JP6094727B2 - Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method - Google Patents

Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method Download PDF

Info

Publication number
JP6094727B2
JP6094727B2 JP2012178850A JP2012178850A JP6094727B2 JP 6094727 B2 JP6094727 B2 JP 6094727B2 JP 2012178850 A JP2012178850 A JP 2012178850A JP 2012178850 A JP2012178850 A JP 2012178850A JP 6094727 B2 JP6094727 B2 JP 6094727B2
Authority
JP
Japan
Prior art keywords
detected
resonance coil
amplitude
resonance
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012178850A
Other languages
Japanese (ja)
Other versions
JP2014037981A (en
Inventor
弘美 西村
弘美 西村
Original Assignee
地方独立行政法人秋田県立病院機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人秋田県立病院機構 filed Critical 地方独立行政法人秋田県立病院機構
Priority to JP2012178850A priority Critical patent/JP6094727B2/en
Publication of JP2014037981A publication Critical patent/JP2014037981A/en
Application granted granted Critical
Publication of JP6094727B2 publication Critical patent/JP6094727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被検知物を判別する判別装置及び判別方法、被検知物の電気抵抗率を測定する電気抵抗率測定装置及び電気抵抗率測定方法、被検知物の成分含量を推定する成分含量推定装置及び成分含量推定方法、並びに、被検知物の板厚を推定する板厚推定装置及び板厚推定方法に関する。   The present invention relates to a discriminating device and discriminating method for discriminating an object to be detected, an electric resistivity measuring device and an electric resistivity measuring method for measuring the electric resistivity of the object to be detected, and a component content estimation for estimating the component content of the object to be detected. The present invention relates to a device, a component content estimation method, a plate thickness estimation device and a plate thickness estimation method for estimating a plate thickness of an object to be detected.

被検知物の組成等を分析する方法には各種あるが、それぞれに問題があった。例えば、化学的方法では、被検知物の成分分析を行うので破壊検査となり、また設備や時間もかかるという問題があった。蛍光X線分析では、非破壊検査であるが被検知物の表面が露出している必要があり、しかも表面のみの分析で内部は検査できないという問題があった(例えば、特許文献1参照)。熱起電力による方法(例えば、特許文献2参照)は、被検知物の表面が露出している必要があり、被検知物を一定温度に加熱する必要があるという問題があった。   There are various methods for analyzing the composition and the like of the detected object, but each has a problem. For example, the chemical method has a problem that the component analysis of the object to be detected is a destructive inspection, and it takes time and equipment. Although X-ray fluorescence analysis is a nondestructive inspection, there is a problem that the surface of the object to be detected needs to be exposed, and the inside cannot be inspected only by analyzing the surface (for example, see Patent Document 1). The method using the thermoelectromotive force (see, for example, Patent Document 2) has a problem that the surface of the object to be detected needs to be exposed and the object to be detected needs to be heated to a certain temperature.

また、被検知物を非接触で比較的簡便に分析・判別できる方法として渦電流方式がある(例えば、特許文献3参照)。しかし、この方法は、測定値が被検知物とセンサとの距離に強く依存するので、同一距離で比較しなければならず、被検知物の形状が異なる場合には計測値に誤差が生じてしまうという問題があった。   Moreover, there is an eddy current method as a method for analyzing and discriminating a detected object relatively easily without contact (for example, see Patent Document 3). However, since this method strongly depends on the distance between the object to be detected and the sensor, it must be compared at the same distance. If the shape of the object to be detected is different, an error occurs in the measured value. There was a problem that.

特許第4755594号公報Japanese Patent No. 4755594 特開2008−170406号公報JP 2008-170406 A 実用新案登録第3001707号公報Utility Model Registration No. 3001707

本発明は、このような問題に基づきなされたものであり、第1の目的は、非接触かつ非破壊で、被検知物との距離に大きな影響を受けず、被検知物の組成又は組織の違いを判別することができる判別装置又は判別方法を提供することにある。
本発明の第2の目的は、非接触かつ非破壊で、被検知物との距離に大きな影響を受けず、被検知物の電気抵抗率を測定することができる電気抵抗率測定装置又は電気抵抗率測定方法を提供することにある。
本発明の第3の目的は、非接触かつ非破壊で、被検知物との距離に大きな影響を受けず、被検知物の成分含量を推定することができる成分含量推定装置又は成分含量推定方法を提供することにある。
本発明の第4の目的は、非接触かつ非破壊で、被検知物との距離に大きな影響を受けず、被検知物の板厚を推定することができる板厚推定装置又は板厚推定方法を提供することにある。
The present invention has been made on the basis of such problems, and the first object is non-contact and non-destructive, not greatly affected by the distance to the object to be detected, and the composition or structure of the object to be detected. It is an object of the present invention to provide a discrimination device or a discrimination method capable of discriminating a difference.
The second object of the present invention is a non-contact and non-destructive electrical resistance measuring device or electrical resistance capable of measuring the electrical resistivity of a detected object without being greatly affected by the distance to the detected object. It is to provide a rate measuring method.
A third object of the present invention is a component content estimation apparatus or a component content estimation method that is non-contact and non-destructive, and that can estimate the component content of the detected object without being greatly affected by the distance to the detected object. Is to provide.
A fourth object of the present invention is a plate thickness estimation device or a plate thickness estimation method that is non-contact and non-destructive and can estimate the plate thickness of the detected object without being greatly affected by the distance to the detected object. Is to provide.

本発明の判別装置は、被検知物の組成又は組織の違いを判別するものであって、共振コイルとコンデンサーとを有する共振回路と、共振コイルに高周波信号を供給する高周波信号発生回路と、共振コイルに発生する信号の位相差を検出する位相差検出回路と、共振コイルに発生する信号の振幅を検出する振幅検出回路と、位相差検出回路により検出した位相差及び振幅検出回路により検出した振幅に基づき、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を求める比算出部と、比算出部により求めた位相変化量と振幅変化量との比から、被検知物の組成又は組織の違いを判別する判別部とを具備している。   The discriminating apparatus of the present invention discriminates a difference in composition or structure of an object to be detected, and includes a resonant circuit having a resonant coil and a capacitor, a high-frequency signal generating circuit for supplying a high-frequency signal to the resonant coil, A phase difference detection circuit that detects a phase difference of a signal generated in the coil, an amplitude detection circuit that detects an amplitude of the signal generated in the resonance coil, a phase difference detected by the phase difference detection circuit, and an amplitude detected by the amplitude detection circuit Based on the above, a ratio calculation unit that obtains a ratio of a phase change amount and an amplitude change amount when the detection object is approached from a state where the detection object does not exist in the vicinity of the resonance coil, and a phase change obtained by the ratio calculation unit And a discriminating unit that discriminates a difference in composition or structure of the object to be detected from a ratio between the amount and the amplitude change amount.

本発明の電気抵抗率測定装置は、被検知物の電気抵抗率を測定するものであって、共振コイルとコンデンサーとを有する共振回路と、共振コイルに高周波信号を供給する高周波信号発生回路と、共振コイルに発生する信号の位相差を検出する位相差検出回路と、共振コイルに発生する信号の振幅を検出する振幅検出回路と、位相差検出回路により検出した位相差及び振幅検出回路により検出した振幅に基づき、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を求める比算出部と、比算出部により求めた位相変化量と振幅変化量との比から、被検知物の電気抵抗率を求める電気抵抗率算出部とを具備している。   An electrical resistivity measuring device of the present invention measures an electrical resistivity of an object to be detected, and includes a resonant circuit having a resonant coil and a capacitor, a high frequency signal generating circuit for supplying a high frequency signal to the resonant coil, Detected by a phase difference detection circuit that detects a phase difference of a signal generated in the resonance coil, an amplitude detection circuit that detects an amplitude of the signal generated in the resonance coil, and a phase difference detected by the phase difference detection circuit and an amplitude detection circuit Based on the amplitude, a ratio calculation unit that obtains a ratio between a phase change amount and an amplitude change amount when the detection object is brought close to a state where the detection object does not exist in the vicinity of the resonance coil, and a phase obtained by the ratio calculation unit An electrical resistivity calculation unit for obtaining the electrical resistivity of the object to be detected from the ratio between the change amount and the amplitude change amount is provided.

本発明の成分含量推定装置は、被検知物の成分含量を推定するものであって、共振コイルとコンデンサーとを有する共振回路と、共振コイルに高周波信号を供給する高周波信号発生回路と、共振コイルに発生する信号の位相差を検出する位相差検出回路と、共振コイルに発生する信号の振幅を検出する振幅検出回路と、位相差検出回路により検出した位相差及び振幅検出回路により検出した振幅に基づき、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を求める比算出部と、比算出部により求めた位相変化量と振幅変化量との比から、被検知物の成分含量を推定する成分含量算出部とを具備している。   A component content estimation apparatus of the present invention estimates a component content of an object to be detected, and includes a resonance circuit having a resonance coil and a capacitor, a high-frequency signal generation circuit that supplies a high-frequency signal to the resonance coil, and a resonance coil A phase difference detection circuit for detecting the phase difference of the signal generated in the signal, an amplitude detection circuit for detecting the amplitude of the signal generated in the resonance coil, the phase difference detected by the phase difference detection circuit, and the amplitude detected by the amplitude detection circuit. Based on the ratio calculation unit for obtaining the ratio of the phase change amount and the amplitude change amount when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil, and the phase change amount obtained by the ratio calculation unit And a component content calculation unit for estimating the component content of the detected object from the ratio of the amplitude change amount.

本発明の板厚推定装置は、被検知物の板厚を推定するものであって、共振コイルとコンデンサーとを有する共振回路と、共振コイルに高周波信号を供給する高周波信号発生回路と、共振コイルに発生する信号の位相差を検出する位相差検出回路と、共振コイルに発生する信号の振幅を検出する振幅検出回路と、位相差検出回路により検出した位相差及び振幅検出回路により検出した振幅に基づき、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を求める比算出部と、比算出部により求めた位相変化量と振幅変化量との比から、被検知物の板厚を推定する板厚算出部とを具備している。   A plate thickness estimation apparatus according to the present invention estimates a plate thickness of an object to be detected, and includes a resonance circuit having a resonance coil and a capacitor, a high-frequency signal generation circuit that supplies a high-frequency signal to the resonance coil, and a resonance coil A phase difference detection circuit for detecting the phase difference of the signal generated in the signal, an amplitude detection circuit for detecting the amplitude of the signal generated in the resonance coil, the phase difference detected by the phase difference detection circuit, and the amplitude detected by the amplitude detection circuit. Based on the ratio calculation unit for obtaining the ratio of the phase change amount and the amplitude change amount when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil, and the phase change amount obtained by the ratio calculation unit And a plate thickness calculation unit for estimating the plate thickness of the detected object from the ratio of the amplitude change amount.

本発明の判別方法は、被検知物の組成又は組織の違いを判別するものであって、共振コイルとコンデンサーとを有する共振回路を用い、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイルに発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から被検知物の組成又は組織の違いを判別するものである。   The discriminating method of the present invention discriminates the difference in composition or structure of an object to be detected, and uses a resonance circuit having a resonance coil and a capacitor, and detects the object from the state where the object to be detected does not exist in the vicinity of the resonance coil. When the object to be detected is brought closer, the ratio of the phase change amount and the amplitude change amount of the signal generated in the resonance coil is obtained, and the difference in the composition or structure of the object to be detected from the ratio of the obtained phase change amount and amplitude change amount. Is to discriminate.

本発明の電気抵抗率測定方法は、被検知物の電気抵抗率を測定するものであって、共振コイルとコンデンサーとを有する共振回路を用い、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイルに発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から被検知物の電気抵抗率を算出するものである。   The electrical resistivity measurement method of the present invention measures the electrical resistivity of an object to be detected, and uses a resonance circuit having a resonance coil and a capacitor, and the object to be detected does not exist in the vicinity of the resonance coil. When the detected object is approached, the ratio of the phase change amount and the amplitude change amount of the signal generated in the resonance coil is obtained, and the electric resistivity of the detected object is determined from the ratio of the obtained phase change amount and amplitude change amount. Is to be calculated.

本発明の成分含量推定方法は、被検知物の成分含量を推定するものであって、共振コイルとコンデンサーとを有する共振回路を用い、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイルに発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から被検知物の成分含量を推定するものである。   The component content estimation method of the present invention estimates the component content of an object to be detected, and uses a resonance circuit having a resonance coil and a capacitor to detect the object from the state where the object to be detected does not exist in the vicinity of the resonance coil. When the object is brought close, the ratio of the phase change amount and the amplitude change amount of the signal generated in the resonance coil is obtained, and the component content of the detected object is estimated from the ratio of the obtained phase change amount and amplitude change amount It is.

本発明の板厚推定方法は、被検知物の板厚を推定するものであって、共振コイルとコンデンサーとを有する共振回路を用い、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイルに発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から被検知物の板厚を推定するものである。   The plate thickness estimation method of the present invention estimates the plate thickness of an object to be detected, and uses a resonance circuit having a resonance coil and a capacitor to detect the object from a state where the object to be detected does not exist in the vicinity of the resonance coil. When the object is brought close, the ratio of the phase change amount and the amplitude change amount of the signal generated in the resonance coil is obtained, and the plate thickness of the detected object is estimated from the ratio of the obtained phase change amount and amplitude change amount It is.

本発明の判別装置及び判別方法では、共振回路の共振コイルに被検知物を接近させると、被検知物の電磁気学的性質により共振コイルの状態が変わり、共振回路の共振周波数が変化し、共振回路に供給する高周波信号発生部の信号と、共振コイルに生じる信号に位相差が生じる。また、共振回路の共振コイルに被検知物を接近させると、被検知物が電気電導体の場合には渦電流が発生し、共振コイルに生じる信号の振幅が変化する。これら位相変化及び振幅変化は、共振コイルと被検知物との距離に依存する。この依存の程度は位相変化及び振幅変化の両者共に共振コイルと被検知物との距離の二乗に反比例する。これら位相変化及び振幅変化は、共振コイルと被検知物との距離に関し同程度の影響を受ける。よって、位相変化量と振幅変化量との比から計算する角度(以下、判別角という)は、共振コイルと被検知物との距離に大きな影響を受けず、被検知物の磁気的特性(比透磁率、磁気ヒステリシス等)及び電気的特性(電気抵抗率等)により決定される被検知物固有の値(定数)となる。共振コイルと被検知物との距離を計測しなくても、振幅変化と位相変化の2つの情報から距離のパラメータを消去できることが特徴で、距離に大きな影響を受けない被検知物が持つ固有の値(判別角)が計算できる。   In the discriminating apparatus and the discriminating method of the present invention, when the object to be detected is brought close to the resonance coil of the resonance circuit, the state of the resonance coil changes due to the electromagnetic property of the object to be detected, the resonance frequency of the resonance circuit changes, and the resonance There is a phase difference between the signal of the high-frequency signal generator supplied to the circuit and the signal generated in the resonance coil. When the object to be detected is brought close to the resonance coil of the resonance circuit, an eddy current is generated when the object to be detected is an electric conductor, and the amplitude of the signal generated in the resonance coil changes. These phase changes and amplitude changes depend on the distance between the resonance coil and the object to be detected. The degree of this dependence is inversely proportional to the square of the distance between the resonant coil and the object to be detected for both phase change and amplitude change. These phase changes and amplitude changes are affected to the same extent with respect to the distance between the resonant coil and the object to be detected. Therefore, the angle calculated from the ratio between the phase change amount and the amplitude change amount (hereinafter referred to as the discrimination angle) is not greatly affected by the distance between the resonance coil and the detected object, and the magnetic characteristics (ratio) of the detected object. It becomes a value (constant) specific to the object to be detected, which is determined by magnetic permeability, magnetic hysteresis, etc.) and electrical characteristics (electric resistivity, etc.). The feature is that the distance parameter can be deleted from the two information of amplitude change and phase change without measuring the distance between the resonance coil and the object to be detected. A value (discriminant angle) can be calculated.

本発明の電気抵抗率測定装置及び電気抵抗率測定方法では、本発明の判別装置及び判別方法と同様にして、位相変化量と振幅変化量との比を求める。位相変化量と振幅変化量との比から計算する判別角は、被検知物の比透磁率が1に近い場合、電気抵抗率とほぼ直線の関係を有するので、判別角から電気抵抗率を計算できる。   In the electrical resistivity measurement device and electrical resistivity measurement method of the present invention, the ratio between the phase change amount and the amplitude change amount is obtained in the same manner as the discrimination device and discrimination method of the present invention. The discrimination angle calculated from the ratio between the phase change amount and the amplitude change amount has a substantially linear relationship with the electrical resistivity when the relative permeability of the detected object is close to 1, so the electrical resistivity is calculated from the discrimination angle. it can.

本発明の成分含量推定装置及び成分含量推定方法では、本発明の判別装置及び判別方法と同様にして、位相変化量と振幅変化量との比を求める。位相変化量と振幅変化量との比から計算する判別角は、被検知物の比透磁率が1に近い場合、電気抵抗率とほぼ直線の関係を有するので、電気抵抗率と成分含量との関係が既知の場合には、判別角から成分含量を推定できる。   In the component content estimation apparatus and the component content estimation method of the present invention, the ratio between the phase change amount and the amplitude change amount is obtained in the same manner as the determination apparatus and determination method of the present invention. The discrimination angle calculated from the ratio between the phase change amount and the amplitude change amount has a substantially linear relationship with the electrical resistivity when the relative permeability of the object to be detected is close to 1, so that the electrical resistivity and the component content If the relationship is known, the component content can be estimated from the discrimination angle.

本発明の板厚推定装置及び板厚推定方法では、本発明の判別装置及び判別方法と同様にして、位相変化量と振幅変化量との比を求める。位相変化量と振幅変化量との比から計算する判別角は、被検知物の比透磁率が1に近い場合、電気抵抗率とほぼ直線の関係を有する。電気抵抗率は板厚に依存しない材料固有の値である。本発明の計測条件では、渦電流を発生させる高周波信号に依存する深さにまでしか電流が流れない(表皮効果)。すなわち、電気抵抗率を求めるある一定の厚さが必要である。その厚さ以下であれば、材料本来の電気抵抗率は得られず、見かけ上、電気抵抗率は大きくなり、判別角が小さくなる。よって、被検知物の成分や組成が同一で板厚が異なる場合、被検知物の板厚と判別角には比例関係が生じ、判別角から板厚を推定できる。   In the plate thickness estimation apparatus and the plate thickness estimation method of the present invention, the ratio between the phase change amount and the amplitude change amount is obtained in the same manner as the discrimination device and discrimination method of the present invention. The discrimination angle calculated from the ratio between the phase change amount and the amplitude change amount has a substantially linear relationship with the electrical resistivity when the relative permeability of the detected object is close to 1. The electrical resistivity is a material-specific value that does not depend on the plate thickness. Under the measurement conditions of the present invention, current flows only to a depth that depends on the high-frequency signal that generates eddy current (skin effect). That is, a certain thickness for obtaining the electrical resistivity is required. If the thickness is less than that, the original electrical resistivity of the material cannot be obtained, and apparently the electrical resistivity increases and the discrimination angle decreases. Therefore, when the components and compositions of the detected object are the same and the plate thickness is different, a proportional relationship is generated between the plate thickness of the detected object and the discrimination angle, and the plate thickness can be estimated from the discrimination angle.

本発明の判別装置及び判別方法によれば、共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイルに発生する信号の位相変化量と振幅変化量との比を求めるようにしたので、非接触かつ非破壊で、共振コイルと被検知物との距離に大きな影響を受けず、被検知物の組成又は組織に固有の値(判別角)を求めることができる。よって、被検知物の組成又は組織を簡便に判別することができる。   According to the discriminating apparatus and the discriminating method of the present invention, the phase change amount and the amplitude change amount of the signal generated in the resonant coil when the detected object is approached from a state where the detected object does not exist in the vicinity of the resonant coil. Since the ratio is obtained, it is non-contact and non-destructive, and is not greatly affected by the distance between the resonance coil and the object to be detected, and a value (discrimination angle) specific to the composition or tissue of the object to be detected can be obtained. it can. Therefore, the composition or structure of the object to be detected can be easily determined.

本発明の電気抵抗率測定装置及び電気抵抗率測定方法によれば、判別角と電気抵抗率とが比例することを利用し、非接触かつ非破壊で、共振コイルと被検知物との距離に大きな影響を受けず、被検知物の電気抵抗率を簡便に測定することができる。   According to the electrical resistivity measuring apparatus and the electrical resistivity measuring method of the present invention, utilizing the fact that the discrimination angle and the electrical resistivity are proportional, the distance between the resonance coil and the object to be detected is non-contact and non-destructive. The electrical resistivity of the object to be detected can be easily measured without being greatly affected.

本発明の成分含量推定装置及び成分含量推定方法によれば、判別角と電気抵抗率とが比例することを利用し、電気抵抗率と成分含量との関係から、非接触かつ非破壊で、共振コイルと被検知物との距離に大きな影響を受けず、被検知物の成分含量を簡便に推定することができる。   According to the component content estimation apparatus and the component content estimation method of the present invention, using the fact that the discrimination angle and the electrical resistivity are proportional, the relationship between the electrical resistivity and the component content is non-contact, non-destructive, and resonant. The component content of the detected object can be easily estimated without being greatly affected by the distance between the coil and the detected object.

本発明の板厚推定装置及び板厚推定方法によれば、判別角と電気抵抗率とが比例することを利用し、かつ、電気抵抗率は板厚によらない材料固有の値であるが、判別角測定に必要な渦電流を生じさせるにはある程度の板厚が必要となり、その厚さ以下であれば板厚と判別角に相関関係が生じることから、非接触かつ非破壊で、共振コイルと被検知物との距離に大きな影響を受けず、被検知物の板厚を簡便に推定することができる。   According to the plate thickness estimation apparatus and the plate thickness estimation method of the present invention, utilizing the fact that the discrimination angle and the electrical resistivity are proportional, and the electrical resistivity is a material-specific value independent of the plate thickness, A certain amount of plate thickness is required to generate the eddy current required for discrimination angle measurement, and if it is less than that thickness, there is a correlation between the plate thickness and the discrimination angle. The thickness of the detected object can be easily estimated without being greatly affected by the distance between the detected object and the detected object.

本発明の第1の実施の形態に係る判別装置の構成を表す図である。It is a figure showing the structure of the discrimination | determination apparatus which concerns on the 1st Embodiment of this invention. 共振コイルと被検知物との距離と、位相差と、振幅との関係を表す特性図である。It is a characteristic view showing the relationship between the distance of a resonance coil and a to-be-detected object, a phase difference, and an amplitude. 位相変化と、振幅変化との関係を表す特性図である。It is a characteristic view showing the relationship between a phase change and an amplitude change. 判別角を説明する特性図である。It is a characteristic view explaining a discrimination angle. 図1に示した共振回路の共振コイル部分の構成を表すものである。2 illustrates a configuration of a resonance coil portion of the resonance circuit illustrated in FIG. 1. 図1に示した共振回路の共振コイル部分の他の構成を表すものである。2 shows another configuration of the resonance coil portion of the resonance circuit shown in FIG. 1. 図1に示した位相差検出部の回路例を表すものである。2 illustrates a circuit example of a phase difference detection unit illustrated in FIG. 1. 検出部の他の構成例を表すものである。It shows another configuration example of the detection unit. 図1に示した振幅変化量検出部の構成例を表すものである。2 illustrates a configuration example of an amplitude change amount detection unit illustrated in FIG. 1. 本実施例の結果を表すグラフである。It is a graph showing the result of a present Example. 本実施例の他の結果を表すグラフである。It is a graph showing the other result of a present Example. 判別角と被検知物の電気抵抗率との関係を表す特性図である。It is a characteristic view showing the relationship between a discrimination | determination angle and the electrical resistivity of a to-be-detected object.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(一実施の形態)
図1は、本発明の一実施の形態に係る判別装置1の構成を表すものである。この判別装置1は、被検知物の組成又は組織の違いを判別するものであり、例えば、並列に接続された共振コイル11とコンデンサー12とを有する共振回路10と、共振コイル11に高周波信号を供給して共振コイル11に発生する信号の位相差及び振幅を検出する検出部20と、検出部20により検出した位相差及び振幅に基づき、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比から被検知物の組成又は組織の違いを判別するデータ処理部30とを備えている。すなわち、この判別装置1は、共振コイル11に被検知物を接近させた時に、共振コイル11に発生する信号の位相変化量と振幅変化量との比である判別角から被検知物の組成又は組織の違いを判別するものである。
(One embodiment)
FIG. 1 shows a configuration of a determination device 1 according to an embodiment of the present invention. This discriminating device 1 discriminates a difference in composition or structure of an object to be detected. For example, a resonance circuit 10 having a resonance coil 11 and a capacitor 12 connected in parallel, and a high-frequency signal to the resonance coil 11. A detection unit 20 that detects the phase difference and amplitude of a signal that is supplied and generated in the resonance coil 11, and a state in which no object to be detected exists in the vicinity of the resonance coil 11 based on the phase difference and amplitude detected by the detection unit 20. A data processing unit 30 is provided for discriminating the difference in composition or structure of the detected object from the ratio of the phase change amount and the amplitude change amount when the detected object is approached. That is, the discriminating apparatus 1 is configured to detect the composition of the detected object or the composition of the detected object from the discrimination angle that is the ratio of the phase change amount and the amplitude change amount of the signal generated in the resonant coil 11 when the detected object is brought close to the resonance coil 11. It distinguishes between organizational differences.

まず、判別装置1の原理について説明する。共振回路10は、共振コイル11に被検知物を接近させると、被検知物の電磁気学的性質により、共振コイル11のインダクタンスが変化して、共振コイル11に発生する信号の位相が変化する。例えば、被検知物が鉄やフェライト等のように、比透磁率が1より非常に大きい場合には、被検知物を共振コイル11に接近させると、磁束が集束し、見かけ上、コイルが密に巻かれた状態の様になる。そのため、共振コイル11のインダクタンスが増加し、共振回路10の共振周波数が低くなり、共振コイル11に発生する信号の位相は、共振コイル11の近傍に被検知物が存在しない時の位相に比べて遅れる。逆に、例えば、アルミニウムや銅等の比透磁率が1に近い被検知物の場合には、被検知物を共振コイル11に接近させると、磁束の集束は発生せず、被検知物には渦電流が発生し、その反発(反作用)で共振コイル11のインダクタンスが減少する。このインダクタンスの減少は比透磁率によらず発生するが、比透磁率が大きいと磁束の集束の効果が大きく、インダクタンス減少の効果が小さいので、インダクタンスが増加する。よって、比透磁率が1に近い場合には、インダクタンスが減少し、共振回路10の共振周波数が高くなり、共振コイル11の近傍に被検知物が存在しない時の位相に比べて進む。この位相の変化は、共振コイル11と被検知物との距離の二乗に反比例し、距離が近くなるに従って位相の変化は大きくなる。   First, the principle of the discrimination device 1 will be described. When the resonance circuit 10 causes the object to be detected to approach the resonance coil 11, the inductance of the resonance coil 11 changes due to the electromagnetic properties of the object to be detected, and the phase of the signal generated in the resonance coil 11 changes. For example, when the object to be detected is much larger than 1 such as iron or ferrite, when the object to be detected is brought close to the resonance coil 11, the magnetic flux is focused, and the coil is apparently dense. It looks like it is wound around. Therefore, the inductance of the resonance coil 11 is increased, the resonance frequency of the resonance circuit 10 is lowered, and the phase of the signal generated in the resonance coil 11 is compared with the phase when there is no object to be detected in the vicinity of the resonance coil 11. Be late. Conversely, for example, in the case of an object to be detected, such as aluminum or copper, when the object to be detected is brought close to the resonance coil 11, magnetic flux is not converged and the object to be detected is not detected. An eddy current is generated, and the repulsion (reaction) reduces the inductance of the resonance coil 11. This decrease in inductance occurs regardless of the relative permeability. However, if the relative permeability is large, the effect of converging the magnetic flux is large and the effect of reducing the inductance is small, so that the inductance increases. Therefore, when the relative permeability is close to 1, the inductance is decreased, the resonance frequency of the resonance circuit 10 is increased, and the phase advances compared to the phase when the object to be detected does not exist in the vicinity of the resonance coil 11. This phase change is inversely proportional to the square of the distance between the resonant coil 11 and the object to be detected, and the phase change increases as the distance decreases.

また、被検知物を共振コイル11に接近させると、被検知物に渦電流が発生する。この時、被検知物の電気抵抗により電力が消費され、共振コイル11に生じる信号の振幅が変化する。また、インダクタンス変化による共振回路10の共振周波数も変化し、共振回路10と高周波信号発生部21の周波数で決まる振幅変化も同時に生じる。この時の振幅は、共振コイル11と被検知物との距離の二乗に反比例し、距離が近くなるに従って振幅の変化は大きくなる。   Further, when the detected object is brought close to the resonance coil 11, an eddy current is generated in the detected object. At this time, power is consumed by the electrical resistance of the object to be detected, and the amplitude of the signal generated in the resonance coil 11 changes. In addition, the resonance frequency of the resonance circuit 10 due to the inductance change also changes, and an amplitude change determined by the frequencies of the resonance circuit 10 and the high-frequency signal generator 21 occurs simultaneously. The amplitude at this time is inversely proportional to the square of the distance between the resonant coil 11 and the object to be detected, and the change in amplitude increases as the distance decreases.

図2に、共振コイル11と被検知物との距離と、位相差と、振幅との関係を示す。図2は、鋼(SS400)を被検知物として測定した結果であり、横軸が距離の二乗の逆数(単位はmm−2)であり、縦軸が位相差検出回路23Bの出力電圧と振幅検出回路22Aの出力電圧である。図2に示したように、位相の変化及び振幅の変化は共にほぼ直線となり、被検知物との距離の二乗に反比例し、距離が近くなるに従って位相の変化及び振幅の変化が大きくなることが分かる。 FIG. 2 shows the relationship between the distance between the resonance coil 11 and the object to be detected, the phase difference, and the amplitude. FIG. 2 is a result of measuring steel (SS400) as an object to be detected, the horizontal axis is the reciprocal of the square of the distance (unit is mm −2 ), and the vertical axis is the output voltage and amplitude of the phase difference detection circuit 23B. This is the output voltage of the detection circuit 22A. As shown in FIG. 2, both the change in phase and the change in amplitude are substantially straight lines, and are inversely proportional to the square of the distance to the object to be detected. The change in phase and the change in amplitude increase as the distance decreases. I understand.

位相差検出部23の出力である位相差をPとし、及び振幅検出部22の出力である振幅をAとしたとき、例えば、下記の式1により表される。
(式1)
P=Kp/d
A=Ka/d
ここで、Kp,Kaは比例定数、dは共振コイル11と被検知物との距離とする。
When the phase difference that is the output of the phase difference detection unit 23 is P and the amplitude that is the output of the amplitude detection unit 22 is A, for example, it is expressed by Equation 1 below.
(Formula 1)
P = Kp / d 2
A = Ka / d 2
Here, Kp and Ka are proportional constants, and d is the distance between the resonance coil 11 and the object to be detected.

距離dの時の位相差をP、振幅をAとし、また距離dの時の位相差をP、振幅をAとしたとき、位相変化量ΔPと振幅変化量ΔAは下記の式より表される。
ΔP=P−P=Kp/d −Kp/d =Kp(1/d −1/d
ΔA=A−A=Ka/d −Ka/d =Ka(1/d −1/d
このとき位相変化量ΔPと振幅変化量ΔAとの比であるΔA/ΔPは下記の式2より表される。
(式2)
ΔA/ΔP={Ka(1/d −1/d )}/{Kp(1/d −1/d )}
=Ka/Kp
=定数
これら位相変化量及び振幅変化量は、共振コイル11と被検知物との距離に関し同程度の影響を受ける。よって、位相変化量と振幅変化量との比は、式2に示したように距離の因子が消去され定数となる。共振コイルと被検知物との距離に大きな影響を受けず、被検知物の磁気的特性及び電気的特性により決定される固有値となる。
なお、距離とは検知面15と被検知物の距離ではなく実際には共振コイル11とフェライトコア14、被覆体17、遮蔽体18の物理的な構造より決まる位置となる。よって式1にある距離とは(検知面15と被検知物の距離:計測距離+定数 a)となる。よって式1は
P=Kp/(d+a)
A=Ka/(d+a)
となるが、位相変化量ΔPと振幅変化量ΔAとの比であるΔA/ΔPは定数となる。図2のグラフの距離は(検知面15と被検知物の距離:計測距離+定数)で作成している。
When the phase difference at the distance d 0 is P 0 , the amplitude is A 0 , the phase difference at the distance d 1 is P 1 , and the amplitude is A 1 , the phase change amount ΔP and the amplitude change amount ΔA are as follows: It is expressed by the formula of
ΔP = P 1 −P 0 = Kp / d 1 2 −Kp / d 0 2 = Kp (1 / d 1 2 −1 / d 0 2 )
ΔA = A 1 −A 0 = Ka / d 1 2 −Ka / d 0 2 = Ka (1 / d 1 2 −1 / d 0 2 )
At this time, ΔA / ΔP, which is a ratio between the phase change amount ΔP and the amplitude change amount ΔA, is expressed by Equation 2 below.
(Formula 2)
ΔA / ΔP = {Ka (1 / d 1 2 −1 / d 0 2 )} / {Kp (1 / d 1 2 −1 / d 0 2 )}
= Ka / Kp
= Constant These phase change amount and amplitude change amount are affected to the same extent with respect to the distance between the resonance coil 11 and the object to be detected. Therefore, the ratio of the phase change amount and the amplitude change amount becomes a constant with the distance factor eliminated as shown in Equation 2. It is not greatly affected by the distance between the resonance coil and the object to be detected, and is an eigenvalue determined by the magnetic characteristics and electrical characteristics of the object to be detected.
The distance is not the distance between the detection surface 15 and the object to be detected, but actually is a position determined by the physical structure of the resonance coil 11, the ferrite core 14, the covering 17, and the shield 18. Therefore, the distance in Expression 1 is (distance between the detection surface 15 and the object to be detected: measurement distance + constant a). Therefore, Formula 1 is P = Kp / (d + a) 2
A = Ka / (d + a) 2
However, ΔA / ΔP, which is the ratio between the phase change amount ΔP and the amplitude change amount ΔA, is a constant. The distance in the graph of FIG. 2 is created by (distance between the detection surface 15 and the object to be detected: measurement distance + constant).

例えば、距離の関数である位相差及び振幅は、位相変化を横軸に、振幅変化を縦軸にとった二次元平面に投影すると、共振コイル11と被検知物との距離が変化すると位相変化及び振幅変化は共に変化するが、直線上に散布する。なお、図2に示した共振コイル11と被検知物との距離と、位相変化と、振幅変化との関係から、横軸に位相変化、縦軸に振幅変化とした関係を表すと、図3に示したようになる。この直線の傾きは、位相変化量と振幅変化量との比であり、定数となり、共振コイル11と被検知物との距離に依存しない。   For example, the phase difference and the amplitude, which are functions of the distance, are projected on a two-dimensional plane having the phase change on the horizontal axis and the amplitude change on the vertical axis, when the distance between the resonance coil 11 and the object to be detected changes. Both the amplitude change and the amplitude change are scattered on a straight line. From the relationship between the distance between the resonance coil 11 and the detected object shown in FIG. 2, the phase change, and the amplitude change, the horizontal axis represents the phase change and the vertical axis represents the amplitude change. As shown in The slope of this straight line is the ratio between the amount of phase change and the amount of amplitude change, and is a constant and does not depend on the distance between the resonance coil 11 and the object to be detected.

例えば、位相変化と振幅変化との関係を図4で表した場合の傾き(判別角)から被検知物の組成又は組織を判別することができる。ここで、振幅が減少する方向の軸を基準に軸から直線の角度を求め、位相が進む方向を正の判別角とし、位相が遅れる方向を負の判別角とする。以後、判別角は、位相変化量と振幅変化量との比から計算した値として記述し、説明を行う。但し、角度は次元のない量なので、共振コイル11に位相は変化するが振幅は変化しないフェライトを接近させた時の直線の角度を−90度とし、共振コイル11に電解銅を接近させた時の直線の角度を+70度として校正した値を使用している。   For example, the composition or structure of the object to be detected can be determined from the inclination (discrimination angle) when the relationship between the phase change and the amplitude change is represented in FIG. Here, the angle of the straight line from the axis is obtained with reference to the axis in the direction in which the amplitude decreases, the direction in which the phase advances is defined as a positive discrimination angle, and the direction in which the phase is delayed is defined as a negative discrimination angle. Hereinafter, the discrimination angle will be described and described as a value calculated from the ratio between the phase change amount and the amplitude change amount. However, since the angle is a non-dimensional quantity, when the ferrite is brought close to the resonance coil 11 and the electrolytic copper is brought close to the resonance coil 11, the angle of the straight line when the ferrite is moved close to the resonance coil 11 but the phase is not changed is not changed. The value calibrated with the straight line angle of +70 degrees is used.

次に、判別装置1の具体的な構成について説明する。共振回路10は、共振周波数が3KHzから1MHzの範囲において、共振コイル11に発生する信号の位相変化と振幅変化との関係に大きな差がない(直線性が保たれる)。但し、位相変化量と振幅変化量との比は共振回路10の共振周波数特性に依存する。よって、共振回路10には、共振コイル11と並列に抵抗13を接続し、共振回路10のQ値を調節するようにすることが好ましい。   Next, a specific configuration of the determination device 1 will be described. The resonance circuit 10 has no significant difference in the relationship between the phase change and the amplitude change of the signal generated in the resonance coil 11 in the range of the resonance frequency from 3 KHz to 1 MHz (linearity is maintained). However, the ratio between the phase change amount and the amplitude change amount depends on the resonance frequency characteristic of the resonance circuit 10. Therefore, it is preferable to connect the resistor 13 in parallel to the resonance coil 11 to the resonance circuit 10 so as to adjust the Q value of the resonance circuit 10.

図5は、共振回路10の共振コイル11の部分の構成を表すものである。共振コイル11は、空芯でもよく、フェライトコア14を有していてもよい。空芯の構造は、例えば、図5(A)に示したように、共振コイル11の内部に被検知物Mを通して検知する場合に適しており、例えば、図5(B)(C)に示したように、フェライトコア14を有する構造は、共振コイル11の一方の検知面15に被検知物Mを接近させて検知する場合に適している。なお、図5(A)(B)は断面構造を表し、図5(C)は図5(B)に示した共振コイル11を検知面15から見た構成を表している。   FIG. 5 shows the configuration of the resonance coil 11 portion of the resonance circuit 10. The resonance coil 11 may be an air core or may have a ferrite core 14. For example, as shown in FIG. 5A, the structure of the air core is suitable for the case where the object to be detected M is detected inside the resonance coil 11, for example, as shown in FIGS. 5B and 5C. As described above, the structure having the ferrite core 14 is suitable for the case where the detection object M is brought close to the detection surface 15 of the resonance coil 11 for detection. 5A and 5B show a cross-sectional structure, and FIG. 5C shows a configuration when the resonance coil 11 shown in FIG.

共振コイル11の外周は、例えば、エポキシ樹脂等のプラスチック体16により覆われており、その外周には、例えば、フェライトよりなる被覆体17を設けるようにしてもよい。プラスチック体16は共振コイル11の位置を固定し共振回路10の共振周波数特性に変化を生じさせない役目がある。被覆体17を設置することで指向性が向上し、検知面15以外の影響を受け難くなると共に、位相変化と振幅変化との関係の直線性が向上し、判別精度を向上させることができる。なお、フェライトの被覆体17を設けない方が、感度は向上するので、目的に応じて使い分けることが好ましい。   The outer periphery of the resonance coil 11 is covered with a plastic body 16 such as an epoxy resin, for example, and a covering body 17 made of ferrite, for example, may be provided on the outer periphery. The plastic body 16 serves to fix the position of the resonance coil 11 and prevent the resonance frequency characteristics of the resonance circuit 10 from changing. By installing the covering member 17, the directivity is improved and it becomes difficult to be affected by other than the detection surface 15, the linearity of the relationship between the phase change and the amplitude change is improved, and the discrimination accuracy can be improved. Since the sensitivity is improved when the ferrite coating 17 is not provided, it is preferable to use them properly according to the purpose.

共振コイル11の外周には、被覆体17を設ける場合にはその外周に、例えば、電導体よりなる遮蔽体18を設けることが好ましい。これは共振コイル11に生じる寄生容量の外部からの影響を受け難くなるからである。遮蔽体18は接地する。また、フェライトコア14を有する場合には、例えば、図6に示したように、フェライトコア14を検知面15において被覆体17よりも突出させるようにすれば、検出感度を高くすることができるので好ましい。但し、フェライトコア14を突出させると、位相変化と振幅変化との関係の直線性が低下するので、目的に応じて使い分けることが好ましい。   When the covering 17 is provided on the outer periphery of the resonance coil 11, for example, it is preferable to provide a shield 18 made of a conductor on the outer periphery. This is because the parasitic capacitance generated in the resonance coil 11 is hardly affected from the outside. The shield 18 is grounded. In addition, when the ferrite core 14 is provided, for example, as shown in FIG. 6, if the ferrite core 14 is protruded from the cover 17 on the detection surface 15, the detection sensitivity can be increased. preferable. However, since the linearity of the relationship between the phase change and the amplitude change is lowered when the ferrite core 14 is protruded, it is preferable that the ferrite core 14 is properly used according to the purpose.

検出部20は、例えば、図1に示したように、抵抗24を介して共振回路10に高周波信号を供給する高周波信号発生部21と、位相差を検出する位相差検出部23と、振幅を検出する振幅検出部22とを備えている。高周波信号発生部21は、例えば、高周波信号発生回路21Aと、高周波信号発生回路21Aから出力する高周波信号を安定化するバッファーアンプ21Bとを有している。位相差検出部23は、例えば、高周波信号発生部21で出力する信号の位相をシフトする位相シフター23Aと、高周波信号発生部21から出力された信号と共振コイル11に発生する信号との位相差を検出することにより、位相差を求める位相差検出回路23Bとを有している。振幅検出部22は、例えば、共振コイル11に発生する信号の振幅を検出する振幅検出回路22Aを有している。   For example, as illustrated in FIG. 1, the detection unit 20 includes a high-frequency signal generation unit 21 that supplies a high-frequency signal to the resonance circuit 10 via a resistor 24, a phase difference detection unit 23 that detects a phase difference, and an amplitude. And an amplitude detector 22 for detection. The high-frequency signal generation unit 21 includes, for example, a high-frequency signal generation circuit 21A and a buffer amplifier 21B that stabilizes a high-frequency signal output from the high-frequency signal generation circuit 21A. The phase difference detection unit 23 includes, for example, a phase shifter 23A that shifts the phase of the signal output from the high frequency signal generation unit 21, and a phase difference between the signal output from the high frequency signal generation unit 21 and the signal generated in the resonance coil 11. And a phase difference detection circuit 23B for obtaining a phase difference. The amplitude detection unit 22 includes, for example, an amplitude detection circuit 22A that detects the amplitude of a signal generated in the resonance coil 11.

高周波信号発生部21は、共振コイル11の近傍に被検知物が存在しない状態における共振回路10の共振周波数と一致する周波数の高周波信号を出力するように調整されることが好ましい。高周波信号発生部21で出力する高周波信号が共振回路10の共振周波数より低い場合、鉄やフェライト等が共振コイル11に接近すると、共振コイル11のインダクタンスが増大し、共振回路10の共振周波数が高周波信号発生部21で出力する高周波信号に近づき、共振コイル11に生じる信号の振幅が増大する。逆に、高周波信号発生部21で出力する高周波信号が共振回路10の共振周波数より低い場合に、アルミニウムや銅等が共振コイル11に接近すると、共振コイル11のインダクタンスが減少し、共振回路10の共振周波数が高周波信号発生部21で出力する高周波信号から遠ざかり、共振コイル11に生じる信号の振幅が減少する。   The high-frequency signal generator 21 is preferably adjusted so as to output a high-frequency signal having a frequency that matches the resonance frequency of the resonance circuit 10 in the state where there is no object to be detected in the vicinity of the resonance coil 11. When the high frequency signal output from the high frequency signal generator 21 is lower than the resonance frequency of the resonance circuit 10, when iron, ferrite, or the like approaches the resonance coil 11, the inductance of the resonance coil 11 increases and the resonance frequency of the resonance circuit 10 becomes high frequency. The amplitude of the signal generated in the resonance coil 11 increases as it approaches the high-frequency signal output from the signal generator 21. Conversely, when the high-frequency signal output from the high-frequency signal generator 21 is lower than the resonance frequency of the resonance circuit 10, when aluminum, copper, or the like approaches the resonance coil 11, the inductance of the resonance coil 11 decreases, and the resonance circuit 10 The resonance frequency moves away from the high-frequency signal output from the high-frequency signal generator 21, and the amplitude of the signal generated in the resonance coil 11 decreases.

また、高周波信号発生部21で出力する高周波信号が共振回路10の共振周波数より高い場合に、アルミニウムや銅等が共振コイル11に接近すると、共振コイル11のインダクタンスが低下し、共振回路10の共振周波数が高周波信号発生部21で出力する高周波信号に近づき、共振コイル11に生じる信号の振幅が増大する。逆に、高周波信号発生部21で出力する高周波信号が共振回路10の共振周波数より高い場合に、鉄やフェライト等が共振コイル11に接近すると、共振コイル11のインダクタンスが増大し、共振回路10の共振周波数が高周波信号発生部21で出力する高周波信号から離れ、共振コイル11に生じる信号の振幅が減少する。   In addition, when the high frequency signal output from the high frequency signal generator 21 is higher than the resonance frequency of the resonance circuit 10, when aluminum, copper, or the like approaches the resonance coil 11, the inductance of the resonance coil 11 is reduced, and the resonance of the resonance circuit 10. The frequency approaches the high frequency signal output from the high frequency signal generator 21, and the amplitude of the signal generated in the resonance coil 11 increases. Conversely, when the high-frequency signal output from the high-frequency signal generator 21 is higher than the resonance frequency of the resonance circuit 10, if iron, ferrite, or the like approaches the resonance coil 11, the inductance of the resonance coil 11 increases, and the resonance circuit 10 The resonance frequency moves away from the high frequency signal output from the high frequency signal generator 21, and the amplitude of the signal generated in the resonance coil 11 decreases.

このように、高周波信号発生部21で発生する高周波信号が共振回路10の共振周波数と異なる場合には、位相変化量と振幅変化量との関係を図4に示したグラフで表すと、直線が本来の座標から、別の回転した座標に表されるので、補正が必要となる。これに対し、高周波信号発生部21で発生する高周波信号が共振回路10の共振周波数と一致している場合には、振幅が増大することがないので補正の必要がなく、位相変化と振幅変化との関係を図4に示したグラフで表すと、直線の傾き(判別角)は±90度の範囲内となる。   Thus, when the high-frequency signal generated by the high-frequency signal generator 21 is different from the resonance frequency of the resonance circuit 10, the relationship between the phase change amount and the amplitude change amount is represented by the graph shown in FIG. Since the original coordinates are represented by different rotated coordinates, correction is required. On the other hand, when the high-frequency signal generated by the high-frequency signal generator 21 matches the resonance frequency of the resonance circuit 10, the amplitude does not increase, so there is no need to correct the phase change and the amplitude change. 4 is represented by the graph shown in FIG. 4, the slope of the straight line (discrimination angle) is within a range of ± 90 degrees.

共振コイル11を交換した場合には、共振回路10の共振周波数が異なるので、高周波信号発生部21の周波数制御を行うことが好ましい。例えば、共振コイル11の近傍に被検知物がない状態で共振コイル11に発生する信号の振幅が最大になる周波数に設定すれば、共振回路10の共振周波数と一致させることができる。高周波信号発生部21から出力する信号は、正弦波が望ましいが矩形波でも可能である。但し、矩形波の場合には、デューティ比を50%とすることが好ましい。また、共振コイル11に被検知物を接近させると、共振回路10の状態が変化し、高周波信号発生回路21Aの出力負荷が変化するので、高周波信号発生回路21Aと共振回路10との間にバッファーアンプ21Bを追加し、負荷を緩和することが好ましい。なお、検出部20の回路特性の影響で振幅が最大になる周波数が共振周波数でない場合があり、例えば、確実に校正するには、共振コイル11にフェライト体を接近させ、位相が変化しても振幅が変化しない周波数を高周波信号発生部21から出力するように調節することが好ましい。   When the resonance coil 11 is replaced, the resonance frequency of the resonance circuit 10 is different, so it is preferable to control the frequency of the high-frequency signal generator 21. For example, if the frequency is set such that the amplitude of the signal generated in the resonance coil 11 is maximized when there is no object to be detected in the vicinity of the resonance coil 11, the resonance frequency of the resonance circuit 10 can be matched. The signal output from the high-frequency signal generator 21 is preferably a sine wave, but can also be a rectangular wave. However, in the case of a rectangular wave, the duty ratio is preferably 50%. When the object to be detected is brought close to the resonance coil 11, the state of the resonance circuit 10 changes and the output load of the high frequency signal generation circuit 21A changes. Therefore, a buffer is provided between the high frequency signal generation circuit 21A and the resonance circuit 10. It is preferable to add an amplifier 21B to reduce the load. Note that the frequency at which the amplitude becomes maximum due to the influence of the circuit characteristics of the detection unit 20 may not be the resonance frequency. For example, to calibrate reliably, even if the ferrite body is brought close to the resonance coil 11 and the phase changes, It is preferable to adjust so that the frequency at which the amplitude does not change is output from the high-frequency signal generator 21.

位相差検出部23は、図1に示したA点とB点との位相差を検出する。位相差検出には、例えば、排他的論理和ゲート(XORゲート、例えば、PLL IC 4046)を使い、出力を抵抗とコンデンサーで平滑化し、位相差出力とする方法がある。XORゲートを使う場合には、高周波信号発生部21と位相差検出回路23Bとの間に、A点の位相を例えば−90度程度シフトさせる位相差シフター23Aを備え、位相差ゼロ付近でも連続に変化するようにする必要がある。例えば、位相シフター23Aを使わなかった場合には、位相差ゼロを境に絶対値出力となり、位相差+も位相差−も同極性の出力となり、位相が進んでいるのか、遅れているのか判別不能のため、不敵である。位相シフター23Aは図1B点の位相をシフトし位相差検出回路23Bに入力してもよい。その時、一方の入力である図1A点は直接に位相差検出回路23Bに入力する。図7に位相差検出部23の回路例を示す。   The phase difference detector 23 detects the phase difference between the points A and B shown in FIG. For the phase difference detection, for example, there is a method of using an exclusive OR gate (XOR gate, for example, PLL IC 4046) and smoothing the output with a resistor and a capacitor to obtain a phase difference output. When the XOR gate is used, a phase difference shifter 23A that shifts the phase of the point A by, for example, about −90 degrees is provided between the high-frequency signal generation unit 21 and the phase difference detection circuit 23B, and continuously even in the vicinity of the phase difference zero. It needs to change. For example, when the phase shifter 23A is not used, an absolute value is output with a phase difference of zero as a boundary, and both the phase difference + and the phase difference − are output of the same polarity, and it is determined whether the phase is advanced or delayed. Because it is impossible, it is invincible. The phase shifter 23A may shift the phase at the point in FIG. 1B and input it to the phase difference detection circuit 23B. At that time, the point of FIG. 1A, which is one input, is directly input to the phase difference detection circuit 23B. FIG. 7 shows a circuit example of the phase difference detection unit 23.

高周波信号発生部21と共振回路10とは、抵抗24を間に介して接続する。例えば、共振コイル11に被検知物を接近させた時に、高周波信号発生部21から出力された信号と共振コイル11に発生する信号とに位相差を生じさせると共に、抵抗24を調節することにより、共振回路10の特性が微妙に異なっても位相変化量と振幅変化量との関係を一定とすることができるからである。   The high frequency signal generator 21 and the resonance circuit 10 are connected via a resistor 24 therebetween. For example, when the object to be detected is brought close to the resonance coil 11, a phase difference is generated between the signal output from the high frequency signal generator 21 and the signal generated in the resonance coil 11, and the resistance 24 is adjusted. This is because the relationship between the phase change amount and the amplitude change amount can be made constant even if the characteristics of the resonance circuit 10 are slightly different.

なお、抵抗24に代えて、例えば、図8に示したように、共振コイル11の近傍に、高周波信号発生部21と接続された信号供給コイル25を配置し、高周波信号発生部21と共振回路10とを疎なトランス結合で接続するようにしてもよい。   Instead of the resistor 24, for example, as shown in FIG. 8, a signal supply coil 25 connected to the high-frequency signal generator 21 is disposed in the vicinity of the resonant coil 11, so that the high-frequency signal generator 21 and the resonant circuit are arranged. 10 may be connected by a sparse transformer coupling.

振幅検出部22は、図1に示したB点の振幅を検出する。振幅の検出には、例えば、図9(A)に示したように、ダイオード検波及びコンデンサーと抵抗による平滑回路がある。また、図9(B)に示したように、理想ダイオードの方法もある。振幅検出部22は、共振回路10に影響を与えるものは好ましくないので、入力インピーダンスを高くすることが好ましい。なお、他にも、真の実効値(RMS)を使用する方法や、波形そのものをアナログデジタル変換し、コンピュータ処理により振幅、又は実効値、又はパワースペクトラム(FFT)を計算する方法を用いてもよい。   The amplitude detector 22 detects the amplitude of the point B shown in FIG. For example, amplitude detection includes diode detection and a smoothing circuit using a capacitor and a resistor, as shown in FIG. Further, as shown in FIG. 9B, there is an ideal diode method. Since it is not preferable that the amplitude detector 22 affects the resonance circuit 10, it is preferable to increase the input impedance. In addition, a method using a true effective value (RMS) or a method of calculating an amplitude, an effective value, or a power spectrum (FFT) by computer processing after analog-digital conversion of the waveform itself may be used. Good.

データ処理部30は、例えば、図1に示したように、A/D変換部31と、検出部20により検出した位相差及び振幅に基づき、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を求める比算出部32と、比算出部32により求めた位相変化量と振幅変化量との比から、被検知物の組成又は組織の違いを判別する判別部33と、高周波信号発生部21の周波数を制御する周波数制御部34とを有している。   For example, as shown in FIG. 1, the data processing unit 30 is in a state where there is no detected object in the vicinity of the resonance coil 11 based on the phase difference and amplitude detected by the A / D conversion unit 31 and the detection unit 20. From the ratio calculation unit 32 that obtains the ratio of the phase change amount and the amplitude change amount when the detected object is approached from, and the ratio of the phase change amount and the amplitude change amount obtained by the ratio calculation unit 32, the detected object A discriminating section 33 for discriminating the difference in composition or tissue and a frequency control section 34 for controlling the frequency of the high frequency signal generating section 21.

比算出部32は、例えば、A/D変換部31によりアナログデジタル変換された位相検出部23及び振幅検出部22の出力を取り込み、共振コイル11の近傍に被検知物が存在しない状態の位相差及び振幅値を基準値(零点)にし、この基準値と、被検知物を接近させた時の位相差及び振幅値との差を位相変化量及び振幅変化量として計算し、位相変化と振幅変化との関係をグラフで表示すると共に、その傾きである判別角、すなわち位相変化量と振幅変化量との比を計算して表示するように構成されている。グラフは、例えば、共振コイル11の近傍に被検知物が存在しない状態を零点とした直線となり、傾きである判別角は被検知物の組成又は組織に応じた固有の値となる。なお、位相変化と振幅変化の散布図は直線になるので、原理的には、どこを基準としてもよい。例えば、共振コイル11の近傍に被検知物が存在しない状態を基準とするのではなく、ある程度信号が大きくなった時点を基準値(零点)としてもよい。   For example, the ratio calculation unit 32 takes in the outputs of the phase detection unit 23 and the amplitude detection unit 22 that have been analog-digital converted by the A / D conversion unit 31, and the phase difference in a state where no object to be detected exists in the vicinity of the resonance coil 11. And the difference between the reference value (zero point) and the phase difference and the amplitude value when the detected object is approached is calculated as the phase change amount and the amplitude change amount. Is displayed as a graph, and a discrimination angle that is the inclination, that is, a ratio between the phase change amount and the amplitude change amount is calculated and displayed. The graph is, for example, a straight line with a zero point in the state where the object to be detected does not exist in the vicinity of the resonance coil 11, and the discrimination angle that is an inclination is a specific value corresponding to the composition or structure of the object to be detected. In addition, since the scatter diagram of the phase change and the amplitude change is a straight line, in principle, any reference may be used. For example, instead of using the state in which the object to be detected is not present in the vicinity of the resonance coil 11 as a reference, the time when the signal has increased to some extent may be used as the reference value (zero point).

この判別装置1では、例えば、共振コイル11に被検知物を接近させると、被検知物の電磁気学的性質により共振回路10の共振周波数が変化し、共振コイル11に発生する信号の位相が変化する。また、被検知物に渦電流が発生し、共振コイル11に生じる信号の位相及び振幅が変化する。その際、位相検出部23により位相差を検出すると共に、振幅検出部22により振幅を検出する。検出した位相差及び振幅に基づき、比算出部32により、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を求め、判別角を求める。この判別角から、判別部33により被検知物の組成又は組織を判別する。   In this discrimination device 1, for example, when the object to be detected is brought close to the resonance coil 11, the resonance frequency of the resonance circuit 10 changes due to the electromagnetic properties of the object to be detected, and the phase of the signal generated in the resonance coil 11 changes. To do. Further, an eddy current is generated in the object to be detected, and the phase and amplitude of the signal generated in the resonance coil 11 change. At that time, the phase detector 23 detects the phase difference and the amplitude detector 22 detects the amplitude. Based on the detected phase difference and amplitude, the ratio calculation unit 32 obtains the ratio between the phase change amount and the amplitude change amount when the detected object is approached from the state where the detected object is not present in the vicinity of the resonance coil 11. Determine the discrimination angle. From this discrimination angle, the discriminating unit 33 discriminates the composition or structure of the detected object.

なお、共振コイル11に被検知物を接近させる位置は、1点でもよいが、例えば、少し離れた位置から徐々に共振コイル11に近づけていき、複数点について検出することが好ましい。例えば、複数点の位相変化と振幅変化から直線回帰を計算し、回帰係数から位相変化量と振幅変化量との比を求めることでノイズの影響を低減でき、判別精度を向上させることができるからである。   In addition, although the position which makes a to-be-detected object approach the resonant coil 11 may be one point, for example, it is preferable to gradually approach the resonant coil 11 from a slightly separated position and detect a plurality of points. For example, it is possible to reduce the influence of noise and improve discrimination accuracy by calculating linear regression from the phase change and amplitude change at multiple points and obtaining the ratio of the phase change amount and the amplitude change amount from the regression coefficient. It is.

(実施例)
上述した判別装置1を用い、共振コイル11に対して被検知物を徐々に接近させ、被検知物の組成又は組織を判別した。被検知物としては、電解銅、平成2年発行500円硬貨(Cu75重量%、Ni25重量%)、平成19年発行500円硬貨(Cu72重量%、Ni8重量%、Zn20重量%)、鉛、チタンアルミニウム合金(Ti95重量%、Al5重量%)、スチール(SS400)、アルミニウム、フェライト、ステンレススチール(SUS304)よりなるものを用意した。なお、用意した2種類の発行年が異なる500円硬貨は共に銅合金であるが、合金組成の異なる被検知物の例(白銅と黄銅)として用意したものである。また、ステンレススチール(SUS304)は、固溶化熱処理状態のもの、弱い冷間圧延を施したもの、強い冷間圧延を施したものをそれぞれを用意し、同一組成で組織の異なる被検知物の例として用意した。
(Example)
Using the determination device 1 described above, the detected object was gradually approached to the resonance coil 11 to determine the composition or structure of the detected object. The objects to be detected are electrolytic copper, 500 yen coins issued in 1990 (Cu 75 wt%, Ni 25 wt%), 500 yen coins issued in 2007 (Cu 72 wt%, Ni8 wt%, Zn20 wt%), lead, titanium An aluminum alloy (Ti 95% by weight, Al 5% by weight), steel (SS400), aluminum, ferrite, and stainless steel (SUS304) were prepared. In addition, although two prepared 500 yen coins with different issuing years are both copper alloys, they are prepared as examples of detected objects (brass and brass) having different alloy compositions. Stainless steel (SUS304) is prepared in a solution heat-treated state, weakly cold-rolled, and strongly cold-rolled. Prepared as.

本実施例では、比算出部32において、位相変化を横軸、振幅変化を縦軸として位相変化量と振幅変化量との関係をグラフ化し、傾き(判別角)を求めた。その際、例えば、図4に示したように、傾き(判別角)は、位相が変化せず振幅のみが減少する方向の傾きを0度とし、位相が進む傾きを正とした角度、位相が遅れる傾きを負とした角度とした。また、フェライトは電気抵抗が高く渦電流が発生しても無視できる程度であり、共振コイル11に接近させても位相は遅れるが振幅は殆ど変化しないので、フェライトの傾きを−90度とした。更に、本実施例では、電解銅の傾きを+70°にした値で校正している。なお、高周波信号発生部21の周波数が共振コイル11の近傍に何も存在しない状態における共振回路10の共振周波数と一致している場合には、被検知物の判別角は、±90°の範囲となる。   In the present embodiment, the ratio calculation unit 32 graphs the relationship between the phase change amount and the amplitude change amount with the horizontal axis representing the phase change and the vertical axis representing the amplitude change, thereby obtaining the inclination (discrimination angle). At that time, for example, as shown in FIG. 4, the inclination (discriminant angle) is an angle and a phase in which the inclination in the direction in which only the amplitude decreases without changing the phase is 0 degree and the inclination in which the phase advances is positive. The angle was determined with negative delay. In addition, ferrite has a high electrical resistance and can be ignored even if eddy currents are generated, and even when approaching the resonance coil 11, the phase is delayed but the amplitude hardly changes. Therefore, the inclination of the ferrite is set to -90 degrees. Further, in this embodiment, calibration is performed with a value obtained by setting the inclination of electrolytic copper to + 70 °. When the frequency of the high-frequency signal generator 21 matches the resonance frequency of the resonance circuit 10 in the state where nothing exists in the vicinity of the resonance coil 11, the discrimination angle of the detected object is in the range of ± 90 °. It becomes.

まず、被検知物にスチール(SS400)を使い、共振コイル11と被検知物の距離と位相変化及び振幅変化との関係を調べた。図2に示したように、横軸に共振コイル11と被検知物との距離の二乗の逆数をとり、縦軸に位相差及び振幅をとると、位相差及び振幅について共に直線関係となった。よって、位相変化及び振幅変化は共に共振コイル11と被検知物との距離の二乗に反比例することが分かった。これは上述した式1を支持する結果である。   First, steel (SS400) was used for the object to be detected, and the relationship between the distance between the resonance coil 11 and the object to be detected, the phase change, and the amplitude change was examined. As shown in FIG. 2, when the reciprocal of the square of the distance between the resonance coil 11 and the object to be detected is taken on the horizontal axis and the phase difference and amplitude are taken on the vertical axis, both the phase difference and the amplitude are linearly related. . Therefore, it was found that both the phase change and the amplitude change are inversely proportional to the square of the distance between the resonance coil 11 and the object to be detected. This is a result of supporting Equation 1 described above.

また、図3に示したように、横軸に位相変化をとり、縦軸に振幅変化をとったグラフにすると、直線関係になることが分かる。これは上述した式2を支持する結果である。よって、位相変化量と、振幅変化量との比である判別角は、共振コイルと被検知物との距離に大きな影響を受けず、被検知物の磁気的特性及び電気的特性により決定される固有の値(判別角)となることが分かる。   Further, as shown in FIG. 3, it can be seen that a linear relationship is obtained when the horizontal axis represents the phase change and the vertical axis represents the amplitude change. This is a result of supporting Equation 2 described above. Therefore, the discrimination angle, which is the ratio between the phase change amount and the amplitude change amount, is not greatly affected by the distance between the resonance coil and the detected object, and is determined by the magnetic and electrical characteristics of the detected object. It turns out that it becomes a peculiar value (discrimination angle).

上述した判別装置1を用い、被検知物の種類の違いから得られた結果を図10に示す。図10に示したように、各被検知物の位相変化と振幅変化との関係はいずれも直線で表され、被検知物の違いにより異なる傾き(判別角)を持っていた。また、表1に、フェライトを−90度、電解銅を+70度で校正した時の各被検知物のサンプル数10の平均角度と標準偏差を示す。このように、組成の違いにより傾き(判別角)が異なり、被検知物の組成の違いを判別できることが分かった。   FIG. 10 shows a result obtained from the difference in the type of the object to be detected using the above-described discrimination device 1. As shown in FIG. 10, the relationship between the phase change and the amplitude change of each detected object is represented by a straight line, and has different inclinations (discrimination angles) depending on the detected object. Table 1 shows the average angle and standard deviation of 10 samples of each detected object when the ferrite is calibrated at −90 degrees and the electrolytic copper is calibrated at +70 degrees. Thus, it was found that the inclination (discrimination angle) differs depending on the composition, and the difference in the composition of the detected object can be discriminated.

Figure 0006094727
Figure 0006094727

図11は、同一組成のSUS304で、固溶化熱処理状態のもの、弱い冷間圧延を施したもの、強い冷間圧延を施したもの、で得られた結果である。SUS304の固溶化熱処理状態のものでは正の傾きを持ち、弱い冷間圧延を施したものではほぼ零の傾きになり、強い冷間圧延を施したものでは負の傾きを持つようになる結果であった。すなわち、同一組成でも加工による組織の変化で異なる角度が得られ、組織の違いを判別できることが分かった。   FIG. 11 shows the results obtained with SUS304 having the same composition, in a solution heat-treated state, subjected to weak cold rolling, and subjected to strong cold rolling. As a result, the SUS304 solution heat treatment state has a positive slope, the weak cold-rolled one has a nearly zero slope, and the strong cold-rolled one has a negative slope. there were. That is, it was found that even when the composition was the same, different angles were obtained due to changes in the structure due to processing, and the difference in structure could be discriminated.

このように本実施の形態によれば、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイル11に発生する信号の位相変化量と振幅変化量との比を求めるようにしたので、非接触かつ非破壊で、共振コイル11と被検知物との距離に大きな影響を受けず、被検知物の組成又は組織に固有の値(判別角)を求めることができる。よって、被検知物の組成又は組織を簡便に判別することができる。   As described above, according to the present embodiment, the phase change amount and the amplitude change amount of the signal generated in the resonance coil 11 when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil 11. Since the ratio is determined in a non-contact and non-destructive manner, it is not greatly affected by the distance between the resonance coil 11 and the detected object, and a value (discrimination angle) specific to the composition or tissue of the detected object is determined. be able to. Therefore, the composition or structure of the object to be detected can be easily determined.

(変形例)
上記一実施の形態では、被検知物の組成又は組織の違いを判別する判別装置1及び判別方法について説明したが、本発明は、被検知物の電気抵抗率を測定する電気抵抗率測定装置及び電気抵抗率測定方法、被検知物の成分含量を推定する成分含量推定装置及び成分含量推定方法、又は、被検知物の板厚を推定する板厚推定装置及び板厚推定方法に応用することができる。
(Modification)
In the above-described embodiment, the discrimination device 1 and the discrimination method for discriminating the difference in composition or structure of the object to be detected have been described. However, the present invention relates to an electrical resistivity measurement device that measures the electrical resistivity of the object to be detected, and It can be applied to an electrical resistivity measurement method, a component content estimation device and a component content estimation method for estimating a component content of a detected object, or a plate thickness estimation device and a plate thickness estimation method for estimating a plate thickness of a detected object. it can.

電気抵抗率測定装置は、一実施の形態において説明した判別装置1の判別部33の構成が異なることを除き、他は判別装置1と同様の構成を有している。電気抵抗率測定装置は、判別部33に変えて、比算出部32により求めた位相変化量と振幅変化量との比から、電気抵抗率を求める電気抵抗率算出部を備えている。これは、被検知物の比透磁率が1に近い場合、比算出部32において得られる判別角と被検知物の電気抵抗率との関係がほぼ直線となることを利用したものである。図12に、上記実施例において得られた判別角と被検知物の電気抵抗率との関係を示す。この電気抵抗率測定方法では、例えば、一実施の形態と同様にして、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイル11に発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から被検知物の電気抵抗率を算出する。よって、この電気抵抗率測定装置及び電気抵抗率測定方法によれば、非接触かつ非破壊で、共振コイル11と被検知物との距離に大きな影響を受けず、被検知物の電気抵抗率を測定することができる。   The electrical resistivity measuring device has the same configuration as that of the discriminating device 1 except that the configuration of the discriminating unit 33 of the discriminating device 1 described in the embodiment is different. The electrical resistivity measuring device includes an electrical resistivity calculator that determines the electrical resistivity from the ratio of the phase change amount and the amplitude change amount determined by the ratio calculator 32 instead of the determination unit 33. This utilizes the fact that when the relative permeability of the object to be detected is close to 1, the relationship between the discrimination angle obtained in the ratio calculation unit 32 and the electrical resistivity of the object to be detected is almost a straight line. FIG. 12 shows the relationship between the discrimination angle obtained in the above embodiment and the electrical resistivity of the detected object. In this electrical resistivity measurement method, for example, in the same manner as in the embodiment, the signal generated in the resonant coil 11 when the detected object is approached from a state in which the detected object is not present in the vicinity of the resonant coil 11. The ratio between the phase change amount and the amplitude change amount is obtained, and the electrical resistivity of the detected object is calculated from the obtained ratio between the phase change amount and the amplitude change amount. Therefore, according to the electrical resistivity measuring apparatus and the electrical resistivity measuring method, the electrical resistivity of the detected object is not contacted and nondestructed and is not greatly affected by the distance between the resonance coil 11 and the detected object. Can be measured.

成分含量推定装置は、一実施の形態において説明した判別装置1の判別部33の構成が異なることを除き、他は判別装置1と同様の構成を有している。成分含量推定装置は、判別部33に変えて、比算出部32により求めた位相変化量と振幅変化量との比から、成分含量を推定する成分含量推定部を備えている。成分含量推定部は、例えば、予め判別角と成分含有量との関係を調べておき、その関係に基づき、判別角から被検知物の成分含量を推定するものである。例えば、被検知物の比透磁率が1に近い場合、比算出部32において得られる判別角と被検知物の電気抵抗率との関係がほぼ直線となることを利用して電気抵抗率を求め、被検知物の成分含量と電気抵抗率との既知の関係に基づき、算出した電気抵抗率から被検知物の成分含量を推定することも可能である。この成分含量推定方法では、例えば、一実施の形態と同様にして、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイル11に発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から被検知物の成分含量を推定する。よって、この成分含量推定装置及び成分含量推定方法によれば、非接触かつ非破壊で、共振コイル11と被検知物との距離に大きな影響を受けず、被検知物の成分含量を推定することができる。   The component content estimation apparatus has the same configuration as the determination apparatus 1 except that the configuration of the determination unit 33 of the determination apparatus 1 described in the embodiment is different. The component content estimation apparatus includes a component content estimation unit that estimates the component content from the ratio of the phase change amount and the amplitude change amount obtained by the ratio calculation unit 32 instead of the determination unit 33. The component content estimation unit, for example, examines the relationship between the discrimination angle and the component content in advance, and estimates the component content of the detected object from the discrimination angle based on the relationship. For example, when the relative permeability of the object to be detected is close to 1, the electric resistivity is obtained by utilizing the fact that the relationship between the discrimination angle obtained in the ratio calculation unit 32 and the electric resistivity of the object to be detected is almost a straight line. The component content of the detected object can be estimated from the calculated electrical resistivity based on the known relationship between the component content of the detected object and the electrical resistivity. In this component content estimation method, for example, as in the embodiment, the phase of a signal generated in the resonance coil 11 when the object to be detected is approached from the state where the object to be detected does not exist in the vicinity of the resonance coil 11. The ratio between the change amount and the amplitude change amount is obtained, and the component content of the detected object is estimated from the obtained ratio between the phase change amount and the amplitude change amount. Therefore, according to this component content estimation apparatus and component content estimation method, it is possible to estimate the component content of the detected object without contact and non-destruction and without being greatly affected by the distance between the resonance coil 11 and the detected object. Can do.

板厚推定装置は、一実施の形態において説明した判別装置1の判別部33の構成が異なることを除き、他は判別装置1と同様の構成を有している。板厚推定装置は、判別部33に変えて、比算出部32により求めた位相変化量と振幅変化量との比から、板厚を推定する板厚推定部を備えている。板厚推定部は、例えば、被検知物の比透磁率が1に近い場合、比算出部32において得られる判別角と被検知物の電気抵抗率との関係がほぼ直線となることを利用し、かつ、電気抵抗率は板厚によらない材料固有の値であるが、判別角測定に必要な渦電流を生じさせるにはある程度の板厚が必要となり、その厚さ以下であれば板厚と判別角に相関関係が生じることから板厚を推定するものである。この板厚推定方法では、例えば、一実施の形態と同様にして、共振コイル11の近傍に被検知物が存在しない状態から被検知物を接近させた時に、共振コイル11に発生する信号の位相変化量と振幅変化量との比を求め、求めた位相変化量と振幅変化量との比から板厚との関係から板厚を推定する。よって、この板厚推定装置及び板厚推定方法によれば、非接触かつ非破壊で、共振コイル11と被検知物との距離に大きな影響を受けず、被検知物の板厚を推定することができる。   The plate thickness estimation apparatus has the same configuration as the determination apparatus 1 except that the configuration of the determination unit 33 of the determination apparatus 1 described in the embodiment is different. The plate thickness estimation apparatus includes a plate thickness estimation unit that estimates the plate thickness from the ratio of the phase change amount and the amplitude change amount obtained by the ratio calculation unit 32 instead of the determination unit 33. For example, when the relative permeability of the object to be detected is close to 1, the plate thickness estimation unit utilizes the fact that the relationship between the discrimination angle obtained in the ratio calculation unit 32 and the electrical resistivity of the object to be detected is substantially a straight line. In addition, the electrical resistivity is a material-specific value that does not depend on the plate thickness, but a certain amount of plate thickness is required to generate the eddy current required for the discrimination angle measurement. The thickness is estimated from the fact that there is a correlation between the discrimination angle. In this plate thickness estimation method, for example, in the same manner as in the embodiment, the phase of a signal generated in the resonance coil 11 when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil 11. The ratio between the change amount and the amplitude change amount is obtained, and the plate thickness is estimated from the relationship with the plate thickness from the obtained ratio between the phase change amount and the amplitude change amount. Therefore, according to the plate thickness estimation apparatus and the plate thickness estimation method, it is possible to estimate the plate thickness of the detected object in a non-contact and non-destructive manner without being greatly affected by the distance between the resonance coil 11 and the detected object. Can do.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、共振回路10、検出部20、比算出部32等の構成について具体的に説明したが、他の構成を有するようにしてもよい。また、例えば、共振回路10は、並列共振回路で説明しているが、共振回路であれば直列共振回路でもよい。更に、共振回路10に高周波信号を供給する抵抗24もコンデンサーに交換してもよい。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, the configurations of the resonance circuit 10, the detection unit 20, the ratio calculation unit 32, and the like have been specifically described. However, other configurations may be used. For example, although the resonance circuit 10 has been described as a parallel resonance circuit, it may be a series resonance circuit as long as it is a resonance circuit. Further, the resistor 24 for supplying a high frequency signal to the resonance circuit 10 may be replaced with a capacitor.

非接触かつ非破壊で距離に大きな影響を受けず、組成又は組織の判別、電気抵抗率の測定、成分含量の推定、板厚の推定に用いることができる。   It is non-contact and non-destructive and is not greatly affected by distance, and can be used for discrimination of composition or structure, measurement of electrical resistivity, estimation of component content, and estimation of sheet thickness.

1…判別装置、10…共振回路、11…共振コイル、12…コンデンサー、13…抵抗、14…フェライトコア、15…検知面、16…プラスチック体、17…被覆体、18…遮蔽体、20…検出部、21…高周波信号発生部、21A…高周波信号発生回路、21B…バッファーアンプ、22…振幅検出部、22A…振幅検出回路、23…位相差検出部、
23A…位相シフター、21B…位相差検出回路、24…抵抗、25…信号供給コイル、30…データ処理部、31…A/D変換部、32…比算出部、33…判別部、34…周波数制御部
DESCRIPTION OF SYMBOLS 1 ... Discriminating device, 10 ... Resonance circuit, 11 ... Resonance coil, 12 ... Capacitor, 13 ... Resistance, 14 ... Ferrite core, 15 ... Detection surface, 16 ... Plastic body, 17 ... Covering body, 18 ... Shielding body, 20 ... Detection unit, 21 ... high frequency signal generation unit, 21A ... high frequency signal generation circuit, 21B ... buffer amplifier, 22 ... amplitude detection unit, 22A ... amplitude detection circuit, 23 ... phase difference detection unit,
23A ... Phase shifter, 21B ... Phase difference detection circuit, 24 ... Resistance, 25 ... Signal supply coil, 30 ... Data processing unit, 31 ... A / D conversion unit, 32 ... Ratio calculation unit, 33 ... Discrimination unit, 34 ... Frequency Control unit

Claims (8)

被検知物の組成又は組織の違いを判別する判別装置であって、
共振コイルとコンデンサーとを有する共振回路と、
前記共振コイルに高周波信号を供給する高周波信号発生回路と、
前記共振コイルに発生する信号の位相差を検出する位相差検出回路と、
前記共振コイルに発生する信号の振幅を検出する振幅検出回路と、
前記位相差検出回路により検出した位相差及び前記振幅検出回路により検出した振幅に基づき、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求める比算出部と、
前記比算出部により求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から、被検知物の組成又は組織の違いを判別する判別部と
を備えたことを特徴とする判別装置。
A discriminating device for discriminating differences in composition or structure of an object to be detected,
A resonant circuit having a resonant coil and a capacitor;
A high-frequency signal generating circuit for supplying a high-frequency signal to the resonant coil;
A phase difference detection circuit for detecting a phase difference of a signal generated in the resonance coil;
An amplitude detection circuit for detecting an amplitude of a signal generated in the resonance coil;
Based on the phase difference detected by the phase difference detection circuit and the amplitude detected by the amplitude detection circuit, the amount of phase change and the amplitude when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil A ratio calculation unit that obtains a ratio of the amount of change as a constant independent of the distance between the resonance coil and the object to be detected ;
A discriminating unit for discriminating a difference in composition or tissue of the detected object from a ratio of the phase change amount and the amplitude change amount independent of the distance between the resonance coil and the detected object obtained by the ratio calculating unit. A discrimination device characterized by the above.
被検知物の電気抵抗率を測定する電気抵抗率測定装置であって、
共振コイルとコンデンサーとを有する共振回路と、
前記共振コイルに高周波信号を供給する高周波信号発生回路と、
前記共振コイルに発生する信号の位相差を検出する位相差検出回路と、
前記共振コイルに発生する信号の振幅を検出する振幅検出回路と、
前記位相差検出回路により検出した位相差及び前記振幅検出回路により検出した振幅に基づき、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求める比算出部と、
前記比算出部により求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から、被検知物の電気抵抗率を求める電気抵抗率算出部と
を備えたことを特徴とする電気抵抗率測定装置。
An electrical resistivity measuring device for measuring electrical resistivity of an object to be detected,
A resonant circuit having a resonant coil and a capacitor;
A high-frequency signal generating circuit for supplying a high-frequency signal to the resonant coil;
A phase difference detection circuit for detecting a phase difference of a signal generated in the resonance coil;
An amplitude detection circuit for detecting an amplitude of a signal generated in the resonance coil;
Based on the phase difference detected by the phase difference detection circuit and the amplitude detected by the amplitude detection circuit, the amount of phase change and the amplitude when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil A ratio calculation unit that obtains a ratio of the amount of change as a constant independent of the distance between the resonance coil and the object to be detected ;
An electrical resistivity calculator that obtains the electrical resistivity of the object to be detected from the ratio of the phase change amount and the amplitude change amount that does not depend on the distance between the resonance coil and the object to be detected obtained by the ratio calculator; An electrical resistivity measuring device.
被検知物の成分含量を推定する成分含量推定装置であって、
共振コイルとコンデンサーとを有する共振回路と、
前記共振コイルに高周波信号を供給する高周波信号発生回路と、
前記共振コイルに発生する信号の位相差を検出する位相差検出回路と、
前記共振コイルに発生する信号の振幅を検出する振幅検出回路と、
前記位相差検出回路により検出した位相差及び前記振幅検出回路により検出した振幅に基づき、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求める比算出部と、
前記比算出部により求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から、被検知物の成分含量を推定する成分含量算出部と
を備えたことを特徴とする成分含量推定装置。
A component content estimation device for estimating a component content of a detected object,
A resonant circuit having a resonant coil and a capacitor;
A high-frequency signal generating circuit for supplying a high-frequency signal to the resonant coil;
A phase difference detection circuit for detecting a phase difference of a signal generated in the resonance coil;
An amplitude detection circuit for detecting an amplitude of a signal generated in the resonance coil;
Based on the phase difference detected by the phase difference detection circuit and the amplitude detected by the amplitude detection circuit, the amount of phase change and the amplitude when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil A ratio calculation unit that obtains a ratio of the amount of change as a constant independent of the distance between the resonance coil and the object to be detected ;
A component content calculation unit for estimating the component content of the detected object from the ratio of the phase change amount and the amplitude change amount independent of the distance between the resonance coil and the detected object obtained by the ratio calculation unit. A component content estimation apparatus characterized by the above.
被検知物の板厚を推定する板厚推定装置であって、
共振コイルとコンデンサーとを有する共振回路と、
前記共振コイルに高周波信号を供給する高周波信号発生回路と、
前記共振コイルに発生する信号の位相差を検出する位相差検出回路と、
前記共振コイルに発生する信号の振幅を検出する振幅検出回路と、
前記位相差検出回路により検出した位相差及び前記振幅検出回路により検出した振幅に基づき、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求める比算出部と、
前記比算出部により求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から、被検知物の板厚を推定する板厚算出部と
を備えたことを特徴とする板厚推定装置。
A thickness estimation device for estimating the thickness of an object to be detected,
A resonant circuit having a resonant coil and a capacitor;
A high-frequency signal generating circuit for supplying a high-frequency signal to the resonant coil;
A phase difference detection circuit for detecting a phase difference of a signal generated in the resonance coil;
An amplitude detection circuit for detecting an amplitude of a signal generated in the resonance coil;
Based on the phase difference detected by the phase difference detection circuit and the amplitude detected by the amplitude detection circuit, the amount of phase change and the amplitude when the detection object is approached from the state where the detection object does not exist in the vicinity of the resonance coil A ratio calculation unit that obtains a ratio of the amount of change as a constant independent of the distance between the resonance coil and the object to be detected ;
A plate thickness calculation unit for estimating the plate thickness of the detected object from the ratio of the phase change amount and the amplitude change amount independent of the distance between the resonance coil and the detected object obtained by the ratio calculation unit. A plate thickness estimation device characterized by the above.
被検知物の組成又は組織の違いを判別する判別方法であって、
共振コイルとコンデンサーとを有する共振回路を用い、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、前記共振コイルに発生する信号の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求め、求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から被検知物の組成又は組織の違いを判別することを特徴とする判別方法。
A discrimination method for discriminating a difference in composition or structure of an object to be detected,
Using a resonance circuit having a resonance coil and a capacitor, the amount of phase change and amplitude change of a signal generated in the resonance coil when the object to be detected is brought close to the resonance coil from a state where the object to be detected does not exist Is determined as a constant that does not depend on the distance between the resonance coil and the object to be detected, and the object to be detected is determined from the ratio of the phase change amount and the amplitude change amount that does not depend on the distance between the resonance coil and the object to be detected. A discrimination method characterized by discriminating a difference in composition or structure of an object.
被検知物の電気抵抗率を測定する電気抵抗率測定方法であって、
共振コイルとコンデンサーとを有する共振回路を用い、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、前記共振コイルに発生する信号の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求め、求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から被検知物の電気抵抗率を算出することを特徴とする電気抵抗率測定方法。
An electrical resistivity measurement method for measuring electrical resistivity of an object to be detected,
Using a resonance circuit having a resonance coil and a capacitor, the amount of phase change and amplitude change of a signal generated in the resonance coil when the object to be detected is brought close to the resonance coil from a state where the object to be detected does not exist Is determined as a constant that does not depend on the distance between the resonance coil and the object to be detected, and the object to be detected is determined from the ratio of the phase change amount and the amplitude change amount that does not depend on the distance between the resonance coil and the object to be detected. An electrical resistivity measurement method, comprising calculating an electrical resistivity of an object.
被検知物の成分含量を推定する成分含量推定方法であって、
共振コイルとコンデンサーとを有する共振回路を用い、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、前記共振コイルに発生する信号の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求め、求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から被検知物の成分含量を推定することを特徴とする成分含量推定方法。
A component content estimation method for estimating a component content of a detected object,
Using a resonance circuit having a resonance coil and a capacitor, the amount of phase change and amplitude change of a signal generated in the resonance coil when the object to be detected is brought close to the resonance coil from a state where the object to be detected does not exist Is determined as a constant that does not depend on the distance between the resonance coil and the object to be detected, and the object to be detected is determined from the ratio of the phase change amount and the amplitude change amount that does not depend on the distance between the resonance coil and the object to be detected. A component content estimation method characterized by estimating a component content of a product.
被検知物の板厚を推定する板厚推定方法であって、
共振コイルとコンデンサーとを有する共振回路を用い、前記共振コイルの近傍に被検知物が存在しない状態から被検知物を接近させた時に、前記共振コイルに発生する信号の位相変化量と振幅変化量との比を、前記共振コイルと被検知物との距離に依存しない定数として求め、求めた前記共振コイルと被検知物との距離に依存しない位相変化量と振幅変化量との比から被検知物の板厚を推定することを特徴とする板厚推定方法。
A thickness estimation method for estimating the thickness of a detected object,
Using a resonance circuit having a resonance coil and a capacitor, the amount of phase change and amplitude change of a signal generated in the resonance coil when the object to be detected is brought close to the resonance coil from a state where the object to be detected does not exist Is determined as a constant that does not depend on the distance between the resonance coil and the object to be detected, and the object to be detected is determined from the ratio of the phase change amount and the amplitude change amount that does not depend on the distance between the resonance coil and the object to be detected. A method for estimating a plate thickness, comprising estimating a plate thickness of an object.
JP2012178850A 2012-08-10 2012-08-10 Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method Expired - Fee Related JP6094727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178850A JP6094727B2 (en) 2012-08-10 2012-08-10 Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178850A JP6094727B2 (en) 2012-08-10 2012-08-10 Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method

Publications (2)

Publication Number Publication Date
JP2014037981A JP2014037981A (en) 2014-02-27
JP6094727B2 true JP6094727B2 (en) 2017-03-15

Family

ID=50286239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178850A Expired - Fee Related JP6094727B2 (en) 2012-08-10 2012-08-10 Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method

Country Status (1)

Country Link
JP (1) JP6094727B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727387A (en) * 1980-07-24 1982-02-13 Sanyo Jido Hanbaiki Kk Coin sorter
FR2716979B1 (en) * 1994-03-04 1996-03-29 Telemecanique Inductive proximity switch.
JP2911828B2 (en) * 1996-07-30 1999-06-23 カーマン・インスツルメンテーション・コーポレーション Multi-parameter eddy current measurement system with parameter compensation
JP3632832B2 (en) * 2000-04-27 2005-03-23 シャープ株式会社 Sheet resistance measurement method
JP2002296240A (en) * 2001-03-29 2002-10-09 Ricoh Co Ltd Magnetic permeability detector, image forming device or digital copying machine using the same, toner density detector, and electric conductivity detector
JP4157320B2 (en) * 2002-04-24 2008-10-01 グローリー株式会社 Coin identification device

Also Published As

Publication number Publication date
JP2014037981A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
Lu et al. Conductivity Lift-off Invariance and measurement of permeability for ferrite metallic plates
Li et al. A thickness measurement system for metal films based on eddy-current method with phase detection
Lu et al. Measurement of permeability for ferrous metallic plates using a novel lift-off compensation technique on phase signature
Zhang et al. Identification and characterisation of steel corrosion using passive high frequency RFID sensors
CN107209152B (en) Spectral material analysis using multi-frequency inductive sensing
Yin et al. Permeability invariance phenomenon and measurement of electrical conductivity for ferrite metallic plates
CN109682882A (en) A kind of Eddy Current Testing Transducer of high spatial resolution
Lu et al. Thickness measurement of circular metallic film using single-frequency eddy current sensor
CN109668506A (en) A kind of magnetic metal material thickness detecting method based on vortex steady-state characteristic
CN105737727B (en) A kind of probe and current vortex sensor of current vortex sensor
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
Chen et al. Resistance-frequency eddy current method for electrical conductivity measurement
JP6291635B2 (en) Metal material identification device
Dinh et al. Real-time thickness measurement using resonant eddy-current sensor
CN107504891B (en) A kind of metal film coated method for measuring thickness of steel surface non-ferromagnetic material and system
JP6094727B2 (en) Detecting object discriminating device and discriminating method, electric resistivity measuring device and electric resistivity measuring method, component content estimating device and component content estimating method, plate thickness estimating device and plate thickness estimating method
US9335151B2 (en) Film measurement
JP2020197479A (en) Compact ultrasensitive magnetic impedance sensor and nondestructive inspection device using the same
Cosarinsky et al. Material characterization by electrical conductivity assessment using impedance analysis
JP2001041703A (en) Range finder and thickness meter
US20140002069A1 (en) Eddy current probe
Huang et al. Conductivity measurement of solid metal rods using high-frequency eddy current method
Schlegl et al. Sensor interface for multimodal evaluation of capacitive sensors
Eltishchev et al. Inductive methods of detection the boundary of electrically conductive media in experiment
El Ghoul et al. Accurate measurement of Aluminum layer thickness in a multilayer material using eddy current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170131

R150 Certificate of patent or registration of utility model

Ref document number: 6094727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees