JP6096589B2 - Fire detection device and fire detection method - Google Patents

Fire detection device and fire detection method Download PDF

Info

Publication number
JP6096589B2
JP6096589B2 JP2013107564A JP2013107564A JP6096589B2 JP 6096589 B2 JP6096589 B2 JP 6096589B2 JP 2013107564 A JP2013107564 A JP 2013107564A JP 2013107564 A JP2013107564 A JP 2013107564A JP 6096589 B2 JP6096589 B2 JP 6096589B2
Authority
JP
Japan
Prior art keywords
fire
smoke
time
image
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013107564A
Other languages
Japanese (ja)
Other versions
JP2014229034A (en
Inventor
門馬 英一郎
英一郎 門馬
小野 隆
隆 小野
弘道 江幡
弘道 江幡
敦 万本
敦 万本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2013107564A priority Critical patent/JP6096589B2/en
Publication of JP2014229034A publication Critical patent/JP2014229034A/en
Application granted granted Critical
Publication of JP6096589B2 publication Critical patent/JP6096589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Description

本発明は、監視カメラで撮像した監視領域の画像から火災初期における煙を検知する火災検知装置及び火災検知方法に関する。
The present invention relates to a fire detection device and a fire detection method for detecting smoke in an early stage of fire from an image of a monitoring area captured by a monitoring camera.

従来、監視カメラで撮像した監視領域の画像に対し画像処理を施すことにより、火災を検知するようにした様々な装置やシステムが提案されている。   Conventionally, various devices and systems have been proposed in which a fire is detected by performing image processing on an image of a monitoring area captured by a monitoring camera.

このような火災検知装置にあっては、火災発生に対する初期消火や避難誘導の観点から火災の早期発見が重要である。   In such a fire detection device, early detection of a fire is important from the viewpoint of initial extinguishing and evacuation guidance for the occurrence of a fire.

このため従来装置(特許文献1)にあっては、画像から火災に伴う煙により起きる現象として、透過率又はコントラストの低下、輝度値の特定値への収束、輝度分布範囲が狭まって輝度の分散の低下、煙による輝度の平均値の変化、エッジの総和量の低下、低周波帯域の強度増加を導出し、これらを総合的に判断して煙の検出を可能としている。
For this reason, in the conventional device (Patent Document 1), as a phenomenon caused by smoke from a fire from an image, a decrease in transmittance or contrast, a convergence of a luminance value to a specific value, a luminance distribution range is narrowed and a luminance distribution is reduced. , A change in average value of brightness due to smoke, a decrease in the total amount of edges, and an increase in intensity in the low frequency band are derived, and these can be comprehensively judged to detect smoke.

特開2008−046916号公報JP 2008-046916 A 特開平7−245757号公報JP-A-7-245757 特開2010−238028号公報JP 2010-238028 A

ところで、火災初期の段階で多い燻焼燃焼では、ごく微量の煙が立ち上がり、時間の経過と共に煙の量が増し、最終的には煙層が天井面に沿って発生し、従来の煙感知器は、天井面に発生した煙層を検知するようにしている。   By the way, in the smoldering combustion which is often in the early stage of fire, a very small amount of smoke rises, the amount of smoke increases with the passage of time, and finally a smoke layer is generated along the ceiling surface. Detects smoke layers generated on the ceiling.

このように、ごく微量の煙が立ち上がる火災初期の段階で火災を検知することが重要になるが、従来の画像に対し画像処理を施して煙を検知する装置にあっては、例えば立ち立ち上る煙の動き(流動)を検知するようにしているが、この流動検知のためには十分な量の煙が立ち昇る段階にならないと検知することが困難であり、細い筋のようになってごく微量の煙が立ち上がる火災の初期で検知することはできないという問題があった。   As described above, it is important to detect a fire at an early stage when a very small amount of smoke rises. However, in a conventional device for detecting smoke by performing image processing on an image, for example, rising smoke The movement (flow) is detected, but it is difficult to detect unless a sufficient amount of smoke rises to detect this flow, and it becomes a very small amount like a thin line. There was a problem that it could not be detected in the early stage of the fire where the smoke of the fire rose.

この問題を解決するため本願出願人にあっては、監視カメラにより撮像した監視領域の画像から、煙により発生する稜線の直線成分を抽出し、その傾きと発生頻度について時系列での変化を求め、煙による特徴的な変化を検知することで、火災の初期の段階で多い燻焼燃焼により発生するごく微量の煙の立ち上りを検知して火災を判断する火災検知装置を提案している(特願2013−101883)。   In order to solve this problem, the applicant of the present application extracts a linear component of a ridge line generated by smoke from an image of a monitoring area captured by a monitoring camera, and obtains a change in time series with respect to the inclination and the occurrence frequency. Has proposed a fire detection device that detects fires by detecting the very small amount of smoke rising due to smoldering combustion, which occurs frequently in the early stages of fire, by detecting characteristic changes caused by smoke. Application 2013-101883).

ところで、煙稜線直線成分の時系列での変化から火災初期の燻焼により発生するごく微量の煙の立ち上りを検知する装置にあっては、監視領域に配置したテレビやプロジェクター等をつけた状態で監視している場合、テレビ画面等の映像を撮像した画像から稜線を抽出して直線成分の時系列変化を求めると、映像によっては、煙による特徴的な変化に近いか同じになる場合があり、テレビ画面の映像を煙による特徴的な変化として検知し、火災を誤判断する可能性がある。   By the way, in a device that detects the rising of a very small amount of smoke that occurs due to smoldering in the early stage of fire from the time-series change of the smoke ridge line component, with a television or projector placed in the monitoring area attached When monitoring, when extracting the ridge line from an image of a video image such as a TV screen and determining the time-series change of the linear component, depending on the video, it may be close to or the same as the characteristic change due to smoke There is a possibility that the image on the TV screen is detected as a characteristic change due to smoke and a fire is misjudged.

また監視領域に人や動物等がおり、一箇所で動きがあるような場合にも、撮像した画像から稜線を抽出して直線成分の時系列変化を求めると、画像によっては、煙による特徴的な変化に近いか同じになる場合があり、火災と誤判断する可能性がある。このような問題は、監視領域に存在してその場所で動いている様々なものについて、同様に、火災と誤判断する可能性がある。   Also, even when there are people or animals in the monitoring area and there is movement in one place, extracting the ridge line from the captured image and determining the time-series change of the linear component may cause a characteristic of smoke depending on the image. May be close to the same or similar, and may be mistaken for a fire. Such a problem may be erroneously determined as a fire for various things that exist in the monitoring area and are moving at that location.

本発明は、監視画像の稜線直線成分の時系列での変化から煙を検知して火災を判断する場合に、煙以外の画像による火災の誤判断を抑制して信頼性を向上可能とする火災検知装置及び火災検知方法を提供することを目的とする。
The present invention provides a fire capable of improving reliability by suppressing misjudgment of fire caused by an image other than smoke when smoke is detected from a time-series change in the ridge line linear component of the monitoring image. An object is to provide a detection device and a fire detection method.

(装置)
本発明は、火災検知装置に於いて、
監視領域の画像を撮像する撮像手段と、
撮像手段で撮像した画像にエッジ強調処理を施して稜線を抽出する稜線抽出手段と、
稜線抽出手段で抽出した稜線の画像を複数の画像領域に分割し、画像領域毎に稜線の直線成分を抽出する直線成分抽出手段と、
画像領域毎に、直線成分抽出手段で抽出した直線成分の時系列での変化を求める時系列変化検出手段と、
時系列変化検出手段で検出した直線成分の時系列変化の中から煙による特徴的な所定の時系列変化を検知した場合に煙候補領域と判断する煙候補判断手段と、
煙候補判断手段で検知した煙候補領域の分布に基づいて火災を判断する火災判断手段と、
を備えたことを特徴とする。
(apparatus)
The present invention provides a fire detection device,
An imaging means for capturing an image of the monitoring area;
Ridge line extraction means for performing edge enhancement processing on the image captured by the imaging means and extracting a ridge line;
A linear component extracting unit that divides the image of the ridge line extracted by the ridge line extracting unit into a plurality of image regions, and extracts a linear component of the ridge line for each image region;
For each image region, time-series change detecting means for obtaining a change in time series of the linear component extracted by the linear component extracting means;
Smoke candidate determination means for determining a smoke candidate region when a characteristic predetermined time series change due to smoke is detected from the time series change of the linear component detected by the time series change detection means,
A fire judgment means for judging a fire based on a distribution of smoke candidate areas detected by the smoke candidate judgment means;
It is provided with.

ここで、火災判断手段は、煙候補領域の所定領域数を越えて上方に延びる分布を検知した場合に火災と判断する。また、火災判断手段は、煙候補領域の1又は複数領域内に留まる分布を検知した場合は非火災と判断する。   Here, the fire determination means determines a fire when a distribution extending upward beyond the predetermined number of smoke candidate areas is detected. Further, the fire determination means determines that the fire is not fired when a distribution staying in one or a plurality of smoke candidate areas is detected.

煙候補判断手段は、傾きが一定で発生頻度の異なる直線成分の時系列変化を1又は複数検知した場合に煙候補領域と判断し、傾きが一定で発生頻度も一定となる直線成分の時系列変化を検知した場合に非煙候補領域と判断して除外する。   The smoke candidate determination means determines a smoke candidate region when one or more time-series changes of linear components having a constant slope and different occurrence frequencies are detected, and a time-series of linear components having a constant slope and a constant occurrence frequency When a change is detected, it is determined as a non-smoke candidate area and excluded.

(方法)
本発明は、火災検知方法に於いて、
撮像手段により監視領域の画像を撮像し、
撮像手段で撮像した監視領域の画像に稜線抽出手段によりエッジ強調処理を施して稜線を抽出し、
稜線抽出手段で抽出した稜線の画像を複数の画像領域に分割し、画像領域毎に直線成分抽出手段により稜線の直線成分を抽出し、
画像領域毎に、直線成分抽出手段で抽出した直線成分の時系列での変化を時系列変化検出手段により求め、
時系列変化検出手段で検出した直線成分の時系列変化の中から、煙候補判断手段により、煙による特徴的な所定の時系列変化を検知した場合に煙候補領域と判断し、
煙候補判断知手段で検知した煙候補領域の分布に基づいて、火災判断手段により火災を判断することを特徴とする。
(Method)
The present invention provides a fire detection method,
An image of the monitoring area is captured by the imaging means,
The edge enhancement process is performed on the image of the monitoring area captured by the imaging unit by the ridge line extraction unit, and the ridge line is extracted.
The image of the ridge line extracted by the ridge line extraction unit is divided into a plurality of image regions, and the linear component of the ridge line is extracted by the linear component extraction unit for each image region,
For each image area, the change in the time series of the linear component extracted by the linear component extraction means is obtained by the time series change detection means,
Among the time-series changes of the linear components detected by the time-series change detection means, when the smoke candidate determination means detects a predetermined time-series change characteristic of smoke, it is determined as a smoke candidate area,
Based on the distribution of the smoke candidate area detected by the smoke candidate determination and knowledge means, the fire is determined by the fire determination means.

なお、本発明の火災検知方法による他の特徴は、前述した火災検知装置の場合と基本的に同じになることから、その説明を省略する。
The other features of the fire detection method of the present invention are basically the same as those of the above-described fire detection device, and thus the description thereof is omitted.

本発明の火災検知装置及び火災検知方法によれば、撮像手段により撮像した監視領域の画像から、煙により発生する稜線の直線成分を抽出し、その傾きと発生頻度について時系列での煙による特徴的な変化を検知して煙候補領域と判断し、この煙候補領域の分布に基づいて、例えば所定領域数を越えて上方に延びる煙候補領域の分布を検知した場合に火災と判断し、一方、1又は複数領域内に留まる煙候補領域の分布を検知した場合は非火災と判断するようにしたため、テレビ画面の映像、一箇所に留まっている人の手足などの動き、更に一箇所に留まって動きのある部分もつものなどの監視画像に起因した火災の誤判断を確実に防止し、火災初期の段階で多い燻焼燃焼で立ち上がるごく微量の煙から確実に火災を判断し、火災検知の信頼性を向上可能とする。
According to the fire detection device and the fire detection method of the present invention, the linear component of the ridge line generated by smoke is extracted from the image of the monitoring area imaged by the imaging means, and the inclination and frequency of occurrence are characterized by smoke in time series. A smoke candidate area is detected and a smoke candidate area is detected. Based on the distribution of the smoke candidate area, for example, when a distribution of smoke candidate areas extending upward beyond a predetermined number of areas is detected, a fire is determined. When the distribution of smoke candidate areas staying in one or more areas is detected, it is judged as non-fire, so the image on the TV screen, the movement of the person's limbs staying in one place, etc., and staying in one place It is possible to reliably prevent misjudgment of fire caused by surveillance images of things with moving parts, etc., and to judge fire from the very small amount of smoke that starts up with a lot of smoldering combustion in the early stage of fire, reliability Improvement possible to be.

本発明の火災検知装置設置した監視領域を示した説明図Explanatory drawing which showed the monitoring area | region where the fire detection apparatus of this invention was installed ごく微量の煙が立ち上がる状態をモデル化して示した説明図An explanatory diagram modeling the state where a very small amount of smoke rises 画像処理装置の機能構成の概略を示したブロック図Block diagram showing outline of functional configuration of image processing apparatus 画像の領域分割を示した説明図Explanatory diagram showing image segmentation 火源の直上、背景、及びテレビ画面における画像処理の領域を特定して示した説明図Explanatory diagram specifying and showing the area of image processing directly on the fire source, background, and television screen 火源直上の領域の直線成分の時系列変化を示した説明図Explanatory drawing showing the time series change of the linear component of the area directly above the fire source 図6の直線成分の傾きと発生頻度を表したベクトルの時系列変化を示した説明図Explanatory drawing which showed the time series change of the vector showing the inclination of linear component of FIG. 6, and the occurrence frequency 図6の領域の上となる領域の直線成分の時系列変化を示した説明図Explanatory drawing which showed the time-sequential change of the linear component of the area | region above the area | region of FIG. 図8の直線成分の傾きと発生頻度を表したベクトルの時系列変化を示した説明図Explanatory drawing which showed the time series change of the vector showing the inclination of the linear component of FIG. 8, and the occurrence frequency 背景となる領域の直線成分の時系列変化を示した説明図Explanatory diagram showing the time-series change of the linear component of the background area 図11の直線成分の傾きと発生頻度を表したベクトルの時系列変化を示した説明図Explanatory drawing which showed the time-sequential change of the vector showing the inclination of linear component of FIG. 11, and the occurrence frequency. 背景となる他の領域の直線成分の時系列変化を示した説明図Explanatory drawing showing the time-series change of the linear component of other areas that are the background 図13の直線成分の傾きと発生頻度を表したベクトルの時系列変化を示した説明図Explanatory drawing which showed the time series change of the vector showing the inclination of linear component of FIG. 13, and the occurrence frequency. 図5で特定した領域から判断した煙候補領域の分布を示した説明図Explanatory drawing which showed distribution of the smoke candidate area | region judged from the area | region specified in FIG. 監視領域に人がいる場合の画像処理の領域を特定すると共にその煙候補領域の分布を示した説明図Explanatory drawing which specified the area of image processing when there is a person in the monitoring area, and showed the distribution of the smoke candidate area 図3の画像処理装置の動作を示したフローチャートFlowchart showing the operation of the image processing apparatus of FIG.

[火災検知装置の概要]
図1は本発明による火災検知装置を設置した監視領域を示した説明図であり、図1(A)は側面を示し、図1(B)は監視カメラから見た正面を示す。
[Outline of fire detection device]
FIG. 1 is an explanatory view showing a monitoring area where a fire detection device according to the present invention is installed. FIG. 1 (A) shows a side view, and FIG. 1 (B) shows a front view seen from a monitoring camera.

図1(A)に示すように、監視領域16には撮像手段として機能する監視カメラ10が設置され、図1(B)に示す監視領域の状態を撮像して画像を得ている。   As shown in FIG. 1A, a monitoring camera 10 functioning as an imaging unit is installed in the monitoring area 16, and an image is obtained by imaging the state of the monitoring area shown in FIG.

監視領域11に置かれた可燃物が何らかの原因で火災が発生する状況となり、火災の初期では、火源18となるごみ入れから、ごく微量の煙24が細い筋となって立ち上っている。また監視領域11の壁面には構造や壁紙などにより、縦方向や横方向に直線的な筋として現れておいる。更に、監視領域11には、テレビ16が配置されており、テレビ16をつけていると、テレビ画面16aには受信している放送番組により動きのある映像が表示されている。   A combustible material placed in the monitoring area 11 causes a fire for some reason, and in the initial stage of the fire, a very small amount of smoke 24 rises as a fine line from the trash container serving as the fire source 18. The wall surface of the monitoring area 11 appears as straight lines in the vertical and horizontal directions due to the structure and wallpaper. Furthermore, a television 16 is arranged in the monitoring area 11, and when the television 16 is turned on, an image having a motion depending on the received broadcast program is displayed on the television screen 16a.

監視カメラ10で撮像した画像は伝送路を介して管理人室などに設置した画像処理装置12に伝送され、画像処理により火源18から立ち上がっている微量の煙24を検知して火災を判断し、火災検知信号を火災報知設備に出力して火災警報を出力するようにしている。   An image captured by the monitoring camera 10 is transmitted to an image processing apparatus 12 installed in a manager's room or the like via a transmission path, and a small amount of smoke 24 rising from the fire source 18 is detected by image processing to determine a fire. The fire detection signal is output to the fire alarm equipment to output a fire alarm.

[検出原理]
本発明により微量の煙を検知する原理を説明すると次のようになる。本発明は、図2(A)に示す火源18から立ち上がる微量の煙24を画像処理により検知するが、この場合、初期の煙24は、図2(B)に示すように、半透明かつ円筒状の物体が、揺らぎつつ火源より上方へ伸びて行く煙モデル24aとして考えられる。
[Detection principle]
The principle of detecting a small amount of smoke according to the present invention will be described as follows. In the present invention, a small amount of smoke 24 rising from the fire source 18 shown in FIG. 2A is detected by image processing. In this case, the initial smoke 24 is translucent, as shown in FIG. It can be considered as a smoke model 24a in which a cylindrical object extends upward from a fire source while fluctuating.

この煙モデル24aは、図2(C)の濃度分布に示すように、中心部ほど煙濃度は濃く、周辺では相対的に薄くなるため、監視カメラ10で撮像した画像においては背景に対し煙24の中心が最も透過しない稜線を描くと考えられる。   In the smoke model 24a, as shown in the density distribution of FIG. 2C, the smoke density is higher at the center and relatively thinner at the periphery. It is thought that the center of the line draws the ridgeline that is least transparent.

そこで、画像に対しエッジ強調処理を適用して煙の稜線を抽出し、更に、画像を細かい領域に分割した後に、各々の領域に対してハフ変換を行って直線成分を抽出する。このようにして抽出した煙による直線成分は、時間の経過に伴い揺らぎつつ上方へ伸びて行く。これに対し背景に存在する直線成分は、時間が経過しても変化せず、定常的に存在している。このため抽出した直線成分の時系列での変化を捉えれば、煙による特徴的な時系列的変化を捉えることができる。   Therefore, edge enhancement processing is applied to the image to extract smoke ridge lines, and after the image is divided into fine regions, Hough transform is performed on each region to extract linear components. The linear component due to the smoke extracted in this way extends upward while fluctuating over time. On the other hand, the linear component existing in the background does not change over time and exists constantly. For this reason, if the change of the extracted linear component in the time series is caught, the characteristic time series change due to the smoke can be caught.

以上の結果を基に、所定周期毎に撮像した画像から抽出した各領域の直線成分の方向と累積頻度の時系列変化を求めてみると、煙による特徴的な時系列変化が得られ、火災の初期で細い筋となって立ち上る微量の煙24の検知が可能となる。   Based on the above results, finding the time-series changes in the direction and cumulative frequency of the linear components of each region extracted from the images taken at predetermined intervals, characteristic time-series changes due to smoke are obtained, It is possible to detect a small amount of smoke 24 that rises as a thin line in the initial stage.

[火災の誤判断]
本発明の検出原理に示したように、画像に対しエッジ強調処理を適用して煙の稜線を抽出し、細かい領域に分割した後に、各々の領域に対してハフ変換を行って直線成分を抽出し、抽出した直線成分の煙による特徴的な時系列変化を捉えて火災を判断する場合、例えばテレビ画面16aの映像の処理で得られた直線成分の時系列的変化が煙による特徴的な時系列変化と区別できない場合があり、そのままでは、テレビ画面16aの動きある映像を、火災と誤って判断してしまう可能性がある。本発明にあっては、テレビ画面の映像のように動きのある画像から誤って火災を判断してしまうこと防止する。
[Fire misjudgment]
As shown in the detection principle of the present invention, edge enhancement processing is applied to an image to extract smoke ridge lines, and after dividing into fine areas, Hough transform is performed on each area to extract linear components When a fire is judged by capturing a characteristic time-series change due to smoke of the extracted linear component, for example, a time-series change of the linear component obtained by processing the video on the TV screen 16a is a characteristic time due to smoke. There is a case where it cannot be distinguished from the series change, and there is a possibility that the moving image of the television screen 16a is erroneously determined as a fire as it is. In the present invention, it is possible to prevent a fire from being erroneously determined from a moving image such as an image on a television screen.

[火災検知装置]
(火災検知装置の機能構成)
図3は本発明による火災検知装置の機能構成の概略を示したブロック図である。図3に示すように、火災検知装置は、監視カメラ10と画像処理装置12で構成される。
[Fire detection device]
(Functional configuration of fire detection device)
FIG. 3 is a block diagram schematically showing the functional configuration of the fire detection device according to the present invention. As shown in FIG. 3, the fire detection device includes a monitoring camera 10 and an image processing device 12.

画像処理装置12は、そのハードウェアとしてCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等で構成され、CPUによるプログラムの実行により実現される機能として、稜線抽出手段として機能する稜線抽出部28、火災判断手段として機能する火災判断部30を備える。   The image processing apparatus 12 includes a CPU, a memory, a computer circuit having various input / output ports and the like as hardware, and a ridge line extraction functioning as a ridge line extraction unit as a function realized by executing a program by the CPU. The unit 28 includes a fire determination unit 30 that functions as a fire determination unit.

更に、火災判断部30の機能として、直線成分抽出手段として機能する直線成分抽出部32、時系列変化検出手段として機能する時系列変化検出部34、煙候補判断手段として機能する煙候補判断部36及び火災判断手段として機能する火災判断部38を設けている。また、伝送部26は監視カメラ10で撮像した画像データを受信する適宜の伝送インタフェースが使用される。   Furthermore, as functions of the fire determination unit 30, a linear component extraction unit 32 that functions as a linear component extraction unit, a time series change detection unit 34 that functions as a time series change detection unit, and a smoke candidate determination unit 36 that functions as a smoke candidate determination unit And a fire determination unit 38 that functions as a fire determination means. The transmission unit 26 uses an appropriate transmission interface that receives image data captured by the monitoring camera 10.

撮像手段として機能する監視カメラ10は、伝送部26の伝送制御により動画データとして、例えば毎秒30フレームとなる監視領域の画像データを伝送し、画像処理装置12に設けた図示しないメモリに記憶する。   The monitoring camera 10 functioning as an imaging unit transmits image data in a monitoring area at 30 frames per second, for example, as moving image data by transmission control of the transmission unit 26 and stores the image data in a memory (not shown) provided in the image processing device 12.

稜線抽出部28は、メモリに記憶したフレーム単位の画像から稜線を抽出して稜線画像を生成する。例えばこの場合、稜線抽出部28は画像に対しエッジ強調処理の1つであるゾーベルフィルタ(Sobel Filter)を適用し、例えば図4に示すように、煙稜線24bの抽出を含む稜線画像20を生成する。なお、稜線抽出部28による稜線抽出処理は、全フレーム画像を対象とせず、処理速度の関係で所定フレーム数を間引きしたフレーム毎に行うようにしても良い。   The ridge line extraction unit 28 generates a ridge line image by extracting a ridge line from the frame-unit image stored in the memory. For example, in this case, the ridge line extraction unit 28 applies a Sobel filter, which is one of the edge enhancement processes, to the image, and for example, as illustrated in FIG. 4, the ridge line image 20 including extraction of the smoke ridge line 24b. Generate. Note that the ridge line extraction processing by the ridge line extraction unit 28 may be performed for each frame in which a predetermined number of frames are thinned out because of the processing speed, without targeting all frame images.

ゾーベルフィルタは、ある注目画素を中心とした上限左右の9つの画素値に対し、水平方向と垂直方向の2つの係数行列による所定の係数を乗算して総和を求めることで、画像中に存在するある領域の境界(エッジ)を検出可能とする微分処理であり、これを適用して、稜線抽出部28は図4に示すように、火源18から上方に立ち上がる煙の画像から煙の稜線24bを抽出する。また、稜線抽出部28は監視領域11の火源18、背景及びテレビ16についても、同様に、それぞれの稜線を抽出する。   The Sobel filter is present in the image by multiplying the nine pixel values at the upper left and right with a certain target pixel as the center by multiplying a predetermined coefficient by two coefficient matrices in the horizontal and vertical directions to obtain the sum. This is a differential process that makes it possible to detect the boundary (edge) of a certain area, and by applying this, the ridge line extraction unit 28 detects the ridge line of smoke from the image of smoke rising upward from the fire source 18, as shown in FIG. 24b is extracted. Similarly, the ridge line extraction unit 28 extracts each ridge line for the fire source 18, the background, and the television 16 in the monitoring area 11.

火災判断部30は、稜線抽出部28で抽出した稜線の中から煙による特徴的な所定の稜線を検知して火災を判断するものであり、具体的には、直線成分抽出部32、時系列変化検出部34、煙候補判断部36及び火災判断部38により火災を検知する。   The fire determination unit 30 determines a fire by detecting a predetermined predetermined ridge line due to smoke from the ridge lines extracted by the ridge line extraction unit 28. Specifically, the fire determination unit 30 includes a linear component extraction unit 32, a time series, and the like. The change detection unit 34, the smoke candidate determination unit 36, and the fire determination unit 38 detect a fire.

直線成分抽出部32は、稜線抽出部28で抽出し稜線の画像20を図4の点線で示すように、複数の領域、例えば64×64画素の領域に分割し、領域毎に例えばハフ変換(Hough変換)を施して稜線の直線成分を抽出する。ハフ変換は画像中の直線線分を抽出する方法として知られており、画像中のn個の点に対し、ρ―θ平面上ではn個の曲線が得られ、この内、m個の曲線が1点で交わっていれば、このm個の点に対応する画像上のm個の点は同一直線上にあることとなり、これにより直線成分を抽出できる。   The straight line component extraction unit 32 divides the image 20 of the ridge line extracted by the ridge line extraction unit 28 into a plurality of regions, for example, 64 × 64 pixel regions, as shown by dotted lines in FIG. Hough transform) is performed to extract the linear component of the ridgeline. The Hough transform is known as a method for extracting a straight line segment in an image. For n points in the image, n curves are obtained on the ρ-θ plane. Of these, m curves are obtained. Are intersected at one point, m points on the image corresponding to the m points are on the same straight line, and thereby a linear component can be extracted.

時系列変化検出部34は、直線成分抽出部32によるハフ変換で抽出した直線成分の傾きと発生頻度の時系列変化を求める。   The time series change detection unit 34 obtains the time series change of the slope and occurrence frequency of the straight line component extracted by the Hough transform by the straight line component extraction unit 32.

図5は、図4の稜線画像20について、説明の都合上、処理対象とする領域を特定して示した説明図であり、火源18の直上の4領域をA1〜A4とし、2箇所の背景となる領域をA5,A6とし、更にテレビ画面16aを含む領域をA7〜A18としている。   FIG. 5 is an explanatory diagram showing the areas to be processed for the convenience of explanation with respect to the ridge line image 20 of FIG. 4. The four areas immediately above the fire source 18 are designated as A1 to A4, and two areas are shown. The background areas are A5 and A6, and the area including the television screen 16a is A7 to A18.

図5の稜線画像にあっては、火源18から煙稜線24aが立ち上がって先端が領域A2まで延びている。一方、背景となる領域A5には上下方向に4本が定常的に存在し、また背景となる領域A6には、縦方向に1本、横方向ら6本の稜線が定常的に存在している。また、テレビ画面16aには、受信している放送番組により動きのある映像(図示せず)が映し出されている。   In the ridge line image of FIG. 5, the smoke ridge line 24a rises from the fire source 18 and the tip extends to the area A2. On the other hand, in the background area A5, there are regularly four vertical lines, and in the background area A6, one vertical line and six horizontal edges are present. Yes. The television screen 16a displays a moving image (not shown) depending on the received broadcast program.

(煙稜線から抽出した直線成分の時系列変化)
図6は図5の火源18の直上となる領域A1について間引きフレームの4周期分となる時刻t1〜t4で抽出した直線成分の時系列変化を示している。時刻t1では、領域A1を通過する煙稜線の直線成分は、領域下辺中央を原点とした二次元座標において、上方をθ1=0°とすると発生頻度は2本となり、右斜め上方をθ2とすると発生頻度は2本となり、左斜め上方をθ3とすると発生頻度は1本となる。このような領域A1を通過する煙稜線の直線成分は、立ち上がる煙の揺らぎに応じ時刻t2〜t4に示すように、その方向と発生頻度が変化する。
(Time series change of straight line components extracted from smoke ridge lines)
FIG. 6 shows time-series changes of the linear components extracted at times t1 to t4 corresponding to four periods of the thinned frame in the area A1 immediately above the fire source 18 in FIG. At time t1, the linear component of the smoke ridge line passing through the area A1 has two occurrence frequencies when the upper direction is θ1 = 0 ° in the two-dimensional coordinates with the center of the lower side of the area as the origin, and the upper right diagonal direction is θ2. The occurrence frequency is two, and if the upper left diagonal is θ3, the occurrence frequency is one. The direction and frequency of occurrence of the linear component of the smoke ridge line passing through the region A1 changes as shown at times t2 to t4 according to the fluctuation of the rising smoke.

図7は図6の領域A1の直線成分の時系列変化を示した説明図であり、直線成分を傾きθと発生頻度の長さを持つベクトルを累積して示している。   FIG. 7 is an explanatory diagram showing a time-series change of the linear component in the area A1 of FIG. 6, and the linear component is shown by accumulating vectors having a slope θ and the length of occurrence frequency.

図7に示すように、時刻t1で
ベクトルB1は(θ1,2)
ベクトルB2は(θ2,2)
ベクトルB2は(θ3,1)
となり、時刻t2〜t4では、その時系列変化に応じて累積的に増加していく。
As shown in FIG. 7, at time t1, the vector B1 is (θ1, 2).
The vector B2 is (θ2, 2)
The vector B2 is (θ3, 1)
Thus, from time t2 to t4, it increases cumulatively according to the time series change.

図8は図5の火源18の直上となる領域A1の上となる領域A2について、間引きフレームの4周期分となる時刻t1〜t4で抽出した直線成分の時系列変化を示している。領域A2では立ち上がる煙の揺らぎが多くなっており、このため、時刻t1では、領域A2を通過する煙稜線の直線成分は、上方をθ1=0°とすると発生頻度は1本となり、右斜め上方をθ2とすると発生頻度は1本となり、左斜め上方をθ3とすると発生頻度は2本となり、更にθ2より大きい右斜め上方をθ4とすると発生頻度は1本となり、θ3より大きい左斜め上方をθ5とすると発生頻度は1本となる。   FIG. 8 shows a time-series change of the linear components extracted at times t1 to t4 corresponding to four periods of the thinned-out frame in the area A2 above the area A1 immediately above the fire source 18 in FIG. In the area A2, the rising smoke fluctuates, and therefore, at time t1, the linear component of the smoke ridge line passing through the area A2 has an occurrence frequency of 1 when the upper direction is θ1 = 0 °, and the upper right diagonal If θ2 is θ2, the occurrence frequency is 1, and if the upper left is θ3, the occurrence frequency is 2. Further, if the upper right oblique direction is larger than θ2, the occurrence frequency is one, and the upper left oblique direction is larger than θ3. If θ5, the frequency of occurrence is one.

このように領域A2を通過する煙稜線の直線成分は、立ち上がる煙の揺らぎに応じ時刻t2〜t4に示すように、その方向と発生頻度が変化する。   Thus, the direction and frequency of occurrence of the linear component of the smoke ridge line passing through the region A2 changes as shown at times t2 to t4 according to the fluctuation of the rising smoke.

図9は図8の領域A2の直線成分の時系列変化を示した説明図であり、直線成分を傾きθと発生頻度の長さを持つベクトルを累積して示している。   FIG. 9 is an explanatory diagram showing a time-series change of the linear component in the area A2 of FIG. 8, and the linear component is shown by accumulating vectors having the slope θ and the length of occurrence frequency.

図9に示すように、時刻t1で
ベクトルB1は(θ1,1)、
ベクトルB2は(θ2,1)
ベクトルB3は(θ3,2)、
ベクトルB4は(θ4,1)、
ベクトルB5は(θ5,1)
となり、時刻t2〜t4では、その時系列変化に応じて累積的に増加していく。
As shown in FIG. 9, at time t1, the vector B1 is (θ1, 1),
The vector B2 is (θ2,1)
The vector B3 is (θ3, 2),
The vector B4 is (θ4, 1),
The vector B5 is (θ5, 1)
Thus, from time t2 to t4, it increases cumulatively according to the time series change.

このように時系列変化検出部34により検知された煙稜線の各領域の直線成分の時系列変化は、図7及び図9の時刻t4に示すように、傾きと発生頻度と異なる累積ベクトルが放射状に複数存在する所謂デイジーパターンとなっており、これが煙による特徴的な時系列変化となる。   As described above, the time-series change of the linear component in each area of the smoke ridge line detected by the time-series change detection unit 34 is, as shown at time t4 in FIGS. A plurality of so-called daisy patterns exist, and this is a characteristic time-series change due to smoke.

(背景稜線から抽出した直線成分の時系列変化)
図10は図5の背景となる領域A5について、間引きフレームの4周期分の時刻t1〜t4で抽出した直線成分の時系列変化を示している。領域A5では背景に上下に4本の直線成分が定常的に存在しており、このため、時刻t1〜t4の全てで、領域A5に存在する直線成分は、上方をθ1=0°とすると発生頻度は4本となる。
(Time series change of straight line components extracted from the background ridgeline)
FIG. 10 shows a time-series change of the straight line components extracted at times t1 to t4 for four cycles of the thinned-out frame in the area A5 as the background of FIG. In the area A5, four linear components are constantly present in the upper and lower sides in the background. Therefore, at all times t1 to t4, the linear components existing in the area A5 are generated when θ1 = 0 ° upward. The frequency is four.

図11は図10の領域A5の直線成分の時系列変化を示した説明図であり、直線成分を傾きθと発生頻度の長さを持つベクトルを累積して示している。   FIG. 11 is an explanatory diagram showing a time-series change of the linear component in the area A5 of FIG. 10, and the linear component is shown by accumulating vectors having the slope θ and the length of occurrence frequency.

図11に示すように、時刻1でベクトルB1は(θ1,1)となり、時刻t2〜t4では、その時系列変化に応じて一定の発生頻度=4により累積的に増加していく。   As shown in FIG. 11, at time 1, the vector B1 becomes (θ1, 1), and from time t2 to t4, the vector B1 increases cumulatively with a constant occurrence frequency = 4 according to the time series change.

図12は図5の背景となる領域A6について、間引きフレームの4周期分の時刻t1〜t4で抽出した直線成分の時系列変化を示している。領域A6では背景に、縦方向に1本、横方向に6本の直線成分が定常的に存在しており、領域下辺の中央を原点とした二次元座標において、右側をθ5=+90°、左側をθ6=−90°、左斜め上方をθ7とすると、時刻t1〜t4の全てで、
θ1の発生頻度は1本
θ5の発生頻度は2本
θ6の発生頻度は2本
θ7の発生頻度は2本
となり、傾き及び発生頻度は変化せず、一定である。
FIG. 12 shows a time-series change of the straight line components extracted at times t1 to t4 for four cycles of the thinned frame in the area A6 as the background of FIG. In the area A6, there are one straight line component in the vertical direction and six straight line components in the background in the background, and in the two-dimensional coordinates with the origin at the center of the lower side of the area, the right side is θ5 = + 90 ° and the left side Is θ6 = −90 ° and the diagonally upper left is θ7, at all times t1 to t4,
The frequency of occurrence of θ1 is one, the frequency of occurrence of θ5 is two, the frequency of occurrence of θ6 is two, the frequency of occurrence of θ7 is two, and the inclination and the frequency of occurrence are constant and constant.

図13は図12の領域A6の直線成分の時系列変化を示した説明図であり、直線成分を傾きθと発生頻度の長さを持つベクトルを累積して示している。   FIG. 13 is an explanatory diagram showing a time-series change of the linear component in the area A6 of FIG. 12, and shows the linear component accumulated by a vector having a slope θ and a length of occurrence frequency.

図13に示すように、時刻t1で
ベクトルB1は(θ1,1)
ベクトルB5は(θ5,2)
ベクトルB6は(θ6,2)
ベクトルB7は(θ7,2)
となり、時刻t2〜t4では、その時系列変化に応じて一定の発生頻度により累積的に増加していく。
As shown in FIG. 13, at time t1, the vector B1 is (θ1, 1).
Vector B5 is (θ5,2)
The vector B6 is (θ6, 2)
The vector B7 is (θ7,2)
From time t2 to time t4, it increases cumulatively at a constant frequency according to the time series change.

このように時系列変化検出部34により検知された背景稜線の各領域の直線成分の時系列変化は、図11及び図13の時刻t4に示したように、傾きが一定で発生頻度も一定の定常パターンとなり、煙による特徴的な時系列変化を示すデイジーパターンから明確に区別することがでる。   As described above, the time-series change of the linear component of each region of the background ridge line detected by the time-series change detection unit 34 has a constant slope and a constant frequency of occurrence as shown at time t4 in FIGS. It becomes a steady pattern and can be clearly distinguished from a daisy pattern that shows characteristic time-series changes due to smoke.

(テレビ画面から抽出した直線成分の時系列変化)
図4のテレビ画面16aには放送番組の映像から抽出した映像稜線画像が生成されており、この映像稜線画像は時系列的に様々に変化する動きのある画像であり、このため図3の時系列変化検出部34による領域A7〜A18の各々についての稜線直線成分の時系列変化は、図7及び図9に示したと同様、傾きと発生頻度の異なる累積ベクトルが放射状に複数存在する所謂デイジーパターンとなっており、煙による特徴的な時系列変化と同様な変化となり、そのままでは区別できない。
(Time series change of linear components extracted from TV screen)
A video ridge line image extracted from the video of the broadcast program is generated on the TV screen 16a in FIG. 4, and this video ridge line image is an image that moves in various ways in time series. The time series change of the ridge line linear component for each of the regions A7 to A18 by the series change detection unit 34 is a so-called daisy pattern in which a plurality of cumulative vectors having different slopes and occurrence frequencies exist in the same manner as shown in FIGS. The change is similar to the characteristic time-series change caused by smoke and cannot be distinguished as it is.

[煙領域候補と火災判断]
図3の煙候補判断部36は、時系列変化検出部34で検出した稜線直線成分の時系列変化の中から煙による特徴的な所定の時系列変化を検知した場合に煙候補領域と判断する。例えば煙候補判断部36は、傾きが一定で発生頻度の異なる直線成分の時系列変化を複数検知した場合、所謂デイジーパターンを検知した場合に、煙候補領域と判断し、一方、傾きが一定で発生頻度も一定となる直線成分の時系列変化を検知した場合、所謂定常パターンを検知した場合に、非煙候補領域と判断して除外する。
[Smoke area candidates and fire judgment]
The smoke candidate determination unit 36 in FIG. 3 determines a smoke candidate region when a characteristic predetermined time series change due to smoke is detected from the time series change of the ridge line linear component detected by the time series change detection unit 34. . For example, the smoke candidate determination unit 36 determines a smoke candidate region when detecting a plurality of time-series changes of linear components having a constant inclination and different occurrence frequencies, when detecting a so-called daisy pattern, while determining that the inclination is constant. When a time-series change of a linear component having a constant occurrence frequency is detected, when a so-called steady pattern is detected, it is determined as a non-smoke candidate region and excluded.

図3の火災判断部38は、煙候補判断部36で判断した煙候補領域の分布に基づいて火災を判断する。例えば、火災判断部38は、火災初期の段階で多い燻焼燃焼では、ごく微量の煙が立ち上がって行くことから、煙候補領域の所定領域数を越えて上方に延びる分布を検知した場合に火災と判断する。一方、火災判断部38は、テレビ画面の映像から判断された煙候補領域のように、煙候補領域が1又は複数領域内に留まる分布を検知した場合は非火災と判断する。   The fire determination unit 38 of FIG. 3 determines a fire based on the distribution of smoke candidate areas determined by the smoke candidate determination unit 36. For example, the fire determination unit 38 detects a distribution extending upward beyond a predetermined number of smoke candidate areas because a very small amount of smoke rises in the smoldering combustion that is often performed at the early stage of the fire. Judge. On the other hand, the fire determination unit 38 determines that there is no fire when it detects a distribution in which the smoke candidate area remains within one or a plurality of areas, such as the smoke candidate area determined from the video on the television screen.

図14は、図5で特定した領域から所定の間引きフレームの4周期分の時刻t1〜t4で判断した煙候補領域の分布を示した説明図であり、煙候補領域をハッチングで示している。   FIG. 14 is an explanatory diagram showing the distribution of smoke candidate areas determined at times t1 to t4 for four cycles of a predetermined thinned frame from the area specified in FIG. 5, and the smoke candidate areas are indicated by hatching.

図14において、煙候補領域A1〜A4は、時間の経過に伴って上方に延びる分布を示しており、これは燻焼燃焼により、ごく微量の煙が立ち上がって行く煙に特有な分布であることから、火災と判断する。この場合、上方に向って伸びる煙候補領域の所定領域数、例えば3領域を超えて4領域となった時刻t4のタイミングで火災と判断する。   In FIG. 14, the smoke candidate areas A1 to A4 show a distribution that extends upward with the passage of time, and this is a distribution specific to smoke in which a very small amount of smoke rises due to smoldering combustion. Judged as a fire. In this case, it is determined that there is a fire at the timing of time t4 when the number of smoke candidate areas extending upward reaches a predetermined number of areas, for example, 3 areas and becomes 4 areas.

一方、煙候補領域A7〜A18はテレビ画面の映像から煙候補領域と判断されており、その分布は、テレビ画面16aのサイズに対応した矩形の範囲内に留まっており、煙のように所定領域数を越えて上方に延びる分布とはならず、火災とは判断しない。   On the other hand, the smoke candidate areas A7 to A18 are determined to be smoke candidate areas from the video on the TV screen, and the distribution remains within a rectangular range corresponding to the size of the TV screen 16a. The distribution does not extend upward beyond the number, and it is not judged as a fire.

また、図14では領域A7〜A18を全て煙候補領域と判断した場合を例示しているが、動きの少ない番組映像では、領域A7〜A18の中の一部の領域が離散的に煙候補領域と判断され、画面サイズに対応した矩形の範囲内で上方に延びる分布を生ずる場合も想定されるが、所定領域数を越えて上方に延びる分布とはならないことから、火災とは判断されることはない。   Further, FIG. 14 illustrates a case where all the areas A7 to A18 are determined as smoke candidate areas. However, in a program video with little movement, some areas in the areas A7 to A18 are discretely smoke candidate areas. It is assumed that a distribution extending upward within a rectangular range corresponding to the screen size is assumed, but since it does not have a distribution extending upward beyond the predetermined number of areas, a fire is determined. There is no.

図15は、監視領域に人がいる場合の画像処理の領域を特定すると共にその煙候補領域の分布を示した説明図である。図15(A)に示すように、監視領域に配置したソファに人15が座っている場合、この状態で人15の手足などは様々な動きを示し、動いた部分の稜線直線成分の時系列変化から図15(B)にハッチングで示す煙候補領域が判断される。   FIG. 15 is an explanatory diagram showing the image processing area when there is a person in the monitoring area and the distribution of the smoke candidate area. As shown in FIG. 15A, when a person 15 is sitting on a sofa placed in the monitoring area, the limbs of the person 15 show various movements in this state, and the time series of the ridge line component of the moved part is shown. From the change, a smoke candidate region indicated by hatching in FIG.

この場合にも、図14に示したテレビ画面に対応した煙候補領域の場合と同様、その分布は、人15の姿勢に対応した範囲内に留まっており、煙のように所定領域数を越えて上方に延びる分布とはならず、火災と判断することはない。   In this case as well, as in the case of the smoke candidate area corresponding to the television screen shown in FIG. 14, the distribution remains within the range corresponding to the posture of the person 15 and exceeds the predetermined number of areas like smoke. Therefore, the distribution does not extend upward, and it is not judged as a fire.

また、監視領域内を人15が移動する場合については、人15が通過した各領域で例えば図9又は図11の時刻t1に示すようなベクトル長の短いデイジーパターンを一時的に生成するが、通過してしまうと時系列的な累積発生頻度となる累積ベクトルは増加せず、累積発生頻度に対し所定の閾値を設定し、閾値以上の累積発生頻度をもつ領域を煙候補領域と判断することで、人の移動に伴う稜線直線成分の時系列変化から火災を判断することはない。   In the case where the person 15 moves in the monitoring area, a daisy pattern having a short vector length is temporarily generated in each area through which the person 15 passes, for example, as shown at time t1 in FIG. 9 or FIG. The cumulative vector that becomes the time-series cumulative occurrence frequency does not increase if it passes, and a predetermined threshold is set for the cumulative occurrence frequency, and an area having an accumulated occurrence frequency equal to or greater than the threshold is determined as a smoke candidate area Therefore, a fire is not judged from the time-series change of the ridge line component accompanying the movement of the person.

また、監視領域に人が留まって動きのない場合には、背景稜線と同じ定常パターンの時系列変化となり、火災判断に影響を及ぼすことはない。   In addition, when a person stays in the monitoring area and does not move, it becomes a time-series change of the same steady pattern as the background ridgeline, and does not affect the fire judgment.

[火災検知動作]
図16は図3の画像処理装置による火災検知動作を示したフローチャートである。
[Fire detection operation]
FIG. 16 is a flowchart showing a fire detection operation by the image processing apparatus of FIG.

図16において、画像処理装置12は、ステップS1(以下「ステップ」は省略)で監視カメラ10により動画画像として例えば30フレーム/秒で撮像した監視領域の画像を取得してメモリに記憶し、S2で稜線検出部28によるゾーベルフィルタの適用により画像から稜線を抽出する。   In FIG. 16, the image processing apparatus 12 acquires an image of a monitoring area captured at, for example, 30 frames / second as a moving image by the monitoring camera 10 in step S1 (hereinafter “step” is omitted), and stores the acquired image in a memory. Then, the ridge line is extracted from the image by applying the Sobel filter by the ridge line detection unit 28.

続いてS3で直線成分抽出部32により稜線の画像を複数の領域に分割し、S4で領域毎にハフ変換を施して稜線の直線成分を抽出した後、S5に進んで時系列変化検出部34により、S3で抽出した直線成分の傾きと発生累積頻度による時系列変化を求め、S4で火災検知部36により直線成分の傾きと発生頻度の時系列変化の中から煙による特徴的な直線成分の傾きと発生累積頻度となる所定の時系列変化、例えばデイジーパターンを検知して煙候補領域を判断する。   Subsequently, in S3, the image of the ridge line is divided into a plurality of regions by the straight line component extraction unit 32, and the Hough transform is performed for each region in S4 to extract the straight line component of the ridge line. To obtain a time-series change based on the slope of the linear component extracted in S3 and the cumulative frequency of occurrence. In S4, the fire detection unit 36 determines the characteristic linear component due to smoke from the time-series change of the slope of the linear component and the occurrence frequency. A smoke candidate region is determined by detecting a predetermined time-series change that is an inclination and a cumulative frequency of occurrence, for example, a daisy pattern.

続いてS7で煙候補領域の分布から、時間の経過に伴って上方に延びる煙に特有な分布の有無を判断する。その結果としてS8で火災を判断した場合はS9で火災検知信号を火災報知設備に出力して火災警報を出力させる。一方、S8で火災をf判断しなかった場合は、S1に戻り、同様な処理を繰り返す。   Subsequently, in S7, it is determined from the distribution of the smoke candidate area whether or not there is a distribution peculiar to smoke that extends upward with the passage of time. As a result, when a fire is determined in S8, a fire detection signal is output to the fire alarm facility in S9 to output a fire alarm. On the other hand, if the fire is not determined in S8, the process returns to S1 and the same processing is repeated.

〔本発明の変形例〕
(動きのあるもの)
上記の実施形態は、煙以外で煙候補領域と判断される対象としてテレビ画面の映像、一箇所に人が留まっている場合の手足などの動きを例にとるものであったが、これ以外に時計の振り子の動き、ペット動物、エアコンの風量調整の動き、扇風機の首振り動作などの動きのあるもの全てにつき、煙候補領域と判断しても、その分布から火災と誤って判断することを防止可能とする。
[Modification of the present invention]
(Thing with movement)
In the above embodiment, the image of the TV screen as an object to be determined as a smoke candidate area other than smoke, and the movement of a limb when a person stays in one place is taken as an example. All movements such as the movement of the clock pendulum, the movement of the pet animal, the air volume adjustment of the air conditioner, the swinging movement of the fan, etc. may be mistakenly judged to be a fire from the distribution even if it is judged as a smoke candidate area. It can be prevented.

(稜線抽出)
上記の実施形態にあっては、画像にゾーベルフィルタを適用して煙の稜線を抽出しているが、プレヴィットフィルタ(Prewitt Filter)等のエッジ強調処理に用いた適宜のフィルタを適用しても良い。
(Ridge line extraction)
In the above embodiment, the ridge of smoke is extracted by applying a Sobel filter to the image, but an appropriate filter used for edge enhancement processing such as a Previtt filter is applied. Also good.

(直線成分抽出)
上記の実施形態にあっては、ハフ変換を適用して煙の稜線を抽出しているが、Line Segment Detector(LSD)等の画像から直線成分を抽出する処理方法を適用しても良い。
(Linear component extraction)
In the above embodiment, the smoke ridge line is extracted by applying the Hough transform. However, a processing method for extracting a linear component from an image such as Line Segment Detector (LSD) may be applied.

(画像処理装置)
上記の実施形態にあっては、監視カメラと画像処理装置を分離配置して伝送路により接続しているが、両者を一体化した装置としても良い。
(Image processing device)
In the above embodiment, the surveillance camera and the image processing apparatus are separately arranged and connected by a transmission path, but an apparatus in which both are integrated may be used.

また、本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
The present invention is not limited to the above-described embodiment, includes appropriate modifications without impairing the object and advantages thereof, and is not limited by the numerical values shown in the above-described embodiment.

10:監視カメラ
12:画像処理装置
14:火災報知設備
16:監視領域
18:火源
20:画像
24:煙
24a:煙モデル
24b:煙稜線
26:伝送部
28:稜線抽出部
30:火災判断部
32:直線成分抽出部
34:時系列変化検出部
36:煙候補判断部
38:火災判断部
10: surveillance camera 12: image processing device 14: fire alarm equipment 16: monitoring area 18: fire source 20: image 24: smoke 24a: smoke model 24b: smoke ridge 26: transmission unit 28: ridge extraction unit 30: fire determination unit 32: Linear component extraction unit 34: Time-series change detection unit 36: Smoke candidate determination unit 38: Fire determination unit

Claims (8)

監視領域の画像を撮像する撮像手段と、
前記撮像手段で撮像した画像にエッジ強調処理を施して稜線を抽出する稜線抽出手段と、
前記稜線抽出手段で抽出した稜線の画像を複数の画像領域に分割し、前記画像領域毎に稜線の直線成分を抽出する直線成分抽出手段と、
前記画像領域毎に、前記直線成分抽出手段で抽出した直線成分の時系列での変化を求める時系列変化検出手段と、
前記時系列変化検出手段で検出した直線成分の時系列変化の中から煙による特徴的な所定の時系列変化を検知した場合に煙候補領域と判断する煙候補判断手段と、
前記煙候補判断手段で検知した煙候補領域の分布に基づいて火災を判断する火災判断手段と、
を備えたことを特徴とする火災検知装置。
An imaging means for capturing an image of the monitoring area;
A ridge line extracting unit that performs edge enhancement processing on the image captured by the imaging unit and extracts a ridge line;
A linear component extraction unit that divides the image of the ridge line extracted by the ridge line extraction unit into a plurality of image regions, and extracts a linear component of the ridge line for each image region;
Time series change detection means for obtaining a change in time series of the linear component extracted by the linear component extraction means for each image region;
Smoke candidate determination means for determining a smoke candidate area when a characteristic predetermined time series change due to smoke is detected from the time series change of the linear component detected by the time series change detection means;
Fire determination means for determining a fire based on the distribution of smoke candidate areas detected by the smoke candidate determination means;
A fire detection device comprising:
請求項1記載の火災検知装置に於いて、
前記火災判断手段は、前記煙候補領域の所定領域数を越えて上方に延びる分布を検知した場合に火災と判断することを特徴とする火災検知装置。
In the fire detection device according to claim 1,
The fire detection device determines that a fire is detected when a distribution extending upward beyond a predetermined number of the smoke candidate areas is detected.
請求項1記載の火災検知装置に於いて、
前記火災判断手段は、前記煙候補領域の1又は複数領域内に留まる分布を検知した場合は非火災と判断することを特徴とする火災検知装置。
In the fire detection device according to claim 1,
The fire detection device determines that the fire is not fire when a distribution staying in one or a plurality of smoke candidate areas is detected.
請求項1記載の火災検知装置に於いて、前記煙候補判断手段は、傾きが一定で発生頻度の異なる直線成分の時系列変化を1又は複数検知した場合に煙候補領域と判断し、傾きが一定で発生頻度も一定となる直線成分の時系列変化を検知した場合に非煙候補領域と判断して除外することを特徴とする火災検知装置。
The fire detection device according to claim 1, wherein the smoke candidate determination means determines a smoke candidate region when one or more time-series changes of linear components having a constant inclination and different occurrence frequencies are detected, and the inclination is determined. A fire detection device characterized in that a non-smoke candidate region is excluded when a time-series change of a linear component having a constant occurrence frequency is detected.
撮像手段により監視領域の画像を撮像し、
前記撮像手段で撮像した監視領域の画像に稜線抽出手段によりエッジ強調処理を施して稜線を抽出し、
前記稜線抽出手段で抽出した稜線の画像を複数の画像領域に分割し、前記画像領域毎に直線成分抽出手段により稜線の直線成分を抽出し、
前記画像領域毎に、前記直線成分抽出手段で抽出した直線成分の時系列での変化を時系列変化検出手段により求め、
前記時系列変化検出手段で検出した直線成分の時系列変化の中から、煙候補判断手段により、煙による特徴的な所定の時系列変化を検知した場合に煙候補領域と判断し、
前記煙候補判断手段で検知した煙候補領域の分布に基づいて、火災判断手段により火災を判断する、
ことを特徴とする火災検知方法。
An image of the monitoring area is captured by the imaging means,
Applying edge emphasis processing by the ridge line extraction means to the image of the monitoring area imaged by the imaging means to extract the ridge line,
The image of the ridge line extracted by the ridge line extraction unit is divided into a plurality of image regions, and the linear component of the ridge line is extracted by the linear component extraction unit for each image region,
For each image area, the time-series change detecting means obtains the time-series change of the linear component extracted by the linear component extracting means,
Among the time-series changes of the linear components detected by the time-series change detection means, when the smoke candidate determination means detects a characteristic time-series change characteristic of smoke, it is determined as a smoke candidate area,
Based on the distribution of the smoke candidate area detected by the smoke candidate determination means, determine a fire by the fire determination means,
A fire detection method characterized by that.
請求項5記載の火災検知方法に於いて、
前記火災判断手段は、前記煙候補領域の所定領域数を越えて上方に延びる分布を検知した場合に火災と判断することを特徴とする火災検知方法。
In the fire detection method according to claim 5,
The fire determination means determines that a fire has occurred when a distribution extending upward beyond a predetermined number of smoke candidate areas is detected.
請求項5記載の火災検知方法に於いて、
前記火災判断手段は、前記煙候補領域の1又は複数領域内に留まる分布を検知した場合は非火災と判断することを特徴とする火災検知方法。
In the fire detection method according to claim 5,
The fire detection method according to claim 1, wherein the fire determination unit determines a non-fire when a distribution staying in one or a plurality of smoke candidate areas is detected.
請求項5記載の火災検知方法に於いて、前記煙候補判断手段は、傾きが一定で発生頻度の異なる直線成分の時系列変化を1又は複数検知した場合に煙候補領域と判断し、傾きが一定で発生頻度も一定となる直線成分の時系列変化を検知した場合に非煙候補領域と判断して除外することを特徴とする火災検知方法。   6. The fire detection method according to claim 5, wherein the smoke candidate determination means determines a smoke candidate region when one or more time-series changes of linear components having a constant inclination and different occurrence frequencies are detected, and the inclination is determined. A fire detection method characterized in that a non-smoke candidate region is determined and excluded when a time-series change of a linear component having a constant occurrence frequency is detected.
JP2013107564A 2013-05-22 2013-05-22 Fire detection device and fire detection method Active JP6096589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107564A JP6096589B2 (en) 2013-05-22 2013-05-22 Fire detection device and fire detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107564A JP6096589B2 (en) 2013-05-22 2013-05-22 Fire detection device and fire detection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017026497A Division JP6317490B2 (en) 2017-02-16 2017-02-16 Fire detection device and fire detection method

Publications (2)

Publication Number Publication Date
JP2014229034A JP2014229034A (en) 2014-12-08
JP6096589B2 true JP6096589B2 (en) 2017-03-15

Family

ID=52128838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107564A Active JP6096589B2 (en) 2013-05-22 2013-05-22 Fire detection device and fire detection method

Country Status (1)

Country Link
JP (1) JP6096589B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543127B2 (en) * 2014-07-31 2019-07-10 ホーチキ株式会社 Fire detection device and fire detection method
CN114627607B (en) * 2022-01-30 2022-11-29 江苏蓝图消防装备有限公司 Fire-fighting comprehensive information retrieval system based on industrial sensor network
CN115690695B (en) * 2022-12-29 2024-07-19 杭州浩联智能科技有限公司 Auxiliary treatment method, system and storage medium for fire conditions on construction site

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624036B2 (en) * 1988-09-28 1994-03-30 本田技研工業株式会社 Driving path identification method
JP5518359B2 (en) * 2009-03-31 2014-06-11 能美防災株式会社 Smoke detector
JP2012073099A (en) * 2010-09-28 2012-04-12 Nohmi Bosai Ltd Smoke detection device

Also Published As

Publication number Publication date
JP2014229034A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
US10846867B2 (en) Apparatus, method and image processing device for smoke detection in image
US10032283B2 (en) Modification of at least one parameter used by a video processing algorithm for monitoring of a scene
US10445887B2 (en) Tracking processing device and tracking processing system provided with same, and tracking processing method
KR101593187B1 (en) Device and method surveiling innormal behavior using 3d image information
JP6525545B2 (en) INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND COMPUTER PROGRAM
JP5885398B2 (en) Image processing apparatus and image processing method
JP6806188B2 (en) Information processing system, information processing method and program
KR20080054331A (en) Flame detecting method and device
JP2018029237A5 (en)
WO2016139868A1 (en) Image analysis device, image analysis method, and image analysis program
JP6096589B2 (en) Fire detection device and fire detection method
JP6139982B2 (en) Fire detection device and fire detection method
JP6317490B2 (en) Fire detection device and fire detection method
CN107122743A (en) Security-protecting and monitoring method, device and electronic equipment
JP2011209794A (en) Object recognition system, monitoring system using the same, and watching system
TWI704529B (en) Method and device for detecting an object crossing event at a predetermined first line in a scene
JP6991045B2 (en) Image processing device, control method of image processing device
JP6139977B2 (en) Fire detection device and fire detection method
JP6317073B2 (en) Fire detection device and fire detection method
JP2017168117A (en) Fire detection device and fire detection method
JP6939065B2 (en) Image recognition computer program, image recognition device and image recognition method
JP6124739B2 (en) Image sensor
CN111091024B (en) Small target filtering method and system based on video recognition result
JP2011198261A (en) Object recognition system, monitoring system using this system, and watching system
JP2008123057A (en) Suspicious person detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150