JP6097519B2 - Fireproof reinforcement structure of fireproof coated CFT pillar - Google Patents

Fireproof reinforcement structure of fireproof coated CFT pillar Download PDF

Info

Publication number
JP6097519B2
JP6097519B2 JP2012231155A JP2012231155A JP6097519B2 JP 6097519 B2 JP6097519 B2 JP 6097519B2 JP 2012231155 A JP2012231155 A JP 2012231155A JP 2012231155 A JP2012231155 A JP 2012231155A JP 6097519 B2 JP6097519 B2 JP 6097519B2
Authority
JP
Japan
Prior art keywords
fireproof
column
coated
pair
cft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012231155A
Other languages
Japanese (ja)
Other versions
JP2014080834A (en
Inventor
俊彦 西村
俊彦 西村
長岡 勉
勉 長岡
智仁 岡崎
智仁 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2012231155A priority Critical patent/JP6097519B2/en
Publication of JP2014080834A publication Critical patent/JP2014080834A/en
Application granted granted Critical
Publication of JP6097519B2 publication Critical patent/JP6097519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Building Environments (AREA)

Description

本発明は、無耐火被覆CFT柱の耐火補強構造に関する。   The present invention relates to a fireproof reinforcing structure for a fireproof coated CFT column.

鋼管柱内にコンクリートが充填されたコンクリート充填鋼管(CFT(Concrete Filled Steel Tube))柱が知られている(例えば、特許文献1参照)。CFT柱は、鋼管柱内にコンクリートが充填されている分、中空の鋼管柱と比較して熱容量が大きく、耐火性能に優れている。したがって、設計条件によってはCFT柱の耐火被覆を省略し、無耐火被覆CFT柱とすることが可能である。   A concrete filled steel tube (CFT (Concrete Filled Steel Tube)) column in which concrete is filled in a steel tube column is known (see, for example, Patent Document 1). Since the CFT column is filled with concrete in the steel tube column, the CFT column has a larger heat capacity than the hollow steel tube column and is excellent in fire resistance. Therefore, depending on the design conditions, it is possible to omit the fireproof coating of the CFT pillar and to make a non-fireproof coated CFT pillar.

特開平10−204993号公報JP-A-10-204993

ところで、例えば、設計変更等により無耐火被覆CFT柱に求められる耐火性能(要求耐火性能)が高くなる可能性がある。   By the way, for example, there is a possibility that the fire resistance (required fire resistance) required for the non-fireproof coated CFT column is increased due to a design change or the like.

本発明は、上記の事実を考慮し、無耐火被覆CFT柱の耐火性能を向上することを目的とする。   In view of the above facts, the present invention aims to improve the fire resistance of a fire-resistant coated CFT column.

第1態様に係る無耐火被覆CFT柱の耐火補強構造は、耐火被覆されていない無耐火被覆CFT柱と、後施工により前記無耐火被覆CFT柱の周囲に配置され、該無耐火被覆CFT柱を耐火被覆する後施工耐火被覆手段と、を備えている。 The fireproof reinforcing structure of the fireproof coated CFT pillar according to the first aspect includes a fireproof coated CFT pillar that is not fireproof coated, and is disposed around the fireproof coated CFT pillar by post-installation. And post-installation fire-resistant coating means for performing fire-resistant coating.

第1態様に係る無耐火被覆CFT柱の耐火補強構造によれば、後施工により無耐火被覆CFT柱の周囲に配置された後施工耐火被覆手段によって、無耐火被覆CFT柱を耐火被覆することにより、火災時における無耐火被覆CFT柱の温度上昇が抑制される。したがって、無耐火被覆CFT柱の耐火性能が向上する。 According to the fireproof reinforcing structure of the fireproof coated CFT column according to the first aspect , the fireproof coated CFT column is fireproof coated by the post-installed fireproof coating means disposed around the fireproof coated CFT column by post-installation. The temperature rise of the fireproof coated CFT column during a fire is suppressed. Therefore, the fireproof performance of the non-fireproof coated CFT column is improved.

第2態様に係る無耐火被覆CFT柱の耐火補強構造は、第1態様に係る無耐火被覆CFT柱の耐火補強構造において、前記無耐火被覆CFT柱の外面には、仕上げ塗料が塗布され、前記後施工耐火被覆手段が、前記無耐火被覆CFT柱に対して両側から取り付けられ、互いに接合されて前記仕上げ塗料の上から該無耐火被覆CFT柱を囲む一対のベース材と、前記一対のベース材の外面又は内面に設けられた耐火材と、を有している。 The fireproof reinforcing structure of the fireproof coated CFT pillar according to the second aspect is the fireproof reinforcing structure of the fireproof coated CFT pillar according to the first aspect , wherein a finish paint is applied to the outer surface of the fireproof coated CFT pillar, Post-installed fireproof covering means is attached to the fireproof coated CFT pillar from both sides and joined together to surround the fireproof coated CFT pillar over the finish paint, and the pair of base materials And a refractory material provided on the outer surface or the inner surface.

第2態様に係る無耐火被覆CFT柱の耐火補強構造によれば、一対のベース材の外面又は内面に耐火材が設けられている。これら一対のベース材を無耐火被覆CFT柱に対して両側から取り付けて互いに接合することにより、無耐火被覆CFT柱の周囲に耐火材が配置され、当該無耐火被覆CFT柱が耐火被覆される。これにより、火災時における無耐火被覆CFT柱の温度上昇が抑制される。したがって、無耐火被覆CFT柱の耐火性能が向上する。 According to the fireproof reinforcing structure of the fireproof coated CFT pillar according to the second aspect , the fireproof material is provided on the outer surface or the inner surface of the pair of base materials. The pair of base materials are attached to the fire-resistant coated CFT column from both sides and joined to each other, whereby the fire-resistant material is disposed around the fire-resistant coated CFT column, and the fire-resistant coated CFT column is fire-coated. Thereby, the temperature rise of the fireproof covering CFT pillar at the time of a fire is suppressed. Therefore, the fireproof performance of the non-fireproof coated CFT column is improved.

また、一対のベース材を無耐火被覆CFT柱に対して両側から取り付けることにより、無耐火被覆CFT柱の周囲に耐火材を配置することができるため、施工性が向上する。   Further, by attaching the pair of base materials from both sides to the fireproof coated CFT column, the fireproof material can be arranged around the fireproof coated CFT column, so that workability is improved.

さらに、一対のベース材によって仕上げ塗料の上から無耐火被覆CFT柱を囲むことにより、一対のベース材によって仕上げ塗料が覆い隠される。したがって、仕上げ塗料を塗り直したり、剥がしたりする必要がないため、施工性が向上する。   Further, the finish paint is covered with the pair of base materials by surrounding the fireproof coated CFT pillar from the finish paint with the pair of base materials. Therefore, since it is not necessary to repaint or peel off the finish paint, workability is improved.

第3態様に係る無耐火被覆CFT柱の耐火補強構造は、第2態様に係る無耐火被覆CFT柱の耐火補強構造において、前記一対のベース材が、前記無耐火被覆CFT柱の外面に沿って配置される一対の金属板であり、前記耐火材が、前記一対の金属板の前記外面に塗布された耐火塗料である。 The fireproof reinforcing structure of the fireproof coated CFT pillar according to the third aspect is the fireproof reinforcing structure of the fireproof coated CFT pillar according to the second aspect , wherein the pair of base materials are arranged along the outer surface of the fireproof coated CFT pillar. It is a pair of metal plates arranged, and the refractory material is a refractory paint applied to the outer surfaces of the pair of metal plates.

第3態様に係る無耐火被覆CFT柱の耐火補強構造によれば、一対のベース材としての一対の金属板の外面に耐火材としての耐火塗料が塗布されている。これらの金属板を無耐火被覆CFT柱に対して両側から取り付けることにより、耐火塗料によって無耐火被覆CFT柱が耐火被覆される。したがって、無耐火被覆CFT柱の耐火性能が向上する。 According to the fireproof reinforcing structure of the fireproof coated CFT pillar according to the third aspect , the fireproof paint as the fireproof material is applied to the outer surfaces of the pair of metal plates as the pair of base materials. By attaching these metal plates to the fire-resistant coated CFT pillar from both sides, the fire-resistant coated CFT pillar is fire-coated with the fire-resistant paint. Therefore, the fireproof performance of the non-fireproof coated CFT column is improved.

また、一対の金属板として、例えば薄鉄板等を用いることにより、一対の金属板及び耐火塗料を含めた無耐火被覆CFT柱の柱断面積の増加を低減することができる。   Further, by using, for example, a thin iron plate or the like as the pair of metal plates, an increase in the column cross-sectional area of the fire-resistant coated CFT column including the pair of metal plates and the fire-resistant paint can be reduced.

以上説明したように、本発明に係る無耐火被覆CFT柱の耐火補強構造によれば、無耐火被覆CFT柱の耐火性能を向上することができる。   As described above, according to the fireproof reinforcing structure of the fireproof coated CFT column according to the present invention, the fireproof performance of the fireproof coated CFT column can be improved.

本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造が適用された無耐火被覆CFT柱を示す立面図である。It is an elevation view which shows the fireproof covering CFT pillar to which the fireproof reinforcement structure of the fireproof covering CFT pillar which concerns on one Embodiment of this invention was applied. 図1に示される無耐火被覆CFT柱を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fireproof covering CFT pillar shown by FIG. (A)は柱頭部に筒状被覆部材を取り付けた状態を示す図1の3A−3A線断面図であり、(B)は柱頭部に筒状被覆部材を取り付ける前の状態を示す図1の3A−3A線断面図に相当する断面図である。FIG. 3A is a cross-sectional view taken along the line 3A-3A in FIG. 1 showing a state in which the cylindrical covering member is attached to the column head, and FIG. 1B is a sectional view of FIG. It is sectional drawing equivalent to 3A-3A sectional view taken on the line. 鋼管柱の柱頭部における局部座屈の発生部を示す図2の拡大断面図である。It is an expanded sectional view of FIG. 2 which shows the generation | occurrence | production part of the local buckling in the column head of a steel pipe column. 一般的なコンクリート充填鋼管柱と梁で構成された架構を示す立面図であり、(A)は火災前の状態を示し、(B)は火災後の状態を示している。It is an elevation view which shows the frame comprised with the general concrete filling steel pipe pillar and beam, (A) shows the state before a fire, (B) has shown the state after a fire. 一般的なコンクリート充填鋼管柱の耐火性能評価に用いられる実験評価モデルを示すモデル図であり、(A)は水平力を載荷する前の状態を示し、(B)は水平力が載荷された際のコンクリート充填鋼管柱の変形状態、及び応力状態を示し、(C)はコンクリート充填鋼管柱を構成する鋼管柱に局部座屈が発生した状態を示している。It is a model figure which shows the experimental evaluation model used for the fireproof performance evaluation of a general concrete filling steel pipe column, (A) shows the state before loading horizontal force, and (B) is when horizontal force is loaded. The deformation state and stress state of the concrete-filled steel pipe column are shown, and (C) shows a state where local buckling has occurred in the steel pipe column constituting the concrete-filled steel pipe column. (A)及び(B)は、本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造の変形例を示す図2(A)及び図2(B)に相当する断面図である。(A) And (B) is sectional drawing equivalent to FIG. 2 (A) and FIG.2 (B) which show the modification of the fireproof reinforcement structure of the fireproof covering CFT pillar which concerns on one Embodiment of this invention. (A)及び(B)は、本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造の変形例を示す図2(A)及び図2(B)に相当する断面図である。(A) And (B) is sectional drawing equivalent to FIG. 2 (A) and FIG.2 (B) which show the modification of the fireproof reinforcement structure of the fireproof covering CFT pillar which concerns on one Embodiment of this invention. (A)及び(B)は、本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造の変形例を示す図2(A)及び図2(B)に相当する断面図である。(A) And (B) is sectional drawing equivalent to FIG. 2 (A) and FIG.2 (B) which show the modification of the fireproof reinforcement structure of the fireproof covering CFT pillar which concerns on one Embodiment of this invention. (A)及び(B)は、本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造の変形例を示す図2(A)及び図2(B)に相当する断面図である。(A) And (B) is sectional drawing equivalent to FIG. 2 (A) and FIG.2 (B) which show the modification of the fireproof reinforcement structure of the fireproof covering CFT pillar which concerns on one Embodiment of this invention. 本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造の変形例を示す図1に相当する立面図である。It is an elevation view equivalent to FIG. 1 which shows the modification of the fireproof reinforcement structure of the fireproof covering CFT pillar which concerns on one Embodiment of this invention.

以下、図面を参照しながら、本発明の一実施形態に係る無耐火被覆CFT柱の耐火補強構造について説明する。なお、各図において適宜示される矢印Zは、鋼管柱の材軸方向(上下方向)を示している。   Hereinafter, a fireproof reinforcing structure for a fireproof coated CFT column according to an embodiment of the present invention will be described with reference to the drawings. In addition, the arrow Z suitably shown in each figure has shown the material axis direction (up-down direction) of the steel pipe column.

図1には、一例として、本実施形態に係る無耐火被覆CFT柱の耐火補強構造(以下、単に「耐火補強構造」という)30が適用された既存の無耐火被覆CFT柱10が示されている。無耐火被覆CFT柱10は、鋼管柱12と、鋼管柱12内に充填された充填コンクリート14とを備え、耐火被覆が施されていない無耐火被覆とされている。鋼管柱12は丸形鋼管で形成されており、上下の仕口部としての上仕口部12U及び下仕口部12Lと、これらの上仕口部12Uと下仕口部12Lとの間に延びる鋼管本体部12Bとを有している。この鋼管柱12の外面(外周面)には、ペンキ等の仕上げ塗料20(図2参照)がその全面に亘って塗布されている。   FIG. 1 shows, as an example, an existing fire-resistant covered CFT column 10 to which a fire-resistant reinforcing structure (hereinafter simply referred to as “fire-resistant reinforcing structure”) 30 of a fire-resistant coated CFT column according to the present embodiment is applied. Yes. The fireproof coating CFT column 10 includes a steel pipe column 12 and filled concrete 14 filled in the steel tube column 12 and is a fireproof coating that is not provided with a fireproof coating. The steel pipe column 12 is formed of a round steel pipe, and the upper and lower joints 12U and 12L as upper and lower joints, and between these upper and lower joints 12U and 12L. It has the steel pipe main-body part 12B extended. A finish paint 20 (see FIG. 2) such as paint is applied to the outer surface (outer peripheral surface) of the steel pipe column 12 over the entire surface.

図2に示されるように、上仕口部12Uには、当該上仕口部12Uを補強する上下一対のダイアフラムとしての上下一対の内ダイアフラム18が設けられている。上下一対の内ダイアフラム18は、円盤状の鋼板で形成されている。これら上下一対の内ダイアフラム18は、上下方向(鋼管柱12の材軸方向)に対向して配置されており、各々の外周部が上仕口部12Uの内側面に溶接等で接合されている。   As shown in FIG. 2, a pair of upper and lower inner diaphragms 18 as a pair of upper and lower diaphragms that reinforces the finish joint 12 </ b> U is provided in the finish joint 12 </ b> U. The pair of upper and lower inner diaphragms 18 is formed of a disk-shaped steel plate. The pair of upper and lower inner diaphragms 18 are disposed so as to face in the vertical direction (the material axis direction of the steel pipe column 12), and each outer peripheral portion is joined to the inner side surface of the finishing port 12U by welding or the like. .

また、各内ダイアフラム18の中央部には充填孔18Aがそれぞれ形成されており、これらの充填孔18Aを通して鋼管柱12内に充填コンクリート14が充填されるようになっている。なお、上仕口部12Uと同様に、下仕口部12Lの内部には、上下一対のダイアフラムとしての上下一対の内ダイアフラム18が設けられている。   In addition, a filling hole 18A is formed at the center of each inner diaphragm 18, and the filled concrete 14 is filled into the steel pipe column 12 through these filling holes 18A. Similar to the upper end portion 12U, a pair of upper and lower inner diaphragms 18 as a pair of upper and lower diaphragms are provided inside the lower end portion 12L.

上仕口部12Uの両側には、鉄骨梁としての一対の上側鉄骨梁16が接合されている。上側鉄骨梁16はH形鋼で形成されており、上下一対の上側フランジ部16A及び下側フランジ部16Bと、これらの上側フランジ部16Aと下側フランジ部16Bとを繋ぐウェブ部16Cとを有している。この上側鉄骨梁16の材軸方向の端部は、その上下一対の上側フランジ部16A及び下側フランジ部16Bが上下一対の内ダイアフラム18とそれぞれ連続するように上仕口部12Uの外側面に突き当てられ、溶接によって接合されている。また、上側鉄骨梁16の上には、図示しない鉄筋コンクリート製のスラブが構築されている。   A pair of upper steel beams 16 as steel beams are joined to both sides of the upper end portion 12U. The upper steel beam 16 is formed of an H-shaped steel, and has a pair of upper and lower upper flange portions 16A and a lower flange portion 16B, and a web portion 16C that connects the upper flange portion 16A and the lower flange portion 16B. doing. The ends of the upper steel beam 16 in the material axis direction are formed on the outer surface of the upper end 12U so that the pair of upper and lower upper flange portions 16A and 16B are continuous with the pair of upper and lower inner diaphragms 18 respectively. It is abutted and joined by welding. A slab made of reinforced concrete (not shown) is constructed on the upper steel beam 16.

上仕口部12Uと同様に、下仕口部12Lの両側には、鉄骨梁としての一対の下側鉄骨梁17が接合されている。下側鉄骨梁17はH形鋼で形成されており、上下一対の上側フランジ部17A及び下側フランジ部17Bと、これらの上側フランジ部17Aと下側フランジ部17Bとを繋ぐウェブ部17Cとを有している。この下側鉄骨梁17の材軸方向の端部は、その上下一対の上側フランジ部17A及び下側フランジ部17Bが上下一対の内ダイアフラム18とそれぞれ連続するように下仕口部12Lの外側面に突き当てられ、溶接によって接合されている。また、下側鉄骨梁17の上には、図示しない鉄筋コンクリート製のスラブが構築されている。   Similar to the upper end portion 12U, a pair of lower steel beam 17 as a steel beam is joined to both sides of the lower end portion 12L. The lower steel beam 17 is formed of an H-shaped steel, and includes a pair of upper and lower upper flange portions 17A and 17B, and a web portion 17C that connects the upper flange portion 17A and the lower flange portion 17B. Have. The ends of the lower steel beam 17 in the material axis direction are arranged on the outer surface of the lower end portion 12L so that the pair of upper and lower upper flange portions 17A and 17B are continuous with the pair of upper and lower inner diaphragms 18 respectively. And is joined by welding. A slab made of reinforced concrete (not shown) is constructed on the lower steel beam 17.

鋼管本体部12Bにおける柱頭部12BU及び柱脚部12BLは、後施工耐火被覆手段としての筒状被覆部材40U,40Lによって耐火被覆されている。筒状被覆部材40U,40Lは、鋼管柱12の外面に仕上げ塗料20が塗布された後に、構造物の設計変更(例えば、用途変更やプラン変更等)等により、無耐火被覆CFT柱10の要求耐火性能が高くなったときに、当該要求耐火性能に応じて鋼管本体部12Bの柱頭部12BU及び柱脚部12BLの周囲に設けられたものである。つまり、筒状被覆部材40U,40Lは、無耐火被覆CFT柱10を仕上げた後に、設計変更等によって高くなった無耐火被覆CFT柱10の要求耐火性能を満たすように、後施工によって仕上げ塗料20の上から柱頭部12BU及び柱脚部12BLを耐火被覆するものである。なお、柱頭部12BUを耐火被覆する筒状被覆部材40Uと、柱脚部12BLを耐火被覆する筒状被覆部材40Lとは同じ構成であるため、以下、筒状被覆部材40Uの構成について詳説し、筒状被覆部材40Lの構成については説明を省略する。   The column head portion 12BU and the column base portion 12BL in the steel pipe main body portion 12B are fire-resistant coated with cylindrical covering members 40U and 40L as post-construction fire-resistant covering means. The tubular covering members 40U and 40L are required for the non-fire-resistant coated CFT pillar 10 due to structural design change (for example, application change or plan change) after finishing paint 20 is applied to the outer surface of the steel pipe pillar 12. When the fire resistance is increased, the steel pipe body 12B is provided around the column head 12BU and the column base 12BL according to the required fire resistance. That is, the tubular coating members 40U and 40L are finished by post-processing so that the required fire resistance performance of the non-fire-resistant coated CFT pillar 10 that has been increased by design change or the like is satisfied after the non-fire-resistant coated CFT pillar 10 is finished. The column head 12BU and the column base 12BL are covered with fireproof coating from above. In addition, since the cylindrical covering member 40U that fire-coats the column head 12BU and the cylindrical covering member 40L that fire-coats the column base portion 12BL have the same configuration, the configuration of the cylindrical covering member 40U will be described in detail below. The description of the configuration of the cylindrical covering member 40L is omitted.

図3(A)及び図3(B)に示されるように、筒状被覆部材40Uは、一対のベース材42を接合することにより断面円形の筒状に形成されている。一対のベース材42は、ステンレス製の薄金属板で形成されると共に、鋼管本体部12Bの柱頭部12BUの外面に沿って断面略半円弧状に形成されている。また、一対のベース材42の外面には、耐火材としての耐火塗料44がその全面に亘って塗布されている。なお、ここでいう「耐火塗料」とは、火災発生時に加熱により発泡層を形成し、鋼材等の温度上昇を遅延する耐火性の塗膜材をさす。これら一対のベース材42は、仕上げ塗料20の上から鋼管本体部12Bの柱頭部12BUを囲むように当該柱頭部12BUの外面に沿って配置され、各々の開口側端部42A同士が突き合された状態で溶接により接合されている。これにより、耐火塗料44によって、仕上げ塗料20の上から柱頭部12BUがその全周に亘って耐火被覆されている。   As shown in FIGS. 3A and 3B, the cylindrical covering member 40U is formed in a cylindrical shape having a circular cross section by joining a pair of base members 42 together. The pair of base members 42 are formed of a thin metal plate made of stainless steel and have a substantially semicircular cross section along the outer surface of the column head 12BU of the steel pipe main body 12B. A fireproof paint 44 as a fireproof material is applied to the outer surfaces of the pair of base materials 42 over the entire surface. The term “fire resistant paint” as used herein refers to a fire resistant coating material that forms a foamed layer by heating in the event of a fire and delays the temperature rise of a steel material or the like. The pair of base members 42 are arranged along the outer surface of the column head portion 12BU so as to surround the column head portion 12BU of the steel pipe main body portion 12B from above the finish paint 20, and the respective opening side end portions 42A are butted together. Are joined together by welding. As a result, the pillar head 12BU is covered with the fireproof coating 44 over the entire circumference from the top of the finish paint 20.

次に、本実施形態の作用について説明する。   Next, the operation of this embodiment will be described.

図2に示されるように、例えば、火災時に上側鉄骨梁16が熱膨張によって材軸方向(水平方向、矢印S方向)へ伸張すると、上仕口部12Uに水平力Fが作用し、鋼管本体部12Bに曲げモーメントMが発生する。この曲げモーメントMは、鋼管本体部12Bにおける材軸方向の中間部12BMから材軸方向の柱頭部12BU及び柱脚部12BLの各々に向って徐々に大きくなる。   As shown in FIG. 2, for example, when the upper steel beam 16 expands in the material axis direction (horizontal direction, arrow S direction) due to thermal expansion in the event of a fire, a horizontal force F acts on the finishing part 12U, and the steel pipe body A bending moment M is generated in the portion 12B. The bending moment M gradually increases from the intermediate portion 12BM in the material axis direction of the steel pipe body 12B toward each of the column head portion 12BU and the column base portion 12BL in the material axis direction.

一方、鋼管柱12は、火災時の熱膨張によって材軸方向(矢印Z方向)へ伸張するが、温度上昇に伴う強度と剛性の低下によって材軸方向への伸張は徐々に小さくなり、ある温度に達すると材軸方向への伸張変形は止まり、収縮変形に転じる。この状態で、上側鉄骨梁16から上仕口部12Uへ水平力Fが作用すると、前述したように中間部12BMと比較して大きな曲げモーメントMが発生する鋼管本体部12Bの柱頭部12BU及び柱脚部12BLの圧縮側(矢印C側)の側壁部12S1,12S2に局部座屈Kが発生し易くなる。特に、柱頭部12BUが上仕口部12Uを介して上側鉄骨梁16に剛接合されると共に柱脚部12BLが下仕口部12Lを介して下側鉄骨梁17に剛接合されていて、かつ、上側鉄骨梁16の材軸方向への伸張量(伸び出し量)が大きい場合は、柱頭部12BU及び柱脚部12BLに大きな曲率を伴う変形が生じる。この変形によって柱頭部12BU及び柱脚部12BLの圧縮側(矢印C側)の側壁部12S1,12S2に大きな圧縮応力度が発生すると、当該側壁部12S1,12S2が面外方向外側へ変位する(はらみ出す)局部座屈Kが生じる。   On the other hand, the steel pipe column 12 expands in the material axis direction (arrow Z direction) due to thermal expansion at the time of a fire, but the extension in the material axis direction gradually decreases due to a decrease in strength and rigidity accompanying temperature rise, and a certain temperature. When it reaches, the expansion and deformation in the direction of the material axis stops and it starts to shrink. In this state, when the horizontal force F acts from the upper steel beam 16 to the upper end portion 12U, the column head portion 12BU and the column of the steel pipe main body portion 12B in which a large bending moment M is generated as compared with the intermediate portion 12BM as described above. Local buckling K tends to occur in the side wall portions 12S1 and 12S2 on the compression side (arrow C side) of the leg portion 12BL. In particular, the column head portion 12BU is rigidly joined to the upper steel beam 16 through the upper joint portion 12U, and the column base portion 12BL is rigidly joined to the lower steel beam 17 through the lower joint portion 12L, and When the extension amount (extension amount) of the upper steel beam 16 in the material axis direction is large, the column head portion 12BU and the column base portion 12BL are deformed with a large curvature. If a large degree of compressive stress is generated in the side wall portions 12S1 and 12S2 on the compression side (arrow C side) of the column head portion 12BU and the column base portion 12BL due to this deformation, the side wall portions 12S1 and 12S2 are displaced outward in the out-of-plane direction. Out) Local buckling K occurs.

柱頭部12BU又は柱脚部12BLに局部座屈Kが発生すると、無耐火被覆CFT柱10の曲げ剛性は著しく低下する。また、柱頭部12BUにおける局部座屈Kの発生部では、図4に示されるように、充填コンクリート14を拘束していた鋼管本体部12Bの圧縮側の側壁部12S1が外側へ膨らみ、充填コンクリート14と側壁部12S1との間に隙間Wが形成される。この結果、局部座屈Kの発生部では、充填コンクリート14に対する側壁部12S1の拘束力(拘束効果)が得られなくなり、当該充填コンクリート14の圧縮側縁(外周部)14Sが圧壊し易くなる。なお、図4では、筒状被覆部材40Uの図示が省略されている。   When local buckling K occurs in the column head portion 12BU or the column base portion 12BL, the bending rigidity of the fireproof coated CFT column 10 is significantly reduced. In addition, in the portion where the local buckling K occurs in the column head 12BU, as shown in FIG. 4, the side wall 12S1 on the compression side of the steel pipe body 12B that restrains the filling concrete 14 bulges outward, and the filling concrete 14 And a side wall 12S1 is formed with a gap W. As a result, in the part where the local buckling K occurs, the restraining force (restraining effect) of the side wall 12S1 with respect to the filling concrete 14 cannot be obtained, and the compression side edge (outer peripheral part) 14S of the filling concrete 14 is easily crushed. In FIG. 4, the cylindrical covering member 40U is not shown.

そして、充填コンクリート14の圧縮側縁14Sが圧壊すると、無耐火被覆CFT柱10の材軸方向変位が急増すると共に、この材軸方向変位の急増に伴って充填コンクリート14の圧縮側縁14Sの圧壊がさらに進展し、無耐火被覆CFT柱10が構造安定性を保持することができなくなる可能性がある。   When the compression side edge 14S of the filled concrete 14 is crushed, the displacement in the material axial direction of the fireproof coated CFT column 10 is rapidly increased, and the compression side edge 14S of the filled concrete 14 is crushed along with the sudden increase in displacement in the material axial direction. May further progress, and the fireproof coated CFT pillar 10 may not be able to maintain structural stability.

なお、ここでいう「無耐火被覆CFT柱10が構造安定性を保持することができなくなる」とは、例えば、無耐火被覆CFT柱10の鉛直方向変位(材軸方向)が過大になる、あるいは、鉛直方向変位が急激に増加するなどして、長期軸力を保持することができない状態を意味する。また、説明を省略するが、無耐火被覆CFT柱10の柱脚部12BLに局部座屈Kが発生した場合も同様である。   Here, “the fire-resistant coated CFT column 10 cannot maintain the structural stability” means, for example, that the vertical displacement (material axis direction) of the fire-resistant coated CFT column 10 is excessive, or This means a state in which the long-term axial force cannot be maintained due to a sudden increase in vertical displacement. Although not described, the same applies to the case where local buckling K occurs in the column base portion 12BL of the fireproof coated CFT column 10.

ここで、前述した上側鉄骨梁16の材軸方向の伸び出し量は、無耐火被覆CFT柱10に求められる要求耐火性能、即ち要求耐火時間が長くなるに従って長くなる。この要求耐火時間は、室内の可燃物量等の条件により決まるため、室内の用途変更やプラン変更等の設計変更があると、要求耐火時間が当初(新設時)設定した時間よりも長くなり、無耐火被覆CFT柱10が要求耐火時間に対して必要な耐火性能を満足できなくなることがある。つまり、設計変更によって、無耐火被覆CFT柱10に求められる要求耐火性能が高くなると、無耐火被覆CFT柱10の柱頭部12BUや柱脚部12BLに局部座屈Kが発生し易くなり、無耐火被覆CFT柱10が構造安定性を保持することができなくなる可能性がある。   Here, the amount of extension in the material axis direction of the upper steel beam 16 described above becomes longer as the required fire resistance performance required for the fireproof coated CFT column 10, that is, the required fire resistance time becomes longer. This required fire resistance time is determined by conditions such as the amount of combustibles in the room, so if there is a design change such as an indoor use change or plan change, the required fire resistance time will be longer than the initial (newly set) time. The fireproof coated CFT pillar 10 may not be able to satisfy the fireproof performance required for the required fireproof time. That is, when the required fire resistance required for the fire-resistant coated CFT column 10 is increased due to the design change, local buckling K tends to occur in the column head portion 12BU and the column base portion 12BL of the fire-resistant coated CFT column 10 and fire resistant. There is a possibility that the coated CFT pillar 10 cannot maintain the structural stability.

これに対して本実施形態では、図2及び図3に示されるように、設計変更等により高くなった無耐火被覆CFT柱10の要求耐火性能を満たすように、仕上げ塗料20の上から筒状被覆部材40U,40Lによって、鋼管本体部12Bの柱頭部12BU及び柱脚部12BLが耐火被覆されている。具体的には、筒状被覆部材40U,40Lは、一対のベース材42を筒状に接合して形成されている。これら一対のベース材42の外面には、耐火塗料44が塗布されている。したがって、例えば、筒状被覆部材40Uの一対のベース材42を鋼管本体部12Bの柱頭部12BUに対して両側から取り付けて互いに接合することにより、柱頭部12BUの周囲に耐火塗料44が配置され、当該柱頭部12BUが耐火被覆される。これと同様に、筒状被覆部材40Lの一対のベース材42を鋼管本体部12Bの柱脚部12BLに対して両側から取り付けて互いに接合することにより、柱脚部12BLの周囲に耐火塗料44が配置され、当該柱脚部12BLが耐火被覆される。なお、一対のベース材42の接合部では、接合する際に耐火塗料44が剥がれる可能性があるため、接合部まわりには、耐火塗料44をあらかじめ塗布せず、接合後に耐火塗料44を塗布してもよい。   On the other hand, in this embodiment, as shown in FIGS. 2 and 3, a cylindrical shape is formed from the top of the finish paint 20 so as to satisfy the required fire resistance performance of the non-fire-resistant coated CFT pillar 10 that has been increased by design change or the like. The column head portion 12BU and the column base portion 12BL of the steel pipe main body portion 12B are fire-resistant coated by the covering members 40U and 40L. Specifically, the cylindrical covering members 40U and 40L are formed by joining a pair of base members 42 into a cylindrical shape. A fireproof paint 44 is applied to the outer surfaces of the pair of base materials 42. Therefore, for example, by attaching the pair of base members 42 of the tubular covering member 40U from both sides to the column head 12BU of the steel pipe main body 12B and joining them together, the fireproof paint 44 is disposed around the column head 12BU, The pillar head 12BU is fireproof coated. Similarly, by attaching the pair of base members 42 of the cylindrical covering member 40L from both sides to the column base part 12BL of the steel pipe main body part 12B and joining them together, the refractory paint 44 is formed around the column base part 12BL. The column base 12BL is fireproof coated. In addition, in the joint part of a pair of base materials 42, since the fireproof paint 44 may peel off at the time of joining, the fireproof paint 44 is not previously applied around the joint part, but the fireproof paint 44 is applied after joining. May be.

これにより、火災時における柱頭部12BU及び柱脚部12BLの温度上昇が抑制される結果、温度上昇に伴う柱頭部12BU及び柱脚部12BLの強度と剛性の低下が低減される。したがって、柱頭部12BU及び柱脚部12BLの局部座屈Kの発生が抑制される。よって、無耐火被覆CFT柱10の耐火性能が向上する。   Thereby, as a result of suppressing the temperature rise of the column head 12BU and the column base part 12BL at the time of a fire, the fall of the intensity | strength and rigidity of the column head 12BU and the column base part 12BL accompanying a temperature rise is reduced. Therefore, the occurrence of local buckling K of the column head portion 12BU and the column base portion 12BL is suppressed. Therefore, the fireproof performance of the non-fireproof coated CFT pillar 10 is improved.

また、前述したように、一対のベース材42を鋼管本体部12Bの柱頭部12BU及び柱脚部12BLに対して両側から取り付けることにより、これらの柱頭部12BU及び柱脚部12BLの周囲に耐火塗料44が配置される。したがって、現場での耐火塗料44の塗布作業を省略することができる。   Further, as described above, by attaching the pair of base members 42 from both sides to the column head portion 12BU and the column base portion 12BL of the steel pipe main body portion 12B, a fireproof paint is provided around the column head portion 12BU and the column base portion 12BL. 44 is arranged. Therefore, the application | coating operation | work of the refractory paint 44 on the spot can be abbreviate | omitted.

また、仕上げ塗料20の上に耐火塗料44を直接塗布した場合は、加熱時(火災時)に耐火塗料44が剥離するなどして、十分な耐火性能を得られないことが多い。この場合、柱頭部12BU及び柱脚部12BLの仕上げ塗料20を剥がしてから耐火塗料44を塗布することになり、施工が煩雑化する。これに対して本実施形態では、一対のベース材42の外面に耐火塗料44を塗布するため、柱頭部12BU及び柱脚部12BLの仕上げ塗料20を剥がす必要がない。また、仕上げ塗料20が汚れていても、一対のベース材42によって仕上げ塗料20の上から鋼管本体部12Bの柱頭部12BU及び柱脚部12BLを囲むことにより、一対のベース材42によって仕上げ塗料20が覆い隠されるため、仕上げ塗料20を塗り直したり、剥がしたりする必要がない。したがって、施工性が向上する。   In addition, when the fire resistant paint 44 is directly applied on the finish paint 20, the fire resistant paint 44 is often peeled off during heating (at the time of a fire), so that sufficient fire resistance cannot be obtained in many cases. In this case, the fireproof paint 44 is applied after the finish paint 20 of the pillar head part 12BU and the pillar leg part 12BL is peeled off, and the construction becomes complicated. On the other hand, in this embodiment, since the fireproof paint 44 is applied to the outer surfaces of the pair of base members 42, it is not necessary to peel off the finish paint 20 of the column heads 12BU and the column bases 12BL. Even if the finish paint 20 is dirty, the pair of base materials 42 surrounds the column head portion 12BU and the column base portion 12BL of the steel pipe main body 12B from above the finish paint 20, so that the finish paint 20 is covered by the pair of base materials 42. Therefore, it is not necessary to repaint or remove the finish paint 20. Therefore, the workability is improved.

さらにまた、本実施形態では、一対のベース材42を薄金属板で形成している。これにより、一対のベース材42及び耐火塗料44を含めた無耐火被覆CFT柱10の柱断面積の増加を低減することができる。   Furthermore, in this embodiment, the pair of base members 42 are formed of thin metal plates. Thereby, the increase in the column cross-sectional area of the fireproof covering CFT pillar 10 including a pair of base material 42 and the fireproof coating 44 can be reduced.

しかも、本実施形態では、前述したように火災時に、局部座屈Kが発生し易い鋼管本体部12Bの柱頭部12BU及び柱脚部12BLを筒状被覆部材40U,40Lによって耐火被覆している。したがって、鋼管本体部12Bをその全長に亘って耐火被覆する構成と比較して、無耐火被覆CFT柱10の耐火性能を効率的に向上させることができる。また、施工性の向上、工期短縮、及びコスト削減を図ることができる。   In addition, in the present embodiment, as described above, the column head portion 12BU and the column base portion 12BL of the steel pipe main body portion 12B in which local buckling K is likely to occur during a fire are covered with the fireproof coating by the cylindrical covering members 40U and 40L. Therefore, the fireproof performance of the non-fireproof coated CFT column 10 can be efficiently improved as compared with the configuration in which the steel pipe main body 12B is fireproofed over its entire length. In addition, it is possible to improve workability, shorten the construction period, and reduce costs.

ここで、図5(A)には、一般的なコンクリート充填鋼管柱からなる柱100と梁102A,102Bとで構成された架構の一例が示されている。この架構内において、例えば図5(B)に示されるように火災104が発生すると、梁102Aが材軸方向(矢印J方向)に伸び出すため、柱100に同図に示されるような変形が生じる。   Here, FIG. 5A shows an example of a frame composed of a column 100 made of a general concrete-filled steel pipe column and beams 102A and 102B. In this frame, for example, as shown in FIG. 5B, when a fire 104 occurs, the beam 102A extends in the material axis direction (arrow J direction), so that the pillar 100 is deformed as shown in FIG. Arise.

また、図6(A)には、一般的なコンクリート充填鋼管柱からなる柱110の耐火性能評価に用いられる実験評価モデルが示されている。この実験評価モデルでは、加熱時に、図6(B)に示されるような変形状態、応力状態を示すことから、図5(B)に示される柱100の変形状態、応力状態を適切に模擬することができると言われている。そこで、図6(A)に示される実験評価モデルを用いて載荷加熱実験を行ったところ、以下に示す新たな知見が得られた。   FIG. 6 (A) shows an experimental evaluation model used for fire resistance performance evaluation of a column 110 made of a general concrete-filled steel pipe column. Since this experimental evaluation model shows the deformation state and the stress state as shown in FIG. 6B during heating, the deformation state and the stress state of the column 100 shown in FIG. 5B are appropriately simulated. It is said that you can. Then, when the loading heating experiment was conducted using the experimental evaluation model shown in FIG. 6 (A), the following new knowledge was obtained.

即ち、加熱された柱110の上端部に生じる水平変位(水平力F)が大きい場合や柱110に生じる軸力(長期軸力)Vが大きい場合は、図6(C)に示されるように、柱110を構成する鋼管柱の柱頭部及び柱脚部に局部座屈Kが生じることが確認された。また、加熱時間が比較的短く、柱110の充填コンクリートが十分耐力を残している状態であっても、柱110は前述した柱頭部及び柱脚部の局部座屈Kによって荷重支持能力を喪失し、構造安定性を保持することができなくなることが確認された。   That is, when the horizontal displacement (horizontal force F) generated at the upper end of the heated column 110 is large or the axial force (long-term axial force) V generated at the column 110 is large, as shown in FIG. It was confirmed that local buckling K occurred in the column head and column base of the steel pipe column constituting the column 110. Further, even when the heating time is relatively short and the concrete filled in the column 110 remains sufficiently proof, the column 110 loses its load supporting ability due to the above-described local buckling K of the column head and column base. It was confirmed that the structural stability could not be maintained.

本実施形態に係る無耐火被覆CFT柱10を例により具体的に説明すると、局部座屈Kに関しては以下のことが確認された。即ち、鋼管柱12の柱幅(直径)をD(図3(B)参照)としたときに、柱頭部12BUにおける局部座屈Kは、柱頭部12BUの上端(上仕口部12Uと鋼管本体部12Bとの境界部)から中間部12BMへ向けて2Dまでの領域内で発生し易く、特に、1Dから2Dまでの領域内で発生し易い。これと同様に、柱脚部12BLにおける局部座屈Kは、柱脚部12BLの下端(下仕口部12Lと鋼管本体部12Bとの境界部)から中間部12BMへ向けて2Dまでの領域内で発生し易く、特に、1Dから2Dまでの領域内で発生し易い。   When the fireproof coated CFT column 10 according to the present embodiment is specifically described by way of example, the following has been confirmed for the local buckling K. That is, when the column width (diameter) of the steel pipe column 12 is D (see FIG. 3B), the local buckling K in the column head 12BU is the upper end of the column head 12BU (the upper end 12U and the steel pipe body). It is likely to occur in the region from 2D to the intermediate portion 12BM from the boundary portion with the portion 12B), and particularly easily in the region from 1D to 2D. Similarly, the local buckling K in the column base 12BL is within the region from the lower end of the column base 12BL (the boundary between the lower end 12L and the steel pipe body 12B) to 2D from the intermediate portion 12BM. It is easy to generate | occur | produce especially in the area | region from 1D to 2D.

従って、柱頭部12BUに対する筒状被覆部材40Uの被覆範囲H(図2参照)は、柱頭部12BUの上端から中間部12BMへ向けて少なくとも2Dにすることが望ましい。また、施工性、材料コスト等を考慮すると、筒状被覆部材40Uの被覆範囲Hは、柱頭部12BUの上端から中間部12BMへ向けて少なくとも1Dから2Dにすることが望ましい。これにより、筒状被覆部材40Uの材料コストを削減しつつ、柱頭部12BUの局部座屈Kの発生を効率的に抑制することができる。柱脚部12BLに対する筒状被覆部材40Lの被覆範囲H(図2参照)についても同様である。   Accordingly, it is desirable that the covering range H (see FIG. 2) of the cylindrical covering member 40U with respect to the column head 12BU be at least 2D from the upper end of the column head 12BU toward the intermediate portion 12BM. In consideration of workability, material cost, and the like, it is desirable that the covering range H of the cylindrical covering member 40U is at least 1D to 2D from the upper end of the column head 12BU to the intermediate portion 12BM. Thereby, generation | occurrence | production of the local buckling K of the column head 12BU can be suppressed efficiently, reducing the material cost of the cylindrical coating | coated member 40U. The same applies to the covering range H (see FIG. 2) of the cylindrical covering member 40L on the column base 12BL.

次に、上記実施形態の変形例について説明する。   Next, a modification of the above embodiment will be described.

上記実施形態における筒状被覆部材40U,40Lは、補強部材で適宜補強しても良い。具体的には、図7(A)及び図7(B)に示される変形例のように、筒状被覆部材50Uにおける一対のベース材42の内面には、複数の補強部材としての複数の補強リブ52が設けられている。複数の補強リブ52は、筒状被覆部材50Uの軸方向に延びると共に、筒状被覆部材50Uの周方向に間隔を空けて配列されており、一対のベース材42の内面に溶接等により接合されている。これらの補強リブ52を挟んで柱頭部12BUの周囲に一対のベース材42が配置されている。これにより、柱頭部12BUと一対のベース材42との間に空間Rが形成されている。   The cylindrical covering members 40U and 40L in the above embodiment may be appropriately reinforced with a reinforcing member. Specifically, as in the modification shown in FIGS. 7A and 7B, the inner surfaces of the pair of base members 42 in the cylindrical covering member 50U have a plurality of reinforcements as a plurality of reinforcement members. Ribs 52 are provided. The plurality of reinforcing ribs 52 extend in the axial direction of the tubular covering member 50U and are arranged at intervals in the circumferential direction of the tubular covering member 50U, and are joined to the inner surfaces of the pair of base members 42 by welding or the like. ing. A pair of base members 42 are arranged around the column head 12BU with these reinforcing ribs 52 in between. Thus, a space R is formed between the column head 12BU and the pair of base members 42.

このように一対のベース材42を補強リブ52で補強することにより、一対のベース材42の形状が保持し易くなる。一対のベース材42に薄金属板(板厚が3mm未満)を用いた場合は、断面の大きさによっては一対のベース材42が湾曲するなどして形状の保持が難しくなる場合がある。このとき、補強リブ52によって補強することで、一対のベース材42湾曲等の変形が抑制される。一対のベース材42の板厚を増やすよりも、補強リブ52で補強した方がコストが抑えられ、さらには施工性の改善も期待できる。   By reinforcing the pair of base members 42 with the reinforcing ribs 52 in this way, the shape of the pair of base members 42 can be easily maintained. When a thin metal plate (thickness of less than 3 mm) is used for the pair of base members 42, depending on the size of the cross section, the pair of base members 42 may be curved and it may be difficult to maintain the shape. At this time, by reinforcing the reinforcing ribs 52, deformation of the pair of base members 42 is suppressed. Rather than increasing the thickness of the pair of base materials 42, the cost is reduced by reinforcing the reinforcing ribs 52, and further improvement in workability can be expected.

また、図8(A)に示すように、一対のベース材42の内面に耐火塗料44を塗布した場合は、柱頭部12BUと一対のベース材42との間の空間Rによって、火災時における耐火塗料44の発泡スペースが確保される。このため、ベース材42の内面に耐火塗料44を塗布した場合でも、図8(B)に示すように、耐火塗料44が適切に発泡し、無耐火被覆CFT柱10の構造安定性を保持させることが出来る。耐火塗料44をベース材42の裏側(内面)に塗布した場合は、耐火塗料44を外側(外面)に塗布した場合に比べ、ベース材42の表側(外側)をきれいに見せることができる。特に、ベース材42の表側に仕上げ塗料を塗布することなく、金属板(ベース材42)を表しで見せることができるため、意匠性を大きく改善することが可能である。   Further, as shown in FIG. 8A, when the fireproof paint 44 is applied to the inner surfaces of the pair of base members 42, the fire resistance at the time of fire is caused by the space R between the column head 12BU and the pair of base members 42. A foaming space for the paint 44 is secured. For this reason, even when the refractory paint 44 is applied to the inner surface of the base material 42, as shown in FIG. 8B, the refractory paint 44 is appropriately foamed to maintain the structural stability of the fireproof coated CFT pillar 10. I can do it. When the refractory paint 44 is applied to the back side (inner surface) of the base material 42, the front side (outer side) of the base material 42 can be seen more clearly than when the refractory paint 44 is applied to the outer side (outer surface). In particular, the design can be greatly improved because the metal plate (base material 42) can be shown as a representation without applying a finish paint on the front side of the base material 42.

なお、本変形例では、補強リブ52を筒状被覆部材50Uの軸方向に沿って配置する例を示したが、これに限らない。補強リブ52は、例えば、筒状被覆部材50Uの周方向に沿って配置することも可能である。   In addition, in this modification, although the example which arrange | positions the reinforcement rib 52 along the axial direction of the cylindrical coating | coated member 50U was shown, it does not restrict to this. The reinforcing ribs 52 can be arranged along the circumferential direction of the cylindrical covering member 50U, for example.

また、上記実施形態では、耐火材として、耐火塗料44を用いた例を示したが、これに限らない。耐火材としては、例えば、巻き付け系耐火被覆材を用いても良い。具体的には、図9(A)及び図9(B)に示される変形例のように、筒状被覆部材60Uを構成する一対のベース材42の内面には、耐火材としての巻き付け系耐火被覆材62がそれぞれ設けられている。   Moreover, in the said embodiment, although the example using the fireproof paint 44 was shown as a fireproof material, it is not restricted to this. As the refractory material, for example, a wrapping refractory coating material may be used. Specifically, as in the modification shown in FIGS. 9A and 9B, the inner surface of the pair of base members 42 constituting the cylindrical covering member 60 </ b> U is wrapped around the refractory material as a refractory material. Each of the covering materials 62 is provided.

巻き付け系耐火被覆材62は、ロックウール等をシート状に成形した巻き付け式の耐火被覆材で形成されている。この巻き付け系耐火被覆材62は、各ベース材42の内面に沿って断面略半円弧状に形成されており、各ベース材42の内面を全面に亘って被覆している。また、巻き付け系耐火被覆材62は、複数のビス64によって各ベース材42の内面に固定されている。これらの巻き付け系耐火被覆材62を挟んで柱頭部12BUの周囲に一対のベース材42が配置されている。これにより、巻き付け系耐火被覆材62によって、仕上げ塗料20の上から柱頭部12BUがその全周に亘って耐火被覆されている。   The wrapping-type fireproof covering material 62 is formed of a wrapping-type fireproof covering material in which rock wool or the like is formed into a sheet shape. The wrapping fireproof covering material 62 is formed in a substantially semicircular cross section along the inner surface of each base material 42 and covers the entire inner surface of each base material 42. Further, the wrapping fireproof covering material 62 is fixed to the inner surface of each base material 42 by a plurality of screws 64. A pair of base members 42 are arranged around the column head 12BU with the winding-type fireproof covering material 62 interposed therebetween. Thereby, the column head 12BU is covered with the wrapping-type fireproof covering material 62 over the entire circumference from the top of the finish paint 20.

このように一対のベース材42の内面に巻き付け系耐火被覆材62を設けることにより、一対のベース材42が巻き付け系耐火被覆材62を覆い隠す仕上げ材としても機能する。したがって、施工性が向上する。特に、ベース材42をステンレスやスチール製の金属板で形成することにより、外観品質を向上させることができる。   Thus, by providing the winding-type fireproof coating material 62 on the inner surfaces of the pair of base materials 42, the pair of base materials 42 also functions as a finishing material that covers the winding-type fireproof coating material 62. Therefore, the workability is improved. In particular, the appearance quality can be improved by forming the base material 42 from a metal plate made of stainless steel or steel.

なお、一対のベース材42の内面に設ける耐火材としては、巻き付け系耐火被覆材62以外に、吹付け系耐火被覆材、ボード系耐火被覆材、発泡性耐火シート等を用いても良い。ここでいう吹付け系耐火被覆材とは、例えば、吹付けロックウール、湿式吹付けロックウール、石膏系湿式吹付け耐火被覆、セラミック系湿式耐火被覆等を意味する。また、ボード系耐火被覆材とは、例えば、石膏ボード(強化石膏ボードを含む)、繊維混入けい酸カルシウム板、モルタルボード、ロックウールボード、セラミックファイバーボード、PC板、ALCパネル、押し出し成形セメント板等を意味する。   In addition, as the fireproof material provided on the inner surfaces of the pair of base materials 42, in addition to the wound fireproof covering material 62, a spray fireproof covering material, a board fireproof covering material, a foamable fireproof sheet, or the like may be used. Here, the spray-type fireproof coating material means, for example, spray rock wool, wet spray rock wool, gypsum-based wet spray fire-resistant coating, ceramic-based wet fire-resistant coating, and the like. Examples of board-based fireproof coating materials include gypsum board (including reinforced gypsum board), fiber-mixed calcium silicate board, mortar board, rock wool board, ceramic fiber board, PC board, ALC panel, and extruded cement board. Etc.

また、上記実施形態では、一対のベース材42を薄金属板(板厚が3mm未満の金属板)で形成した例を示したが、一対のベース材42は厚金属板(板厚3mm以上の金属板)で形成しても良い。また、一対のベース材42は、前述したステンレスやスチール製の金属板以外に、アルミニウムやチタン製の金属板で形成しても良いし、プラスチック等の樹脂製や木製の板材で形成しても良い。   Moreover, in the said embodiment, although the example which formed a pair of base material 42 with the thin metal plate (plate thickness is less than 3 mm) was shown, a pair of base material 42 is a thick metal plate (plate thickness 3 mm or more). You may form with a metal plate. The pair of base members 42 may be formed of a metal plate made of aluminum or titanium in addition to the above-described stainless steel or steel metal plate, or may be formed of a resin plate such as plastic or a wooden plate material. good.

また、上記実施形態では、鋼管柱12を丸形鋼管で形成した例を示したが、これに限らない。例えば、図10(A)及び図10(B)に示される変形例のように、鋼管柱22は、断面略正方形の角形鋼管でも良い。この場合、鋼管柱22の断面形状に応じて、筒状被覆部材70Uを構成する一対のベース材42を断面略C字形状に形成することにより、鋼管柱22の外面に沿って一対のベース材42を配置することができる。また、鋼管柱22では、角形鋼管の一辺の長さが鋼管柱22の柱幅Dに相当する。さらに、鋼管柱としては、例えば、断面略長方形の角形鋼管を用いても良い。この場合、短辺の長さが鋼管柱の柱幅Dに相当する。   Moreover, in the said embodiment, although the example which formed the steel pipe pillar 12 with the round steel pipe was shown, it is not restricted to this. For example, as in the modification shown in FIGS. 10A and 10B, the steel pipe column 22 may be a square steel pipe having a substantially square cross section. In this case, according to the cross-sectional shape of the steel pipe column 22, the pair of base members 42 constituting the cylindrical covering member 70 </ b> U are formed in a substantially C-shaped cross section, thereby forming a pair of base members along the outer surface of the steel pipe column 22. 42 can be arranged. In the steel pipe column 22, the length of one side of the square steel pipe corresponds to the column width D of the steel pipe column 22. Furthermore, as the steel pipe column, for example, a square steel pipe having a substantially rectangular cross section may be used. In this case, the length of the short side corresponds to the column width D of the steel pipe column.

また、上記実施形態では、筒状被覆部材40U,40Lによって、鋼管本体部12Bの柱頭部12BU及び柱脚部12BLを耐火被覆する例を示したが、これに限らない。例えば、図11に示されるように、筒状被覆部材40によって、鋼管本体部12Bを全長に亘って耐火被覆しても良い。柱頭部12BUと柱脚部12BLのみを耐火補強する場合に比べ、コストは高くなるが、鋼管本体部12Bの全長を耐火補強することで、意匠性を大幅に改善することができる。鋼管柱12の外周をボード等で仕上げず、鋼管本体部12Bの表面を表しで使用していた無耐火被覆CFT柱10を後施工で耐火補強する場合は、鋼管本体部12Bの全長を耐火補強することで、耐火補強後も鋼管本体部12Bを表しで使用することが可能であり、耐火補強前と同等以上の外観品質を確保することができる。   Moreover, in the said embodiment, although the example which coats the pillar head part 12BU and the pillar leg part 12BL of the steel pipe main-body part 12B with fireproof by the cylindrical covering members 40U and 40L was shown, it does not restrict to this. For example, as shown in FIG. 11, the steel pipe main body 12 </ b> B may be covered with a fireproof covering over the entire length by the tubular covering member 40. Compared to the case where only the column head portion 12BU and the column base portion 12BL are refractory reinforced, the cost is higher, but the design property can be greatly improved by refracting the entire length of the steel pipe main body portion 12B. When the non-fire-resistant coated CFT pillar 10 used to represent the surface of the steel pipe main body 12B is not finished with a board or the like, and the steel pipe pillar 12 is finished with fireproof reinforcement in the subsequent work, the entire length of the steel pipe main body 12B is fire-proof reinforced. By doing so, it is possible to use the steel pipe main body 12B as a representation even after the fireproof reinforcement, and to ensure the appearance quality equal to or better than that before the fireproof reinforcement.

さらに、上記実施形態では、後施工耐火被覆手段として、筒状被覆部材40U,40Lを例に説明したが、これに限らない。後施工耐火被覆手段は、後施工によって無耐火被覆CFT柱10の周囲に配置され、当該無耐火被覆CFT柱10を耐火被覆するものであれば良く、例えば、吹付け系耐火被覆材、巻き付け系耐火被覆材、ボード系耐火被覆材、及び耐火塗料等の耐火被覆材を用いることができる。つまり、一対のベース材42は適宜省略可能である。   Furthermore, in the said embodiment, although cylindrical covering member 40U, 40L was demonstrated to the example as post-construction fireproof covering means, it is not restricted to this. The post-construction fireproof covering means may be any one that is disposed around the non-refractory coated CFT column 10 by post-construction and that covers the non-refractory coated CFT column 10 by fireproofing. Fire-resistant coating materials such as fire-resistant coating materials, board-based fire-resistant coating materials, and fire-resistant coating materials can be used. That is, the pair of base members 42 can be omitted as appropriate.

以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to such an embodiment, and one embodiment and various modifications may be used in combination as appropriate, and the gist of the present invention will be described. Of course, various embodiments can be implemented without departing from the scope.

10 無耐火被覆CFT柱
20 耐火塗料
20 仕上げ塗料
30 無耐火被覆CFT柱の耐火補強構造
40U 筒状被覆部材(後施工耐火被覆手段)
40L 筒状被覆部材(後施工耐火被覆手段)
42 ベース材
44 耐火塗料(耐火材)
50U 筒状被覆部材(後施工耐火被覆手段)
60U 筒状被覆部材(後施工耐火被覆手段)
62 巻き付け系耐火被覆材(耐火材)
70U 筒状被覆部材(後施工耐火被覆手段)
10 Fire-resistant coated CFT pillar 20 Fire-resistant paint 20 Finish paint 30 Fire-resistant reinforcing structure of fire-resistant coated CFT pillar 40U Cylindrical covering member (post-installed fire-resistant covering means)
40L cylindrical covering member (post-installed fireproof covering means)
42 Base material 44 Fireproof paint (fireproof material)
50U tubular covering member (post-fire-resistant covering means)
60U cylindrical covering member (post-installed fireproof covering means)
62 Wrapped fireproof covering material (fireproof material)
70U Tubular covering member (post-construction fireproof covering means)

Claims (3)

上下の仕口部と、前記上下の仕口部の間に延びる鋼管本体部と、を有し、耐火被覆されていない無耐火被覆CFT柱と、
後施工により前記鋼管本体部における軸方向の端部の周囲に配置され、前記鋼管本体部の軸方向の中間部ではなく前記端部を耐火被覆する後施工耐火被覆手段と、
を備えた無耐火被覆CFT柱の耐火補強構造。
A non-fire-resistant coated CFT pillar having upper and lower joint portions and a steel pipe main body portion extending between the upper and lower joint portions ;
A post-installation fire-resistant coating means disposed around the axial end of the steel pipe body by post-construction, and fire-proofing the end instead of the axial middle of the steel pipe main body ;
A fireproof reinforcing structure for non-fireproof coated CFT columns.
前記無耐火被覆CFT柱の外面には、仕上げ塗料が塗布され、
前記後施工耐火被覆手段が、
前記無耐火被覆CFT柱に対して両側から取り付けられ、互いに接合されて前記仕上げ塗料の上から該無耐火被覆CFT柱を囲む一対のベース材と、
前記一対のベース材の外面又は内面に設けられた耐火材と、
を有する、
請求項1に記載の無耐火被覆CFT柱の耐火補強構造。
A finish paint is applied to the outer surface of the fireproof coated CFT pillar,
The post-construction fireproof covering means is
A pair of base materials attached from both sides to the fireproof coated CFT pillar and joined together to surround the fireproof coated CFT pillar from above the finish paint;
A refractory material provided on an outer surface or an inner surface of the pair of base materials;
Having
The fireproof reinforcing structure of the fireproof coated CFT pillar according to claim 1.
前記一対のベース材が、前記無耐火被覆CFT柱の外面に沿って配置される一対の金属板であり、
前記耐火材が、前記一対の金属板の前記外面に塗布された耐火塗料である、
請求項2に記載の無耐火被覆CFT柱の耐火補強構造。
The pair of base materials is a pair of metal plates disposed along an outer surface of the fireproof coated CFT pillar;
The refractory material is a refractory paint applied to the outer surfaces of the pair of metal plates.
The fireproof reinforcing structure of the fireproof coated CFT pillar according to claim 2.
JP2012231155A 2012-10-18 2012-10-18 Fireproof reinforcement structure of fireproof coated CFT pillar Active JP6097519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012231155A JP6097519B2 (en) 2012-10-18 2012-10-18 Fireproof reinforcement structure of fireproof coated CFT pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231155A JP6097519B2 (en) 2012-10-18 2012-10-18 Fireproof reinforcement structure of fireproof coated CFT pillar

Publications (2)

Publication Number Publication Date
JP2014080834A JP2014080834A (en) 2014-05-08
JP6097519B2 true JP6097519B2 (en) 2017-03-15

Family

ID=50785256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231155A Active JP6097519B2 (en) 2012-10-18 2012-10-18 Fireproof reinforcement structure of fireproof coated CFT pillar

Country Status (1)

Country Link
JP (1) JP6097519B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760906B1 (en) * 2017-01-17 2017-07-24 (주) 미도랜드 Fire-resistant cladding system for pillar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449349A (en) * 1990-06-18 1992-02-18 Nippon Steel Corp Fireproof covering for steel framed structure
JP3308664B2 (en) * 1993-08-03 2002-07-29 前田建設工業株式会社 Centrifugally formed steel tube concrete column and its manufacturing method
JP2004068385A (en) * 2002-08-06 2004-03-04 Shimizu Corp Adjustment structure for erection of steel pipe pole

Also Published As

Publication number Publication date
JP2014080834A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5749087B2 (en) Concrete filled steel pipe column
US20180202159A1 (en) Frame Supported Panel
JP5839800B2 (en) Concrete filled steel pipe column
JP5911692B2 (en) Fireproof reinforcement structure for concrete filled steel tubular columns
JP6166519B2 (en) Concrete filled steel pipe column
JP6505270B2 (en) Fireproof reinforcement method of concrete filled steel pipe column
JP6097519B2 (en) Fireproof reinforcement structure of fireproof coated CFT pillar
JP5795208B2 (en) Fireproof covering structure of concrete filled steel pipe columns
JP4137073B2 (en) Construction method of steel concrete composite structure
JP5532852B2 (en) Steel pipe concrete pillar
JP6166523B2 (en) Concrete filled steel pipe column
JP2015506426A (en) Connector having a conical or semi-conical projection
JP5758207B2 (en) Concrete filled steel pipe column
US20200299956A1 (en) Penetration part fireproof coating material
JP2014074314A (en) Fireproof reinforcement structure of concrete filling steel-pipe column
JP5795209B2 (en) Finished structure of concrete filled steel tubular columns
JP5762155B2 (en) Concrete filled steel pipe column
JP4928405B2 (en) Wall insulation structure and construction method
KR101646696B1 (en) Concrete Filled steel Tube with improved Heat Resisting Characteristics and Durability
JP2014231726A (en) Column-beam structure
JP7380737B2 (en) Fireproof coating structure of structure
JP6934323B2 (en) Beam buckling suppression structure
JP6741185B1 (en) Fireproof structure design method, fireproof structure construction method, and fireproof structure
RU2800673C2 (en) Honeycomb building panel
JP6708324B1 (en) Fireproof structure design method, fireproof construction method, and fireproof structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6097519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150