離を起こしていることがわかった。
<Experimental Example 9>
[Β-HCH degradation test by TSK-1 strain using TSK medium: Fig. 12]
A β-HCH degradation test was performed in the same manner as in Experimental Example 8 except that β-HCH was used instead of α-HCH in the TSK medium of Experimental Example 8. The results are shown in FIG.
As a result of the degradation test of β-HCH using TSK medium, it was found that β-HCH was decomposed by 90% with the growth of degrading bacteria after 12 days of culture, causing 2-chlorine elimination.

<実験例10>
[TSK培地を用いたTSK−1株によるδ−HCH分解試験:図13]
実験例8のTSK培地におけるα−HCHに代えてδ−HCHを用い、実験例8のTSK−1株培養液と同様の培養液で濁度を変えたもの(OD600=0.05)を接種した以外は実験例8と同様にしてδ−HCHの分解試験を行った。結果を図13に示す。
上記TSK培地を用いたδ−HCHの分解試験の結果、10日間の培養で6当量のClを検出し、TSK−1株はδ−HCHを完全脱塩素して100%分解できることがわかった。
また、δ−HCH分解試験の結果との比較から、分解速度はδ−HCHよりもα−HCHの方が速いことがわかった。
<Experimental example 10>
[Δ-HCH degradation test with TSK-1 strain using TSK medium: Fig. 13]
Using δ-HCH instead of α-HCH in the TSK medium of Experimental Example 8 and changing the turbidity with the same culture solution as the TSK-1 strain culture solution of Experimental Example 8 (OD 600 = 0.05) A δ-HCH decomposition test was conducted in the same manner as in Experimental Example 8 except that inoculation was performed. The results are shown in FIG.
As a result of the degradation test of δ-HCH using the TSK medium, it was found that 6 equivalents of Cl was detected after 10 days of culture, and that the TSK-1 strain could completely decompose δ-HCH and decompose 100%. .
Further, from the comparison with the result of the δ-HCH decomposition test, it was found that the decomposition rate was higher for α-HCH than for δ-HCH.

<実験例11>
[TSK培地を用いたTSK−1株による4種HCH分解試験:図14、図15]
実験例8のTSK培地におけるα−HCHの4mg/Lに加えて、β−HCHを2mg/L、γ−HCHを4mg/L、δ−HCHを4mg/Lにmg加えた以外は実験例8と同様にしてα体,β体,γ体,δ体の4種HCHの分解試験を行った。結果を図14および図15に示す。
10日間の培養でα体,γ体,δ体は100%分解し、β体は91%分解し、脱塩素化率は53.0%であった。また、TSK−1株は増殖を伴って4種HCHを分解することがわかった。
<Experimental example 11>
[Four kinds of HCH degradation tests by TSK-1 strain using TSK medium: FIGS. 14 and 15]
Experimental Example 8 except that in addition to 4 mg / L of α-HCH in the TSK medium of Experimental Example 8, β-HCH was added to 2 mg / L, γ-HCH was added to 4 mg / L, and δ-HCH was added to 4 mg / L. In the same manner as above, the decomposition test of 4 types of HCH of α-form, β-form, γ-form, and delta-form was conducted. The results are shown in FIG. 14 and FIG.
In 10 days of culture, α-form, γ-form and δ-form were degraded 100%, β-form was degraded 91%, and the dechlorination rate was 53.0%. Moreover, it was found that the TSK-1 strain decomposes 4 types of HCH with growth.

<実験例12>
[2種(TSK−1株+PD653株)複合系による4種HCH分解試験:図16、図17]
上記TSK培地を用い、α−、β−、γ−、δ−HCH分解試験を行った。TSK培地20mLにα−HCHを5mg/L、β−HCHを2mg/L、γ−HCHを5mg/L、δ−HCHを5mg/L含ませ、TSK−1分解菌とPD653分解菌の割合が3:1になるように、実験例8と同じ培養液の濁度を変えたもの(組成は、R2A培地にPD653株を含みOD600=0.52である)1.0mLとを接種し、30℃、暗所、180rpmで14日間振とう培養した。4、7、14日目にサンプリング(破壊分析)し、培地中の各HCH濃度と、Cl濃度、培地の濁度(OD600)を測定した。より具体的には、培地にヘキサンを30mL加えて全抽出し、ヘキサン層からGC−ECDでδ−HCH濃度を測定し、水層からイオンクロマトグラフィーでCl濃度を測定した。各HCH濃度とCl濃度を図16に、濁度を図17に示す。
<Experimental example 12>
[Decomposition test of 4 types of HCH by 2 types (TSK-1 strain + PD653 strain) composite system: FIG. 16, FIG. 17]
Using the above TSK medium, α-, β-, γ-, and δ-HCH degradation tests were performed. 20 mL of TSK medium contains 5 mg / L of α-HCH, 2 mg / L of β-HCH, 5 mg / L of γ-HCH, and 5 mg / L of δ-HCH, and the ratio of TSK-1 degrading bacteria to PD653 degrading bacteria is Inoculated with 1.0 mL of the same turbidity of the same culture solution as in Experimental Example 8 so that the ratio was 3: 1 (the composition was PD2 in the R2A medium and OD 600 = 0.52), The culture was shaken at 30 ° C. in the dark at 180 rpm for 14 days. Sampling was performed on days 4, 7, and 14 (destructive analysis), and each HCH concentration, Cl concentration, and turbidity (OD 600 ) of the medium were measured. More specifically, 30 mL of hexane was added to the medium for total extraction, the δ-HCH concentration was measured by GC-ECD from the hexane layer, and the Cl concentration was measured by ion chromatography from the aqueous layer. Each HCH concentration and Cl concentration are shown in FIG. 16, and turbidity is shown in FIG.

2種複合系による4種HCHの分解試験の結果、α−HCHは100%、β−HCHも100%、γ−HCHも100%分解することがわかった。δ−HCHは90%分解し、脱塩化率は65%であった。この結果は、TSK−1株よりもPD653株の方が増殖速度が速いため、TSK−1株の増殖がやや阻害されたためと考えられる。   As a result of the degradation test of 4 types of HCH by the 2 types of complex system, it was found that α-HCH was decomposed 100%, β-HCH 100%, and γ-HCH 100%. δ-HCH was decomposed by 90%, and the dechlorination rate was 65%. This result is thought to be because the growth of the TSK-1 strain was somewhat inhibited because the PD653 strain had a faster growth rate than the TSK-1 strain.

<実験例13>
[2種(TSK−1株+PD653株)複合系によるHCHs実汚染土壌の分解除去試験:図18]
TSK−1分解菌を含む上記培養液(OD600=0.6)とPD653分解菌を含む上記培養液(OD600=1.0)とを6:1の割合で混合した分解菌含有培養液30mLを、洗浄、滅菌した木質炭化素材(ヤシ殻炭CC150;比表面積150m/g、pH7.8、粒径0.5mm〜4.0mm)20gに一晩浸漬した。そして、HCHs汚染土壌30g(乾土相当)に対し、分解菌が集積したこの木質炭化素材1.5g(乾物相当前記汚染土壌に対して5%相当)を混和し、土壌水分を30%に調整した後、25℃、暗所で4週間、静置培養した。この間、毎週攪拌と水分調整を行った。そして培養2週目に木質炭化素材が混じった汚染土壌10gをASE(商標)で抽出し、精製後、GC−ECDで各HCHを分析した。その結果を図18に示す。
<Experimental example 13>
[Degradation and removal test of HCHs actual contaminated soil by 2 types (TSK-1 strain + PD653 strain) composite system: FIG. 18]
Decomposing bacteria-containing culture solution in which the above-mentioned culture solution containing TSK-1 degrading bacteria (OD 600 = 0.6) and the above-mentioned culture solution containing PD653-degrading bacteria (OD 600 = 1.0) are mixed at a ratio of 6: 1. 30 mL was immersed in 20 g of a cleaned and sterilized wood carbonized material (coconut shell charcoal CC150; specific surface area 150 m 2 / g, pH 7.8, particle size 0.5 mm to 4.0 mm) overnight. Then, this wood charcoal material 1.5g (corresponding to 5% of dry matter equivalent to dry matter) mixed with decomposed bacteria is mixed with 30g of HCHs contaminated soil (equivalent to dry soil) to adjust the soil moisture to 30%. Then, static culture was performed at 25 ° C. in the dark for 4 weeks. During this period, stirring and moisture adjustment were performed every week. Then, 10 g of contaminated soil mixed with a wood carbonized material was extracted with ASE (trademark) in the second week of culture, and after purification, each HCH was analyzed with GC-ECD. The result is shown in FIG.

図18より、4種HCHはその全てが15%以上(β−HCHで18.5%、δ−HCHで34.6%)減少していることがわかった。特にγ−HCHは76.1%、α−HCHは67.1%と50%を超えていることがわかった。   From FIG. 18, it was found that all of the four types of HCH decreased by 15% or more (18.5% for β-HCH and 34.6% for δ-HCH). In particular, it was found that γ-HCH was 76.1% and α-HCH was 67.1%, exceeding 50%.

Claims (8)

受託番号:FERM P−22222として寄託された低塩素化PCBs、α−HCH、β−HCH、γ−HCHおよびδ−HCH分解能を有するスフィンゴモナスエスピーTSK−1株に属する新規な有機塩素系化合物分解菌。 Decomposition of novel organochlorine compounds belonging to Sphingomonas sp. TSK-1 strain having the resolution of low chlorinated PCBs deposited under the accession number: FERM P-22222, α-HCH, β-HCH, γ-HCH and δ-HCH Fungus. 受託番号:FERM P−22222として寄託されたα−HCH、β−HCH、γ−HCHおよびδ−HCH分解能を有するスフィンゴモナスエスピーTSK−1株に属する新規な有機塩素系化合物分解菌。 Accession number: A novel organochlorine compound-degrading bacterium belonging to Sphingomonas sp. TSK-1 strain having α-HCH, β-HCH, γ-HCH and δ-HCH resolution deposited as FERM P-22222. 請求項1または請求項2記載の分解菌を木質炭化素材等の多孔質材中に含んでなる有機塩素系化合物分解資材。 An organochlorine compound decomposing material comprising the decomposing bacterium according to claim 1 or 2 in a porous material such as a wood carbonized material. FERM BP−10405として国際寄託されているβ−HCH分解能を有するノカルディオイデスエスピーPD653株に属する分解菌をさらに含んでなる請求項3記載の有機塩素系化合物分解資材。 The organochlorine-based compound decomposing material according to claim 3, further comprising a degrading bacterium belonging to Nocardioides sp. PD653 strain having β-HCH resolution deposited internationally as FERM BP-10405. 請求項4記載のノカルディオイデスエスピーPD653株に属する分解菌に対して、請求項1または請求項2記載の分解菌を2倍〜6倍の割合で有している請求項4記載の有機塩素系化合物分解資材。 The organochlorine according to claim 4, which has a degrading bacterium according to claim 1 or 2 in a ratio of 2 to 6 times that of the degrading bacterium belonging to Nocardioides sp. PD653 strain according to claim 4. Material decomposition materials. 請求項1または請求項2記載の分解菌の炭素源または窒素源となる基質として、ピルビン酸またはその塩の少なくとも何れか一方とメチオニンとを含む請求項3〜請求項5何れか1項記載の有機塩素系化合物分解資材。 The substrate as a carbon source or nitrogen source of the degrading bacterium according to claim 1 or 2, comprising at least one of pyruvic acid or a salt thereof and methionine, according to any one of claims 3 to 5. Organochlorine compound decomposition material. 請求項1または請求項2記載の分解菌または請求項3〜請求項6何れか1項記載の有機塩素系化合物分解資材を含有してなる汚染環境の浄化装置。 An apparatus for purifying a polluted environment comprising the decomposing bacterium according to claim 1 or 2, or the organochlorine compound decomposing material according to any one of claims 3 to 6. 有機塩素系化合物を分解可能な分解菌が多孔質材中に集積した有機塩素系化合物分解資材の製造方法において、
前記有機塩素系化合物が低塩素化PCBsまたはHCHsの少なくとも何れかであり、
前記分解菌が、第1の分解菌である受託番号:FERM P−22222として寄託されたスフィンゴモナスエスピーTSK−1株に属する分解菌と、第2の分解菌であるノカルディオイデスエスピーPD653株に属する分解菌であり
前記第1の分解菌の炭素源または窒素源となる基質と、前記第1の分解菌と、前記第2の分解菌とを含む培養液を前記多孔質材中に浸漬させて、前記第1の分解菌と前記第2の分解菌と前記基質とを多孔質材中に担持させることを特徴とする有機塩素系化合物分解資材の製造方法。
In the method for producing an organic chlorine compound decomposing material in which a degrading bacterium capable of decomposing an organic chlorine compound is accumulated in a porous material,
The organochlorine compound is at least one of low chlorinated PCBs or HCHs;
The degrading bacterium is a first decomposing bacterium, accession number: FERM P-22222 deposited as Sphingomonas sp. TSK-1 strain, and the second degrading bacterium Nocardioides sp. PD653 strain. It is belong degrading bacteria,
A culture solution containing a substrate serving as a carbon source or a nitrogen source of the first decomposing bacterium, the first decomposing bacterium, and the second decomposing bacterium is immersed in the porous material, and the first A method for producing an organochlorine compound-decomposing material, comprising supporting a decomposing bacterium, the second decomposing bacterium, and the substrate in a porous material.
JP2012091955A 2012-04-13 2012-04-13 Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment Expired - Fee Related JP6098918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091955A JP6098918B2 (en) 2012-04-13 2012-04-13 Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091955A JP6098918B2 (en) 2012-04-13 2012-04-13 Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment

Publications (2)

Publication Number Publication Date
JP2013220044A JP2013220044A (en) 2013-10-28
JP6098918B2 true JP6098918B2 (en) 2017-03-22

Family

ID=49591493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091955A Expired - Fee Related JP6098918B2 (en) 2012-04-13 2012-04-13 Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment

Country Status (1)

Country Link
JP (1) JP6098918B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117358A (en) * 1994-10-25 1996-05-14 Ebara Corp Method for decomposing polyclorinated biphfenyl
JP4768332B2 (en) * 2005-01-26 2011-09-07 独立行政法人農業環境技術研究所 Complex degrading bacterium accumulation holding carrier, method for producing the same, novel bacteria, purification method for contaminated environment, and apparatus therefor

Also Published As

Publication number Publication date
JP2013220044A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
EP1968898B1 (en) Bioremediation materials
JP4768332B2 (en) Complex degrading bacterium accumulation holding carrier, method for producing the same, novel bacteria, purification method for contaminated environment, and apparatus therefor
CN102864112B (en) Heavy metal resistant strain for degrading polycyclic aromatic hydrocarbons (PAHs) and application thereof in combined contaminated soil remediation
CN111286475B (en) Pyrethroid insecticide residue degradation strain and application thereof
Zhu et al. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat
CN102943052B (en) Heavy metal-resistant polycyclic aromatic hydrocarbon (PAHs) degrading bacteria and application thereof in remediation of composite contaminated soil
CN101935631A (en) Ralstoniasp. and application thereof in bioremediation of petroleum-contaminated saline-alkali soil
FI85985B (en) FOERFARANDE OCH MEDEL FOER MIKROBIOLOGISK RENING AV FOERORENAD JORD.
JP4416975B2 (en) Aromatic compound-degrading active bacteria and method for producing the same
Sonkong et al. Screening and identification of p, p′-DDT degrading soil isolates.
CN113583899B (en) Sphingosine strain JT-M9-H as polycyclic aromatic hydrocarbon degrading strain
JP6098918B2 (en) Organochlorine compound degrading bacteria capable of degrading low chlorinated PCBs, organochlorine compound decomposing material, method for producing the same, and purification apparatus for contaminated environment
Miller et al. Phytoremediation of pentachlorophenol in the crested wheatgrass (Agropyron cristatum× desertorum) rhizosphere
CN102864086A (en) Strain capable of degrading polycyclic aromatic hydrocarbons (PAHs) and application thereof in soil remediation
Yu et al. Isolation and characterization of an endosulfan degrading strain, Stenotrophomonas sp. LD-6, and its potential in soil bioremediation
KR100336195B1 (en) Bacterium aerobically degrading organic chlorine compounds in soil, method for accumulating or isolating the bacterium and support carrying this bacterium
Belal et al. Biodegradation of organochlorine pesticides by means of Pectobacterıum wasabiae
KR100292332B1 (en) Novel Klebsiella Bacteria and Treatment Method of Waste Wood Using the Same
JP5243866B2 (en) Novel strain and purification method using the same
Gunasinghe et al. The Entophytic and Potting Soil Bacteria of the Sansevieria trifas ciata Plant Have a Purifying Impact on Indoor Toluene
EP2738267A1 (en) Strain of Pseudoxanthomonas mexicana and controlled release composition which contain said strain
JP5598646B2 (en) Cyclic diene compound decomposing bacteria and cyclic diene compound decomposing agent, contaminated environment purification apparatus, cyclic diene compound decomposing method, and pollutant purifying method
EP1789594A1 (en) Bam mineralizing activity
Dubey Bioaugmentation package of egg shell based biosurfactant formulation: an innovative approach for monocrotophos degradation in soil
WO2023229493A1 (en) Bacterial preparation for purifying soil and water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6098918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees