JP6094022B2 - Gene transfer vector and preparation method thereof - Google Patents

Gene transfer vector and preparation method thereof Download PDF

Info

Publication number
JP6094022B2
JP6094022B2 JP2009072745A JP2009072745A JP6094022B2 JP 6094022 B2 JP6094022 B2 JP 6094022B2 JP 2009072745 A JP2009072745 A JP 2009072745A JP 2009072745 A JP2009072745 A JP 2009072745A JP 6094022 B2 JP6094022 B2 JP 6094022B2
Authority
JP
Japan
Prior art keywords
vesicle
gene
particle size
span
vesicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009072745A
Other languages
Japanese (ja)
Other versions
JP2010193875A (en
JP2010193875A5 (en
Inventor
敬一 加藤
敬一 加藤
龍彦 宮▲崎▼
龍彦 宮▲崎▼
憲史 坂山
憲史 坂山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009072745A priority Critical patent/JP6094022B2/en
Publication of JP2010193875A publication Critical patent/JP2010193875A/en
Publication of JP2010193875A5 publication Critical patent/JP2010193875A5/en
Application granted granted Critical
Publication of JP6094022B2 publication Critical patent/JP6094022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体内遺伝子導入効率に優れた遺伝子ベクターとしてのカチオニックSpan(登録商標)80ベシクルからなる二重ベシクルを用いる遺伝子導入技術に関する。The present invention relates to a gene transfer technique using a double vesicle comprising a Cationic Span (registered trademark) 80 vesicle as a gene vector excellent in in vivo gene transfer efficiency.

遺伝子治療などの生体内遺伝子導入を試みるとき、血中に遺伝子ベクターを投与することになる。この場合ベクターに固定化された遺伝子は血中のDNaseなどの攻撃を受け分解され易い。そのため従来のような、遺伝子をベクター表面に固定化したものは生体内ではその有効性が低下する。さらに、細胞形質内に導入された遺伝子ベクターは、血中での攻撃を受けるため、細胞形質内での遺伝子ベクターとしての機能が低下する。また、エンドサイトーシスで導入された遺伝子ベクターでは、その遺伝子活性が低下する。そのため血中、および細胞形質内で有効に機能するベクターの開発が望まれている。 When attempting in vivo gene transfer such as gene therapy, a gene vector is administered into the blood. In this case, the gene immobilized on the vector is easily decomposed by an attack such as DNase in the blood. For this reason, the effectiveness of a conventional gene immobilized on a vector surface is reduced in vivo . Furthermore, since the gene vector introduced into the cell trait is attacked in blood, the function as the gene vector in the cell trait is reduced. In addition, the gene activity of a gene vector introduced by endocytosis decreases. Therefore, it is desired to develop a vector that functions effectively in blood and in cytoplasm .

特許公開2003−001097号公報Japanese Patent Publication No. 2003-001097

遺伝子導入に際して、導入効率の良い遺伝子ベクターを開発することを目的とする。従来のリポソームを用いた遺伝子導入では、リポソームの外表面に遺伝子を固定化しているため、血中ではその遺伝子がDNaseなどの攻撃を受け、活性劣化する。また目的細胞に取り込まれる場合のメカニズムはエンドサイトーシス(細胞貪食)であるため、細胞形質内で遺伝子が核まで送達される効率が悪い。このような状況下、効率の良い遺伝子ベクターを用いた遺伝子導入技術の開発が望まれている。 The purpose is to develop a gene vector with good introduction efficiency for gene introduction. In conventional gene transfer using liposomes, the gene is immobilized on the outer surface of the liposome, so that the gene is attacked by DNase or the like in the blood, and the activity deteriorates. Moreover, since the mechanism in the case of taking in by the target cell is endocytosis (cell phagocytosis), the efficiency in which a gene is delivered to a nucleus within a cell trait is bad. Under such circumstances, it is desired to develop a gene transfer technique using an efficient gene vector .

遺伝子ベクターとして、表面に遺伝子を固定化したベシクル(小粒径ベシクル)を、そのベシクルよりもさらに大きいベシクル(大粒径ベシクル)に内包した、いわゆる二重ベシクルを調製する。これらのベシクルにはカチオン界面活性を混合させ、カチオニックなベシクルとして用い、目的細胞への親和性を増強させた。この二重ベシクルは、膜融合能に優れたSpan(登録商標)80ベシクルが基本となっており、高効率の生体内遺伝子導入が期待できる。この導入機能は以下の4段階からなる。▲1▼まず、上記の二重構造を有する大粒径のベシクルを血中に投与して、そのベシクルに内包した小粒径ベシクル表面の遺伝子を、血中のDNaseなどの攻撃から保護した状態で、目的細胞まで送達する。▲2▼大粒径ベシクルが目的細胞に到達後は、その大粒径ベシクルが目的細胞と融合して、内包した遺伝子固定化小粒径ベシクルを細胞形質内に放出する。▲3▼その放出された小粒径ベシクルが、細胞形質内で遺伝子ベクターの役割を果して、遺伝子を核まで効率良く送達して、▲4▼核内への遺伝子導入を図る。As a gene vector, a so-called double vesicle is prepared in which a vesicle (small particle size vesicle) having a gene immobilized thereon is encapsulated in a vesicle larger than the vesicle (large particle size vesicle). These vesicles were mixed with cationic surfactants and used as cationic vesicles to enhance affinity for target cells. This double vesicle is based on the Span (registered trademark) 80 vesicle having excellent membrane fusion ability, and high-efficiency in vivo gene transfer can be expected. This introduction function consists of the following four stages. (1) First, the above-mentioned large particle size vesicle having a double structure is administered into the blood, and the gene on the surface of the small particle size vesicle encapsulated in the vesicle is protected from attacks such as DNase in the blood. And deliver to the target cell. (2) After the large particle size vesicle reaches the target cell, the large particle size vesicle is fused with the target cell, and the encapsulated gene-immobilized small particle size vesicle is released into the cytoplasm. (3) The released small particle size vesicle plays the role of a gene vector in the cell trait, efficiently delivers the gene to the nucleus, and (4) attempts to introduce the gene into the nucleus.

生体内遺伝子導入において、細胞との融合能、生体安全性に優れたSpan(登録商標)80のベシクルを用いて、血中と細胞形質内での二段構えの遺伝子送達機能を付与した。そのため、高効率で安全な遺伝子導入が実現できる。In in vivo gene transfer, a Span (registered trademark) 80 vesicle excellent in cell fusion ability and biological safety was used to provide a two-stage gene delivery function in blood and in cytoplasm. Therefore, highly efficient and safe gene transfer can be realized.

使用した遺伝子Gene used 種々のベシクル模型図Various vesicle model drawings プラスミド外付けベシクルを内包した二重ベシクル(VPV)の位相差顕微鏡写真Phase contrast micrograph of a double vesicle (VPV) containing an external plasmid vesicle 種々のベシクルによる相対遺伝子発現量のグラフ(ヒト骨肉腫細胞株(OST)の場合)Graph of relative gene expression by various vesicles (in case of human osteosarcoma cell line (OST)) 種々のベシクルによる相対遺伝子発現量のグラフ(ヒトEGFR抗原組み込みマウス細胞 (ERM5−1細胞)の場合)Graph of relative gene expression by various vesicles (in the case of mouse cells incorporating human EGFR antigen (ERM5-1 cells))

1.使用した癌細胞
OST:ヒト骨肉腫細胞
ERM5−1:ヒトEGFR抗原組み込みマウス細胞
2.使用したベシクル
VPV: プラスミド外付けベシクルを内包したベシクル
IVPV:プラスミド外付けベシクルを内包したイムノベシクル
VP: プラスミド内包ベシクル
PV: プラスミド外付けベシクル
VV: ベシクル内包ベシクル
3.使用した遺伝子:pEGFPLuc
4.IAOE:Isocyanic Acid Octadecyl Ester
5.DOTAP:カチオニック界面活性剤(化学式:C4383NOS)
6.BufferP1:プラスミドDNA調製用の再懸濁バッファー、Resuspension Buffer(RNase A not included)
7.BufferP2:プラスミドDNA調製用の溶解バッファー、Lysis Buffer
8.BufferP3:プラスミドDNA調製用の中和バッファー、Neutralization Buffer
9.BufferQC:プラスミドDNA調製用の洗浄バッファー、Wash Buffer
10.BufferQF:プラスミドDNA調製用の溶出バッファー、Elution Buffer
11.BufferQBT:プラスミドDNA調製用の平衡バッファー、Equilibration Buffer
1. 1. Cancer cells used OST: human osteosarcoma cells ERM5-1: mouse cells incorporating human EGFR antigen Vesicles used: VPV: vesicles containing plasmid-external vesicles IVPV: immunovesicles containing plasmid-external vesicles VP: plasmid-encapsulating vesicles PV: plasmid-external vesicles VV: vesicle-encapsulating vesicles Gene used: pEGFPLuc
4). IAOE: Isocyclic Acid Octadecyl Ester
5. DOTAP: Cationic surfactant (Chemical formula: C 43 H 83 NO 8 S)
6). BufferP1: Resuspension Buffer (RNase A not included) for resuspension buffer for plasmid DNA preparation
7). BufferP2: Lysis Buffer, a lysis buffer for preparing plasmid DNA
8). BufferP3: neutralization buffer for preparing plasmid DNA, Neutralization Buffer
9. BufferQC: Wash buffer for preparing plasmid DNA, Wash Buffer
10. BufferQF: Elution buffer for preparation of plasmid DNA, Election Buffer
11. BufferQBT: equilibration buffer for preparing plasmid DNA, Equilibration Buffer

レポーター遺伝子として、遺伝子導入されるとルシフェラーゼを産性するpEGFPLucを用いて、そのプラスミドを大腸菌で培養して増殖させた。一方、二段階乳化法により調製する界面活性剤Span(登録商標)80ベシクルを基本として、種々のベシクルを調製し、上記の遺伝子のベクターとして用いた。
このSpan(登録商標)80ベシクルには、膜強化剤として微量の大豆レシチンおよびコレステロールを混合し、さらにはカチオン界面活性剤であるDOTAPを上記のSpan(登録商標)80中に20wt%の割合で混合させ、カチオニックSpan(登録商標)80ベシクルとして用いた。このベシクル粒径はエクストルダーによる粒径制御や二次乳化後の長時間撹拌により、約150nm以下に調製した。
▲1▼この小粒径のカチオニックSpan(登録商標)80ベシクルの表面にp−L−Lysinを媒体としてプラスミドを結合させて、いわゆるプラスミド外付けベシクル(PV)を調製した。▲2▼一方、カチオニックSpan(登録商標)80ベシクル内にプラスミドを内包したベシクル(VP)も二段階乳化法により調製した。▲3▼さらに上記のPVを内包した二重ベシクル(VPV)も調製した。▲4▼またこのVPVベシクルの表面に抗体を固定化したIVPVも調製した。このような4種類のベシクルを用いて、以下の癌細胞に対する遺伝子導入実験を行った。使用した癌細胞はヒト骨肉腫細胞(OST)およびヒトEGFR抗原組み込みマウス細胞(ERM5−1)である。OST細胞の遺伝子導入実験に対しては、PV、VP、VPVの三種類のベクターを、また、ERM5−1に対する遺伝子導入実験では、PV、VP、VPV、IVPVの4種類を用いた。IVPVの抗体には、ERM5−1細胞表面の抗原EGFRを標的させるために、抗EGFR抗体を用いた。
これらの実験から、二重ベシクルVPVの内部に存在するPVが、ベシクルと細胞が融合した後、細胞形質内で核まで遺伝子を送達させるベクターとして機能し、遺伝子導入効率を上昇させることを実証した。
As a reporter gene, pEGFPLuc, which produces luciferase when introduced, was used to grow the plasmid in E. coli. On the other hand, based on the surfactant Span (registered trademark) 80 vesicle prepared by the two-stage emulsification method, various vesicles were prepared and used as vectors for the above genes.
In this Span (registered trademark) 80 vesicle, a small amount of soybean lecithin and cholesterol were mixed as a membrane strengthening agent, and further, DOTAP, which is a cationic surfactant, was added at a rate of 20 wt% in the above Span (registered trademark) 80. mixed and was used as a cationic Span (R) 80 vesicles. The vesicle particle size was adjusted to about 150 nm or less by controlling the particle size with an extruder or stirring for a long time after secondary emulsification.
( 1 ) A plasmid was attached to the surface of this small particle size Cationic Span (registered trademark) 80 vesicle using p-L-Lysin as a medium to prepare a so-called plasmid external vesicle (PV). ( 2 ) On the other hand, a vesicle (VP) in which a plasmid was encapsulated in a cationic Span (registered trademark) 80 vesicle was also prepared by a two-stage emulsification method. (3) Further, a double vesicle (VPV) containing the above-mentioned PV was also prepared. (4) In addition, IVPV in which an antibody was immobilized on the surface of the VPV vesicle was also prepared. Using these four types of vesicles, gene transfer experiments for the following cancer cells were performed. The cancer cells used were human osteosarcoma cells (OST) and human EGFR antigen-incorporated mouse cells (ERM5-1). Three types of vectors PV, VP, and VPV were used for the OST cell gene transfer experiment, and four types of PV, VP, VPV, and IVPV were used for the ERM5-1 gene transfer experiment. An anti-EGFR antibody was used as the IVPV antibody in order to target the antigen EGFR on the ERM5-1 cell surface.
From these experiments, it was demonstrated that PV existing in the double vesicle VPV functions as a vector for delivering a gene to the nucleus within the cell trait after the vesicle and the cell are fused, and increases gene transfer efficiency. .

【実施例1】ERM5−1細胞、OST細胞のメンテナンスは以下のように行った。
▲1▼細胞が入った10mlシャーレの上澄みを除去し、5mlの滅菌PBSで洗浄し、▲2▼0.025%トリプシンを1ml添加後、細胞をインキュベーターに移し、約30秒インキュベートする。▲3▼その後、血清をトリプシンと同量添加して、6mlのDMEM培地で細胞をはがし、▲4▼遠心管にその細胞溶液を移して遠心処理する(1000rpm、5min)。▲5▼その上澄みを除去する。▲6▼一方、新しいシャーレに血清1ml、DMEM培地8mlを添加する。▲7▼(▲5▼)で沈殿した細胞を、希釈したい量の培地で懸濁する。▲8▼この細胞懸濁液1mlを上記(▲6▼)のシャーレに添加し、▲9▼そのシャーレを速やかにインキュベーターに移す。
Example 1 Maintenance of ERM5-1 cells and OST cells was performed as follows.
▲ 1 ▼ remove the supernatant of the cells containing 10ml dish, washed with sterile PBS 5 ml, ▲ 2 ▼ After 0.025% trypsin 1ml addition, cells were transferred to an incubator, and incubated for about 30 seconds. ▲ 3 ▼ Thereafter, serum was added trypsin and the same amount, peel the cells in DMEM medium 6 ml, ▲ 4 ▼ in the centrifuge tube were transferred to the cell solution to centrifugation (1000 rpm, 5min). ▲ 5 ▼ to remove the supernatant liquid. (6) On the other hand, 1 ml of serum and 8 ml of DMEM medium are added to a new petri dish. The cells precipitated in (7) ((5)) are suspended in the medium to be diluted. ( 8 ) 1 ml of this cell suspension is added to the petri dish of (6) above, and ( 9 ) the petri dish is immediately transferred to an incubator.

【実施例2】使用したプラスミドを図1に示す。プラスミド調製法は以下のように行った。▲1▼(LB培地の調製法)NaCl 1g、BactoYeastExtract 1g、ポリペプトン2g、蒸留水200mlを加え攪拌する。オートクレーブ滅菌(121℃、20min)し、ある程度冷えたら冷蔵保存する。▲2▼(50mg/mlカナマイシンの調製)カナマイシン500mg、蒸留水10mgをビーカーに測り取り、攪拌する。ドラフト内でシリンジに移し、フィルターを通して、15ml遠心管(3本)に分けて凍結保存する。▲3▼(LBプレートの作成)LB培地300ml、寒天4.5gを三角フラスコに入れ、オートクレーブ滅菌(121℃、20min)後、65℃近傍で50mg/mlカナマイシン600μlを加える。その溶液を10mlシャーレに約10mlずつ分注し、固まったら冷蔵保存する。▲4▼(大腸菌の形質転換)試験管にLB培地2ml、大腸菌培養液0.1mlを入れる。37℃で二時間振盪する(166min−1)。この大腸菌1.5mlをエッペンチューブに移し、遠心処理後(12000rpm,30秒)、上澄みを吸引除去して、50mMCaCl 0.5mlを加え、ボルテックスする。100μlをエッペンチューブに移し、目的のプラスミド10μlを加え、氷上に20分間以上放置する。その後、試験管にLB培地1mlと上記放置の大腸菌を入れ、37℃で1時間振盪する(166min−1

Figure 0006094022
ート一面にぬる。▲5▼(大腸菌培養)▲1▼15ml遠心管にLB培地2ml、50mg/mlカナマイシン4μlを入れる。▲2▼前日培養したシャーレ(上記LBプレートにぬったもの)から大腸菌のコロニーをセルスクレーパを用いて採取し、(▲1▼)の培地に加える。▲3▼37℃で10〜20時間振盪する(166min−1)。▲4▼LB培地20ml、50mg/mlカナマイシン40μlを入れた100ml三角フラスコに、(▲3▼)の溶液を加える。▲5▼これを37℃で7〜8時間振盪する(100〜110min−1)。▲6▼LB培地1000ml、50mg/mlカナマイシン2mlを入れた2L三角フラスコに、(▲5▼)の溶液を加える。▲7▼37℃で10〜20時間振盪する。(100〜110min−1)▲6▼(Plasmidの調製)Maxiprep Kit Protcol(QIAGEN Plasmid Maxi Kit,lot No.42147533)により、以下のようにした。▲1▼大腸菌の培養液を遠心管に移し、4℃で5000×g,10分間遠心操作しバクテリア細胞を収集する。▲2▼遠心後、上澄みを棄て、バクテリアペレットを10mlのBuffer P1でペレットが無くなるまで懸濁する。▲3▼これに10mlのBuffer P2を添加後4〜6回静かに転倒混和して充分に混合し、5分間室温に放置する。▲4▼これに10mlのBuffer P3(4℃に冷却しておく)を添加後、直ちに4〜6回静かに転倒混和して充分に混合した後、20分間氷上でインキュベートする。▲5▼これを、4℃,7000×g以上で30分間遠心操作する。遠心後、プラスミドDNA(上澄み液)を素早く回収する。▲6▼回収した上澄み液を4℃,7000×g以上で15分間再度遠心操作して、プラスミドDNAを含む上澄み液を素早く回収する。▲7▼10mlのBuffer QBTにより平衡化しておいたQIAGEN−tip500(プラスミド精製用オープンカラム)(▲6▼)で回収した上澄み液を添加し、自然落下により樹脂に浸透させる。▲8▼このQIAGEN−tip500を2×30mlのBuffer QCで洗浄する。▲9▼その後、15mlのBuffer QFを用いてプラスミドDNAを溶出する。▲10▼この溶出液に、10.5mlの室温のイソプロパノールを添加し、よく混合した後、直ちに4℃、5000×g以上で60分間遠心操作する。遠心後、上澄み液を捨てる。▲11▼DNAペレットを5mlの室温70%エタノールで洗浄し5000×g以上で60分間遠心操作する。▲12▼上澄み液を捨て、5000×g以上で1分間遠心操作する。▲13▼上澄み液をピペット
Figure 0006094022
に溶解する。▲15▼分光光度計によりこの溶液のプラスミドDNA濃度を測定し、濃度を1mg/mlになるように調整する。Example 2 The plasmid used is shown in FIG. Plasmid preparation was performed as follows. (1) (Method for preparing LB medium) Add 1 g of NaCl, 1 g of BactoYeast Extract, 2 g of polypeptone, and 200 ml of distilled water, and stir. Autoclave sterilization (121 ° C., 20 min). (2) (Preparation of 50 mg / ml kanamycin) 500 mg of kanamycin and 10 mg of distilled water are measured in a beaker and stirred. Transferred to a syringe in a draft, through a filter, and stored frozen in portions 15ml centrifuge tubes (three). (3) (Preparation of LB plate) Put 300 ml of LB medium and 4.5 g of agar into an Erlenmeyer flask, sterilize by autoclave (121 ° C., 20 min), and then add 600 μl of 50 mg / ml kanamycin at around 65 ° C. Dispense about 10 ml of the solution into a 10 ml petri dish and store it in a refrigerator when it has solidified. (4) (Transformation of E. coli) Put 2 ml of LB medium and 0.1 ml of E. coli culture solution in a test tube. Shake for 2 hours at 37 ° C. (166 min −1 ). The E. coli 1.5ml was transferred to an Eppendorf tube, after centrifugation (12000 rpm, 30 seconds), then aspirated supernatant, added 50mMCaCl 2 0.5ml, vortex. Transfer 100 μl to an Eppendorf tube, add 10 μl of the desired plasmid, and leave it on ice for 20 minutes or longer. Thereafter, 1 ml of LB medium and the above-mentioned unsettled E. coli are placed in a test tube and shaken at 37 ° C. for 1 hour (166 min −1 ).
Figure 0006094022
Apply to the whole surface. (5) (E. coli culture) (1) Add 2 ml of LB medium and 4 μl of 50 mg / ml kanamycin to a 15 ml centrifuge tube. {Circle around ( 2)} E. coli colonies are collected from the petri dish cultured on the previous day (stuffed on the above LB plate) using a cell scraper and added to the medium of (▲). (3) Shake at 37 ° C. for 10 to 20 hours (166 min −1 ). (4) Add the solution of (3) to a 100 ml Erlenmeyer flask containing 20 ml of LB medium and 40 μl of 50 mg / ml kanamycin. (5) This is shaken at 37 ° C. for 7 to 8 hours (100 to 110 min −1 ). (6) Add the solution of (5) to a 2 L Erlenmeyer flask containing 1000 ml of LB medium and 2 ml of 50 mg / ml kanamycin. (7) Shake at 37 ° C. for 10 to 20 hours. (100 to 110 min −1 ) (6) (Preparation of Plasmid) Maxiprep Kit Protocol (QIAGEN Plasmid Maxi Kit, lot No. 42147533) was used as follows. (1) Transfer the culture solution of E. coli to a centrifuge tube, and centrifuge at 5000 × g for 10 minutes at 4 ° C. to collect bacterial cells. After ▲ 2 ▼ centrifuged, discarded the supernatant, suspending the bacteria pellet in Buffer P1 of 10ml until the pellet is eliminated. ▲ 3 ▼ this after adding Buffer P2 of 10 ml, thoroughly mixed by gentle inversion mix 4-6 times and allowed to stand at room temperature for 5 minutes. ▲ 4 ▼ this after addition of Buffer P3 (previously cooled to 4 ° C.) of 10 ml, were mixed thoroughly by gentle inversion mix immediately 4-6 times, and incubate on ice for 20 min. (5) This is centrifuged at 4 ° C. and 7000 × g or more for 30 minutes. After centrifugation, plasmid DNA (supernatant) is quickly recovered. (6) The collected supernatant is centrifuged again at 4 ° C., 7000 × g or more for 15 minutes, and the supernatant containing the plasmid DNA is quickly collected. (7 ) Add the supernatant collected in (6 ) to QIAGEN-tip500 (open column for plasmid purification) equilibrated with 10 ml of Buffer QBT, and allow it to permeate the resin by natural fall. (8) The QIAGEN-tip 500 is washed with 2 × 30 ml of Buffer QC. (9) Thereafter, the plasmid DNA is eluted using 15 ml of Buffer QF. (10) Add 10.5 ml of room temperature isopropanol to this eluate and mix well, then immediately centrifuge at 4 ° C., 5000 × g or more for 60 minutes. After centrifugation, discard the supernatant . (11) The DNA pellet is washed with 5 ml of room temperature 70% ethanol and centrifuged at 5000 × g or more for 60 minutes. (12) Discard the supernatant and centrifuge at 5000 xg or more for 1 minute. ▲ 13 ▼ Pipette the supernatant
Figure 0006094022
Dissolve in (15) The plasmid DNA concentration of this solution is measured with a spectrophotometer, and the concentration is adjusted to 1 mg / ml.

【実施例4】種々のベシクルの調製法を以下に示す。なおここで調製した遺伝子ベクターとしてのベシクルの模型図を図2に示す。

Figure 0006094022
相を構成する溶液)の調整>0011段落で記載したプラスミド20μl(濃度500μg/ml)、Poly−L−Lysine70μl、TE buffer 60μlを加えて、15分間放置した。<ベシクルの調製>▲1▼5mlの茶瓶(1)にSpan(登録商標)80を52.8mg,5mlの茶瓶(2)にTween80を24mg計り取る。▲2▼(▲1▼)の茶瓶(2)にTE buffer 3.0mlを加え撹拌子を入れて撹拌させる。▲3▼(▲1▼)の茶瓶(1)にDOTAP13.2mg、コレステロール3mg,レシチン6mg,ヘキサン2.0mlを加える。((コレステロール+レシチン)の量は全量の12%になるようにする。コレステロール:レシチン=1:2になるようにする)。▲4▼(▲3▼)の茶瓶(1)の溶液中に内水(Plasmid溶液)150μlを滴下しながらホモジナイザーにより撹拌する。(回転数10000rpm、(15秒攪拌+15秒休み)を8セット。)▲5▼茶瓶(1)をヘキサンで洗いながらすり付きナスフラスコに入れ替え、エバポレーターでヘキサンを除去する。▲6▼そのナスフラスコの中に、(▲2▼)で撹拌しておいたTween80溶液を加える。(ナスフラスコの壁面についたクリームを割り箸でこすり落とし分散させる。)▲7▼ホモジナイザーで分散させる。(回転数3500rpm、1min)▲8▼先程の茶瓶(2)に移し変え、撹拌子を入れて一昼夜冷蔵庫で撹拌する。<ベシクルの精製>▲1▼瓶のふたを緩めて15分程度撹拌する。▲2▼遠心管に3mlのベシクル溶液を移し変える。▲3▼そのベシクル溶液を遠心にかける。(50000rpm,2hour,4℃)▲4▼遠心後、上層の油玉を取り除く。Example 4 A method for preparing various vesicles is shown below. In addition, the model figure of the vesicle as a gene vector prepared here is shown in FIG.
Figure 0006094022
Preparation of phase)> 20 μl of the plasmid described in paragraph 0011 (concentration 500 μg / ml), Poly-L-Lycine 70 μl, TE buffer 60 μl were added and left for 15 minutes. <Preparation of vesicle> (1) Weigh out 52.8 mg of Span (registered trademark) 80 in a 5 ml tea bottle (1) and 24 mg of Tween 80 in a 5 ml tea bottle (2). Add 3.0 ml of TE buffer to the tea bottle (2) of (2) ((1)) and stir with a stirring bar. (3) (1) DOTAP 13.2 mg, cholesterol 3 mg, lecithin 6 mg, and hexane 2.0 ml are added to the tea bottle (1). (The amount of (cholesterol + lecithin) should be 12% of the total amount. Cholesterol: lecithin = 1: 2). While stirring 150 μl of internal water (plasmid solution) in the solution of tea bottle (1) of (4) (3), the mixture is stirred with a homogenizer. (Rotation speed is 10000 rpm, (15 seconds stirring + 15 seconds rest) 8 sets.) (5) Replace the tea bottle (1) with a rubbed eggplant flask while washing with hexane, and remove hexane with an evaporator. (6) Add the Tween 80 solution stirred in (2) to the eggplant flask. (The cream on the wall of the eggplant flask is scraped with a chopstick and dispersed.) (7) Disperse with a homogenizer. (Rotation speed 3500 rpm, 1 min) (8) Transfer to the previous tea bottle (2), put a stir bar and stir in the refrigerator all day and night. <Purification of vesicle> (1) Loosen the lid of the bottle and stir for about 15 minutes. (2) Transfer 3 ml of the vesicle solution to the centrifuge tube. (3) Centrifuge the vesicle solution. (50000 rpm, 2 hour, 4 ° C.) {circle around (4)} After centrifugation, the upper oil balls are removed.

Figure 0006094022
瓶(1)にSpan(登録商標)80を52.8mg、5mlの茶瓶(2)にTween80を24mg計り取る。▲2▼茶瓶(2)にTE buffer3.0mlを加え撹拌子を入れて撹拌させる。▲3▼(▲1▼)の茶瓶(1)にDOTAP13.2mg、コレステロール3mg,レシチン6mg,ヘキサン2.0mlを加える。((コレステロール+レシチン)の量は全量の12%になるようにする。コレステロール:レシチン=1:2になるようにする。)▲4▼この茶瓶(1)に内水(TE buffer)150μlを滴下しながらホモジナイザーにより撹拌する。(回転数10000rpm、(15秒攪拌+15秒休み)を8セット。)▲5▼茶瓶(1)の溶液をヘキサンで洗いながらすり付きナスフラスコに入れ替え、エバポレーターでヘキサンを除去する。▲6▼そのナスフラスコの中に(▲2▼)で撹拌しておいたTween80溶液を加え、ナスフラスコの壁面についたクリームを割り箸でこすり落とし分散させる。▲7▼そのナスフラスコをホモジナイザー処理する(回転数3500rpm、1min)。▲8▼この処理した溶液を、上記の空の茶瓶(2)に戻し、撹拌子を入れて一昼夜冷蔵庫で撹拌する(こうして長時間撹拌することにより、ベシクル粒径が約30〜150nmの小粒径のベシクルが調製される)。▲9▼均一なベシクルを調製するときは、100nmのメンブランを用いたエクストルダーを用いて粒径制御をして、約100nmのほぼ均一な小粒径ベシクルにした。<ベシクルの精製>▲1▼上記(▲8▼)の一昼夜撹拌保存した茶瓶(2)のふたを緩めて15分程度撹拌する。▲2▼このベシクル溶液3mlを遠心管に移し変える。▲3▼ベシクル溶液を遠心にかける(50000rpm,4hour,4℃)。▲4▼遠心後、上層の油玉を取り除き、精製ベシクル(V)を調製する。▲5▼Plasmid4.2μl,Poly−L−Lysine 15μl、(▲4▼)で精製したベシクル10μlをそれぞれエッペンチューブに加え、15分間放置する。こうしてPoly−L−Lysineを結合媒体として、ベシクル表面に、Plasmidを結合させたPlasmid外付けベシクル(PV)を調製する。
Figure 0006094022
The Span (R) 80 to the bottle (1) 52.8 mg, take Tween 80 24 mg weighed into teapot (2) of 5 ml. (2) Add 3.0 ml of TE buffer to the tea bottle (2) and stir with a stirring bar. (3) (1) DOTAP 13.2 mg, cholesterol 3 mg, lecithin 6 mg, and hexane 2.0 ml are added to the tea bottle (1). (The amount of (cholesterol + lecithin) should be 12% of the total amount. Cholesterol: lecithin should be 1: 2.) (4) 150 μl of internal water (TE buffer) was added to this tea bottle (1). Stir with a homogenizer while dropping. (Rotation speed is 10000 rpm, (15 seconds stirring + 15 seconds rest) 8 sets.) (5) The solution in the tea bottle (1) is replaced with a scrubbing eggplant flask while washing with hexane, and hexane is removed with an evaporator. (6) Add the Tween 80 solution stirred in (2) to the eggplant flask and scrape the cream on the wall of the eggplant flask with a chopstick to disperse. (7) The eggplant flask is homogenized (rotation speed: 3500 rpm, 1 min). (8) Return the treated solution to the above empty tea bottle (2), put a stirring bar and stir in the refrigerator all day and night (in this way, by stirring for a long time, small particles having a vesicle particle size of about 30 to 150 nm) Diameter vesicles are prepared). (9) When preparing a uniform vesicle, the particle size was controlled using an extruder using a 100 nm membrane to obtain a substantially uniform small particle size vesicle of about 100 nm. <Purification of vesicles> (1) Loosen the lid of the tea bottle (2) that has been stirred and stored overnight (8) above and stir for about 15 minutes. (2) Transfer 3 ml of this vesicle solution to a centrifuge tube. (3) Centrifuge the vesicle solution (50000 rpm, 4 hour, 4 ° C.). (4) After centrifugation, the upper oil balls are removed, and a purified vesicle (V) is prepared. (5) Add 4.2 μl of Plasmid, 15 μl of Poly-L-Lysine, and 10 μl of vesicle purified in (4) to the Eppendorf tube and leave for 15 minutes. In this way, Plasmid external vesicle (PV) in which Plasmid is bound to the vesicle surface is prepared using Poly-L-Lycine as a binding medium.

Figure 0006094022
の調製>▲1▼5mlの茶瓶(1)にSpan(登録商標)80を52.8mg,5mlの茶瓶(2)にTween80を24mg計り取る。▲2▼茶瓶(2)にTE buffer3.0mlを加え撹拌子を入れて撹拌させる。▲3▼(▲1▼)の茶瓶(1)にDOTAP13.2mg、コレステロール3mg,レシチン6mg,ヘキサン2.0mlを加える((コレステロール+レシチン)の量は全量の12%になるようにする。コレステロール:レシチン=1:2になるようにする)。▲4▼内水(0013段落で調製したplasmid外付けベシクル懸濁液)を150μl入れながらホモジナイザーにより撹拌する。(回転数10000rpm、(15秒攪拌+15秒休み)を8セット。)▲5▼(▲3▼)の茶瓶(1)の溶液をヘキサンで洗い落としながら、すり付きナスフラスコに移し、エバポレーターでヘキサンを除去する。▲6▼(▲2▼)で撹拌しておいたTween80溶液をそのナスフラスコに加える。(ナスフラスコの壁面についたクリームを割り箸でこすり落とし溶解させる。)▲7▼そのナスフラスコの溶液をホモジナイザーで分散させる(回転数3500rpm、1min)。▲8▼これを茶瓶(2)に移し変え、3時間撹拌して、ヘキサンを完全除去し、一昼夜冷蔵庫で保存する。こうして比較的大粒径のVPVベシクル(平均粒径で300nmであるが、マイクロサイズのベシクルも生成する)が調製される。<ベシクルの精製>▲1▼(▲8▼)の一昼夜撹拌保存した茶瓶(2)のふたを緩めて15分程度撹拌する。▲2▼このベシクル溶液3mlを遠心管に移し、▲3▼そのベシクル溶液を遠心にかける。(50000rpm,2hour,4℃)▲4▼遠心後、上層の油玉を取り除き、Plasmid外付けベシクルを内包するベシクル(VPV)を調製する。<二重ベシクルの確認>▲1▼このようにして調製したVPVのベシクルの顕微鏡写真を図3に示すが、大粒径ベシクル内に小粒径ベシクルが存在している様子が確認できる。実際には、蛍光物質FITCを内包させた小粒径ベシクルを調製して、それを大粒径ベシクルに内包させた。蛍光測定により、その小粒径ベシクルが大粒径ベシクル内に内包されている事を確認した。
Figure 0006094022
Preparation (1) Weigh out 52.8 mg of Span (registered trademark) 80 in a 5 ml tea bottle (1) and 24 mg of Tween 80 in a 5 ml tea bottle (2). (2) Add 3.0 ml of TE buffer to the tea bottle (2) and stir with a stirring bar. (3) Add DOTAP 13.2 mg, cholesterol 3 mg, lecithin 6 mg, and hexane 2.0 ml to the tea bottle (1) of (3) (1) (the amount of (cholesterol + lecithin) is 12% of the total amount.) : Lecithin = 1: 2) (4) Stir with a homogenizer while adding 150 μl of internal water (plasmid external vesicle suspension prepared in paragraph 0013). (Rotation speed is 10000 rpm, (15 seconds stirring + 15 seconds rest) 8 sets.) While washing the solution of tea bottle (1) of (5) ((3)) with hexane, it is transferred to a scrubbing eggplant flask and hexane is removed by an evaporator. Remove. Add the Tween 80 solution stirred in (6) ((2)) to the eggplant flask. (The cream on the wall of the eggplant flask is scraped and dissolved with chopsticks.) (7) The eggplant flask solution is dispersed with a homogenizer (rotation speed 3500 rpm, 1 min). (8) Transfer this to the tea bottle (2) and stir for 3 hours to completely remove hexane and store it in the refrigerator all day and night. Thus, VPV vesicles having a relatively large particle size (average particle size is 300 nm, but micro size vesicles are also produced) are prepared. <Purification of vesicles> Loosen the lid of the tea bottle (2) which has been stirred and stored overnight (1) (8) and stir for about 15 minutes. (2) Transfer 3 ml of the vesicle solution to a centrifuge tube, and (3) centrifuge the vesicle solution. (50000 rpm, 2 hour, 4 ° C.) {circle around (4)} After centrifugation, the upper oil balls are removed to prepare a vesicle (VPV) containing a plasmid external vesicle. <Confirmation of Double Vesicle> (1) A micrograph of the VPV vesicle prepared in this way is shown in FIG. 3, and it can be confirmed that small particle vesicles are present in the large particle vesicle. Actually, a small particle size vesicle encapsulating the fluorescent material FITC was prepared and encapsulated in the large particle size vesicle. It was confirmed by fluorescence measurement that the small particle size vesicles were encapsulated in the large particle size vesicles.

Figure 0006094022
IAOE−proteinA調製>▲1▼エッペンチューブにproteinA 100μl,Carbonate buffer 100μlを採取して攪拌する。▲2▼別のエッペンチューブにIAOE10mg,N−Nジメチルホルムアミド1〜2滴を入れ、(▲1▼)の溶液を50μl加える。▲3▼湯槽上で2時間放置する(30分毎に攪拌)。<ベシクル調製>▲1▼5mlの茶瓶(1)にSpan(登録商標)80を132mg,5mlの茶瓶(2)にTween80を48mg計り取る。▲2▼(▲1▼)の茶瓶(2)にpH9.0 Carbonate buffer 3.0ml,IAOE−proteinA 50μlを加え撹拌子を入れて撹拌する。▲3▼(▲1▼)の茶瓶(1)にDOTAP 26.4mg、コレステロール6mg,レシチン12mg,ヘキサン3.0mlを加える。((コレステロール+レシチン)の量は全量の12%になるようにする。コレステロール:レシチン=1:2になるようにする)。▲4▼その茶瓶(1)にベシクルの内水となる水溶液を300μl滴下しながらマイクロホモジナイザーで攪拌する(回転数20000rpm、3min)。▲5▼(▲4▼)の茶瓶(1)の溶液をヘキサンで洗い落としながらすり付きナスフラスコに入れ替え、エバポレーターでヘキサンを除去する。▲6▼そのナスフラスコに、(▲2▼)で撹拌しておいた、茶瓶(2)のTween80溶液、およびIAOE−proteinの混合溶液を加え、ナスフラスコの壁面についたクリームを割り箸でこすり落とし溶解させる。▲7▼そのナスフラスコ中の溶液をホモジナイザー処理した後(回転数3500rpm、1min)、▲8▼(▲6▼)の空になった茶瓶(2)に移し変え、3時間撹拌してヘキサンを除去する。▲9▼その後、蔵庫内で保存し、残ったヘキサンを除去する。<ベシクルの精製>▲1▼その一昼夜保存の瓶のふたを緩めて15分程度撹拌する。▲2▼そのベシクル溶液3mlを遠心管に移し変える。▲3▼それを遠心にかける(50000rpm,2hour,4℃)。▲4▼遠心後、上層の油玉を取り除いた後、▲5▼EGFR抗体を75μl加え、冷蔵庫内で48時間放置する。こうして、ベシクル表面にその抗体を固定化して、IVPVを調製する。
Figure 0006094022
Preparation of IAOE-protein A> (1) Collect 100 μl of protein A and 100 μl of carbonate buffer in an Eppendorf tube and stir. (2) Add 10 mg of IAOE and 1 to 2 drops of NN dimethylformamide to another Eppendorf tube, and add 50 μl of the solution of (1). (3) Leave in a water bath for 2 hours (stir every 30 minutes). <Vesicle Preparation> (1) Weigh out 132 mg of Span (registered trademark) 80 in a 5 ml tea bottle (1) and 48 mg of Tween 80 in a 5 ml tea bottle (2). Add 3.0 ml of pH 9.0 Carbonate buffer and 50 μl of IAOE-protein A to the tea bottle (2) of (2) (1), and stir with a stir bar. Add 36.4 mg of DOTAP, 6 mg of cholesterol, 12 mg of lecithin, and 3.0 ml of hexane to the tea bottle (1) of (3) (1). (The amount of (cholesterol + lecithin) should be 12% of the total amount. Cholesterol: lecithin = 1: 2). {Circle around (4)} To the tea bottle (1), 300 μl of an aqueous solution serving as the inner water of the vesicle is dropped and stirred with a microhomogenizer (rotation speed 20000 rpm, 3 min). (5) (4) The tea bottle (1) solution is washed with hexane and replaced with a scrubbing eggplant flask, and the hexane is removed with an evaporator. (6) To the eggplant flask, add the Tween 80 solution in tea bottle (2) and IAOE-protein mixed solution, which were stirred in (2), and scrape off the cream on the wall of the eggplant flask with chopsticks. Dissolve. (7) After the solution in the eggplant flask was homogenized (rotation speed: 3500 rpm, 1 min), transferred to the empty tea bottle (2) of (8) ((6)), and stirred for 3 hours. Remove. {Circle around (9)} Then, store in the warehouse and remove the remaining hexane. <Purification of vesicle> (1) Loosen the lid of the bottle that is stored all day and night, and stir for about 15 minutes. (2) Transfer 3 ml of the vesicle solution to a centrifuge tube. (3) It is centrifuged (50000 rpm, 2 hours, 4 ° C.). (4) After centrifugation, the upper oil balls are removed, (5) 75 μl of EGFR antibody is added, and left in the refrigerator for 48 hours. Thus, the antibody is immobilized on the vesicle surface to prepare IVPV.

【実施例3】ERM5−1細胞およびOST細胞への遺伝子導入をする方法を以下に示す。▲1▼(遺伝子外付けベシクル(PV)の場合) ▲1▼遺伝子導入実験を行う前日に、6穴プレートに約2×10個/mlに調整したERM5−1細胞をプレーティングしておく。▲2▼また遠心管にPlasmid 4.2μl,Poly−L−Lysine 15μl,DMEM培地1.5mlをそれぞれ混合し、15分間室温に放置する。▲3▼その後、あらかじめ調製しておいたDOTAP含有ベシクル液(0013段落の<ベシクル精製>の▲4▼に記載)6μlを(▲2▼)のプラスミド溶液にそれぞれ添加し、15分間室温に放置し、PV溶液を調製する。▲4▼上記の(▲1▼)で予めプレーティングしておいたERM5−1細胞をPBSで一回洗浄した後、そのERM5−1細胞に上記(▲3▼)のPV液を1穴あたり0.5ml添加する。▲5▼37℃、5%CO下で3時間保温後、水溶液を全て吸い取った後、DMEM培地を1ml加えて培地交換する。さらに24時間培養して、遺伝子導入実験を行った。▲2▼PV以外のベシクル(VP,VPV,IVPV)は下記の方法によった。▲1▼遺伝子導入実験を行う前日に、12穴プレートに約2×10個/mlに調整したERM5−1細胞を1mlずつプレーティングする。▲2▼プレートの上澄みを除去しPBSで細胞を洗浄後、10%FBS−DMEM培地を0.50ml入れた後、予め濁度調ておいた各ベシクルサンプルを、上記の細胞に25μl添加する。▲3▼3時間後、水溶液を全て吸い取った後、DMEM培地を1ml加えて培地交換する。その後、37℃、5%CO下で24時間インキュベートする。こうして上記種々のベシクルによる遺伝子導入実験を行う。▲3▼Luciferase assay(pEGFP−luc)>なお、この方法は本件の全ての遺伝子導入量の評価に用いた。▲1▼各wellをPBSで二回洗浄後Lysis buffer500μl加え、上記の遺伝子導入された細胞を溶解する。▲2▼この細胞溶解液をセルスクレーパーで1.5mlチューブに回収し、氷上におく。▲3▼LuminescenserJNRを立ち上げ、基質投入管を蒸留水で洗浄後、基質(ルシフェリン)でリンスする。▲4▼その氷上のサンプルを遠心処理(13000rpm,4℃,1min)して、不溶物を除去して、上澄みを96wellプレートに20μlずつ加え波長562nmでLuminescenserにより発光量を測定する。こうして、遺伝子導入量を評価した。 [Example 3] A method for introducing a gene into ERM5-1 cells and OST cells is described below. (1) (External gene vesicle (PV)) (1) The day before conducting the gene transfer experiment, ERM5-1 cells adjusted to about 2 × 10 5 cells / ml are plated in a 6-well plate. . ▲ 2 ▼ The mixed Plasmid into a centrifuge tube 4.2μl, Poly-L-Lysine 15μl , DMEM medium 1.5ml respectively, allowed to stand at room temperature for 15 minutes. ▲ 3 ▼ thereof after, the addition respectively (<vesicles purification> of ▲ 4 ▼ described in 0013 paragraph) 6 [mu] l pre-prepared DOTAP containing vesicles solution had been (▲ 2 ▼) plasmid solution, for 15 minutes at room temperature And prepare a PV solution . ( 4 ) ERM5-1 cells previously plated in (1) above were washed once with PBS, and then the PV solution (3) above was added to the ERM5-1 cells in one well. Add 0.5 ml per tube. ▲ 5 ▼ 37 ° C., after 3 hours incubated under 5% CO 2, after Tsu blotter all aqueous solution and the medium replaced by the addition of DMEM medium 1 ml. The cells were further cultured for 24 hours , and a gene transfer experiment was conducted. ( 2 ) Vesicles other than PV (VP, VPV, IVPV) were obtained by the following method. {Circle around (1)} On the day before the gene transfer experiment, 1 ml of ERM5-1 cells adjusted to about 2 × 10 5 cells / ml are plated on a 12-well plate. ▲ 2 ▼ plates supernatant was removed, and cells were washed with PBS, and after putting 0.50ml of 10% FBS-DMEM medium, 25 [mu] l of each vesicle samples previously turbidity adjusted, the above cell Added. ▲ 3 ▼ 3 hours after, after taking suck all aqueous solution, to medium exchange DMEM medium was added 1 ml. Then, incubate for 24 hours at 37 ° C., 5% CO 2 . In this way, gene transfer experiments using the above-described various vesicles are performed . < 3 > < Luciferase assay (pEGFP-luc) > This method was used for the evaluation of all gene transfer amounts in this case. (1) Each well is washed twice with PBS, and then 500 μl of lysis buffer is added to lyse the above-introduced cells . ▲ 2 ▼ The cell lysate was collected with a cell scraper in 1.5ml tubes, placed on ice. {Circle around (3)} Luminescence sensor JNR is started up, and the substrate inlet tube is washed with distilled water and rinsed with substrate (luciferin) . ▲ 4 ▼ centrifugal process samples on ice (13000rpm, 4 ℃, 1min) to, to remove insoluble material, measuring the amount of light emission by Luminescenser at wavelength 562nm added in 20μl of supernatant to 96well plates. Thus, the amount of gene transfer was evaluated.

【実施例4】
上記のようにして行ったOST細胞への遺伝子導入実験の結果を図4に、またERM5−1への遺伝子導入の結果を図5に示す。図4では、二重ベシクルのVPVの遺伝子導入はVPの約4倍、PVの約40倍になり、二重ベシクルVPVの遺伝子ベクターとしての優位性が示された。一方、図5に示すように、ERM5−1細胞では、二重ベシクルVPVの遺伝子導入はVPの約2.7倍、PVの1.5倍となり、やはりVPVの優位性が示された。さらには、外側のベシクルに抗体を取り付けたIVPVではVPVの約2.8倍となり、抗体固定化の効果が明らかになった。
[Example 4]
FIG. 4 shows the result of the gene introduction experiment into the OST cell performed as described above, and FIG. 5 shows the result of the gene introduction into ERM5-1. In FIG. 4, the gene transfer of the double vesicle VPV was about 4 times that of VP and 40 times that of PV, indicating the superiority of the double vesicle VPV as a gene vector. On the other hand, as shown in FIG. 5, in ERM5-1 cells, the gene transfer of the double vesicle VPV was about 2.7 times that of VP and 1.5 times that of PV, indicating the superiority of VPV. Furthermore, IVPV with an antibody attached to the outer vesicle was about 2.8 times that of VPV, revealing the effect of antibody immobilization.

Claims (4)

ベシクル表面上に遺伝子を固定化し、そのベシクルをさらに粒径の大きいベシクルの内水相中に包括して、その包括されたベシクルが粒径の大きいベシクルの内水相中で運動の自由度を有する、二重構造ベシクルである遺伝子導入ベクターであって、両ベシクルは、Span(登録商標)80を主成分とし、カチオニック界面活性剤を含むカチオニックSpan(登録商標)80ベシクルであることを特徴とする、ベクターThe gene is immobilized on the surface of the vesicle, the vesicle is included in the inner aqueous phase of the vesicle having a larger particle size, and the included vesicle provides freedom of movement in the inner aqueous phase of the vesicle having a larger particle size. A gene transfer vector that is a dual-structure vesicle, characterized in that both vesicles are cationic Span (registered trademark) 80 vesicles comprising Span (registered trademark) 80 as a main component and containing a cationic surfactant. A vector . 粒径の大きいベシクルの表面に抗体が固定化されていることを特徴とする、請求項1記載のベクター The vector according to claim 1, wherein an antibody is immobilized on the surface of a vesicle having a large particle size . Span(登録商標)80とカチオニック界面活性剤を混合して調製した、カチオニックSpan(登録商標)80ベシクルの表面上に遺伝子を固定化した小粒径ベシクルを、さらに大粒径のベシクルの中に内包する二重ベシクルの調製法。A small particle size vesicle prepared by mixing Span (registered trademark) 80 and a cationic surfactant and having a gene immobilized on the surface of a cationic Span (registered trademark) 80 vesicle, and a larger particle size vesicle A method for preparing a double vesicle for inclusion. Span(登録商標)80とカチオニック界面活性剤を混合して調製した、カチオニックSpan(登録商標)80ベシクルの表面上に遺伝子を固定化した小粒径ベシクルを、さらに表面に抗体を固定化した大粒径のベシクルの中に内包する二重イムノベシクルの調製法 A small particle size vesicle with a gene immobilized on the surface of a cationic Span (registered trademark) 80 vesicle prepared by mixing Span (registered trademark) 80 and a cationic surfactant, and an antibody immobilized on the surface A method for preparing a double immunovesicle encapsulated in a particle size vesicle .
JP2009072745A 2009-02-26 2009-02-26 Gene transfer vector and preparation method thereof Expired - Fee Related JP6094022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072745A JP6094022B2 (en) 2009-02-26 2009-02-26 Gene transfer vector and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072745A JP6094022B2 (en) 2009-02-26 2009-02-26 Gene transfer vector and preparation method thereof

Publications (3)

Publication Number Publication Date
JP2010193875A JP2010193875A (en) 2010-09-09
JP2010193875A5 JP2010193875A5 (en) 2012-07-12
JP6094022B2 true JP6094022B2 (en) 2017-03-22

Family

ID=42819284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072745A Expired - Fee Related JP6094022B2 (en) 2009-02-26 2009-02-26 Gene transfer vector and preparation method thereof

Country Status (1)

Country Link
JP (1) JP6094022B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181213A (en) * 1999-12-27 2001-07-03 Kaiso Shigen Kenkyusho:Kk Vesicle having target-directing property and method for preparing the same
DE60141078D1 (en) * 2000-10-04 2010-03-04 Kyowa Hakko Kirin Co Ltd METHOD OF COATING FINE PARTICLES WITH A LIPID FILM
JP4928689B2 (en) * 2001-09-04 2012-05-09 敬一 加藤 Lipid vesicle and method for producing lipid vesicle
JP2003012503A (en) * 2001-06-22 2003-01-15 Techno Network Shikoku Co Ltd Lipid vesicle and method for immobilizing gene
JP2003001097A (en) * 2001-06-22 2003-01-07 Techno Network Shikoku Co Ltd Method of making nanosize lipid vesicle
JP2005068120A (en) * 2003-08-21 2005-03-17 Keiichi Kato Lipid membrane vesicle and method for preparing the same
GB0423871D0 (en) * 2004-10-27 2004-12-01 Domantis Ltd Method
JP2006254877A (en) * 2005-03-18 2006-09-28 Fukuoka Prefecture Carrier containing glycolipid and method for transferring gene using the same

Also Published As

Publication number Publication date
JP2010193875A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4613011B2 (en) Pharmaceutical composition for improving in vivo gene transfer
JP2024023294A (en) CPF1-related methods and compositions for gene editing
US9855347B2 (en) Virion-derived nanospheres for selective delivery of therapeutic and diagnostic agents to cancer cells
US6344446B1 (en) Cationic lipid:DNA complexes for gene targeting
US5932241A (en) Cationic lipid DNA complexes for gene targeting
KR20200038236A (en) Composition comprising curon and use thereof
WO1994023738A1 (en) Encapsulation of nucleic acids with conjugates that facilitate and target cellular uptake and gene expression
JP7332474B2 (en) Compositions and methods related to myomixer-facilitated muscle cell fusion
JP2022529579A (en) Delivery system containing silicon nanoparticles
Hoare et al. Enhanced lipoplex‐mediated gene expression in mesenchymal stem cells using reiterated nuclear localization sequence peptides
US11884918B2 (en) Systems and methods for modulating CRISPR activity
EP3658126B1 (en) Biodegradable multilayer nanocapsules for the delivery of biologically active agents in target cells
CN110088282A (en) With the method for magnetic-particle separating high-purity nucleic acid
JP6094022B2 (en) Gene transfer vector and preparation method thereof
JP2010193875A5 (en) Gene transfer vector and preparation method thereof
He et al. A novel gene carrier based on amino-modified silica nanoparticles
KR100427259B1 (en) Novel gene delivery system consisting of cationic polymers and fusogenic peptides
Zheng et al. Enhancing the osteogenic capacity of MG63 cells through N-isopropylacrylamide-modified polyethylenimine-mediated oligodeoxynucleotide MT01 delivery
Majumdar et al. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture
KR100514092B1 (en) Novel composite gene delivery system consisting of cationic polymers and anionic polymers
KR100631488B1 (en) New synthetic peptides containing PTD domain and membrane-destabilizing motif and their use in gene delivery
Bialas Medical application and biological occurrence of inorganic nanoparticles and nanostructures
JP2000157270A (en) Carrier for genetransfer, complex of the same carrier with gene and gene transfer in cell
CN115305253A (en) Recombinant pancreatic cancer cell for exosome tracing and application thereof
CN116656736A (en) Gene editing plasmid transfer system for targeting tumor cells and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150702

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees