JP6091396B2 - Vacuum insulation - Google Patents
Vacuum insulation Download PDFInfo
- Publication number
- JP6091396B2 JP6091396B2 JP2013212246A JP2013212246A JP6091396B2 JP 6091396 B2 JP6091396 B2 JP 6091396B2 JP 2013212246 A JP2013212246 A JP 2013212246A JP 2013212246 A JP2013212246 A JP 2013212246A JP 6091396 B2 JP6091396 B2 JP 6091396B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- multilayer structure
- acid
- compound
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
Description
本発明は、被覆材と、被覆材により囲まれた内部に配置された芯材とを備え、その内部が減圧された真空断熱体に関する。 The present invention relates to a vacuum heat insulating body including a covering material and a core material disposed inside the covering material, and the inside of which is decompressed.
ウレタンフォーム(ポリウレタンフォーム)からなる断熱体が、冷蔵庫用断熱材、住宅用断熱パネルなどとして用いられている。近年、これに代わる断熱体として真空断熱体も使用されている。真空断熱体は、ウレタンフォームからなる断熱体による断熱特性と同等の断熱特性を、より薄くより軽い断熱体で達成することを可能にする。真空断熱体は、ヒートポンプ応用機器などの熱移動機器、蓄熱機器、居住空間、車両内空間などを断熱するために用いる断熱体として、その用途と需要とを広げつつある。 Thermal insulators made of urethane foam (polyurethane foam) are used as refrigerator thermal insulation, residential thermal insulation panels, and the like. In recent years, vacuum insulators have also been used as an alternative insulator. The vacuum insulator makes it possible to achieve a heat insulation characteristic equivalent to that of a heat insulator made of urethane foam with a thinner and lighter heat insulator. Vacuum insulators are expanding their applications and demands as insulators used to insulate heat transfer devices such as heat pump applied devices, heat storage devices, living spaces, vehicle interior spaces, and the like.
真空断熱体の被覆材に要求される特性の一つはガスバリア性である。このため、ガスバリア性を高めた被覆材が提案されている。 One of the characteristics required for a coating material for a vacuum insulator is gas barrier properties. For this reason, coating materials with improved gas barrier properties have been proposed.
ガスバリア性を高めた被覆材としては、例えば、アルミナ粒子とリン化合物との反応生成物を含む透明ガスバリア被膜を備えた被覆材が知られている(特許文献1:国際公開第2011−122036号)。この透明ガスバリア被膜は、アルミナ粒子とリン化合物を含むコーティング液を基材上に塗布することにより形成される。 As a coating material with improved gas barrier properties, for example, a coating material provided with a transparent gas barrier coating containing a reaction product of alumina particles and a phosphorus compound is known (Patent Document 1: International Publication No. 2011-122036). . This transparent gas barrier film is formed by applying a coating liquid containing alumina particles and a phosphorus compound on a substrate.
しかしながら、上記従来の被覆材は、初期のガスバリア性は優れているものの、変形や衝撃などの物理的ストレスを受けた際に、そのガスバリア被膜にクラックやピンホールといった欠陥が生じる場合があり、長期間にわたってガスバリア性が確保できない場合があった。真空断熱体の被覆材は、芯材を包装する際に、その内部を減圧するための真空引きによって物理的なストレスを受ける。その後も、被覆材は、真空断熱体の運搬、設置、施工その他の段階において多様な物理的ストレスを受ける。被覆材のガスバリア性が劣化すると、真空断熱材の内部圧力が上昇してその断熱特性が劣化する。このため、物理的ストレスを受けても、被覆材が有するガスバリア性を高いレベルで維持可能な真空断熱体が求められている。 However, although the above conventional coating materials are excellent in initial gas barrier properties, defects such as cracks and pinholes may occur in the gas barrier coating when subjected to physical stress such as deformation and impact. In some cases, gas barrier properties could not be secured over a period of time. When the core material is packaged, the coating material of the vacuum heat insulator is subjected to physical stress by evacuation for decompressing the inside thereof. Thereafter, the coating material is subjected to various physical stresses during the transportation, installation, construction and other stages of the vacuum insulator. When the gas barrier property of the covering material is deteriorated, the internal pressure of the vacuum heat insulating material is increased and the heat insulating property is deteriorated. For this reason, there is a need for a vacuum insulator that can maintain the gas barrier property of the coating material at a high level even under physical stress.
本発明の目的は、物理的ストレスを受けても、被覆材が有するガスバリア性が高いレベルで維持されることに適した真空断熱体を提供することである。 An object of the present invention is to provide a vacuum heat insulating body suitable for maintaining a gas barrier property of a coating material at a high level even under physical stress.
本発明による真空断熱体は、被覆材と、前記被覆材により囲まれた内部に配置された芯材とを備え、前記内部が減圧された真空断熱体であって、前記被覆材は、基材(X)、層(Y)および層(Z)をそれぞれ1層以上有する多層構造体を含み、前記層(Y)はアルミニウム原子を含み、前記層(Z)はリン原子を有する単量体単位を含む重合体(E)を含み、少なくとも1組の前記層(Y)と前記層(Z)とが隣接して積層されている。 The vacuum insulator according to the present invention is a vacuum insulator including a covering material and a core material disposed inside the covering material, wherein the inside is decompressed, and the covering material is a base material (X) includes a multilayer structure having one or more layers (Y) and (Z), wherein the layer (Y) includes an aluminum atom and the layer (Z) includes a monomer unit having a phosphorus atom. The layer (Y) and the layer (Z) are laminated adjacent to each other.
本発明による真空断熱体では、少なくとも1組の、前記基材(X)、前記層(Y)および前記層(Z)が、前記基材(X)/前記層(Y)/前記層(Z)の順に積層された構造を有してもよい。 In the vacuum insulator according to the present invention, at least one set of the base material (X), the layer (Y), and the layer (Z) is the base material (X) / the layer (Y) / the layer (Z ) May be stacked in this order.
本発明による真空断熱体では、前記重合体(E)は、側鎖の末端にリン酸基を有する(メタ)アクリル酸エステル類の単独重合体または共重合体であってもよい。 In the vacuum insulator according to the present invention, the polymer (E) may be a homopolymer or copolymer of (meth) acrylic acid esters having a phosphate group at the end of the side chain.
本発明による真空断熱体では、前記重合体(E)が、アシッドホスホオキシエチル(メタ)アクリレートの単独重合体であってもよい。 In the vacuum insulator according to the present invention, the polymer (E) may be a homopolymer of acid phosphooxyethyl (meth) acrylate.
本発明による真空断熱体では、前記重合体(E)が、下記一般式(I)で示される繰り返し単位を有していてもよい。 In the vacuum insulator according to the present invention, the polymer (E) may have a repeating unit represented by the following general formula (I).
本発明による真空断熱体では、前記層(Y)が反応生成物(R)を含む層(YA)であってもよい。前記反応生成物(R)は、アルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物であり、前記層(YA)の赤外線吸収スペクトルにおいて800〜1400cm-1の範囲における赤外線吸収が最大となる波数(n1)が1080〜1130cm-1の範囲にあってもよい。 In the vacuum insulator according to the present invention, the layer (Y) may be a layer (YA) containing the reaction product (R). The reaction product (R) is a reaction product obtained by a reaction between a metal oxide (A) containing aluminum and a phosphorus compound (B). The infrared absorption spectrum of the layer (YA) is 800 to 1400 cm −. The wave number (n 1 ) that maximizes infrared absorption in the range of 1 may be in the range of 1080 to 1130 cm −1 .
本発明による真空断熱体では、前記層(Y)が、アルミニウムの蒸着層(YB)または酸化アルミニウムの蒸着層(YC)であってもよい。 In the vacuum insulator according to the present invention, the layer (Y) may be an aluminum deposition layer (YB) or an aluminum oxide deposition layer (YC).
本発明による真空断熱体では、前記基材(X)が、熱可塑性樹脂フィルム層、紙層および無機蒸着層からなる群より選ばれる少なくとも1種の層を含んでもよい。 In the vacuum heat insulating body according to the present invention, the base material (X) may include at least one layer selected from the group consisting of a thermoplastic resin film layer, a paper layer, and an inorganic vapor deposition layer.
本発明による真空断熱体では、前記多層構造体が、前記基材(X)、前記層(Y)もしくは前記層(Z)の一部として、または前記基材(X)、前記層(Y)および前記層(Z)とともに、無機蒸着層を含んでいてもよい。 In the vacuum insulator according to the present invention, the multilayer structure is a part of the substrate (X), the layer (Y) or the layer (Z), or the substrate (X) or the layer (Y). An inorganic vapor deposition layer may be included together with the layer (Z).
本発明による真空断熱体は、前記被覆材の20℃、85%RHの条件下における酸素透過度が2ml/(m2・day・atm)以下であってもよい。 The vacuum insulator according to the present invention may have an oxygen permeability of 2 ml / (m 2 · day · atm) or less under the conditions of 20 ° C. and 85% RH of the covering material.
本発明による真空断熱体では、前記被覆材を23℃、50%RHの条件下で一方向に5%延伸した状態で5分間保持した後に、当該被覆材について、20℃、85%RHの条件下において測定した酸素透過度が、4ml/(m2・day・atm)以下であってもよい。 In the vacuum heat insulating body according to the present invention, the covering material is held for 5 minutes in a state where it is stretched 5% in one direction under the conditions of 23 ° C. and 50% RH, and then the covering material is subjected to the conditions of 20 ° C. and 85% RH. The oxygen permeability measured below may be 4 ml / (m 2 · day · atm) or less.
本発明によれば、物理的ストレスを受けても、被覆材が有するガスバリア性が高いレベルで維持されることに適した真空断熱体が得られる。 ADVANTAGE OF THE INVENTION According to this invention, even if it receives physical stress, the vacuum heat insulating body suitable for maintaining the gas barrier property which a coating | covering material has at a high level is obtained.
以下、本発明の実施形態について説明する。なお、以下の説明において特定の機能を発現する材料として具体的な材料(化合物など)を例示する場合があるが、本発明はそのような材料を使用した態様に限定されない。また、例示される材料は、特に記載がない限り、1種を単独で使用してもよいし2種以上を併用してもよい。 Hereinafter, embodiments of the present invention will be described. In the following description, a specific material (such as a compound) may be exemplified as a material that exhibits a specific function. However, the present invention is not limited to an embodiment using such a material. Moreover, as long as there is no description in particular, the material illustrated may be used individually by 1 type, and may use 2 or more types together.
[真空断熱体]
真空断熱体は、被覆材と、被覆材により囲まれた内部に配置された芯材とを備え、芯材が配置された内部が減圧された断熱体である。
[Vacuum insulation]
The vacuum heat insulating body is a heat insulating body that includes a covering material and a core material disposed inside the covering material and in which the inside where the core material is disposed is decompressed.
本発明による真空断熱体の一形態を図1に例示する。真空断熱体1は、芯材51として粉体を備えている。芯材51は、被覆材10により囲まれた内部に配置されている。被覆材10は、2枚のフィルム材31、32により構成されており、フィルム材31、32はそれらの周縁部11で互いに接合されている。周縁部11で囲まれた中央部において、被覆材10は、芯材51が収容された内部と外部とを隔てる隔壁20として機能し、断熱体の内部と外部との圧力差により芯材51に密着している。
One form of the vacuum heat insulating body by this invention is illustrated in FIG. The vacuum
本発明による真空断熱体の別の一形態を図2に例示する。真空断熱体2は、芯材52として一体に成形された成形体を備えている点において真空断熱体1と相違するが、その他の点では真空断熱体1と同一の構成を有する。成形体である芯材52は、典型的には樹脂の発泡体である。
Another embodiment of the vacuum insulator according to the present invention is illustrated in FIG. The vacuum
芯材の材料および形状は、断熱に適している限り特に制限されない。芯材としては、例えば、パーライト粉末、シリカ粉末、沈降シリカ粉末、ケイソウ土、ケイ酸カルシウム、ガラスウール、ロックウール、人工(合成)ウール、および樹脂の発泡体(例えばスチレンフォーム、ウレタンフォーム)を使用できる。芯材としては、所定形状に成形された中空容器、ハニカム構造体などを用いることもできる。 The material and shape of the core material are not particularly limited as long as they are suitable for heat insulation. Examples of the core material include pearlite powder, silica powder, precipitated silica powder, diatomaceous earth, calcium silicate, glass wool, rock wool, artificial (synthetic) wool, and resin foam (for example, styrene foam, urethane foam). Can be used. As the core material, a hollow container formed in a predetermined shape, a honeycomb structure, or the like can be used.
真空断熱体1において、被覆材10(フィルム材31、32)は、以下に説明する多層構造体を含んでいる。真空断熱体1は、被覆材10および芯材51、52以外の部材をさらに備えていてもよい。被覆材10は、多層構造体のみから構成されていてもよく、多層構造体以外の部材をさらに積層したものであってもよい。被覆材10は、真空断熱体1の形成に適した層状の積層体であって以下の多層構造体を含んでいる限り、その厚さおよび材料に特に制限はない。
In the vacuum
[多層構造体]
多層構造体は、基材(X)、層(Y)および層(Z)をそれぞれ1層以上有する多層構造体であって、層(Y)はアルミニウム原子を含み、層(Z)はリン原子を有する単量体単位を含む重合体(E)を含み、少なくとも1組の層(Y)と層(Z)とが隣接して積層されている。この多層構造体は、物理的ストレスによるフィルム材のガスバリア性の低下を抑制する特性(以下「耐屈曲性」ということがある)に優れている。
[Multilayer structure]
The multilayer structure is a multilayer structure having at least one base (X), layer (Y) and layer (Z), wherein the layer (Y) contains aluminum atoms and the layer (Z) contains phosphorus atoms. And a polymer (E) containing a monomer unit having at least one layer (Y) and a layer (Z) are laminated adjacent to each other. This multilayer structure is excellent in characteristics (hereinafter sometimes referred to as “bending resistance”) that suppress a decrease in gas barrier properties of the film material due to physical stress.
[層(Y)]
多層構造体が有する層(Y)は、少なくともアルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物(R)を含む層(YA)であってもよい。あるいは、層(Y)は、アルミニウムの蒸着層である層(以下では、「層(YB)」という場合がある)または酸化アルミニウムの蒸着層(以下では、「層(YC)という場合がある)であってもよい。以下、順に説明する。
[Layer (Y)]
The layer (Y) of the multilayer structure may be a layer (YA) containing a reaction product (R) formed by a reaction of at least a metal oxide (A) containing aluminum and a phosphorus compound (B). . Alternatively, the layer (Y) is a layer that is an aluminum deposition layer (hereinafter may be referred to as “layer (YB)”) or an aluminum oxide deposition layer (hereinafter may be referred to as “layer (YC)”). Hereinafter, these will be described in order.
[層(YA)]
多層構造体が有する層(Y)が前記層(YA)である場合には、層(YA)の赤外線吸収スペクトルにおいて、800〜1400cm-1の範囲における赤外線吸収が最大となる波数(n1)が1080〜1130cm-1の範囲にあってもよい。
[Layer (YA)]
When the layer (Y) of the multilayer structure is the layer (YA), in the infrared absorption spectrum of the layer (YA), the wave number (n 1 ) at which the infrared absorption in the range of 800 to 1400 cm −1 is maximized. May be in the range of 1080 to 1130 cm −1 .
当該波数(n1)を、以下では、「最大吸収波数(n1)」という場合がある。金属酸化物(A)は、通常、金属酸化物(A)の粒子の形態でリン化合物(B)と反応する。 Hereinafter, the wave number (n 1 ) may be referred to as “maximum absorption wave number (n 1 )”. The metal oxide (A) usually reacts with the phosphorus compound (B) in the form of particles of the metal oxide (A).
典型的には、多層構造体が有する層(YA)は、金属酸化物(A)の粒子同士が、リン化合物(B)に由来するリン原子を介して結合された構造を有する。リン原子を介して結合している形態には、リン原子を含む原子団を介して結合している形態が含まれ、例えば、リン原子を含み金属原子を含まない原子団を介して結合している形態が含まれる。 Typically, the layer (YA) included in the multilayer structure has a structure in which the metal oxide (A) particles are bonded to each other via a phosphorus atom derived from the phosphorus compound (B). The form bonded via a phosphorus atom includes the form bonded via an atomic group containing a phosphorus atom, for example, bonded via an atomic group containing a phosphorus atom and not containing a metal atom. Are included.
多層構造体が有する層(YA)において、金属酸化物(A)の粒子同士を結合させている金属原子であって金属酸化物(A)に由来しない金属原子のモル数は、金属酸化物(A)の粒子同士を結合させているリン原子のモル数の0〜1倍の範囲(例えば0〜0.9倍の範囲)にあることが好ましく、例えば、0.3倍以下、0.05倍以下、0.01倍以下、または0倍であってもよい。 In the layer (YA) of the multilayer structure, the number of moles of metal atoms that are bonded to the metal oxide (A) particles and are not derived from the metal oxide (A) is determined by the metal oxide ( A) is preferably in the range of 0 to 1 times the number of moles of phosphorus atoms bonding the particles to each other (for example, in the range of 0 to 0.9 times), for example, 0.3 times or less, 0.05 It may be less than twice, less than 0.01 times, or 0 times.
多層構造体が有する層(YA)は、反応に関与していない金属酸化物(A)および/またはリン化合物(B)を、部分的に含んでいてもよい。 The layer (YA) of the multilayer structure may partially contain a metal oxide (A) and / or a phosphorus compound (B) that is not involved in the reaction.
一般に、金属化合物とリン化合物とが反応して金属化合物を構成する金属原子(M)とリン化合物に由来するリン原子(P)とが酸素原子(O)を介して結合したM−O−Pで表される結合が生成すると、赤外線吸収スペクトルにおいて特性ピークが生じる。ここで当該特性ピークは、その結合の周囲の環境や構造などによって特定の波数に吸収ピークを示す。本発明者らによる検討の結果、M−O−Pの結合に基づく吸収ピークが1080〜1130cm-1の範囲に位置する場合には、得られる多層構造体において優れたガスバリア性が発現されることが分かった。特に、当該吸収ピークが、一般に各種の原子と酸素原子との結合に由来する吸収が見られる800〜1400cm-1の領域において最大吸収波数の吸収ピークとして現れる場合には、得られる多層構造体においてさらに優れたガスバリア性が発現されることが分かった。 In general, a metal atom and a phosphorus compound react to react a metal atom (M) constituting the metal compound and a phosphorus atom (P) derived from the phosphorus compound bonded via an oxygen atom (O). When a bond represented by is generated, a characteristic peak occurs in the infrared absorption spectrum. Here, the characteristic peak shows an absorption peak at a specific wave number depending on the environment or structure around the bond. As a result of the study by the present inventors, when the absorption peak based on the M—O—P bond is located in the range of 1080 to 1130 cm −1 , excellent gas barrier properties are expressed in the obtained multilayer structure. I understood. In particular, when the absorption peak appears as an absorption peak of the maximum absorption wave number in the region of 800 to 1400 cm −1 where absorption derived from bonds between various atoms and oxygen atoms is generally observed, in the obtained multilayer structure Furthermore, it turned out that the outstanding gas-barrier property is expressed.
なお、本発明を何ら限定するものではないが、金属酸化物(A)の粒子同士が、リン化合物(B)に由来するリン原子を介し、かつ、金属酸化物(A)に由来しない金属原子を介さずに結合され、そして金属酸化物(A)を構成する金属原子(M)とリン原子(P)とが酸素原子(O)を介して結合したM−O−Pで表される結合が生成すると、金属酸化物(A)の粒子の表面という比較的定まった環境に起因して、当該層(YA)の赤外線吸収スペクトルにおいて、M−O−Pの結合に基づく吸収ピークが、1080〜1130cm-1の範囲に800〜1400cm-1の領域における最大吸収波数の吸収ピークとして現れるものと考えられる。 In addition, although this invention is not limited at all, the metal oxide (A) particle | grains are via the phosphorus atom derived from a phosphorus compound (B), and the metal atom which does not originate in a metal oxide (A) And a metal atom (M) constituting the metal oxide (A) and a phosphorus atom (P) which are bonded via an oxygen atom (O). In the infrared absorption spectrum of the layer (YA), the absorption peak based on the M—O—P bond is 1080 due to the relatively fixed environment of the surface of the metal oxide (A) particles. It is considered that it appears as an absorption peak of the maximum absorption wave number in the region of 800 to 1400 cm −1 in the range of ˜1130 cm −1 .
これに対し、金属アルコキシドや金属塩などの金属酸化物を形成していない金属化合物とリン化合物(B)とを予め混合した後に加水分解縮合させた場合には、金属化合物に由来する金属原子とリン化合物(B)に由来するリン原子とがほぼ均一に混ざり合い反応した複合体が得られ、赤外線吸収スペクトルにおいて、800〜1400cm-1の範囲における最大吸収波数(n1)が1080〜1130cm-1の範囲から外れるようになる。 In contrast, when a metal compound that does not form a metal oxide such as a metal alkoxide or a metal salt and a phosphorus compound (B) are mixed in advance and then hydrolytically condensed, the metal atom derived from the metal compound and A complex in which phosphorus atoms derived from the phosphorus compound (B) are mixed almost uniformly and reacted is obtained, and in the infrared absorption spectrum, the maximum absorption wave number (n 1 ) in the range of 800 to 1400 cm −1 is 1080 to 1130 cm −. Beyond the range of 1 .
上記最大吸収波数(n1)は、ガスバリア性により優れる多層構造体となることから、1085〜1120cm-1の範囲にあることが好ましく、1090〜1110cm-1の範囲にあることがより好ましい。 The maximum absorption wave number (n 1 ) is preferably in the range of 1085 to 1120 cm −1 , and more preferably in the range of 1090 to 1110 cm −1 , because a multilayer structure having excellent gas barrier properties is obtained.
多層構造体が有する層(YA)の赤外線吸収スペクトルにおいては、2500〜4000cm-1の範囲に様々な原子に結合した水酸基の伸縮振動の吸収が見られることがある。この範囲に吸収が見られる水酸基の例としては、金属酸化物(A)部分の表面に存在しM−OHの形態を有する水酸基、リン化合物(B)に由来するリン原子(P)に結合してP−OHの形態を有する水酸基、後述する重合体(C)に由来するC−OHの形態を有する水酸基などが挙げられる。層(YA)中に存在する水酸基の量は、2500〜4000cm-1の範囲における水酸基の伸縮振動に基づく最大吸収の波数(n2)における吸光度(α2)と関連づけることができる。ここで、波数(n2)は、層(YA)の赤外線吸収スペクトルにおいて2500〜4000cm-1の範囲における水酸基の伸縮振動に基づく赤外線吸収が最大となる波数である。以下では、波数(n2)を、「最大吸収波数(n2)」という場合がある。 In the infrared absorption spectrum of the layer (YA) of the multilayer structure, absorption of stretching vibrations of hydroxyl groups bonded to various atoms may be observed in the range of 2500 to 4000 cm −1 . Examples of hydroxyl groups that are absorbed in this range include hydroxyl groups that exist on the surface of the metal oxide (A) portion and have the form of M-OH, and are bonded to phosphorus atoms (P) derived from the phosphorus compound (B). And a hydroxyl group having a P—OH form, a hydroxyl group having a C—OH form derived from the polymer (C) described later, and the like. The amount of the hydroxyl group present in the layer (YA) can be related to the absorbance (α 2 ) at the wave number (n 2 ) of maximum absorption based on the stretching vibration of the hydroxyl group in the range of 2500 to 4000 cm −1 . Here, the wave number (n 2 ) is a wave number that maximizes infrared absorption based on the stretching vibration of hydroxyl groups in the range of 2500 to 4000 cm −1 in the infrared absorption spectrum of the layer (YA). Hereinafter, the wave number (n 2 ) may be referred to as “maximum absorption wave number (n 2 )”.
層(YA)中に存在する水酸基の量が多いほど、層(YA)の緻密さが低下し、結果としてガスバリア性が低下する傾向がある。また、多層構造体が有する層(YA)の赤外線吸収スペクトルにおいて、上記最大吸収波数(n1)における吸光度(α1)と上記吸光度(α2)との比率[吸光度(α2)/吸光度(α1)]が小さいほど、金属酸化物(A)の粒子同士がリン化合物(B)に由来するリン原子を介して効果的に結合されていると考えられる。そのため当該比率[吸光度(α2)/吸光度(α1)]は、得られる多層構造体のガスバリア性を高度に発現させる観点から、0.2以下であることが好ましく、0.1以下であることがより好ましい。層(YA)が上記のような比率[吸光度(α2)/吸光度(α1)]を有する多層構造体は、後述する金属酸化物(A)を構成する金属原子のモル数(NM)とリン化合物(B)に由来するリン原子のモル数(NP)との比率や熱処理条件などを調整することによって得ることができる。なお、特に限定されるわけではないが、後述する層(YA)の前駆体層の赤外線吸収スペクトルにおいては、800〜1400cm-1の範囲における最大吸光度(α1’)と、2500〜4000cm-1の範囲における水酸基の伸縮振動に基づく最大吸光度(α2’)とが、吸光度(α2’)/吸光度(α1’)>0.2の関係を満たす場合がある。 As the amount of hydroxyl groups present in the layer (YA) increases, the density of the layer (YA) decreases, and as a result, gas barrier properties tend to decrease. In the infrared absorption spectrum of the layer (YA) of the multilayer structure, the ratio of the absorbance (α 1 ) and the absorbance (α 2 ) at the maximum absorption wavenumber (n 1 ) [absorbance (α 2 ) / absorbance ( It is considered that the smaller the [alpha] 1 )], the more effectively the particles of the metal oxide (A) are bonded through the phosphorus atom derived from the phosphorus compound (B). Therefore, the ratio [absorbance (α 2 ) / absorbance (α 1 )] is preferably 0.2 or less, and preferably 0.1 or less, from the viewpoint of highly expressing the gas barrier properties of the resulting multilayer structure. It is more preferable. The multilayer structure in which the layer (YA) has the above ratio [absorbance (α 2 ) / absorbance (α 1 )] is the number of moles of metal atoms (N M ) constituting the metal oxide (A) described later. And the ratio of the number of moles of phosphorus atoms derived from the phosphorus compound (B) (N P ), heat treatment conditions, and the like. Although not particularly limited, in the infrared absorption spectrum of the precursor layer for later layers (YA), maximum absorbance in the range 800~1400Cm -1 and (α 1 '), 2500~4000cm -1 The maximum absorbance (α 2 ′) based on the stretching vibration of the hydroxyl group in the range may satisfy the relationship of absorbance (α 2 ′) / absorbance (α 1 ′)> 0.2.
多層構造体が有する層(YA)の赤外線吸収スペクトルにおいて、上記最大吸収波数(n1)に極大を有する吸収ピークの半値幅は、得られる多層構造体のガスバリア性の観点から200cm-1以下であることが好ましく、150cm-1以下であることがより好ましく、130cm-1以下であることがより好ましく、110cm-1以下であることがより好ましく、100cm-1以下であることがさらに好ましく、50cm-1以下であることが特に好ましい。本発明を何ら限定するものではないが、金属酸化物(A)の粒子同士がリン原子を介して結合する際、金属酸化物(A)の粒子同士が、リン化合物(B)に由来するリン原子を介し、かつ金属酸化物(A)に由来しない金属原子を介さずに結合され、そして金属酸化物(A)を構成する金属原子(M)とリン原子(P)とが酸素原子(O)を介して結合したM−O−Pで表される結合が生成すると、金属酸化物(A)の粒子の表面という比較的定まった環境に起因して、最大吸収波数(n1)に極大を有する吸収ピークの半値幅が上記範囲になると考えられる。なお、本明細書において最大吸収波数(n1)の吸収ピークの半値幅は、当該吸収ピークにおいて吸光度(α1)の半分の吸光度(吸光度(α1)/2)を有する2点の波数を求めその差を算出することにより得ることができる。 In the infrared absorption spectrum of the layer (YA) of the multilayer structure, the half width of the absorption peak having a maximum at the maximum absorption wave number (n 1 ) is 200 cm −1 or less from the viewpoint of the gas barrier property of the resulting multilayer structure. Preferably, it is 150 cm −1 or less, more preferably 130 cm −1 or less, more preferably 110 cm −1 or less, even more preferably 100 cm −1 or less, and even more preferably 50 cm. Particularly preferably, it is −1 or less. Although this invention is not limited at all, when the particles of the metal oxide (A) are bonded to each other via a phosphorus atom, the particles of the metal oxide (A) are phosphorous derived from the phosphorus compound (B). Metal atoms (M) and phosphorus atoms (P) constituting the metal oxide (A) are bonded with oxygen atoms (O) through atoms and without metal atoms not derived from the metal oxide (A). When the bond represented by M-O-P is formed through the metal oxide (A), the maximum absorption wave number (n 1 ) is maximized due to the relatively fixed environment of the surface of the metal oxide (A) particles. It is considered that the half width of the absorption peak having a value falls within the above range. In this specification, the half width of the absorption peak of the maximum absorption wave number (n 1 ) is the wave number of two points having an absorbance (absorbance (α 1 ) / 2) that is half of the absorbance (α 1 ) at the absorption peak. It can be obtained by calculating the difference.
上記した層(YA)の赤外線吸収スペクトルは、ATR法(全反射測定法)で測定するか、または、多層構造体から層(YA)をかきとり、その赤外線吸収スペクトルをKBr法で測定することによって得ることができる。 The infrared absorption spectrum of the layer (YA) is measured by the ATR method (total reflection measurement method), or the layer (YA) is scraped from the multilayer structure and the infrared absorption spectrum is measured by the KBr method. Can be obtained.
多層構造体が有する層(YA)において、金属酸化物(A)の各粒子の形状は特に限定されず、例えば、球状、扁平状、多面体状、繊維状、針状などの形状を挙げることができ、繊維状または針状の形状であることがガスバリア性により優れる多層構造体となることから好ましい。層(YA)は単一の形状を有する粒子のみを有していてもよいし、2種以上の異なる形状を有する粒子を有していてもよい。また、金属酸化物(A)の粒子の大きさも特に限定されず、ナノメートルサイズからサブミクロンサイズのものを例示することができるが、ガスバリア性により優れる多層構造体となることから、金属酸化物(A)の粒子のサイズは、平均粒径として1〜100nmの範囲にあることが好ましい。 In the layer (YA) of the multilayer structure, the shape of each particle of the metal oxide (A) is not particularly limited, and examples thereof include a spherical shape, a flat shape, a polyhedral shape, a fibrous shape, and a needle shape. In addition, a fibrous or needle-like shape is preferable because a multilayer structure excellent in gas barrier properties is obtained. The layer (YA) may have only particles having a single shape, or may have particles having two or more different shapes. In addition, the size of the metal oxide (A) particles is not particularly limited, and examples include nanometer-size to submicron-size particles. The size of the particles (A) is preferably in the range of 1 to 100 nm as an average particle size.
なお、多層構造体が有する層(YA)における上記のような微細構造は、透過型電子顕微鏡(TEM)により、当該層(YA)の断面を観察することにより確認することができる。また、層(YA)における金属酸化物(A)の各粒子の粒径は、透過型電子顕微鏡(TEM)によって得られた層(YA)の断面観察像において、各粒子の最長軸における最大長さと、それと垂直な軸における当該粒子の最大長さの平均値として求めることができ、断面観察像において任意に選択した10個の粒子の粒径を平均することにより、上記平均粒径を求めることができる。 Note that the fine structure as described above in the layer (YA) included in the multilayer structure can be confirmed by observing a cross section of the layer (YA) with a transmission electron microscope (TEM). The particle size of each particle of the metal oxide (A) in the layer (YA) is the maximum length of the longest axis of each particle in the cross-sectional observation image of the layer (YA) obtained by a transmission electron microscope (TEM). The average particle size can be obtained as an average value of the maximum lengths of the particles on an axis perpendicular to the average, and the average particle size of ten particles arbitrarily selected in the cross-sectional observation image is obtained. Can do.
多層構造体が有する層(YA)は、一例において、金属酸化物(A)の粒子同士が、リン化合物(B)に由来するリン原子を介し、かつ金属酸化物(A)に由来しない金属原子を介さずに結合された構造を有する。すなわち、一例では、金属酸化物(A)の粒子同士は金属酸化物(A)に由来する金属原子を介して結合されていてもよいが、それ以外の金属原子を介さずに結合された構造を有する。ここで、「リン化合物(B)に由来するリン原子を介し、かつ金属酸化物(A)に由来しない金属原子を介さずに結合された構造」とは、結合される金属酸化物(A)の粒子間の結合の主鎖が、リン化合物(B)に由来するリン原子を有し、かつ金属酸化物(A)に由来しない金属原子を有さない構造を意味しており、当該結合の側鎖に金属原子を有する構造も包含する。ただし、多層構造体が有する層(YA)は、金属酸化物(A)の粒子同士が、リン化合物(B)に由来するリン原子と金属原子の両方を介して結合された構造(結合される金属酸化物(A)の粒子間の結合の主鎖が、リン化合物(B)に由来するリン原子と金属原子の両方を有する構造)を一部有していてもよい。 In one example, the layer (YA) that the multilayer structure has is a metal atom in which the particles of the metal oxide (A) pass through phosphorus atoms derived from the phosphorus compound (B) and are not derived from the metal oxide (A). It has a structure that is connected without intervening. That is, in one example, the metal oxide (A) particles may be bonded to each other via a metal atom derived from the metal oxide (A), but are not bonded to any other metal atom. Have Here, “the structure bonded through the phosphorus atom derived from the phosphorus compound (B) and not through the metal atom not derived from the metal oxide (A)” means the metal oxide (A) to be bonded. Means that the main chain of the bond between the particles has a phosphorus atom derived from the phosphorus compound (B) and does not have a metal atom not derived from the metal oxide (A). A structure having a metal atom in the side chain is also included. However, the layer (YA) of the multilayer structure has a structure (bonded) in which particles of the metal oxide (A) are bonded through both phosphorus atoms and metal atoms derived from the phosphorus compound (B). The main chain of the bond between the metal oxide (A) particles may partially include a structure having both a phosphorus atom and a metal atom derived from the phosphorus compound (B).
多層構造体が有する層(YA)において、金属酸化物(A)の各粒子とリン原子との結合形態としては、例えば、金属酸化物(A)を構成する金属原子(M)とリン原子(P)とが酸素原子(O)を介して結合された形態を挙げることができる。金属酸化物(A)の粒子同士は1分子のリン化合物(B)に由来するリン原子(P)を介して結合していてもよいが、2分子以上のリン化合物(B)に由来するリン原子(P)を介して結合していてもよい。結合している2つの金属酸化物(A)の粒子間の具体的な結合形態としては、結合している一方の金属酸化物(A)の粒子を構成する金属原子を(Mα)と表し、他方の金属酸化物(A)の粒子を構成する金属原子を(Mβ)と表すと、例えば、(Mα)−O−P−O−(Mβ)の結合形態;(Mα)−O−P−[O−P]n−O−(Mβ)の結合形態;(Mα)−O−P−Z−P−O−(Mβ)の結合形態;(Mα)−O−P−Z−P−[O−P−Z−P]n−O−(Mβ)の結合形態などが挙げられる。なお上記結合形態の例において、nは1以上の整数を表し、Zはリン化合物(B)が分子中に2つ以上のリン原子を有する場合における2つのリン原子間に存在する構成原子群を表し、リン原子に結合しているその他の置換基の記載は省略している。多層構造体が有する層(YA)において、1つの金属酸化物(A)の粒子は複数の他の金属酸化物(A)の粒子と結合していることが、得られる多層構造体のガスバリア性の観点から好ましい。 In the layer (YA) of the multilayer structure, as the bonding form of each particle of the metal oxide (A) and the phosphorus atom, for example, the metal atom (M) and the phosphorus atom ( P) may be exemplified by a form in which it is bonded via an oxygen atom (O). The particles of the metal oxide (A) may be bonded to each other via a phosphorus atom (P) derived from one molecule of the phosphorus compound (B), but phosphorus derived from two or more molecules of the phosphorus compound (B). It may be bonded via an atom (P). As a specific form of bonding between two bonded metal oxide (A) particles, a metal atom constituting one bonded metal oxide (A) particle is represented as (Mα), When the metal atom constituting the other metal oxide (A) particle is represented by (Mβ), for example, (Mα) -OPO- (Mβ) bond form; (Mα) -OP— [O—P] n —O— (Mβ) bond form; (Mα) —O—P—Z—P—O— (Mβ) bond form; (Mα) —O—P—Z—P— [ O—P—Z—P] n —O— (Mβ) and the like. In the example of the bonding form, n represents an integer of 1 or more, and Z represents a constituent atomic group existing between two phosphorus atoms when the phosphorus compound (B) has two or more phosphorus atoms in the molecule. And the description of other substituents bonded to the phosphorus atom is omitted. In the layer (YA) of the multilayer structure, one metal oxide (A) particle is bonded to a plurality of other metal oxide (A) particles. From the viewpoint of
金属酸化物(A)は、加水分解可能な特性基が結合した金属原子(M)を含有する化合物(L)の加水分解縮合物であってもよい。当該特性基の例には、後述する式(I)のX1が含まれる。 The metal oxide (A) may be a hydrolysis condensate of the compound (L) containing a metal atom (M) to which a hydrolyzable characteristic group is bonded. Examples of the characteristic group include X 1 of the formula (I) described later.
なお、化合物(L)の加水分解縮合物は、実質的に金属酸化物とみなすことが可能である。そのため、この明細書では、化合物(L)の加水分解縮合物を「金属酸化物(A)」という場合がある。すなわち、この明細書において、「金属酸化物(A)」を、「化合物(L)の加水分解縮合物」と読み替えることが可能であり、「化合物(L)の加水分解縮合物」を「金属酸化物(A)」と読み替えることが可能である。 In addition, the hydrolysis-condensation product of the compound (L) can be substantially regarded as a metal oxide. Therefore, in this specification, the hydrolysis condensate of the compound (L) may be referred to as “metal oxide (A)”. That is, in this specification, “metal oxide (A)” can be read as “hydrolysis condensate of compound (L)”, and “hydrolysis condensate of compound (L)” can be referred to as “metal. It can be read as “oxide (A)”.
[金属酸化物(A)]
金属酸化物(A)を構成する金属原子(それらを総称して「金属原子(M)」という場合がある)としては、原子価が2価以上(例えば、2〜4価や3〜4価)の金属原子を挙げることができ、具体的には、例えば、マグネシウム、カルシウムなどの周期表第2族の金属;亜鉛などの周期表第12族の金属;アルミニウムなどの周期表第13族の金属;ケイ素などの周期表第14族の金属;チタン、ジルコニウムなどの遷移金属などを挙げることができる。なお、ケイ素は半金属に分類される場合があるが、本明細書ではケイ素を金属に含めるものとする。金属酸化物(A)を構成する金属原子(M)は1種類であってもよいし、2種類以上であってもよいが、アルミニウムを少なくとも含む必要がある。アルミニウムと併用されうる金属原子(M)としては、金属酸化物(A)を製造するための取り扱いの容易さや得られる多層構造体のガスバリア性が優れることから、チタンおよびジルコニウムからなる群より選ばれる少なくとも1種であることが好ましい。
[Metal oxide (A)]
The metal atoms constituting the metal oxide (A) (sometimes collectively referred to as “metal atoms (M)”) have a valence of 2 or more (for example, 2 to 4 or 3 to 4). Specifically, for example, metals of
金属原子(M)に占める、アルミニウム、チタンおよびジルコニウムの合計の割合は、60モル%以上、70モル%以上、80モル%以上、90モル%以上、95モル%以上、または100モル%であってもよい。また、金属原子(M)に占める、アルミニウムの割合は、60モル%以上、70モル%以上、80モル%以上、90モル%以上、95モル%以上、または100モル%であってもよい。 The total proportion of aluminum, titanium and zirconium in the metal atom (M) was 60 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, or 100 mol%. May be. The proportion of aluminum in the metal atom (M) may be 60 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, or 100 mol%.
金属酸化物(A)としては、液相合成法、気相合成法、固体粉砕法などの方法により製造されたものを使用することができるが、得られる金属酸化物(A)の形状や大きさの制御性や製造効率などを考慮すると、液相合成法により製造されたものが好ましい。 As the metal oxide (A), those produced by a liquid phase synthesis method, a gas phase synthesis method, a solid pulverization method or the like can be used. In view of the controllability of the thickness and production efficiency, those produced by the liquid phase synthesis method are preferred.
液相合成法においては、加水分解可能な特性基が金属原子(M)に結合した化合物(L)を原料として用いてこれを加水分解縮合させることで、化合物(L)の加水分解縮合物として金属酸化物(A)を合成することができる。ただし、化合物(L)が有する金属原子(M)は少なくともアルミニウムを含む必要がある。また化合物(L)の加水分解縮合物を液相合成法で製造するにあたっては、原料として化合物(L)そのものを用いる方法以外にも、化合物(L)が部分的に加水分解してなる化合物(L)の部分加水分解物、化合物(L)が完全に加水分解してなる化合物(L)の完全加水分解物、化合物(L)が部分的に加水分解縮合してなる化合物(L)の部分加水分解縮合物、化合物(L)の完全加水分解物の一部が縮合したもの、あるいはこれらのうちの2種以上の混合物を原料として用いてこれを縮合または加水分解縮合させることによっても金属酸化物(A)を製造することができる。このようにして得られる金属酸化物(A)も、本明細書では「化合物(L)の加水分解縮合物」ということとする。上記の加水分解可能な特性基(官能基)の種類に特に制限はなく、例えば、ハロゲン原子(F、Cl、Br、Iなど)、アルコキシ基、アシロキシ基、ジアシルメチル基、ニトロ基などが挙げられるが、反応の制御性に優れることから、ハロゲン原子またはアルコキシ基が好ましく、アルコキシ基がより好ましい。 In the liquid phase synthesis method, a hydrolyzable condensation product of the compound (L) is obtained by hydrolyzing and condensing the compound (L) having a hydrolyzable characteristic group bonded to the metal atom (M) as a raw material. A metal oxide (A) can be synthesized. However, the metal atom (M) included in the compound (L) needs to contain at least aluminum. Moreover, when manufacturing the hydrolysis-condensation product of a compound (L) with a liquid phase synthesis method, the compound (L) which a partly hydrolyzed compound (L) other than the method of using the compound (L) itself as a raw material ( L) partial hydrolyzate, compound (L) completely hydrolyzed product obtained by completely hydrolyzing compound (L), compound (L) partially hydrolyzed and condensed part of compound (L) Metal oxidation can also be achieved by condensing or hydrolyzing a hydrolysis condensate, a product obtained by condensing a part of a complete hydrolyzate of compound (L), or a mixture of two or more of these as raw materials. A thing (A) can be manufactured. The metal oxide (A) thus obtained is also referred to as “hydrolysis condensate of compound (L)” in the present specification. There are no particular restrictions on the type of the functional group (functional group) that can be hydrolyzed, and examples include halogen atoms (F, Cl, Br, I, etc.), alkoxy groups, acyloxy groups, diacylmethyl groups, nitro groups, and the like. However, a halogen atom or an alkoxy group is preferable, and an alkoxy group is more preferable because of excellent controllability of the reaction.
化合物(L)は、反応の制御が容易で、得られる多層構造体のガスバリア性が優れることから、以下の式(II)で示される少なくとも1種の化合物(L1)を含むことが好ましい。
AlX1 mR1 (3-m) (II)
[式(II)中、X1は、F、Cl、Br、I、R2O−、R3C(=O)O−、(R4C(=O))2CH−およびNO3からなる群より選ばれる。R1、R2、R3およびR4はそれぞれ、アルキル基、アラルキル基、アリール基およびアルケニル基からなる群より選ばれる。式(II)において、複数のX1が存在する場合には、それらのX1は互いに同一であってもよいし異なっていてもよい。式(II)において、複数のR1が存在する場合には、それらのR1は互いに同一であってもよいし異なっていてもよい。式(II)において、複数のR2が存在する場合には、それらのR2は互いに同一であってもよいし異なっていてもよい。式(II)において、複数のR3が存在する場合には、それらのR3は互いに同一であってもよいし異なっていてもよい。式(II)において、複数のR4が存在する場合には、それらのR4は互いに同一であってもよいし異なっていてもよい。mは1〜3の整数を表す。]
The compound (L) preferably contains at least one compound (L 1 ) represented by the following formula (II) because the reaction is easily controlled and the resulting multilayer structure has excellent gas barrier properties.
AlX 1 m R 1 (3-m) (II)
[In Formula (II), X 1 is selected from F, Cl, Br, I, R 2 O—, R 3 C (═O) O—, (R 4 C (═O)) 2 CH— and NO 3. Selected from the group of R 1 , R 2 , R 3 and R 4 are each selected from the group consisting of an alkyl group, an aralkyl group, an aryl group and an alkenyl group. In the formula (II), when there are a plurality of X 1 , these X 1 may be the same or different from each other. In the formula (II), when a plurality of R 1 are present, these R 1 may be the same or different from each other. In the formula (II), when a plurality of R 2 are present, these R 2 may be the same or different from each other. In the formula (II), when a plurality of R 3 are present, these R 3 may be the same or different from each other. In the formula (II), when a plurality of R 4 are present, these R 4 may be the same as or different from each other. m represents an integer of 1 to 3. ]
R1、R2、R3およびR4が表すアルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、s−ブチル基、t−ブチル基、2−エチルヘキシル基などが挙げられる。R1、R2、R3およびR4が表すアラルキル基としては、例えば、ベンジル基、フェネチル基、トリチル基などが挙げられる。R1、R2、R3およびR4が表すアリール基としては、例えば、フェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられる。R1、R2、R3およびR4が表すアルケニル基としては、例えば、ビニル基、アリル基などが挙げられる。R1は、例えば、炭素数が1〜10のアルキル基であることが好ましく、炭素数が1〜4のアルキル基であることがより好ましい。X1は、F、Cl、Br、I、R2O−であることが好ましい。化合物(L1)の好ましい一例では、X1がハロゲン原子(F、Cl、Br、I)または炭素数が1〜4のアルコキシ基(R2O−)であり、mは3である。化合物(L1)の一例では、X1がハロゲン原子(F、Cl、Br、I)または炭素数が1〜4のアルコキシ基(R2O−)であり、mは3である。 Examples of the alkyl group represented by R 1 , R 2 , R 3 and R 4 include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a s-butyl group, a t-butyl group, and 2-ethylhexyl. Group and the like. Examples of the aralkyl group represented by R 1 , R 2 , R 3 and R 4 include a benzyl group, a phenethyl group and a trityl group. Examples of the aryl group represented by R 1 , R 2 , R 3 and R 4 include a phenyl group, a naphthyl group, a tolyl group, a xylyl group and a mesityl group. Examples of the alkenyl group represented by R 1 , R 2 , R 3 and R 4 include a vinyl group and an allyl group. For example, R 1 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. X 1 is preferably F, Cl, Br, I, or R 2 O—. In a preferred example of the compound (L 1 ), X 1 is a halogen atom (F, Cl, Br, I) or an alkoxy group having 1 to 4 carbon atoms (R 2 O—), and m is 3. In one example of the compound (L 1 ), X 1 is a halogen atom (F, Cl, Br, I) or an alkoxy group having 1 to 4 carbon atoms (R 2 O—), and m is 3.
なお、化合物(L)は、化合物(L1)に加えて以下の式で表される少なくとも1種の化合物を含んでもよい。
M1X1 mR1 (n-m) (III)
[式中、M1はTiまたはZrを表す。X1およびR1は、それぞれ式(II)において説明したとおりである。ただし、式(III)では、nはM1の原子価に等しく、mは1〜nの整数を表す。]
In addition to the compound (L 1 ), the compound (L) may include at least one compound represented by the following formula.
M 1 X 1 m R 1 (nm) (III)
[Wherein M 1 represents Ti or Zr. X 1 and R 1 are as described in formula (II). However, in the formula (III), n is equal to the valence of M 1, m represents an integer of 1 to n. ]
化合物(L1)の具体例としては、例えば、塩化アルミニウム、アルミニウムトリエトキシド、アルミニウムトリノルマルプロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリノルマルブトキシド、アルミニウムトリs−ブトキシド、アルミニウムトリt−ブトキシド、アルミニウムトリアセテート、アルミニウムアセチルアセトネート、硝酸アルミニウムなどのアルミニウム化合物挙げられる。これらの中でも、化合物(L1)としては、アルミニウムトリイソプロポキシドおよびアルミニウムトリs−ブトキシドから選ばれる少なくとも1つの化合物が好ましい。化合物(L1)は1種類を単独で使用してもよいし、2種類以上を併用してもよい。 Specific examples of the compound (L 1 ) include, for example, aluminum chloride, aluminum triethoxide, aluminum trinormal propoxide, aluminum triisopropoxide, aluminum trinormal butoxide, aluminum tri-s-butoxide, aluminum tri-t-butoxide, Examples thereof include aluminum compounds such as aluminum triacetate, aluminum acetylacetonate, and aluminum nitrate. Among these, as the compound (L 1 ), at least one compound selected from aluminum triisopropoxide and aluminum tris-butoxide is preferable. As the compound (L 1 ), one type may be used alone, or two or more types may be used in combination.
化合物(L)に占める化合物(L1)の割合に特に限定はない。化合物(L1)以外の化合物が化合物(L)に占める割合は、例えば、20モル%以下や10モル%以下や5モル%以下や0モル%である。一例では、化合物(L)は化合物(L1)のみからなる。 The ratio of the compound (L 1 ) in the compound (L) is not particularly limited. The proportion of the compound other than the compound (L 1 ) in the compound (L) is, for example, 20 mol% or less, 10 mol% or less, 5 mol% or less, or 0 mol%. In one example, the compound (L) consists only of the compound (L 1 ).
また、化合物(L1)以外の化合物(L)としては、本発明の効果が得られる限り特に限定されないが、例えばチタン、ジルコニウム、マグネシウム、カルシウム、亜鉛、ケイ素などの金属原子に、上述の加水分解可能な特性基が結合した化合物などが挙げられる。なお、ケイ素は半金属に分類される場合があるが、本明細書ではケイ素を金属に含めるものとする。これらの中でも、得られる多層構造体のガスバリア性に優れることから、化合物(L1)以外の化合物(L)としては、金属原子としてチタンまたはジルコニウムを有する化合物が好ましい。化合物(L1)以外の化合物(L)の具体例としては、例えば、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラ(2−エチルヘキソキシド)、チタンテトラメトキシド、チタンテトラエトキシド、チタンアセチルアセトネートなどのチタン化合物;ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムテトラアセチルアセトネートなどのジルコニウム化合物が挙げられる。 Further, the compound (L) other than the compound (L 1 ) is not particularly limited as long as the effects of the present invention can be obtained. For example, the above-mentioned hydrolyzate may be added to a metal atom such as titanium, zirconium, magnesium, calcium, zinc, or silicon. Examples thereof include a compound having a decomposable characteristic group bonded thereto. Silicon may be classified as a semimetal, but in this specification, silicon is included in the metal. Among these, the compound (L) other than the compound (L 1 ) is preferably a compound having titanium or zirconium as a metal atom because the resulting multilayer structure is excellent in gas barrier properties. Specific examples of the compound (L) other than the compound (L 1 ) include, for example, titanium tetraisopropoxide, titanium tetranormal butoxide, titanium tetra (2-ethylhexoxide), titanium tetramethoxide, titanium tetraethoxide. And titanium compounds such as titanium acetylacetonate; zirconium compounds such as zirconium tetranormal propoxide, zirconium tetrabutoxide and zirconium tetraacetylacetonate.
化合物(L)が加水分解されることによって、化合物(L)が有する加水分解可能な特性基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属原子(M)が酸素原子(O)を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物が形成される。なお、このようにして形成された金属酸化物(A)の表面には、通常、水酸基が存在する。 By hydrolyzing the compound (L), at least a part of the hydrolyzable characteristic group of the compound (L) is substituted with a hydroxyl group. Furthermore, the hydrolyzate condenses to form a compound in which the metal atom (M) is bonded through the oxygen atom (O). When this condensation is repeated, a compound that can be substantially regarded as a metal oxide is formed. In addition, a hydroxyl group usually exists on the surface of the metal oxide (A) thus formed.
本明細書においては、金属原子(M)のモル数に対する、M−O−Mで表される構造における酸素原子(O)のように、金属原子(M)のみに結合している酸素原子(例えば、M−O−Hで表される構造における酸素原子(O)のように金属原子(M)と水素原子(H)に結合している酸素原子は除外する)のモル数の割合([金属原子(M)のみに結合している酸素原子(O)のモル数]/[金属原子(M)のモル数])が0.8以上となる化合物を金属酸化物(A)に含めるものとする。金属酸化物(A)は、上記割合が0.9以上であることが好ましく、1.0以上であることがより好ましく、1.1以上であることがさらに好ましい。上記割合の上限は特に限定されないが、金属原子(M)の原子価をnとすると、通常、n/2で表される。 In this specification, the oxygen atom (O) bonded to only the metal atom (M), such as the oxygen atom (O) in the structure represented by MOM, with respect to the number of moles of the metal atom (M). For example, the oxygen atom (O) in the structure represented by M—O—H is excluded, and the oxygen atom bonded to the metal atom (M) and the hydrogen atom (H) is excluded) ([[ A compound in which the number of moles of oxygen atoms (O) bonded only to metal atoms (M) / [number of moles of metal atoms (M)]) is 0.8 or more is included in the metal oxide (A) And The ratio of the metal oxide (A) is preferably 0.9 or more, more preferably 1.0 or more, and further preferably 1.1 or more. Although the upper limit of the said ratio is not specifically limited, When the valence of a metal atom (M) is set to n, it will normally be represented by n / 2.
上記の加水分解縮合が起こるためには、化合物(L)が加水分解可能な特性基(官能基)を有していることが重要である。それらの基が結合していない場合、加水分解縮合反応が起こらないか極めて緩慢になるため、目的とする金属酸化物(A)の調製が困難になる。 In order for the hydrolysis condensation to occur, it is important that the compound (L) has a hydrolyzable characteristic group (functional group). When these groups are not bonded, the hydrolysis condensation reaction does not occur or becomes extremely slow, making it difficult to prepare the target metal oxide (A).
加水分解縮合物は、例えば、公知のゾルゲル法で採用される手法により特定の原料から製造することができる。当該原料には、化合物(L)、化合物(L)の部分加水分解物、化合物(L)の完全加水分解物、化合物(L)の部分加水分解縮合物、および化合物(L)の完全加水分解物の一部が縮合したものからなる群より選ばれる少なくとも1種(以下、「化合物(L)系成分」と称する場合がある)を用いることができる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、例えば、2〜10個程度の化合物(L)が加水分解縮合することによって得られる縮合物を原料として用いることができる。具体的には、例えば、アルミニウムトリイソプロポキシドを加水分解縮合させて2〜10量体の縮合物としたものを原料の一部として用いることができる。 A hydrolysis condensate can be manufactured from a specific raw material by the method employ | adopted by the well-known sol-gel method, for example. The raw materials include compound (L), partial hydrolyzate of compound (L), complete hydrolyzate of compound (L), partial hydrolyzed condensate of compound (L), and complete hydrolysis of compound (L). It is possible to use at least one selected from the group consisting of a part of the product condensed (hereinafter sometimes referred to as “compound (L) component”). These raw materials may be produced by a known method, or commercially available ones may be used. Although there is no particular limitation, for example, a condensate obtained by hydrolytic condensation of about 2 to 10 compounds (L) can be used as a raw material. Specifically, for example, a product obtained by hydrolyzing and condensing aluminum triisopropoxide to form a 2- to 10-mer condensate can be used as a part of the raw material.
化合物(L)の加水分解縮合物において縮合される分子の数は、化合物(L)系成分を縮合または加水分解縮合する際の条件によって制御することができる。例えば、縮合される分子の数は、水の量、触媒の種類や濃度、縮合または加水分解縮合する際の温度や時間などによって制御することができる。 The number of molecules condensed in the hydrolyzed condensate of compound (L) can be controlled by the conditions at the time of condensing or hydrolyzing the compound (L) component. For example, the number of molecules to be condensed can be controlled by the amount of water, the type and concentration of the catalyst, the temperature and time for condensation or hydrolysis condensation, and the like.
上記したように、多層構造体が有する層(YA)は、反応生成物(R)を含み、反応生成物(R)は、少なくともアルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物である。このような反応生成物は金属酸化物(A)とリン化合物(B)とを混合し反応させることにより形成することができる。リン化合物(B)との混合に供される(混合される直前の)金属酸化物(A)は、金属酸化物(A)そのものであってもよいし、金属酸化物(A)を含む組成物の形態であってもよい。好ましい一例では、金属酸化物(A)を溶媒に溶解または分散することによって得られた液体(溶液または分散液)の形態で、金属酸化物(A)がリン化合物(B)と混合される。 As described above, the layer (YA) included in the multilayer structure includes the reaction product (R), and the reaction product (R) includes at least the metal oxide (A) including aluminum and the phosphorus compound (B). Is a reaction product obtained by reaction. Such a reaction product can be formed by mixing and reacting the metal oxide (A) and the phosphorus compound (B). The metal oxide (A) used for mixing with the phosphorus compound (B) (immediately before mixing) may be the metal oxide (A) itself or a composition containing the metal oxide (A). It may be in the form of a thing. In a preferred example, the metal oxide (A) is mixed with the phosphorus compound (B) in the form of a liquid (solution or dispersion) obtained by dissolving or dispersing the metal oxide (A) in a solvent.
金属酸化物(A)の溶液または分散液を製造するための好ましい方法を以下に記載する。ここでは、金属酸化物(A)がアルミニウム原子以外の金属原子を含まない場合、すなわち金属酸化物(A)が酸化アルミニウム(アルミナ)である場合を例にとってその分散液を製造する方法を説明するが、他の金属原子を含有する溶液や分散液を製造する際にも類似の製造方法を採用することができる。好ましいアルミナの分散液は、アルミニウムアルコキシドを必要に応じて酸触媒でpH調整した水溶液中で加水分解縮合してアルミナのスラリーとし、これを特定量の酸の存在下に解膠することにより得ることができる。 A preferred method for producing a solution or dispersion of the metal oxide (A) is described below. Here, a method for producing the dispersion liquid will be described by taking as an example the case where the metal oxide (A) does not contain a metal atom other than aluminum atoms, that is, the case where the metal oxide (A) is aluminum oxide (alumina). However, a similar production method can be adopted when producing a solution or dispersion containing other metal atoms. A preferred alumina dispersion is obtained by hydrolyzing and condensing aluminum alkoxide in an aqueous solution whose pH is adjusted with an acid catalyst as necessary to obtain an alumina slurry, which is peptized in the presence of a specific amount of acid. Can do.
アルミニウムアルコキシドを加水分解縮合する際の反応系の温度は特に限定されない。当該反応系の温度は、通常2〜100℃の範囲内である。水とアルミニウムアルコキシドが接触すると液の温度が上昇するが、加水分解の進行に伴いアルコールが副生し、当該アルコールの沸点が水よりも低い場合に当該アルコールが揮発することにより反応系の温度がアルコールの沸点付近以上には上がらなくなる場合がある。そのような場合、アルミナの成長が遅くなることがあるため、95℃付近まで加熱して、アルコールを除去することが有効である。反応時間は反応条件(酸触媒の有無、量や種類など)に応じて相違する。反応時間は、通常、0.01〜60時間の範囲内であり、好ましくは0.1〜12時間の範囲内であり、より好ましくは0.5〜6時間の範囲内である。また、反応は、空気、二酸化炭素、窒素、アルゴンなどの各種気体の雰囲気下で行うことができる。 The temperature of the reaction system when the aluminum alkoxide is hydrolytically condensed is not particularly limited. The temperature of the reaction system is usually in the range of 2 to 100 ° C. When water and aluminum alkoxide come into contact, the temperature of the liquid rises, but as the hydrolysis proceeds, alcohol is by-produced, and when the boiling point of the alcohol is lower than that of water, the alcohol volatilizes and the temperature of the reaction system is reduced. It may not rise above the vicinity of the boiling point of the alcohol. In such a case, since the growth of alumina may be slow, it is effective to remove the alcohol by heating to around 95 ° C. The reaction time varies depending on the reaction conditions (presence / absence of acid catalyst, amount, type, etc.). The reaction time is usually in the range of 0.01 to 60 hours, preferably in the range of 0.1 to 12 hours, and more preferably in the range of 0.5 to 6 hours. The reaction can be performed in an atmosphere of various gases such as air, carbon dioxide, nitrogen, and argon.
加水分解縮合の際に用いる水の量は、アルミニウムアルコキシドに対して1〜200モル倍であることが好ましく、10〜100モル倍であることがより好ましい。水の量が1モル倍未満の場合には加水分解が充分進行しないため好ましくない。一方200モル倍を超える場合には製造効率が低下したり粘度が高くなったりするため好ましくない。水を含有する成分(例えば塩酸や硝酸など)を使用する場合には、その成分によって導入される水の量も考慮して水の使用量を決定することが好ましい。 The amount of water used in the hydrolytic condensation is preferably 1 to 200 mol times, more preferably 10 to 100 mol times with respect to the aluminum alkoxide. When the amount of water is less than 1 mole, hydrolysis does not proceed sufficiently, such being undesirable. On the other hand, when it exceeds 200 mol times, since manufacturing efficiency falls or a viscosity becomes high, it is unpreferable. When a component containing water (for example, hydrochloric acid or nitric acid) is used, it is preferable to determine the amount of water used in consideration of the amount of water introduced by the component.
加水分解縮合に使用する酸触媒としては、塩酸、硫酸、硝酸、p−トルエンスルホン酸、安息香酸、酢酸、乳酸、酪酸、炭酸、シュウ酸、マレイン酸などを用いることができる。これらの中でも、塩酸、硫酸、硝酸、酢酸、乳酸、酪酸が好ましく、硝酸、酢酸がより好ましい。加水分解縮合時に酸触媒を使用する場合には、加水分解縮合前のpHが2.0〜4.0の範囲内となるように酸の種類に応じて適した量を使用することが好ましい。 As an acid catalyst used for hydrolysis condensation, hydrochloric acid, sulfuric acid, nitric acid, p-toluenesulfonic acid, benzoic acid, acetic acid, lactic acid, butyric acid, carbonic acid, oxalic acid, maleic acid and the like can be used. Among these, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, lactic acid, and butyric acid are preferable, and nitric acid and acetic acid are more preferable. When an acid catalyst is used at the time of hydrolysis condensation, it is preferable to use an amount suitable for the type of acid so that the pH before hydrolysis condensation is in the range of 2.0 to 4.0.
加水分解縮合により得られたアルミナのスラリーをそのままアルミナ分散液として使用することもできるが、得られたアルミナのスラリーを、特定量の酸の存在下に加熱して解膠することで、透明で粘度安定性に優れたアルミナの分散液を得ることができる。 The alumina slurry obtained by hydrolysis and condensation can be used as an alumina dispersion as it is, but the obtained alumina slurry is heated in the presence of a specific amount of acid to peptize and become transparent. An alumina dispersion having excellent viscosity stability can be obtained.
解膠時に使用される酸としては、硝酸、塩酸、過塩素酸、蟻酸、酢酸、プロピオン酸などの1価の無機酸や有機酸を使用することができる。これらの中でも、硝酸、塩酸、酢酸が好ましく、硝酸、酢酸がより好ましい。 As an acid used at the time of peptization, a monovalent inorganic acid or organic acid such as nitric acid, hydrochloric acid, perchloric acid, formic acid, acetic acid, propionic acid can be used. Among these, nitric acid, hydrochloric acid, and acetic acid are preferable, and nitric acid and acetic acid are more preferable.
解膠時の酸として硝酸または塩酸を使用する場合、その量はアルミニウム原子に対して0.001〜0.4モル倍であることが好ましく、0.005〜0.3モル倍であることがより好ましい。0.001モル倍未満の場合には解膠が充分に進行しない、または非常に長い時間を要するなどの不具合を生じる場合がある。また0.4モル倍を超える場合には得られるアルミナの分散液の経時安定性が低下する傾向がある。 When nitric acid or hydrochloric acid is used as the acid during peptization, the amount is preferably 0.001 to 0.4 mol times, preferably 0.005 to 0.3 mol times the aluminum atom. More preferred. When the amount is less than 0.001 mole times, peptization may not sufficiently proceed or a very long time may be required. On the other hand, when it exceeds 0.4 mole times, the temporal stability of the resulting alumina dispersion tends to be lowered.
一方、解膠時の酸として酢酸を使用する場合、その量はアルミニウム原子に対して0.01〜1.0モル倍であることが好ましく、0.05〜0.5モル倍であることがより好ましい。0.01モル倍未満の場合には解膠が充分に進行しない、または非常に長い時間を要するなどの不具合を生じる場合がある。また1.0モル倍を超える場合には得られるアルミナの分散液の経時安定性が低下する傾向がある。 On the other hand, when acetic acid is used as the acid during peptization, the amount thereof is preferably 0.01 to 1.0 mol times, preferably 0.05 to 0.5 mol times with respect to aluminum atoms. More preferred. When the amount is less than 0.01 mole times, peptization may not proceed sufficiently, or problems such as a very long time may occur. On the other hand, when it exceeds 1.0 mole times, the temporal stability of the resulting alumina dispersion tends to be lowered.
解膠時に存在させる酸は、加水分解縮合時に添加されてもよいが、加水分解縮合で副生するアルコールを除去する際に酸が失われた場合には、前記範囲の量になるように、再度、添加することが好ましい。 The acid to be present at the time of peptization may be added at the time of hydrolysis condensation, but when acid is lost when removing alcohol by-produced by hydrolysis condensation, the amount is in the above range. It is preferable to add it again.
解膠を40〜200℃の範囲内で行うことによって、適度な酸の使用量で短時間に解膠させ、所定の粒子サイズを有し、粘度安定性に優れたアルミナの分散液を製造することができる。解膠時の温度が40℃未満の場合には解膠に長時間を要し、200℃を超える場合には温度を高くすることによる解膠速度の増加量は僅かである一方、高耐圧容器などを必要とし経済的に不利なので好ましくない。 By performing peptization within the range of 40 to 200 ° C., it is possible to pept in a short time with an appropriate amount of acid used to produce an alumina dispersion having a predetermined particle size and excellent viscosity stability. be able to. When the temperature during peptization is less than 40 ° C, it takes a long time for peptization, and when it exceeds 200 ° C, the increase in peptization rate by increasing the temperature is slight, while the high pressure vessel It is not preferable because it is economically disadvantageous.
解膠が完了した後、必要に応じて、溶媒による希釈や加熱による濃縮を行うことにより、所定の濃度を有するアルミナの分散液を得ることができる。ただし、増粘やゲル化を抑制するため、加熱濃縮を行う場合は、減圧下に、60℃以下で行うことが好ましい。 After the peptization is completed, an alumina dispersion having a predetermined concentration can be obtained by performing dilution with a solvent or concentration by heating as necessary. However, in order to suppress thickening and gelation, it is preferable to carry out the heat concentration at 60 ° C. or lower under reduced pressure.
リン化合物(B)(組成物として用いる場合にはリン化合物(B)を含む組成物)との混合に供される金属酸化物(A)はリン原子を実質的に含有しないことが好ましい。しかしながら、例えば、金属酸化物(A)の調製時における不純物の影響などによって、リン化合物(B)(組成物として用いる場合にはリン化合物(B)を含む組成物)との混合に供される金属酸化物(A)中に少量のリン原子が混入する場合がある。そのため、本発明の効果が損なわれない範囲内で、リン化合物(B)(組成物として用いる場合にはリン化合物(B)を含む組成物)との混合に供される金属酸化物(A)は少量のリン原子を含有していてもよい。リン化合物(B)(組成物として用いる場合にはリン化合物(B)を含む組成物)との混合に供される金属酸化物(A)に含まれるリン原子の含有率は、ガスバリア性により優れる多層構造体が得られることから、当該金属酸化物(A)に含まれる全ての金属原子(M)のモル数を基準(100モル%)として、30モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることがさらに好ましく、1モル%以下であることが特に好ましく、0モル%であってもよい。 It is preferable that the metal oxide (A) to be mixed with the phosphorus compound (B) (a composition containing the phosphorus compound (B) when used as a composition) does not substantially contain a phosphorus atom. However, for example, due to the influence of impurities during preparation of the metal oxide (A), it is used for mixing with the phosphorus compound (B) (a composition containing the phosphorus compound (B) when used as a composition). A small amount of phosphorus atoms may be mixed in the metal oxide (A). Therefore, the metal oxide (A) used for mixing with the phosphorus compound (B) (a composition containing the phosphorus compound (B) when used as a composition) within a range in which the effects of the present invention are not impaired. May contain a small amount of phosphorus atoms. The phosphorus atom content contained in the metal oxide (A) used for mixing with the phosphorus compound (B) (a composition containing the phosphorus compound (B) when used as a composition) is more excellent in gas barrier properties. Since a multilayer structure can be obtained, it is preferably 30 mol% or less, based on the number of moles of all metal atoms (M) contained in the metal oxide (A) (100 mol%). % Or less, more preferably 5 mol% or less, further preferably 1 mol% or less, and may be 0 mol%.
多層構造体が有する層(YA)においては、金属酸化物(A)の粒子同士が、リン化合物(B)に由来するリン原子を介して結合された特定の構造を有するが、当該層(YA)における金属酸化物(A)の粒子の形状やサイズと、リン化合物(B)(組成物として用いる場合にはリン化合物(B)を含む組成物)との混合に供される金属酸化物(A)の粒子の形状やサイズとは、それぞれ同一であってもよいし異なっていてもよい。すなわち、層(YA)の原料として用いられる金属酸化物(A)の粒子は、層(YA)を形成する過程で、形状やサイズが変化してもよい。特に、後述するコーティング液(U)を用いて層(YA)を形成する場合には、コーティング液(U)中やそれを形成するために使用することのできる後述する液体(S)中において、あるいはコーティング液(U)を基材(X)上に塗布した後の各工程において、形状やサイズが変化することがある。 The layer (YA) of the multilayer structure has a specific structure in which the particles of the metal oxide (A) are bonded via phosphorus atoms derived from the phosphorus compound (B). ) And the metal oxide (A) provided for mixing with the shape and size of the metal oxide (A) particles and the phosphorus compound (B) (a composition containing the phosphorus compound (B) when used as a composition). The shape and size of the particles A) may be the same or different. That is, the shape and size of the metal oxide (A) particles used as the raw material for the layer (YA) may change during the process of forming the layer (YA). In particular, when the layer (YA) is formed using the coating liquid (U) described later, in the coating liquid (U) and the liquid (S) described later that can be used to form the layer, Or in each process after apply | coating coating liquid (U) on base material (X), a shape and size may change.
[リン化合物(B)]
リン化合物(B)は、金属酸化物(A)と反応可能な部位を含有し、典型的には、そのような部位を複数含有する。好ましい一例では、リン化合物(B)は、そのような部位(原子団または官能基)を2〜20個含有する。そのような部位の例には、金属酸化物(A)の表面に存在する官能基(例えば水酸基)と反応可能な部位が含まれる。例えば、そのような部位の例には、リン原子に直接結合したハロゲン原子や、リン原子に直接結合した酸素原子が含まれる。それらのハロゲン原子や酸素原子は、金属酸化物(A)の表面に存在する水酸基と縮合反応(加水分解縮合反応)を起こすことができる。金属酸化物(A)の表面に存在する官能基(例えば水酸基)は、通常、金属酸化物(A)を構成する金属原子(M)に結合している。
[Phosphorus Compound (B)]
The phosphorus compound (B) contains a site capable of reacting with the metal oxide (A), and typically contains a plurality of such sites. In a preferred example, the phosphorus compound (B) contains 2 to 20 such sites (atomic groups or functional groups). Examples of such a part include a part capable of reacting with a functional group (for example, a hydroxyl group) present on the surface of the metal oxide (A). For example, examples of such a site include a halogen atom directly bonded to a phosphorus atom and an oxygen atom directly bonded to a phosphorus atom. Those halogen atoms and oxygen atoms can cause a condensation reaction (hydrolysis condensation reaction) with a hydroxyl group present on the surface of the metal oxide (A). The functional group (for example, hydroxyl group) present on the surface of the metal oxide (A) is usually bonded to the metal atom (M) constituting the metal oxide (A).
リン化合物(B)としては、例えば、ハロゲン原子または酸素原子がリン原子に直接結合した構造を有するものを用いることができ、このようなリン化合物(B)を用いることにより金属酸化物(A)の表面に存在する水酸基と(加水分解)縮合することで結合することができる。リン化合物(B)は、1つのリン原子を有するものであってもよいし、2つ以上のリン原子を有するものであってもよい。 As the phosphorus compound (B), for example, a compound having a structure in which a halogen atom or an oxygen atom is directly bonded to a phosphorus atom can be used. By using such a phosphorus compound (B), a metal oxide (A) can be used. It can be combined by condensation (hydrolysis) with a hydroxyl group present on the surface. The phosphorus compound (B) may have one phosphorus atom, or may have two or more phosphorus atoms.
リン化合物(B)は、リン酸、ポリリン酸、亜リン酸、ホスホン酸およびそれらの誘導体からなる群より選ばれる少なくとも1種の化合物であってもよい。ポリリン酸の具体例としては、ピロリン酸、三リン酸、4つ以上のリン酸が縮合したポリリン酸などが挙げられる。上記の誘導体の例としては、リン酸、ポリリン酸、亜リン酸、ホスホン酸の、塩、(部分)エステル化合物、ハロゲン化物(塩化物など)、脱水物(五酸化ニリンなど)などが挙げられる。また、ホスホン酸の誘導体の例には、ホスホン酸(H−P(=O)(OH)2)のリン原子に直接結合した水素原子が種々の官能基を有していてもよいアルキル基に置換されている化合物(例えば、ニトリロトリス(メチレンホスホン酸)、N,N,N’,N’−エチレンジアミンテトラキス(メチレンホスホン酸)など)や、その塩、(部分)エステル化合物、ハロゲン化物および脱水物も含まれる。さらに、リン酸化でんぷんや、後述する重合体(E)などの、リン原子を有する有機高分子も、前記リン化合物(B)として使用することができる。これらのリン化合物(B)は1種を単独で使用しても2種以上を併用してもよい。これらのリン化合物(B)の中でも、後述するコーティング液(U)を用いて層(YA)を形成する場合におけるコーティング液(U)の安定性と得られる多層構造体のガスバリア性がより優れることから、リン酸を単独で使用するか、またはリン酸とそれ以外のリン化合物とを併用することが好ましい。 The phosphorus compound (B) may be at least one compound selected from the group consisting of phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, and derivatives thereof. Specific examples of polyphosphoric acid include pyrophosphoric acid, triphosphoric acid, polyphosphoric acid condensed with four or more phosphoric acids, and the like. Examples of the derivatives include salts of phosphoric acid, polyphosphoric acid, phosphorous acid, and phosphonic acid, (partial) ester compounds, halides (such as chlorides), dehydrates (such as niline pentoxide), and the like. . In addition, examples of phosphonic acid derivatives include a hydrogen atom directly bonded to a phosphorus atom of phosphonic acid (HP (═O) (OH) 2 ), which may have various functional groups. Substituted compounds (eg, nitrilotris (methylenephosphonic acid), N, N, N ′, N′-ethylenediaminetetrakis (methylenephosphonic acid), etc.), salts thereof, (partial) ester compounds, halides and dehydration Things are also included. Furthermore, organic polymers having a phosphorus atom, such as phosphorylated starch and polymer (E) described later, can also be used as the phosphorus compound (B). These phosphorus compounds (B) may be used alone or in combination of two or more. Among these phosphorus compounds (B), the stability of the coating liquid (U) in the case of forming the layer (YA) using the coating liquid (U) described later and the gas barrier property of the resulting multilayer structure are more excellent. Therefore, it is preferable to use phosphoric acid alone or to use phosphoric acid and other phosphorus compounds in combination.
上記したように、多層構造体が有する前記層(YA)は反応生成物(R)を含み、前記反応生成物(R)は、少なくとも金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物である。このような反応生成物は金属酸化物(A)とリン化合物(B)とを混合し反応させることにより形成することができる。金属酸化物(A)との混合に供される(混合される直前の)リン化合物(B)は、リン化合物(B)そのものであってもよいしリン化合物(B)を含む組成物の形態であってもよく、リン化合物(B)を含む組成物の形態が好ましい。好ましい一例では、リン化合物(B)を溶媒に溶解することによって得られる溶液の形態で、リン化合物(B)が金属酸化物(A)と混合される。その際の溶媒は任意のものが使用できるが、水または水を含む混合溶媒が好ましい溶媒として挙げられる。 As described above, the layer (YA) included in the multilayer structure includes the reaction product (R), and the reaction product (R) includes at least a reaction between the metal oxide (A) and the phosphorus compound (B). Is a reaction product. Such a reaction product can be formed by mixing and reacting the metal oxide (A) and the phosphorus compound (B). The phosphorus compound (B) used for mixing with the metal oxide (A) (immediately before mixing) may be the phosphorus compound (B) itself or a form of a composition containing the phosphorus compound (B). The form of the composition containing the phosphorus compound (B) is preferable. In a preferred example, the phosphorus compound (B) is mixed with the metal oxide (A) in the form of a solution obtained by dissolving the phosphorus compound (B) in a solvent. Although any solvent can be used at that time, water or a mixed solvent containing water is a preferable solvent.
金属酸化物(A)との混合に供されるリン化合物(B)またはリン化合物(B)を含む組成物では金属原子の含有率が低いことが、ガスバリア性により優れる多層構造体が得られることから好ましい。金属酸化物(A)との混合に供されるリン化合物(B)またはリン化合物(B)を含む組成物に含まれる金属原子の含有率は、当該リン化合物(B)またはリン化合物(B)を含む組成物に含まれる全てのリン原子のモル数を基準(100モル%)として、100モル%以下であることが好ましく、30モル%以下であることがより好ましく、5モル%以下であることがさらに好ましく、1モル%以下であることが特に好ましく、0モル%であってもよい。 The phosphorus compound (B) used for mixing with the metal oxide (A) or the composition containing the phosphorus compound (B) has a low metal atom content, so that a multilayer structure excellent in gas barrier properties can be obtained. To preferred. The phosphorus compound (B) or composition containing the phosphorus compound (B) to be mixed with the metal oxide (A) contains metal atoms in the phosphorus compound (B) or phosphorus compound (B). Is preferably 100 mol% or less, more preferably 30 mol% or less, and more preferably 5 mol% or less, based on the number of moles of all phosphorus atoms contained in the composition containing More preferably, it is particularly preferably 1 mol% or less, and may be 0 mol%.
[反応生成物(R)]
反応生成物(R)には、金属酸化物(A)およびリン化合物(B)のみが反応することによって生成される反応生成物が含まれる。また、反応生成物(R)には、金属酸化物(A)とリン化合物(B)とさらに他の化合物とが反応することによって生成される反応生成物も含まれる。反応生成物(R)は、後述する製造方法で説明する方法によって形成できる。
[Reaction product (R)]
The reaction product (R) includes a reaction product produced by reacting only the metal oxide (A) and the phosphorus compound (B). The reaction product (R) also includes a reaction product produced by reacting the metal oxide (A), the phosphorus compound (B), and another compound. The reaction product (R) can be formed by the method described in the production method described later.
[金属酸化物(A)とリン化合物(B)との比率]
層(YA)において、金属酸化物(A)を構成する金属原子のモル数NMとリン化合物(B)に由来するリン原子のモル数NPとが、1.0≦(モル数NM)/(モル数NP)≦3.6の関係を満たすことが好ましく、1.1≦(モル数NM)/(モル数NP)≦3.0の関係を満たすことがより好ましい。(モル数NM)/(モル数NP)の値が3.6を超えると、金属酸化物(A)がリン化合物(B)に対して過剰となり、金属酸化物(A)の粒子同士の結合が不充分となり、また、金属酸化物(A)の表面に存在する水酸基の量が多くなるため、ガスバリア性とその安定性が低下する傾向がある。一方、(モル数NM)/(モル数NP)の値が1.0未満であると、リン化合物(B)が金属酸化物(A)に対して過剰となり、金属酸化物(A)との結合に関与しない余剰なリン化合物(B)が多くなり、また、リン化合物(B)由来の水酸基の量が多くなりやすく、やはりガスバリア性とその安定性が低下する傾向がある。
[Ratio of metal oxide (A) and phosphorus compound (B)]
In the layer (YA), the number of moles N M of metal atoms constituting the metal oxide (A) and the number of moles N P of phosphorus atoms derived from the phosphorus compound (B) are 1.0 ≦ (number of moles N M ) / (Number of moles N P ) ≦ 3.6, more preferably 1.1 ≦ (number of moles N M ) / (number of moles N P ) ≦ 3.0. When the value of (number of moles N M ) / (number of moles N P ) exceeds 3.6, the metal oxide (A) becomes excessive with respect to the phosphorus compound (B), and the particles of the metal oxide (A) Insufficient bonding occurs, and the amount of hydroxyl groups present on the surface of the metal oxide (A) increases, so that the gas barrier property and its stability tend to be lowered. On the other hand, when the value of (number of moles N M ) / (number of moles N P ) is less than 1.0, the phosphorus compound (B) becomes excessive with respect to the metal oxide (A), and the metal oxide (A) The excess phosphorus compound (B) that does not participate in the bond with the phosphorus compound increases, the amount of the hydroxyl group derived from the phosphorus compound (B) tends to increase, and the gas barrier property and its stability tend to decrease.
なお、上記比は、層(YA)を形成するためのコーティング液における、金属酸化物(A)の量とリン化合物(B)の量との比によって調整できる。層(YA)におけるモル数NMとモル数NPとの比は、通常、コーティング液における比であって金属酸化物(A)を構成する金属原子のモル数とリン化合物(B)を構成するリン原子のモル数との比と同じである。 In addition, the said ratio can be adjusted with ratio of the quantity of a metal oxide (A) and the quantity of a phosphorus compound (B) in the coating liquid for forming a layer (YA). The ratio of the moles N M and the number of moles N P in the layer (YA) is generally constituted by a ratio in the coating solution moles of phosphorus compound of a metal atom constituting the metal oxide (A) and (B) It is the same as the ratio to the number of moles of phosphorus atoms to be made.
[重合体(C)]
多層構造体が有する層(YA)は、特定の重合体(C)をさらに含んでもよい。重合体(C)は、水酸基、カルボキシル基、カルボン酸無水物基、およびカルボキシル基の塩からなる群より選ばれる少なくとも1種の官能基(f)を有する重合体である。多層構造体が有する層(YA)において重合体(C)は、それが有する官能基(f)によって金属酸化物(A)の粒子およびリン化合物(B)に由来するリン原子の一方または両方と直接的にまたは間接的に結合していてもよい。また多層構造体が有する層(YA)において反応生成物(R)は、重合体(C)が金属酸化物(A)やリン化合物(B)と反応するなどして生じる重合体(C)部分を有していてもよい。なお、本明細書において、リン化合物(B)としての要件を満たす重合体であって官能基(f)を含む重合体は、重合体(C)には含めずにリン化合物(B)として扱う。
[Polymer (C)]
The layer (YA) of the multilayer structure may further contain a specific polymer (C). The polymer (C) is a polymer having at least one functional group (f) selected from the group consisting of a hydroxyl group, a carboxyl group, a carboxylic anhydride group, and a carboxyl group salt. In the layer (YA) of the multilayer structure, the polymer (C) has one or both of particles of the metal oxide (A) and a phosphorus atom derived from the phosphorus compound (B) depending on the functional group (f) it has. It may be bound directly or indirectly. Further, in the layer (YA) of the multilayer structure, the reaction product (R) is a polymer (C) portion produced by the reaction of the polymer (C) with the metal oxide (A) or the phosphorus compound (B). You may have. In the present specification, a polymer that satisfies the requirements as the phosphorus compound (B) and includes the functional group (f) is not included in the polymer (C) but is treated as the phosphorus compound (B). .
重合体(C)としては、官能基(f)を有する構成単位を含む重合体を用いることができる。このような構成単位の具体例としては、ビニルアルコール単位、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位、無水マレイン酸単位、無水フタル酸単位などの、官能基(f)を1個以上有する構成単位が挙げられる。重合体(C)は、官能基(f)を有する構成単位を1種類のみ含んでいてもよいし、官能基(f)を有する構成単位を2種類以上含んでいてもよい。 As the polymer (C), a polymer containing a structural unit having a functional group (f) can be used. Specific examples of such structural units include 1 functional group (f) such as a vinyl alcohol unit, an acrylic acid unit, a methacrylic acid unit, a maleic acid unit, an itaconic acid unit, a maleic anhydride unit, and a phthalic anhydride unit. Examples include structural units having at least one unit. The polymer (C) may contain only one type of structural unit having the functional group (f), or may contain two or more types of structural units having the functional group (f).
より優れたガスバリア性およびその安定性を有する多層構造体を得るために、重合体(C)の全構成単位に占める、官能基(f)を有する構成単位の割合は、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましく、100モル%であってもよい。 In order to obtain a multilayer structure having better gas barrier properties and stability, the proportion of the structural unit having the functional group (f) in the total structural units of the polymer (C) is 10 mol% or more. It is preferably 20 mol% or more, more preferably 40 mol% or more, particularly preferably 70 mol% or more, and may be 100 mol%.
官能基(f)を有する構成単位とそれ以外の他の構成単位とによって重合体(C)が構成されている場合、当該他の構成単位の種類は特に限定されない。当該他の構成単位の例には、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、およびメタクリル酸ブチル単位などの(メタ)アクリル酸エステルから誘導される構成単位;ギ酸ビニル単位および酢酸ビニル単位などのビニルエステルから誘導される構成単位;スチレン単位およびp−スチレンスルホン酸単位などの芳香族ビニルから誘導される構成単位;エチレン単位、プロピレン単位、およびイソブチレン単位などのオレフィンから誘導される構成単位などが含まれる。重合体(C)が2種類以上の構成単位を含む場合、当該重合体(C)は、交互共重合体、ランダム共重合体、ブロック共重合体、およびテーパー型共重合体のいずれであってもよい。 When the polymer (C) is constituted by the structural unit having the functional group (f) and other structural units other than that, the type of the other structural unit is not particularly limited. Examples of such other structural units are derived from (meth) acrylic acid esters such as methyl acrylate units, methyl methacrylate units, ethyl acrylate units, ethyl methacrylate units, butyl acrylate units, and butyl methacrylate units. Structural units derived from vinyl esters such as vinyl formate units and vinyl acetate units; structural units derived from aromatic vinyls such as styrene units and p-styrene sulfonic acid units; ethylene units, propylene units, And structural units derived from olefins such as isobutylene units. When the polymer (C) contains two or more types of structural units, the polymer (C) is any of an alternating copolymer, a random copolymer, a block copolymer, and a tapered copolymer. Also good.
水酸基を有する重合体(C)の具体例としては、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、多糖類から誘導される多糖類誘導体などが挙げられる。カルボキシル基、カルボン酸無水物基またはカルボキシル基の塩を有する重合体(C)の具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリ(アクリル酸/メタクリル酸)およびそれらの塩などを挙げることができる。また、官能基(f)を含有しない構成単位を含む重合体(C)の具体例としては、エチレン−ビニルアルコール共重合体、エチレン−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸交互共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体のけん化物などが挙げられる。より優れたガスバリア性およびその安定性を有する多層構造体を得るために、重合体(C)は、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、多糖類、ポリアクリル酸、ポリアクリル酸の塩、ポリメタクリル酸、およびポリメタクリル酸の塩からなる群より選ばれる少なくとも1種の重合体であることが好ましい。 Specific examples of the polymer (C) having a hydroxyl group include polyvinyl alcohol, polyvinyl acetate partially saponified products, polyethylene glycol, polyhydroxyethyl (meth) acrylate, starch and other polysaccharides, polysaccharides derived from polysaccharides Derivatives and the like. Specific examples of the polymer (C) having a carboxyl group, a carboxylic anhydride group or a carboxyl group salt include polyacrylic acid, polymethacrylic acid, poly (acrylic acid / methacrylic acid), and salts thereof. Can do. Specific examples of the polymer (C) containing a structural unit not containing the functional group (f) include an ethylene-vinyl alcohol copolymer, an ethylene-maleic anhydride copolymer, and a styrene-maleic anhydride copolymer. , Saponified products of isobutylene-maleic anhydride alternating copolymer, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, and the like. In order to obtain a multilayer structure having better gas barrier properties and its stability, the polymer (C) comprises polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polysaccharide, polyacrylic acid, polyacrylic acid salt, It is preferably at least one polymer selected from the group consisting of polymethacrylic acid and polymethacrylic acid salts.
重合体(C)の分子量に特に制限はない。より優れたガスバリア性および力学的物性(落下衝撃強さなど)を有する多層構造体を得るために、重合体(C)の数平均分子量は、5,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましい。重合体(C)の数平均分子量の上限は特に限定されず、例えば、1,500,000以下である。 There is no restriction | limiting in particular in the molecular weight of a polymer (C). In order to obtain a multilayer structure having more excellent gas barrier properties and mechanical properties (such as drop impact strength), the number average molecular weight of the polymer (C) is preferably 5,000 or more, and 8,000. More preferably, it is more preferably 10,000 or more. The upper limit of the number average molecular weight of the polymer (C) is not particularly limited, and is, for example, 1,500,000 or less.
ガスバリア性をより向上させるために、層(YA)における重合体(C)の含有率は、層(YA)の質量を基準(100質量%)として、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、20質量%以下であってもよい。重合体(C)は、層(YA)中の他の成分と反応していてもよいし、反応していなくてもよい。なお、本明細書では、重合体(C)が他の成分と反応している場合も、重合体(C)と表現する。例えば、重合体(C)が、金属酸化物(A)、および/または、リン化合物(B)に由来するリン原子と結合している場合も、重合体(C)と表現する。この場合、上記の重合体(C)の含有率は、金属酸化物(A)および/またはリン原子と結合する前の重合体(C)の質量を層(YA)の質量で除して算出する。 In order to further improve the gas barrier properties, the content of the polymer (C) in the layer (YA) is preferably 50% by mass or less based on the mass of the layer (YA) (100% by mass). It is more preferably at most mass%, more preferably at most 30 mass%, and may be at most 20 mass%. The polymer (C) may or may not react with other components in the layer (YA). In the present specification, the case where the polymer (C) reacts with other components is also expressed as the polymer (C). For example, when the polymer (C) is bonded to a phosphorus atom derived from the metal oxide (A) and / or the phosphorus compound (B), it is also expressed as the polymer (C). In this case, the content of the polymer (C) is calculated by dividing the mass of the polymer (C) before bonding with the metal oxide (A) and / or the phosphorus atom by the mass of the layer (YA). To do.
多層構造体が有する層(YA)は、少なくともアルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物(R)(ただし、重合体(C)部分を有するものを含む)のみから構成されていてもよいし、当該反応生成物(R)と、反応していない重合体(C)のみから構成されていてもよいが、その他の成分をさらに含んでいてもよい。 The layer (YA) of the multilayer structure has a reaction product (R) (provided that the polymer (C) portion is formed by the reaction of the metal oxide (A) containing at least aluminum with the phosphorus compound (B). The reaction product (R) and the non-reacted polymer (C), but may further include other components. Also good.
上記の他の成分としては、例えば、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩、アルミン酸塩などの無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩などの有機酸金属塩;アセチルアセトナート金属錯体(アルミニウムアセチルアセトナートなど)、シクロペンタジエニル金属錯体(チタノセンなど)、シアノ金属錯体などの金属錯体;層状粘土化合物;架橋剤;重合体(C)以外の高分子化合物;可塑剤;酸化防止剤;紫外線吸収剤;難燃剤などが挙げられる。 Examples of other components include inorganic acid metal salts such as carbonates, hydrochlorides, nitrates, hydrogen carbonates, sulfates, hydrogen sulfates, borates, and aluminates; oxalates, acetates, Organic acid metal salts such as tartrate and stearate; metal complexes such as acetylacetonate metal complexes (such as aluminum acetylacetonate), cyclopentadienyl metal complexes (such as titanocene), cyano metal complexes; layered clay compounds; Agents; polymer compounds other than the polymer (C); plasticizers; antioxidants; ultraviolet absorbers; flame retardants and the like.
多層構造体中の層(YA)における上記の他の成分の含有率は、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましく、0質量%(他の成分を含まない)であってもよい。 The content of the other components in the layer (YA) in the multilayer structure is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less. It is preferably 5% by mass or less, and may be 0% by mass (excluding other components).
[層(YA)の厚さ]
多層構造体が有する層(YA)の厚さ(多層構造体が2層以上の層(YA)を有する場合には各層(YA)の厚さの合計)は、4.0μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.0μm以下であることがさらに好ましく、0.9μm以下であってもよい。層(YA)を薄くすることによって、印刷、ラミネートなどの加工時における多層構造体の寸法変化を低く抑えることができ、さらに多層構造体の柔軟性が増し、その力学的特性を、基材自体の力学的特性に近づけることができる。
[Thickness of layer (YA)]
The thickness of the layer (YA) of the multilayer structure (when the multilayer structure has two or more layers (YA), the total thickness of each layer (YA)) may be 4.0 μm or less. Preferably, it is 2.0 μm or less, more preferably 1.0 μm or less, and 0.9 μm or less. By reducing the thickness of the layer (YA), the dimensional change of the multilayer structure during processing such as printing and laminating can be kept low, and the flexibility of the multilayer structure is further increased. It can be close to the mechanical characteristics of.
多層構造体では、層(YA)の厚さの合計が1.0μm以下(例えば0.5μm以下)の場合でも、真空断熱体を構成する被覆材の20℃、85%RHの条件下における酸素透過度を2ml/(m2・day・atm)以下とすることが可能である。また、層(YA)の厚さ(多層構造体が2層以上の層(YA)を有する場合には各層(YA)の厚さの合計)は、0.1μm以上(例えば0.2μm以上)であることが好ましい。なお、層(YA)1層当たりの厚さは、多層構造体のガスバリア性がより良好になる観点から、0.05μm以上(例えば0.15μm以上)であることが好ましい。層(YA)の厚さは、層(YA)の形成に用いられる後述するコーティング液(U)の濃度や、その塗布方法によって制御することができる。 In the multilayer structure, even when the total thickness of the layers (YA) is 1.0 μm or less (for example, 0.5 μm or less), the oxygen of the coating material constituting the vacuum insulator is 20 ° C. and 85% RH. The transmittance can be 2 ml / (m 2 · day · atm) or less. Also, the thickness of the layer (YA) (when the multilayer structure has two or more layers (YA), the total thickness of each layer (YA)) is 0.1 μm or more (for example, 0.2 μm or more). It is preferable that The thickness per layer (YA) is preferably 0.05 μm or more (for example, 0.15 μm or more) from the viewpoint of better gas barrier properties of the multilayer structure. The thickness of the layer (YA) can be controlled by the concentration of a coating liquid (U) described later used for forming the layer (YA) and the coating method.
[層(YB)および層(YC)]
多層構造体が有する層(Y)は、アルミニウムの蒸着層である層(YB)または酸化アルミニウムの蒸着層である層(YC)であってもよい。これらの蒸着層は、後述する無機蒸着層と同様の方法により製造することができる。
[Layer (YB) and Layer (YC)]
The layer (Y) of the multilayer structure may be a layer (YB) that is an aluminum deposition layer or a layer (YC) that is an aluminum oxide deposition layer. These vapor deposition layers can be manufactured by the same method as the inorganic vapor deposition layer mentioned later.
[層(Z)]
多層構造体が有する層(Z)は、リン原子を有する単量体単位を含む重合体(E)を含む。層(Z)を層(Y)に隣接して形成することで、多層構造体の耐屈曲性を大幅に向上することができる。
[Layer (Z)]
The layer (Z) included in the multilayer structure includes a polymer (E) including a monomer unit having a phosphorus atom. By forming the layer (Z) adjacent to the layer (Y), the bending resistance of the multilayer structure can be greatly improved.
[重合体(E)]
重合体(E)は、その分子中に複数のリン原子を有している。一例では、当該リン原子は酸性基またはその誘導体に含まれる。リン原子を含む酸性基の例には、リン酸基、ポリリン酸基、亜リン酸基、ホスホン酸基が含まれる。重合体(E)が有する複数のリン原子のうち、少なくとも1つのリン原子は、金属酸化物(A)と反応可能な部位を含有する。好ましい一例では、重合体(E)は、そのようなリン原子を10〜1000個程度含有する。金属酸化物(A)と反応可能なリン原子に関する部位の例には、リン化合物(B)に対して記載した構造の部位を挙げることができる。
[Polymer (E)]
The polymer (E) has a plurality of phosphorus atoms in its molecule. In one example, the phosphorus atom is contained in an acidic group or derivative thereof. Examples of the acidic group containing a phosphorus atom include a phosphoric acid group, a polyphosphoric acid group, a phosphorous acid group, and a phosphonic acid group. At least 1 phosphorus atom contains the site | part which can react with a metal oxide (A) among several phosphorus atoms which a polymer (E) has. In a preferred example, the polymer (E) contains about 10 to 1000 such phosphorus atoms. The site | part of the structure described with respect to the phosphorus compound (B) can be mentioned as an example of the site | part regarding the phosphorus atom which can react with a metal oxide (A).
重合体(E)は、上記条件を満たせば特に制限はないが、好ましい一例として、側鎖末端にリン酸基を含有する(メタ)アクリル酸エステル類の単独重合体または共重合体を挙げることができる。これらの重合体は、側鎖末端にリン酸基を有する(メタ)アクリル酸エステル類の単量体を合成し、これらを単独重合するか、他のビニル基含有単量体と共重合することで得ることができる。 The polymer (E) is not particularly limited as long as the above conditions are satisfied, but a preferable example is a homopolymer or copolymer of (meth) acrylic acid esters containing a phosphate group at the end of the side chain. Can do. These polymers can be synthesized by synthesizing monomers of (meth) acrylic acid esters having a phosphate group at the end of the side chain and homopolymerizing them or copolymerizing with other vinyl group-containing monomers. Can be obtained at
本発明で使用される、側鎖末端にリン酸基を含有する(メタ)アクリル酸エステル類は、下記一般式(IV)で表される少なくとも1種の化合物であってもよい。 The (meth) acrylic acid ester containing a phosphate group at the side chain terminal used in the present invention may be at least one compound represented by the following general formula (IV).
[ただし、式(IV)において、R5およびR6は、水素原子またはメチル基、エチル基、ノルマルプロピル基、イソプロピル基から選ばれるアルキル基であり、アルキル基に含まれる一部の水素原子が他の原子や官能基で置換されていてもよい。また、nは、自然数でり、典型的には1〜6の整数である。] [In the formula (IV), R 5 and R 6 are a hydrogen atom or an alkyl group selected from a methyl group, an ethyl group, a normal propyl group, and an isopropyl group, and some of the hydrogen atoms contained in the alkyl group are It may be substituted with other atoms or functional groups. Moreover, n is a natural number and is typically an integer of 1-6. ]
典型的な一例では、R5は水素原子またはメチル基であり、R6は水素原子またはメチル基である。 In a typical example, R 5 is a hydrogen atom or a methyl group, and R 6 is a hydrogen atom or a methyl group.
一般式(IV)で表される単量体のうち、本発明に好適に使用できる単量体の例としては、アシッドホスホオキシエチルアクリレート、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールアクリレート、アシッドホスホオキシポリオキシエチレングリコールメタクリレート、アシッドホスホオキシポリオキシプロピレングリコールアクリレート、アシッドホスホオキシポリオキシプロピレングリコールメタクリレート、3−クロロ−2−アシッドホスホオキシプロピルアクリレートおよび3−クロロ−2−アシッドホスホオキシプロピルメタクリレートなどを挙げることができる。その中でも、アシッドホスホオキシエチルメタクリレートの単独重合体であることが、耐屈曲性に優れた多層構造体が得られる点でより好ましい。ただし、本発明に使用できる単量体はこれらに限定されるものではない。これらの単量体の一部は、ユニケミカル株式会社から商品名Phosmerとして販売されており、適宜購入して使用することができる。 Among the monomers represented by the general formula (IV), examples of monomers that can be suitably used in the present invention include acid phosphooxyethyl acrylate, acid phosphooxyethyl methacrylate, and acid phosphooxypolyoxyethylene glycol acrylate. Acid phosphooxypolyoxyethylene glycol methacrylate, acid phosphooxypolyoxypropylene glycol acrylate, acid phosphooxypolyoxypropylene glycol methacrylate, 3-chloro-2-acid phosphooxypropyl acrylate and 3-chloro-2-acid phosphooxypropyl A methacrylate etc. can be mentioned. Among these, a homopolymer of acid phosphooxyethyl methacrylate is more preferable from the viewpoint of obtaining a multilayer structure excellent in bending resistance. However, monomers that can be used in the present invention are not limited to these. Some of these monomers are sold under the trade name “Phosmer” by Unichemical Co., Ltd., and can be purchased and used as appropriate.
重合体(E)は、一般式(IV)で表される単量体の単独重合体であってもよいし、一般式(IV)で表される単量体を2種以上用いた共重合体であってもよいし、少なくとも1種類の一般式(IV)で表される単量体と他のビニル単量体との共重合体であってもよい。 The polymer (E) may be a homopolymer of a monomer represented by the general formula (IV), or a copolymer using two or more monomers represented by the general formula (IV). It may be a combination, or may be a copolymer of at least one monomer represented by the general formula (IV) and another vinyl monomer.
一般式(IV)で表される単量体と共重合することのできる他のビニル単量体としては、一般式(IV)で表される単量体と共重合できるものであれば特に限定されず公知のものを使用できる。このようなビニル単量体として、例えば、アクリル酸、アクリル酸エステル類、メタクリル酸、メタクリル酸エステル類、アクリロニトリル、メタクリロニトリル、スチレン、核置換スチレン類、アルキルビニルエーテル類、アルキルビニルエステル類、パーフルオロ・アルキルビニルエーテル類、パーフルオロ・アルキルビニルエステル類、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、マレイミドまたはフェニルマレイミドなどが挙げられる。これらのビニル単量体の中で、特に好ましく用いることができるものは、メタクリル酸エステル類、アクリロニトリル、スチレン類、マレイミド、フェニルマレイミドである。 Other vinyl monomers that can be copolymerized with the monomer represented by the general formula (IV) are particularly limited as long as they can be copolymerized with the monomer represented by the general formula (IV). Instead, known ones can be used. Examples of such vinyl monomers include acrylic acid, acrylic acid esters, methacrylic acid, methacrylic acid esters, acrylonitrile, methacrylonitrile, styrene, nucleus-substituted styrenes, alkyl vinyl ethers, alkyl vinyl esters, pars. Fluoro-alkyl vinyl ethers, perfluoro-alkyl vinyl esters, maleic acid, maleic anhydride, fumaric acid, itaconic acid, maleimide, or phenylmaleimide. Among these vinyl monomers, those that can be particularly preferably used are methacrylic acid esters, acrylonitrile, styrenes, maleimide, and phenylmaleimide.
より優れた耐屈曲性を有する多層構造体を得るために、重合体(E)の全構成単位に占める、一般式(IV)で表される単量体に由来する構成単位の割合は、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましく、100モル%であってもよい。 In order to obtain a multilayer structure having better bending resistance, the proportion of the structural unit derived from the monomer represented by formula (IV) in the total structural units of the polymer (E) is 10 It is preferably at least mol%, more preferably at least 20 mol%, further preferably at least 40 mol%, particularly preferably at least 70 mol%, and may be 100 mol%. .
重合体(E)は、上記条件を満たせば特に制限はないが、好ましい別の例として、リン酸基を含有するビニルホスホン酸類の単独重合体または共重合体を挙げることができる。ここで、「ビニルホスホン酸類」とは、以下の要件を満たすものを意味する。
(a)置換基を有するホスホン酸、置換基を有するホスフィン酸、またはこれらのエステルである。
(b)分子中のリン原子(ホスホン酸基、ホスフィン酸基またはそれらのエステル中のリン原子)に置換基の炭素鎖がリン−炭素結合を介して結合している。炭素鎖中に炭素−炭素二重結合が存在する。炭素鎖の一部は、炭素環を構成していてもよい。
(c)分子中のリン原子(ホスホン酸基、ホスフィン酸基またはそれらのエステル中のリン原子)には、少なくとも1つの水酸基が結合している。
Although there will be no restriction | limiting in particular if a polymer (E) satisfy | fills the said conditions, As a preferable another example, the homopolymer or copolymer of vinylphosphonic acid containing a phosphoric acid group can be mentioned. Here, the “vinyl phosphonic acids” mean those satisfying the following requirements.
(A) A phosphonic acid having a substituent, a phosphinic acid having a substituent, or an ester thereof.
(B) The carbon chain of the substituent is bonded to the phosphorus atom in the molecule (phosphonic acid group, phosphinic acid group or phosphorus atom in their ester) via a phosphorus-carbon bond. There are carbon-carbon double bonds in the carbon chain. A part of the carbon chain may constitute a carbocyclic ring.
(C) At least one hydroxyl group is bonded to the phosphorus atom in the molecule (phosphonic acid group, phosphinic acid group or phosphorus atom in their ester).
一例のビニルホスホン酸類は、置換基を有するホスホン酸および/またはホスフィン酸であって、且つ、上記(b)の要件を満たす。例えば、一例のホスホン酸類は、置換基を有するホスホン酸であって上記(b)の要件を満たす。 One example of the vinyl phosphonic acid is a phosphonic acid and / or phosphinic acid having a substituent, and satisfies the requirement (b). For example, an example phosphonic acid is a phosphonic acid having a substituent, and satisfies the requirement (b).
リン原子に結合している置換基の炭素鎖に含まれる炭素数は、2〜30の範囲(例えば2〜10の範囲)にあってもよい。置換基の例には、炭素−炭素二重結合を有する炭化水素鎖(例えば、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、2−メチル−1−プロペニル基、2−メチル−2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−ペンテニル基、1−ヘキセニル基、1,3−ヘキサジエニル基、1,5−ヘキサジエニル基など)が含まれる。炭素−炭素二重結合を有する炭化水素鎖には、分子鎖中にオキシカルボニル基を1つ以上含んでいてもよい。炭素環の例には、ベンゼン環、ナフタレン環、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロプロペン環、シクロブテン環、シクロペンテン環などが含まれる。また、炭素環上に炭素−炭素二重結合を有する上記炭化水素鎖のほかに飽和炭化水素鎖(例えば、メチル基、エチル基、プロピル基など)が1つ以上結合していてもよい。リン原子に結合している置換基の例には、ビニル基などの上記炭素−炭素二重結合を有する炭化水素鎖、4−ビニルベンジル基などの上記炭素環に上記炭化水素鎖の結合した炭素環が含まれる。 The carbon number contained in the carbon chain of the substituent bonded to the phosphorus atom may be in the range of 2 to 30 (for example, in the range of 2 to 10). Examples of the substituent include a hydrocarbon chain having a carbon-carbon double bond (for example, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-methyl-1-propenyl group, 2-methyl-2). -Propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 1-hexenyl group, 1,3-hexadienyl group, 1,5-hexadienyl group and the like. The hydrocarbon chain having a carbon-carbon double bond may contain one or more oxycarbonyl groups in the molecular chain. Examples of the carbocycle include a benzene ring, naphthalene ring, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclopropene ring, cyclobutene ring, cyclopentene ring and the like. In addition to the hydrocarbon chain having a carbon-carbon double bond on the carbocycle, one or more saturated hydrocarbon chains (for example, a methyl group, an ethyl group, a propyl group, etc.) may be bonded. Examples of the substituent bonded to the phosphorus atom include a hydrocarbon chain having the carbon-carbon double bond such as a vinyl group, and a carbon having the hydrocarbon chain bonded to the carbocycle such as a 4-vinylbenzyl group. Includes a ring.
エステルを構成するエステル基は、ホスフィン酸またはホスホン酸のリン原子に結合する水酸基の水素原子をアルキル基で置換する構造であって、アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。 The ester group constituting the ester is a structure in which a hydrogen atom of a hydroxyl group bonded to a phosphorus atom of phosphinic acid or phosphonic acid is substituted with an alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, A butyl group, a pentyl group, a hexyl group, etc. are mentioned.
重合体(E)は、ビニルホスホン酸類の単量体を重合するか、他のビニル基含有単量体と共重合することで得ることができる。また、重合体(E)は、ホスホン酸ハロゲン化物やエステルなどのビニルホスホン酸誘導体を単独または共重合した後、加水分解することによっても得ることができる。 The polymer (E) can be obtained by polymerizing vinyl phosphonic acid monomers or copolymerizing with other vinyl group-containing monomers. The polymer (E) can also be obtained by hydrolyzing a vinylphosphonic acid derivative such as a phosphonic acid halide or ester, either alone or copolymerized.
好適に使用できるビニルホスホン酸類の単量体の例としては、ビニルホスホニックアシッド、2−プロペン−1−ホスホニックアシッドなどのアルケニルホスホン酸類;4−ビニルベンジルホスホニックアシッド、4−ビニルフェニルホスホニックアシッドなどのアルケニル芳香族ホスホン酸類;6−[(2−ホスホノアセチル)オキシ]ヘキシルアクリレート、ホスホノメチルメタクリレート、11−ホスホノウンデシルメタクリレート、1,1−ジホスホノエチルメタクリレートなどのホスホノ(メタ)アクリル酸エステル類;ビニルホスフィニックアシッド、4−ビニルベンジルホスフィニックアシッドなどのホスフィン酸類などを挙げることができる。その中でも、ビニルホスホニックアシッドの単独重合体であるポリ(ビニルホスホニックアシッド)は、耐屈曲性に優れた多層構造体が得られる点でより好ましい。ただし、使用できる単量体はこれらに限定されるものではない。 Examples of monomers of vinylphosphonic acids that can be suitably used include alkenylphosphonic acids such as vinylphosphonic acid and 2-propene-1-phosphonic acid; 4-vinylbenzylphosphonic acid, 4-vinylphenylphosphonic Alkenyl aromatic phosphonic acids such as acid; Phosphono (meta) such as 6-[(2-phosphonoacetyl) oxy] hexyl acrylate, phosphonomethyl methacrylate, 11-phosphonoundecyl methacrylate, 1,1-diphosphonoethyl methacrylate ) Acrylic acid esters; phosphinic acids such as vinyl phosphinic acid and 4-vinylbenzyl phosphinic acid. Among them, poly (vinyl phosphonic acid), which is a homopolymer of vinyl phosphonic acid, is more preferable in that a multilayer structure excellent in bending resistance can be obtained. However, the monomer which can be used is not limited to these.
重合体(E)は、ビニルホスホン酸類の単量体の単独重合体であってもよいし、ビニルホスホン酸類の単量体を2種以上用いた共重合体であってもよいし、少なくとも1種類のビニルホスホン酸類の単量体と他のビニル単量体との共重合体であってもよい。 The polymer (E) may be a homopolymer of a monomer of vinylphosphonic acid, a copolymer using two or more monomers of vinylphosphonic acid, or at least 1 Copolymers of monomers of various types of vinyl phosphonic acids and other vinyl monomers may be used.
ビニルホスホン酸類の単量体と共重合することのできる他のビニル単量体としては、ビニルホスホン酸類の単量体と共重合できるものであれば特に限定されず公知のものを使用できる。このようなビニル単量体として、例えば、アクリル酸、アクリル酸エステル類、メタクリル酸、メタクリル酸エステル類、アクリロニトリル、メタクリロニトリル、スチレン、核置換スチレン類、アルキルビニルエーテル類、アルキルビニルエステル類、パーフルオロ・アルキルビニルエーテル類、パーフルオロ・アルキルビニルエステル類、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、マレイミドまたはフェニルマレイミドなどが挙げられる。これらのビニル単量体の中で、特に好ましく用いることができるものは、メタクリル酸エステル類、アクリロニトリル、スチレン類、マレイミド、フェニルマレイミドである。 Other vinyl monomers that can be copolymerized with vinylphosphonic acid monomers are not particularly limited as long as they are copolymerizable with vinylphosphonic acid monomers, and known ones can be used. Examples of such vinyl monomers include acrylic acid, acrylic acid esters, methacrylic acid, methacrylic acid esters, acrylonitrile, methacrylonitrile, styrene, nucleus-substituted styrenes, alkyl vinyl ethers, alkyl vinyl esters, pars. Fluoro-alkyl vinyl ethers, perfluoro-alkyl vinyl esters, maleic acid, maleic anhydride, fumaric acid, itaconic acid, maleimide, or phenylmaleimide. Among these vinyl monomers, those that can be particularly preferably used are methacrylic acid esters, acrylonitrile, styrenes, maleimide, and phenylmaleimide.
より優れた耐屈曲性を有する多層構造体を得るために、重合体(E)の全構成単位に占める、ビニルホスホン酸類の単量体に由来する構成単位の割合は、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましく、100モル%であってもよい。 In order to obtain a multilayer structure having better bending resistance, the proportion of structural units derived from monomers of vinylphosphonic acids in the total structural units of the polymer (E) is 10 mol% or more. It is preferably 20 mol% or more, more preferably 40 mol% or more, particularly preferably 70 mol% or more, and may be 100 mol%.
重合体(E)は、下記一般式(I)で示される繰り返し単位を有する重合体、より具体的にはポリ(ビニルホスホニックアシッド)であってもよい。 The polymer (E) may be a polymer having a repeating unit represented by the following general formula (I), more specifically poly (vinyl phosphonic acid).
nに特に限定はない。nは、例えば次に述べる数平均分子量を満たす数である。 There is no particular limitation on n. For example, n is a number that satisfies the number average molecular weight described below.
重合体(E)の分子量に特に制限はないが、典型的には、重合体(E)の数平均分子量は、1,000〜100,000の範囲にある。数平均分子量がこの範囲にあると、層(Z)を積層することによる耐屈曲性の改善効果と、後述する重合体(E)を含むコーティング液(V)の粘度安定性とを、高いレベルで両立することができる。また、リン原子1つあたりの重合体(E)の分子量は、150〜500の範囲にある場合に、層(Z)を積層することによる耐屈曲性の改善効果をより高めることができる場合がある。 Although there is no restriction | limiting in particular in the molecular weight of a polymer (E), Typically, the number average molecular weight of a polymer (E) exists in the range of 1,000-100,000. When the number average molecular weight is in this range, the bending resistance improving effect by laminating the layer (Z) and the viscosity stability of the coating liquid (V) containing the polymer (E) described later are at a high level. Can be compatible. Further, when the molecular weight of the polymer (E) per phosphorus atom is in the range of 150 to 500, the effect of improving the bending resistance by laminating the layer (Z) may be further enhanced. is there.
多層構造体が有する層(Z)は、リン原子を有する単量体単位を含む重合体(E)のみから構成されていてもよいが、その他の成分をさらに含んでいてもよい。 The layer (Z) of the multilayer structure may be composed only of the polymer (E) containing a monomer unit having a phosphorus atom, but may further contain other components.
上記の他の成分としては、例えば、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩、アルミン酸塩などの無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩などの有機酸金属塩;アセチルアセトナート金属錯体(アルミニウムアセチルアセトナートなど)、シクロペンタジエニル金属錯体(チタノセンなど)、シアノ金属錯体などの金属錯体;層状粘土化合物;架橋剤;重合体(E)以外の高分子化合物;可塑剤;酸化防止剤;紫外線吸収剤;難燃剤などが挙げられる。 Examples of other components include inorganic acid metal salts such as carbonates, hydrochlorides, nitrates, hydrogen carbonates, sulfates, hydrogen sulfates, borates, and aluminates; oxalates, acetates, Organic acid metal salts such as tartrate and stearate; metal complexes such as acetylacetonate metal complexes (such as aluminum acetylacetonate), cyclopentadienyl metal complexes (such as titanocene), cyano metal complexes; layered clay compounds; Agents; polymer compounds other than the polymer (E); plasticizers; antioxidants; ultraviolet absorbers; flame retardants and the like.
多層構造体中の層(Z)における上記の他の成分の含有率は、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましく、0質量%(他の成分を含まない)であってもよい。 The content of the other components in the layer (Z) in the multilayer structure is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less. It is preferably 5% by mass or less, and may be 0% by mass (excluding other components).
重合体(E)を形成するための重合反応は、原料となる単量体成分および生成する重合体の双方が溶解する溶媒中において、重合開始剤を用いて行うことができる。重合開始剤の例には、2,2−アゾビスイソブチロニトリル、2,2−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ジメチル2,2−アゾビスイソブチレートなどのアゾ系開始剤、ラウリルパーオキシド、ベンゾイルパーオキシド、tert−ブチルパーオクトエートなどの過酸化物系開始剤などが含まれる。他のビニルモノマーと共重合する場合には、コモノマー同士の組合せにより適宜溶媒を選択する。必要に応じて2種以上の混合溶媒を使用してもよい。
The polymerization reaction for forming the polymer (E) can be performed using a polymerization initiator in a solvent in which both the monomer component as a raw material and the polymer to be produced are dissolved. Examples of polymerization initiators include 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethylvaleronitrile),
一例の重合反応は、単量体、重合開始剤および溶媒からなる混合溶液を溶媒に滴下しながら重合温度50〜100℃で行い、滴下終了後も1〜24時間程度、重合温度あるいはそれ以上の温度に維持し、攪拌を継続して重合を完結させる。 The polymerization reaction of an example is performed at a polymerization temperature of 50 to 100 ° C. while dropping a mixed solution consisting of a monomer, a polymerization initiator and a solvent into the solvent, and after the completion of the addition, the polymerization temperature is about 1 to 24 hours. The temperature is maintained and stirring is continued to complete the polymerization.
溶媒は単量体成分を1とした場合、重量比で1.0〜3.0程度用いるのが好ましく、重合開始剤は重量比で0.005〜0.05程度用いるのが好ましい。より好ましい重量比は溶媒が1.5〜2.5、重合開始剤が0.01前後である。溶媒、重合開始剤の使用量が上記範囲にないと、重合体がゲル化して様々な溶媒に不溶となり、溶液を使用した塗布ができなくなるなどの問題が起こる場合がある。 When the monomer component is 1, the solvent is preferably used in a weight ratio of about 1.0 to 3.0, and the polymerization initiator is preferably used in a weight ratio of about 0.005 to 0.05. A more preferred weight ratio is 1.5 to 2.5 for the solvent and about 0.01 for the polymerization initiator. If the amount of the solvent and polymerization initiator used is not within the above ranges, the polymer may gel and become insoluble in various solvents, and problems such as the inability to apply using the solution may occur.
多層構造体が有する層(Z)は、重合体(E)の溶液を塗布することにより形成することができる。その際の溶媒は任意のものが使用できるが、水、アルコール類またはそれらの混合溶媒が好ましい溶媒として挙げられる。 The layer (Z) of the multilayer structure can be formed by applying a solution of the polymer (E). Although any solvent can be used at that time, water, alcohols or a mixed solvent thereof can be mentioned as a preferred solvent.
[層(Z)の厚さ]
層(Z)の1層当たりの厚さは、多層構造体の耐屈曲性がより良好になる観点から、0.005μm以上であり、0.03μm以上が好ましく、0.05μm以上(例えば0.15μm以上)であることがより好ましい。層(Z)の厚さの上限は特に限定されないが、1.0μm以上では耐屈曲性の改善効果は飽和に達するため、層(Z)の厚さの上限を1.0μmとすることが経済的に好ましい。層(Z)の厚さは、層(Z)の形成に用いられる後述するコーティング液(V)の濃度や、その塗布方法によって制御することができる。
[Thickness of layer (Z)]
The thickness per layer of the layer (Z) is 0.005 μm or more, preferably 0.03 μm or more, and preferably 0.05 μm or more (for example, 0.2 μm or more, for example) from the viewpoint of better bending resistance of the multilayer structure. 15 μm or more) is more preferable. The upper limit of the thickness of the layer (Z) is not particularly limited, but the effect of improving the bending resistance reaches saturation when the thickness is 1.0 μm or more. Therefore, it is economical that the upper limit of the thickness of the layer (Z) is 1.0 μm. Is preferable. The thickness of the layer (Z) can be controlled by the concentration of a coating liquid (V) described later used for forming the layer (Z) and the coating method.
[基材(X)]
多層構造体が有する基材(X)の材質に特に制限はなく、様々な材質からなる基材を用いることができる。基材(X)の材質としては、例えば、熱可塑性樹脂、熱硬化性樹脂などの樹脂;布帛、紙類などの繊維集合体;木材;ガラス;金属;金属酸化物などが挙げられる。なお、基材は複数の材質からなる複合構成または多層構成のものであってもよい。
[Substrate (X)]
There is no restriction | limiting in particular in the material of the base material (X) which a multilayer structure has, The base material which consists of various materials can be used. Examples of the material of the substrate (X) include resins such as thermoplastic resins and thermosetting resins; fiber aggregates such as fabrics and papers; wood; glass; metals; metal oxides and the like. The base material may have a composite structure or a multilayer structure made of a plurality of materials.
基材(X)の形態に特に制限はなく、フィルムやシートなどの層状の基材であってもよいし、中空の球、多面体などの中空の立体の一部を切り取ったカップ形状、および円筒その他の形状を有するパイプ状の筒状形状など、各種の立体形状を有する成形体であってもよい。 There is no restriction | limiting in particular in the form of base material (X), A layered base material, such as a film and a sheet, may be sufficient, The cup shape which cut off some hollow solids, such as a hollow sphere and a polyhedron, and a cylinder It may be a molded body having various three-dimensional shapes such as a pipe-like cylindrical shape having other shapes.
層状の基材としては、例えば、熱可塑性樹脂フィルム層、熱硬化性樹脂フィルム層、繊維重合体シート(布帛、紙など)層、木材シート層、ガラス層、無機蒸着層、金属酸化物層および金属箔層からなる群より選ばれる少なくとも1種の層を含む単層または複層の基材が挙げられる。これらの中でも、熱可塑性樹脂フィルム層、紙層および無機蒸着層からなる群より選ばれる少なくとも1種の層を含む基材が好ましく、その場合の基材は単層であってもよいし、複層であってもよい。そのような基材を用いた多層構造体(積層構造体)は、被覆材への加工性や芯材の包装材料として使用する際に求められる諸特性に優れる。 Examples of the layered substrate include a thermoplastic resin film layer, a thermosetting resin film layer, a fiber polymer sheet (fabric, paper, etc.) layer, a wood sheet layer, a glass layer, an inorganic vapor deposition layer, a metal oxide layer, and Examples thereof include a single-layer or multi-layer substrate including at least one layer selected from the group consisting of metal foil layers. Among these, a substrate including at least one layer selected from the group consisting of a thermoplastic resin film layer, a paper layer, and an inorganic vapor deposition layer is preferable. In this case, the substrate may be a single layer or a plurality of layers. It may be a layer. A multilayer structure (laminated structure) using such a substrate is excellent in workability to a covering material and various properties required when used as a packaging material for a core material.
熱可塑性樹脂フィルム層を形成する熱可塑性樹脂フィルムとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートやこれらの共重合体などのポリエステル系樹脂;ナイロン−6、ナイロン−66、ナイロン−12などのポリアミド系樹脂;ポリビニルアルコール、エチレン−ビニルアルコール共重合体などの水酸基含有ポリマー;ポリスチレン;ポリ(メタ)アクリル酸エステル;ポリアクリロニトリル;ポリ酢酸ビニル;ポリカーボネート;ポリアリレート;再生セルロース;ポリイミド;ポリエーテルイミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルエーテルケトン;アイオノマー樹脂などの熱可塑性樹脂を成形加工することによって得られるフィルムを挙げることができる。芯材を包装するための包装材料に用いられる積層体の基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン−6、またはナイロン−66からなるフィルムが好ましい。 Examples of the thermoplastic resin film that forms the thermoplastic resin film layer include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and copolymers thereof. Resins; Polyamide resins such as nylon-6, nylon-66, nylon-12; hydroxyl group-containing polymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymer; polystyrene; poly (meth) acrylic acid ester; polyacrylonitrile; Polyvinylate; Polyarylate; Regenerated cellulose; Polyimide; Polyetherimide; Polysulfone; Polyethersulfone; Polyetheretherketone; Ionomer resin, etc. It can be mentioned films obtained by molding a plastic resin. The base material of the laminate used for the packaging material for packaging the core material is preferably a film made of polyethylene, polypropylene, polyethylene terephthalate, nylon-6, or nylon-66.
熱可塑性樹脂フィルムは、延伸フィルムであってもよいし無延伸フィルムであってもよい。得られる多層構造体の加工適性(印刷やラミネートなど)が優れることから、延伸フィルム、特に二軸延伸フィルムが好ましい。二軸延伸フィルムは、同時二軸延伸法、逐次二軸延伸法、およびチューブラ延伸法のいずれかの方法で製造された二軸延伸フィルムであってもよい。 The thermoplastic resin film may be a stretched film or an unstretched film. A stretched film, particularly a biaxially stretched film is preferred because the processability (printing, laminating, etc.) of the resulting multilayer structure is excellent. The biaxially stretched film may be a biaxially stretched film produced by any one of a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tubular stretching method.
紙層に用いられる紙としては、例えば、クラフト紙、上質紙、模造紙、グラシン紙、パーチメント紙、合成紙、白板紙、マニラボール、ミルクカートン原紙、カップ原紙、アイボリー紙などが挙げられる。 Examples of the paper used for the paper layer include kraft paper, fine paper, imitation paper, glassine paper, parchment paper, synthetic paper, white board paper, Manila ball, milk carton base paper, cup base paper, ivory paper, and the like.
無機蒸着層は、酸素ガスや水蒸気に対するバリア性を有するものであることが好ましい。無機蒸着層は、アルミニウムなどの金属蒸着層のように遮光性を有するものや、透明性を有するものを適宜使用することができる。無機蒸着層は、蒸着用基体の上に無機物を蒸着することにより形成することができ、蒸着用基体の上に無機蒸着層が形成された積層体全体を、多層構成の基材(X)として用いることができる。透明性を有する無機蒸着層としては、例えば、酸化アルミニウム、酸化ケイ素、酸窒化ケイ素、酸化マグネシウム、酸化錫、またはそれらの混合物などの無機酸化物から形成される層;窒化ケイ素、炭窒化ケイ素などの無機窒化物から形成される層;炭化ケイ素などの無機炭化物から形成される層などが挙げられる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、窒化ケイ素から形成される層は、酸素ガスや水蒸気に対するバリア性が優れる観点から好ましい。 It is preferable that the inorganic vapor deposition layer has a barrier property against oxygen gas or water vapor. As the inorganic vapor deposition layer, a light shielding property such as a metal vapor deposition layer such as aluminum or a material having transparency can be appropriately used. An inorganic vapor deposition layer can be formed by vapor-depositing an inorganic substance on a vapor deposition substrate, and the entire laminate in which the inorganic vapor deposition layer is formed on the vapor deposition substrate is used as a base material (X) having a multilayer structure. Can be used. Examples of the inorganic deposited layer having transparency include a layer formed from an inorganic oxide such as aluminum oxide, silicon oxide, silicon oxynitride, magnesium oxide, tin oxide, or a mixture thereof; silicon nitride, silicon carbonitride, etc. A layer formed from an inorganic nitride of the above; a layer formed from an inorganic carbide such as silicon carbide. Among these, a layer formed from aluminum oxide, silicon oxide, magnesium oxide, and silicon nitride is preferable from the viewpoint of excellent barrier properties against oxygen gas and water vapor.
無機蒸着層の好ましい厚さは、無機蒸着層を構成する成分の種類によって異なるが、通常、2〜500nmの範囲内である。この範囲で、多層構造体のバリア性や機械的物性が良好になる厚さを選択すればよい。無機蒸着層の厚さが2nm未満であると、酸素ガスや水蒸気に対する無機蒸着層のバリア性発現の再現性が低下する傾向があり、また、無機蒸着層が充分なバリア性を発現しない場合もある。また、無機蒸着層の厚さが500nmを超えると、多層構造体を引っ張ったり屈曲させたりした場合に無機蒸着層のバリア性が低下しやすくなる傾向がある。無機蒸着層の厚さは、より好ましくは5〜200nmの範囲にあり、さらに好ましくは10〜100nmの範囲にある。 Although the preferable thickness of an inorganic vapor deposition layer changes with kinds of component which comprises an inorganic vapor deposition layer, it is in the range of 2-500 nm normally. Within this range, a thickness that improves the barrier properties and mechanical properties of the multilayer structure may be selected. If the thickness of the inorganic vapor deposition layer is less than 2 nm, the reproducibility of the barrier property development of the inorganic vapor deposition layer with respect to oxygen gas or water vapor tends to decrease, and the inorganic vapor deposition layer may not exhibit sufficient barrier properties. is there. On the other hand, when the thickness of the inorganic vapor deposition layer exceeds 500 nm, the barrier property of the inorganic vapor deposition layer tends to be lowered when the multilayer structure is pulled or bent. The thickness of the inorganic vapor deposition layer is more preferably in the range of 5 to 200 nm, and still more preferably in the range of 10 to 100 nm.
無機蒸着層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、生産性の観点から、真空蒸着法が好ましい。真空蒸着を行う際の加熱方式としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また無機蒸着層が形成される蒸着用基体との密着性および無機蒸着層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を採用して蒸着してもよい。また、無機蒸着層の透明性を上げるために、蒸着の際に、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。 Examples of the method for forming the inorganic vapor deposition layer include vacuum vapor deposition, sputtering, ion plating, and chemical vapor deposition (CVD). Among these, the vacuum evaporation method is preferable from the viewpoint of productivity. As a heating method in performing vacuum vapor deposition, any of an electron beam heating method, a resistance heating method, and an induction heating method is preferable. Further, in order to improve the adhesion to the vapor deposition substrate on which the inorganic vapor deposition layer is formed and the denseness of the inorganic vapor deposition layer, the plasma assist method or the ion beam assist method may be employed for vapor deposition. Moreover, in order to raise the transparency of an inorganic vapor deposition layer, you may employ | adopt the reactive vapor deposition method which blows in oxygen gas etc. and produces a reaction in the case of vapor deposition.
基材(X)が層状である場合にその厚さは、得られる多層構造体の機械的強度や加工性が良好になる観点から、1〜1000μmの範囲にあることが好ましく、5〜500μmの範囲にあることがより好ましく、9〜200μmの範囲にあることがさらに好ましい。 When the substrate (X) is layered, the thickness thereof is preferably in the range of 1 to 1000 μm, preferably 5 to 500 μm from the viewpoint of improving the mechanical strength and workability of the resulting multilayer structure. More preferably, it is in the range of 9 to 200 μm.
[接着層(H)]
多層構造体において、層(Y)および/または層(Z)は、基材(X)と直接接触するように積層されていてもよいが、基材(X)と層(Y)および/または層(Z)との間に配置された接着層(H)を介して層(Y)および/または層(Z)が基材(X)に積層されていてもよい。この構成によれば、基材(X)と層(Y)および/または層(Z)との接着性を高めることができる場合がある。接着層(H)は、接着性樹脂で形成してもよい。接着性樹脂からなる接着層(H)は、基材(X)の表面を公知のアンカーコーティング剤で処理するか、基材(X)の表面に公知の接着剤を塗布することによって形成できる。当該接着剤としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる二液反応型ポリウレタン系接着剤が好ましい。また、アンカーコーティング剤や接着剤に、公知のシランカップリング剤などの少量の添加剤を加えることによって、さらに接着性を高めることができる場合がある。シランカップリング剤の好適な例としては、イソシアネート基、エポキシ基、アミノ基、ウレイド基、メルカプト基などの反応性基を有するシランカップリング剤を挙げることができる。基材(X)と層(Y)および/または層(Z)とを接着層(H)を介して強く接着することによって、多層構造体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観の悪化をより効果的に抑制することができる。
[Adhesive layer (H)]
In the multilayer structure, the layer (Y) and / or the layer (Z) may be laminated so as to be in direct contact with the substrate (X), but the substrate (X) and the layer (Y) and / or The layer (Y) and / or the layer (Z) may be laminated on the substrate (X) via an adhesive layer (H) disposed between the layer (Z). According to this configuration, the adhesion between the substrate (X) and the layer (Y) and / or the layer (Z) may be improved. The adhesive layer (H) may be formed of an adhesive resin. The adhesive layer (H) made of an adhesive resin can be formed by treating the surface of the substrate (X) with a known anchor coating agent or applying a known adhesive to the surface of the substrate (X). As the adhesive, a two-component reactive polyurethane adhesive in which a polyisocyanate component and a polyol component are mixed and reacted is preferable. Moreover, adhesiveness may be further improved by adding a small amount of additives such as a known silane coupling agent to the anchor coating agent or adhesive. Preferable examples of the silane coupling agent include silane coupling agents having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group, and a mercapto group. When the substrate (X) and the layer (Y) and / or the layer (Z) are strongly bonded via the adhesive layer (H), the multilayer structure is subjected to processing such as printing or lamination. Deterioration of gas barrier properties and appearance can be more effectively suppressed.
接着層(H)を厚くすることによって、多層構造体の強度を高めることができる。しかし、接着層(H)を厚くしすぎると、外観が悪化する傾向がある。接着層(H)の厚さは0.03〜0.18μmの範囲にあることが好ましい。この構成によれば、多層構造体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観の悪化をより効果的に抑制することができ、さらに、多層構造体を用いた包装材料の落下強度を高めることができる。接着層(H)の厚さは、0.04〜0.14μmの範囲にあることがより好ましく、0.05〜0.10μmの範囲にあることがさらに好ましい。 By increasing the thickness of the adhesive layer (H), the strength of the multilayer structure can be increased. However, when the adhesive layer (H) is too thick, the appearance tends to deteriorate. The thickness of the adhesive layer (H) is preferably in the range of 0.03 to 0.18 μm. According to this configuration, when processing such as printing or laminating is performed on the multilayer structure, it is possible to more effectively suppress deterioration of gas barrier properties and appearance, and further, a packaging material using the multilayer structure. The drop strength can be increased. The thickness of the adhesive layer (H) is more preferably in the range of 0.04 to 0.14 μm, and still more preferably in the range of 0.05 to 0.10 μm.
[多層構造体の構成]
多層構造体(積層体)は、基材(X)、層(Y)および層(Z)のみによって構成されてもよいし、基材(X)、層(Y)、層(Z)および接着層(H)のみによって構成されていてもよい。多層構造体は、複数の層(Y)および/または複数の層(Z)を含んでもよい。また、多層構造体は、基材(X)、層(Y)、層(Z)および接着層(H)以外の他の部材(例えば熱可塑性樹脂フィルム層、紙層、無機蒸着層などの他の層など)をさらに含んでもよい。そのような他の部材(他の層など)を有する多層構造体は、例えば、基材(X)に直接または接着層(H)を介して層(Y)および層(Z)を積層させた後に、さらに当該他の部材(他の層など)を直接または接着層を介して接着または形成することによって製造できる。このような他の部材(他の層など)を多層構造体に含ませることによって、多層構造体の特性を向上させたり、新たな特性を付与したりすることができる。例えば、多層構造体にヒートシール性を付与したり、バリア性や力学的物性をさらに向上させたりすることができる。
[Configuration of multilayer structure]
The multilayer structure (laminate) may be composed of only the base material (X), the layer (Y), and the layer (Z), or the base material (X), the layer (Y), the layer (Z), and the adhesion You may be comprised only by the layer (H). The multilayer structure may include a plurality of layers (Y) and / or a plurality of layers (Z). In addition, the multilayer structure includes other members (for example, a thermoplastic resin film layer, a paper layer, an inorganic vapor deposition layer, etc.) other than the base material (X), the layer (Y), the layer (Z), and the adhesive layer (H). And the like. In the multilayer structure having such other members (other layers, etc.), for example, the layer (Y) and the layer (Z) are laminated on the substrate (X) directly or via the adhesive layer (H). Later, it can be manufactured by further bonding or forming the other member (other layer or the like) directly or via an adhesive layer. By including such other members (such as other layers) in the multilayer structure, the characteristics of the multilayer structure can be improved or new characteristics can be imparted. For example, heat sealability can be imparted to the multilayer structure, and barrier properties and mechanical properties can be further improved.
特に、多層構造体の最表面層をポリオレフィン層とすることによって、多層構造体にヒートシール性を付与したり、多層構造体の力学的特性を向上させたりすることができる。ヒートシール性や力学的特性の向上などの観点から、ポリオレフィンはポリプロピレンまたはポリエチレンであることが好ましい。また、多層構造体の力学的特性を向上させるために、他の層として、ポリエステルからなるフィルム、ポリアミドからなるフィルム、および水酸基含有ポリマーからなるフィルムからなる群より選ばれる少なくとも1つのフィルムを積層することが好ましい。力学的特性の向上の観点から、ポリエステルとしてはポリエチレンテレフタレート(PET)が好ましく、ポリアミドとしてはナイロン−6が好ましく、水酸基含有ポリマーとしてはエチレン−ビニルアルコール共重合体が好ましい。なお各層の間には必要に応じて、アンカーコート層や接着剤からなる層を設けてもよい。 In particular, by using a polyolefin layer as the outermost surface layer of the multilayer structure, it is possible to impart heat sealability to the multilayer structure or to improve the mechanical properties of the multilayer structure. From the viewpoint of improving heat sealability and mechanical properties, the polyolefin is preferably polypropylene or polyethylene. Further, in order to improve the mechanical properties of the multilayer structure, at least one film selected from the group consisting of a film made of polyester, a film made of polyamide, and a film made of a hydroxyl group-containing polymer is laminated as another layer. It is preferable. From the viewpoint of improving mechanical properties, the polyester is preferably polyethylene terephthalate (PET), the polyamide is preferably nylon-6, and the hydroxyl group-containing polymer is preferably an ethylene-vinyl alcohol copolymer. In addition, you may provide the layer which consists of an anchor coat layer and an adhesive agent between each layer as needed.
多層構造体は、少なくとも1組の層(Y)および層(Z)と、少なくとも1層の他の層(基材を含む)とを積層することによって形成できる。他の層の例には、ポリエステル層、ポリアミド層、ポリオレフィン層(顔料含有ポリオレフィン層、耐熱性ポリオレフィン層、または2軸延伸耐熱性ポリオレフィン層であってもよい)、水酸基含有ポリマー層(例えばエチレン−ビニルアルコール共重合体層)、紙層、無機蒸着フィルム層、熱可塑性エラストマー層、および接着層などが含まれる。多層構造体が基材、層(Y)および層(Z)を含み、少なくとも1組の層(Y)と層(Z)とが隣接して積層されている限り、これらの他の層および層(Y)、層(Z)の数および積層順に特に制限はない。また、好ましい一例としては、少なくとも1組の、基材(X)、層(Y)および層(Z)とが、基材(X)/層(Y)/層(Z)の順に積層された構造を有する多層構造体が挙げられる。なお、これらの他の層は、その材料からなる成形体(立体形状を有する成形体)に置き換えることもできる。 The multilayer structure can be formed by laminating at least one pair of layers (Y) and (Z) and at least one other layer (including a base material). Examples of other layers include polyester layers, polyamide layers, polyolefin layers (which may be pigment-containing polyolefin layers, heat-resistant polyolefin layers, or biaxially stretched heat-resistant polyolefin layers), hydroxyl group-containing polymer layers (for example, ethylene- Vinyl alcohol copolymer layer), paper layer, inorganic vapor deposition film layer, thermoplastic elastomer layer, and adhesive layer. As long as the multilayer structure includes a base material, a layer (Y) and a layer (Z), and at least one pair of the layer (Y) and the layer (Z) is laminated adjacently, these other layers and layers (Y), the number of layers (Z) and the order of lamination are not particularly limited. As a preferred example, at least one set of the base material (X), the layer (Y), and the layer (Z) is laminated in the order of the base material (X) / layer (Y) / layer (Z). A multilayer structure having a structure may be mentioned. In addition, these other layers can also be replaced with a molded body (molded body having a three-dimensional shape) made of the material.
多層構造体の構成の具体例を、以下に示す。なお、以下の具体例において、各層は、その材料からなる成形体(立体形状を有する成形体)に置き換えてもよい。また、多層構造体は接着層(H)などの接着層を有していてもよいが、以下の具体例において、当該接着層の記載は省略している。なお、以下の明細書において、層(YZ)とは、層(Y)と層(Z)が隣接して積層された構造を意味し、その順序は層(Y)/層(Z)または層(Z)/層(Y)のいずれでもよい。
(1)層(YZ)/ポリエステル層、
(2)層(YZ)/ポリエステル層/層(YZ)、
(3)層(YZ)/ポリアミド層、
(4)層(YZ)/ポリアミド層/層(YZ)、
(5)層(YZ)/ポリオレフィン層、
(6)層(YZ)/ポリオレフィン層/層(YZ)、
(7)層(YZ)/水酸基含有ポリマー層、
(8)層(YZ)/水酸基含有ポリマー層/層(YZ)、
(9)層(YZ)/紙層、
(10)層(YZ)/紙層/層(YZ)、
(11)層(YZ)/無機蒸着層/ポリエステル層、
(12)層(YZ)/無機蒸着層/ポリアミド層、
(13)層(YZ)/無機蒸着層/ポリオレフィン層、
(14)層(YZ)/無機蒸着層/水酸基含有ポリマー層、
(15)層(YZ)/ポリエステル層/ポリアミド層/ポリオレフィン層、
(16)層(YZ)/ポリエステル層/層(YZ)/ポリアミド層/ポリオレフィン層、
(17)ポリエステル層/層(YZ)/ポリアミド層/ポリオレフィン層、
(18)層(YZ)/ポリアミド層/ポリエステル層/ポリオレフィン層、
(19)層(YZ)/ポリアミド層/層(YZ)/ポリエステル層/ポリオレフィン層、
(20)ポリアミド層/層(YZ)/ポリエステル層/ポリオレフィン層、
(21)層(YZ)/ポリオレフィン層/ポリアミド層/ポリオレフィン層、
(22)層(YZ)/ポリオレフィン層/層(YZ)/ポリアミド層/ポリオレフィン層、
(23)ポリオレフィン層/層(YZ)/ポリアミド層/ポリオレフィン層、
(24)層(YZ)/ポリオレフィン層/ポリオレフィン層、
(25)層(YZ)/ポリオレフィン層/層(YZ)/ポリオレフィン層、
(26)ポリオレフィン層/層(YZ)/ポリオレフィン層、
(27)層(YZ)/ポリエステル層/ポリオレフィン層、
(28)層(YZ)/ポリエステル層/層(YZ)/ポリオレフィン層、
(29)ポリエステル層/層(YZ)/ポリオレフィン層、
(30)層(YZ)/ポリアミド層/ポリオレフィン層、
(31)層(YZ)/ポリアミド層/層(YZ)/ポリオレフィン層、
(32)ポリアミド層/層(YZ)/ポリオレフィン層、
(33)層(YZ)/ポリエステル層/紙層、
(34)層(YZ)/ポリアミド層/紙層、
(35)層(YZ)/ポリオレフィン層/紙層、
(36)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリエステル層/ポリオレフィン層、
(37)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリアミド層/ポリオレフィン層、
(38)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層、
(39)紙層/ポリオレフィン層/層(YZ)/ポリエステル層/ポリオレフィン層、
(40)ポリオレフィン層/紙層/層(YZ)/ポリオレフィン層、
(41)紙層/層(YZ)/ポリエステル層/ポリオレフィン層、
(42)紙層/層(YZ)/ポリオレフィン層、
(43)層(YZ)/紙層/ポリオレフィン層、
(44)層(YZ)/ポリエステル層/紙層/ポリオレフィン層、
(45)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層/水酸基含有ポリマー層、
(46)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層/ポリアミド層、
(47)ポリオレフィン層/紙層/ポリオレフィン層/層(YZ)/ポリオレフィン層/ポリエステル層。
Specific examples of the structure of the multilayer structure are shown below. In the following specific examples, each layer may be replaced with a molded body (molded body having a three-dimensional shape) made of the material. The multilayer structure may have an adhesive layer such as an adhesive layer (H), but the description of the adhesive layer is omitted in the following specific examples. In the following specification, the layer (YZ) means a structure in which the layer (Y) and the layer (Z) are adjacently stacked, and the order is layer (Y) / layer (Z) or layer. Either (Z) / layer (Y) may be used.
(1) Layer (YZ) / Polyester layer,
(2) layer (YZ) / polyester layer / layer (YZ),
(3) layer (YZ) / polyamide layer,
(4) layer (YZ) / polyamide layer / layer (YZ),
(5) Layer (YZ) / Polyolefin layer,
(6) Layer (YZ) / Polyolefin layer / Layer (YZ),
(7) Layer (YZ) / Hydroxyl-containing polymer layer,
(8) Layer (YZ) / Hydroxyl-containing polymer layer / Layer (YZ),
(9) Layer (YZ) / paper layer,
(10) layer (YZ) / paper layer / layer (YZ),
(11) layer (YZ) / inorganic vapor deposition layer / polyester layer,
(12) Layer (YZ) / Inorganic vapor deposition layer / Polyamide layer,
(13) Layer (YZ) / Inorganic vapor deposition layer / Polyolefin layer,
(14) Layer (YZ) / Inorganic vapor deposition layer / Hydroxyl-containing polymer layer,
(15) Layer (YZ) / Polyester layer / Polyamide layer / Polyolefin layer,
(16) Layer (YZ) / Polyester layer / Layer (YZ) / Polyamide layer / Polyolefin layer,
(17) Polyester layer / layer (YZ) / polyamide layer / polyolefin layer,
(18) layer (YZ) / polyamide layer / polyester layer / polyolefin layer,
(19) layer (YZ) / polyamide layer / layer (YZ) / polyester layer / polyolefin layer,
(20) Polyamide layer / layer (YZ) / polyester layer / polyolefin layer,
(21) Layer (YZ) / Polyolefin layer / Polyamide layer / Polyolefin layer,
(22) layer (YZ) / polyolefin layer / layer (YZ) / polyamide layer / polyolefin layer,
(23) Polyolefin layer / layer (YZ) / polyamide layer / polyolefin layer,
(24) Layer (YZ) / Polyolefin layer / Polyolefin layer,
(25) layer (YZ) / polyolefin layer / layer (YZ) / polyolefin layer,
(26) Polyolefin layer / layer (YZ) / polyolefin layer,
(27) Layer (YZ) / Polyester layer / Polyolefin layer,
(28) Layer (YZ) / Polyester layer / Layer (YZ) / Polyolefin layer,
(29) Polyester layer / layer (YZ) / polyolefin layer,
(30) layer (YZ) / polyamide layer / polyolefin layer,
(31) layer (YZ) / polyamide layer / layer (YZ) / polyolefin layer,
(32) Polyamide layer / layer (YZ) / polyolefin layer,
(33) layer (YZ) / polyester layer / paper layer,
(34) layer (YZ) / polyamide layer / paper layer,
(35) layer (YZ) / polyolefin layer / paper layer,
(36) Polyolefin layer / paper layer / polyolefin layer / layer (YZ) / polyester layer / polyolefin layer,
(37) Polyolefin layer / paper layer / polyolefin layer / layer (YZ) / polyamide layer / polyolefin layer,
(38) Polyolefin layer / paper layer / polyolefin layer / layer (YZ) / polyolefin layer,
(39) Paper layer / Polyolefin layer / Layer (YZ) / Polyester layer / Polyolefin layer,
(40) Polyolefin layer / paper layer / layer (YZ) / polyolefin layer,
(41) Paper layer / layer (YZ) / polyester layer / polyolefin layer,
(42) Paper layer / layer (YZ) / polyolefin layer,
(43) layer (YZ) / paper layer / polyolefin layer,
(44) layer (YZ) / polyester layer / paper layer / polyolefin layer,
(45) Polyolefin layer / paper layer / polyolefin layer / layer (YZ) / polyolefin layer / hydroxyl group-containing polymer layer,
(46) Polyolefin layer / paper layer / polyolefin layer / layer (YZ) / polyolefin layer / polyamide layer,
(47) Polyolefin layer / paper layer / polyolefin layer / layer (YZ) / polyolefin layer / polyester layer.
[真空断熱体の特性、用途、特に適した層構成など]
本発明の好ましい実施形態によれば、真空断熱体について、以下の性能の一方または両方を実現することが可能である。好ましい一例では、層(Y)の厚さ(多層構造体が2層以上の層(Y)を有する場合には各層(Y)の厚さの合計)が1.0μm以下(例えば0.5μm以上で1.0μm以下)である多層構造体により、以下の性能を実現できる。なお、酸素透過度の測定条件の詳細については、実施例で説明する。
(性能1)被覆材の20℃、85%RHの条件下における酸素透過度が2ml/(m2・day・atm)以下、好ましくは1.5ml/(m2・day・atm)以下である。
(性能2)被覆材を23℃、50%RHの条件下で一方向に5%延伸した状態で5分間保持した後の20℃、85%RHの条件下における当該被覆材についての酸素透過度が、4ml/(m2・day・atm)以下、好ましくは2.5ml/(m2・day・atm)以下である。
[Characteristics and applications of vacuum insulation, particularly suitable layer structure]
According to a preferred embodiment of the present invention, it is possible to achieve one or both of the following performances for the vacuum insulator. In a preferred example, the thickness of the layer (Y) (when the multilayer structure has two or more layers (Y), the total thickness of each layer (Y)) is 1.0 μm or less (for example, 0.5 μm or more). The following performance can be realized by the multilayer structure having a thickness of 1.0 μm or less. The details of the measurement conditions for oxygen permeability will be described in Examples.
(Performance 1) The oxygen permeability of the coating material under the conditions of 20 ° C. and 85% RH is 2 ml / (m 2 · day · atm) or less, preferably 1.5 ml / (m 2 · day · atm) or less. .
(Performance 2) Oxygen permeability of the coating material under the conditions of 20 ° C. and 85% RH after holding the coating material for 5 minutes in a state stretched 5% in one direction under the conditions of 23 ° C. and 50% RH Is 4 ml / (m 2 · day · atm) or less, preferably 2.5 ml / (m 2 · day · atm) or less.
本発明による真空断熱体は、上述の多層構造体を備えているため、ガスバリア性に優れ、変形や衝撃などの物理的ストレスを受けた際にも、ガスバリア性を高いレベルで維持することができる。本発明による真空断熱体は、ガスバリア性に加えて、水蒸気に対するバリア性を有することもできる。その場合には、変形や衝撃などの物理的ストレスを受けた際にも、その水蒸気バリア性を高いレベルで維持することができる。 Since the vacuum heat insulator according to the present invention includes the above-described multilayer structure, it has excellent gas barrier properties and can maintain the gas barrier properties at a high level even when subjected to physical stress such as deformation or impact. . The vacuum insulator according to the present invention can have a barrier property against water vapor in addition to the gas barrier property. In that case, even when subjected to physical stress such as deformation and impact, the water vapor barrier property can be maintained at a high level.
本発明による真空断熱体の作製にはヒートシールの適用が適している。ヒートシールが行われる場合には、通常、成形品の内側となる側、あるいは成形品の内側となる側および外側となる側の両方に、ヒートシール可能な層を配置することが必要である。ヒートシール可能な層が、成形品(袋)の内側となる側にのみある場合は、通常、胴体部のシールは合掌貼りシールとなる。ヒートシール可能な層が、成形品の内側となる側および外側となる側の両方にある場合は、通常、胴体部のシールは封筒貼りシールとなる。ヒートシール可能な層としては、ポリオレフィン層(以下、「PO層」と記載することがある)が好ましい。ヒートシールは、フィルム材をシールして真空断熱体を量産する場合に有用な手法である。 Application of heat sealing is suitable for the production of the vacuum heat insulator according to the present invention. When heat sealing is performed, it is usually necessary to dispose a heat-sealable layer on the inner side of the molded product or on both the inner side and the outer side of the molded product. When the heat-sealable layer is only on the inner side of the molded product (bag), the seal of the body portion is usually a palm-sealed seal. When the heat-sealable layer is on both the inner side and the outer side of the molded product, the seal of the body part is usually an envelope sticker. As the heat-sealable layer, a polyolefin layer (hereinafter sometimes referred to as “PO layer”) is preferable. Heat sealing is a useful technique when mass-producing vacuum insulation by sealing a film material.
本発明による真空断熱体は、長期間にわたって断熱効果を保持できるため、冷蔵庫、給湯設備などのヒートポンプ応用機器および炊飯器などの家電製品用の断熱材、壁部、天井部、屋根裏部および床部などに用いられる住宅用断熱材、車両屋根材、自動販売機などの断熱パネルなどに利用できる。 Since the vacuum heat insulating body according to the present invention can maintain a heat insulating effect for a long period of time, heat insulating materials for home appliances such as heat pump application equipment such as refrigerators and hot water supply equipment and rice cookers, walls, ceilings, attics and floors It can be used for heat insulation panels for residential use, vehicle roofing materials, vending machines, etc.
真空断熱体の被覆層は、上記で述べたように、多層構造体と少なくとも1層の他の層とを積層することによって形成してもよい。他の層の例には、ポリエステル層、ポリアミド層、ポリオレフィン層、および接着層などが含まれる。これらの層の数および積層順には特に制限はないが、ヒートシールが行われる場合にはそのための構成が採用される。 As described above, the coating layer of the vacuum heat insulating body may be formed by laminating the multilayer structure and at least one other layer. Examples of other layers include a polyester layer, a polyamide layer, a polyolefin layer, and an adhesive layer. The number of these layers and the order of lamination are not particularly limited, but when heat sealing is performed, a configuration for that is adopted.
真空断熱体を構成するための特に好ましい被覆材の構成としては、バリア性多層膜/ポリアミド層/PO層、および、ポリアミド層/バリア性多層膜/PO層、という構成が挙げられる。る。ここで、バリア性多層膜は、基材(X)、層(Y)および層(Z)を含む積層体、特に基材(X)と層(YZ)とを積層した積層体である。上記各層の層間には、接着層を設けてもよい。また、層(YZ)が基材の一方の表面のみに積層されている場合、層(YZ)は、基材に対して真空断熱体の外側にあってもよいし内側にあってもよい。 Particularly preferable coating materials for constituting the vacuum heat insulating material include barrier multilayer / polyamide layer / PO layer and polyamide layer / barrier multilayer / PO layer. The Here, the barrier multilayer film is a laminate including the substrate (X), the layer (Y), and the layer (Z), particularly a laminate obtained by laminating the substrate (X) and the layer (YZ). An adhesive layer may be provided between the layers. Moreover, when the layer (YZ) is laminated | stacked only on one surface of a base material, a layer (YZ) may exist in the outer side of a vacuum heat insulating body with respect to a base material, and may exist inside.
[多層構造体の製造方法]
以下、多層構造体の製造方法について説明する。
[Method for producing multilayer structure]
Hereinafter, the manufacturing method of a multilayer structure is demonstrated.
多層構造体の製造方法は、リン原子を有する単量体単位を含む重合体(E)を含むコーティング液(V)を塗布することによって層(Z)を形成する工程(IV)を含むことが好ましい。 The method for producing a multilayer structure may include a step (IV) of forming a layer (Z) by applying a coating liquid (V) containing a polymer (E) containing a monomer unit having a phosphorus atom. preferable.
なお、多層構造体が有する層(Y)が、アルミニウムの蒸着層である層(YB)または酸化アルミニウムの蒸着層である層(YC)である場合には、層(YB)および層(YC)は上記した一般的な蒸着法で形成することができるため、詳細な説明を省略する。以下では、多層構造体が有する層(Y)が、少なくともアルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物(R)を含む層(YA)である場合について特に詳細に説明する。なお、層(Z)の形成方法(後述する工程(IV))については、層(Y)が層(YA)、層(YB)および層(YC)のいずれの場合にも、同様の形成方法を採用することができる。 When the layer (Y) of the multilayer structure is a layer (YB) that is an aluminum deposition layer or a layer (YC) that is an aluminum oxide deposition layer, the layer (YB) and the layer (YC) Since can be formed by the general vapor deposition method described above, detailed description is omitted. Hereinafter, the layer (Y) included in the multilayer structure is a layer (YA) including a reaction product (R) obtained by reacting at least a metal oxide (A) including aluminum and a phosphorus compound (B). The case will be described in particular detail. In addition, about the formation method (process (IV) mentioned later) of a layer (Z), when the layer (Y) is any of a layer (YA), a layer (YB), and a layer (YC), the same formation method Can be adopted.
多層構造体が有する層(Y)が、少なくともアルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物(R)を含む層(YA)である場合、多層構造体の製造方法は、工程(I)、(II)、(III)および(IV)を含むことが好ましい。工程(I)では、少なくともアルミニウムを含む金属酸化物(A)と、金属酸化物(A)と反応可能な部位を含有する少なくとも1種の化合物と、溶媒とを混合することによって、金属酸化物(A)、当該少なくとも1種の化合物および当該溶媒を含むコーティング液(U)を調製する。工程(II)では、基材(X)上にコーティング液(U)を塗布することによって、基材(X)上に層(YA)の前駆体層を形成する。工程(III)では、その前駆体層を140℃以上の温度で熱処理することによって、基材(X)上に層(YA)を形成する。そして工程(IV)では、リン原子を有する単量体単位を含む重合体(E)を含むコーティング液(V)を塗布することで、層(Z)を形成する。なお、典型的には上記工程は、(I)、(II)、(III)、(IV)の順で実施されるが、層(Z)を基材(X)と層(YA)の間に形成する場合には、工程(IV)を工程(II)の前に実施すればよい。また、後述するように、工程(IV)の後に工程(III)を実施することも可能である。 When the layer (Y) of the multilayer structure is a layer (YA) containing a reaction product (R) formed by a reaction of at least a metal oxide (A) containing aluminum and a phosphorus compound (B), a multilayer The method for producing a structure preferably includes steps (I), (II), (III) and (IV). In the step (I), a metal oxide (A) containing at least aluminum, at least one compound containing a site capable of reacting with the metal oxide (A), and a solvent are mixed with each other to obtain a metal oxide. (A) A coating liquid (U) containing the at least one compound and the solvent is prepared. In the step (II), a precursor layer of the layer (YA) is formed on the substrate (X) by applying the coating liquid (U) on the substrate (X). In step (III), the precursor layer is heat-treated at a temperature of 140 ° C. or higher to form a layer (YA) on the substrate (X). In step (IV), the layer (Z) is formed by applying a coating liquid (V) containing a polymer (E) containing a monomer unit having a phosphorus atom. The above steps are typically performed in the order of (I), (II), (III), and (IV), but the layer (Z) is placed between the substrate (X) and the layer (YA). In the case of forming in (4), step (IV) may be carried out before step (II). Further, as will be described later, the step (III) can be performed after the step (IV).
[工程(I)]
工程(I)で用いられる、金属酸化物(A)と反応可能な部位を含有する少なくとも1種の化合物を、以下では、「少なくとも1種の化合物(Z)」という場合がある。工程(I)では、金属酸化物(A)と、少なくとも1種の化合物(Z)と、溶媒とを少なくとも混合する。1つの観点では、工程(I)では、金属酸化物(A)と、少なくとも1種の化合物(Z)とを含む原料を、溶媒中で反応させる。当該原料は、金属酸化物(A)および少なくとも1種の化合物(Z)の他に、他の化合物を含んでもよい。典型的には、金属酸化物(A)は粒子の形態で混合される。
[Step (I)]
Hereinafter, the at least one compound containing a site capable of reacting with the metal oxide (A) used in the step (I) may be referred to as “at least one compound (Z)”. In step (I), at least the metal oxide (A), at least one compound (Z), and a solvent are mixed. In one aspect, in the step (I), a raw material containing the metal oxide (A) and at least one compound (Z) is reacted in a solvent. The raw material may contain other compounds in addition to the metal oxide (A) and at least one compound (Z). Typically, the metal oxide (A) is mixed in the form of particles.
コーティング液(U)において、金属酸化物(A)を構成する金属原子(M)のモル数NMと、リン化合物(B)に含まれるリン原子のモル数NPとは、1.0≦(モル数NM)/(モル数NP)≦3.6の関係を満たす。(モル数NM)/(モル数NP)の値の好ましい範囲は、上述したため、重複する説明を省略する。 In the coating liquid (U), the number of moles N M of metal atoms (M) constituting the metal oxide (A) and the number of moles N P of phosphorus atoms contained in the phosphorus compound (B) are 1.0 ≦ The relationship of (number of moles N M ) / (number of moles N P ) ≦ 3.6 is satisfied. Since the preferable range of the value of (number of moles N M ) / (number of moles N P ) has been described above, redundant description is omitted.
少なくとも1種の化合物(Z)は、リン化合物(B)を含む。少なくとも1種の化合物(Z)に含まれる金属原子のモル数は、リン化合物(B)に含まれるリン原子のモル数の0〜1倍の範囲にあることが好ましい。典型的には、少なくとも1種の化合物(Z)は、金属酸化物(A)と反応可能な部位を複数含有する化合物であり、少なくとも1種の化合物(Z)に含まれる金属原子のモル数が、リン化合物(B)に含まれるリン原子のモル数の0〜1倍の範囲にある。 At least one compound (Z) includes a phosphorus compound (B). The number of moles of metal atoms contained in at least one compound (Z) is preferably in the range of 0 to 1 times the number of moles of phosphorus atoms contained in the phosphorus compound (B). Typically, the at least one compound (Z) is a compound containing a plurality of sites capable of reacting with the metal oxide (A), and the number of moles of metal atoms contained in the at least one compound (Z). Is in the range of 0 to 1 times the number of moles of phosphorus atoms contained in the phosphorus compound (B).
(少なくとも1種の化合物(Z)に含まれる金属原子のモル数)/(リン化合物(B)に含まれるリン原子のモル数)の比を0〜1の範囲(例えば0〜0.9の範囲)とすることによって、より優れたガスバリア性を有する多層構造体が得られる。この比は、多層構造体のガスバリア性をさらに向上させるために、0.3以下であることが好ましく、0.05以下であることがより好ましく、0.01以下であることがさらに好ましく、0であってもよい。典型的には、少なくとも1種の化合物(Z)は、リン化合物(B)のみからなる。工程(I)では、上記比を容易に低下させることができる。 The ratio of (number of moles of metal atoms contained in at least one compound (Z)) / (number of moles of phosphorus atoms contained in phosphorus compound (B)) ranges from 0 to 1 (for example, from 0 to 0.9). By setting the range, a multilayer structure having more excellent gas barrier properties can be obtained. This ratio is preferably 0.3 or less, more preferably 0.05 or less, further preferably 0.01 or less, in order to further improve the gas barrier properties of the multilayer structure. It may be. Typically, at least one compound (Z) consists only of the phosphorus compound (B). In step (I), the ratio can be easily reduced.
工程(I)は、以下の工程(a)〜(c)を含むことが好ましい。
工程(a):金属酸化物(A)を含む液体(S)を調製する工程。
工程(b):リン化合物(B)を含む溶液(T)を調製する工程。
工程(c):上記工程(a)および(b)で得られた液体(S)と溶液(T)とを混合する工程。
Step (I) preferably includes the following steps (a) to (c).
Step (a): A step of preparing a liquid (S) containing the metal oxide (A).
Step (b): A step of preparing a solution (T) containing the phosphorus compound (B).
Step (c): A step of mixing the liquid (S) obtained in the steps (a) and (b) and the solution (T).
工程(b)は、工程(a)より先に行われてもよいし、工程(a)と同時に行われてもよいし、工程(a)の後に行われてもよい。以下、各工程について、より具体的に説明する。 Step (b) may be performed prior to step (a), may be performed simultaneously with step (a), or may be performed after step (a). Hereinafter, each step will be described more specifically.
工程(a)では、金属酸化物(A)を含む液体(S)を調製する。液体(S)は、溶液または分散液である。当該液体(S)は、例えば、公知のゾルゲル法で採用されている手法によって調製できる。例えば、上述した化合物(L)系成分、水、および必要に応じて酸触媒や有機溶媒を混合し、公知のゾルゲル法で採用されている手法によって化合物(L)系成分を縮合または加水分解縮合することによって調製できる。化合物(L)系成分を縮合または加水分解縮合することによって得られる、金属酸化物(A)の分散液は、そのまま金属酸化物(A)を含む液体(S)として使用することができる。しかし、必要に応じて、当該分散液に対して特定の処理(上記したような解膠や濃度制御のための溶媒の加減など)を行ってもよい。 In the step (a), a liquid (S) containing the metal oxide (A) is prepared. The liquid (S) is a solution or a dispersion. The liquid (S) can be prepared, for example, by a technique adopted in a known sol-gel method. For example, the above-mentioned compound (L) component, water, and an acid catalyst or an organic solvent as necessary are mixed, and the compound (L) component is condensed or hydrolyzed by a method employed in a known sol-gel method. Can be prepared. The dispersion of the metal oxide (A) obtained by condensing or hydrolyzing the compound (L) component can be used as it is as the liquid (S) containing the metal oxide (A). However, if necessary, a specific treatment (such as peptization as described above, addition or subtraction of a solvent for concentration control) may be performed on the dispersion.
工程(a)は、化合物(L)および化合物(L)の加水分解物からなる群より選ばれる少なくとも1種を縮合(例えば加水分解縮合)させる工程を含んでもよい。具体的には、工程(a)は、化合物(L)、化合物(L)の部分加水分解物、化合物(L)の完全加水分解物、化合物(L)の部分加水分解縮合物、および化合物(L)の完全加水分解物の一部が縮合したものからなる群より選ばれる少なくとも1種を縮合または加水分解縮合する工程を含んでもよい。 Step (a) may include a step of condensing (for example, hydrolytic condensation) at least one selected from the group consisting of compound (L) and a hydrolyzate of compound (L). Specifically, the step (a) includes compound (L), partial hydrolyzate of compound (L), complete hydrolyzate of compound (L), partial hydrolyzed condensate of compound (L), and compound (L A step of condensing or hydrolyzing at least one selected from the group consisting of a part of the complete hydrolyzate of L) condensed may be included.
また、液体(S)を調製するための方法の別の例としては、以下の工程を含む方法が挙げられる。まず、熱エネルギーによって金属を金属原子として気化させ、その金属原子を反応ガス(酸素)と接触させることによって金属酸化物の分子およびクラスターを生成させる。その後、それらを瞬時に冷却することによって、粒径が小さい金属酸化物(A)の粒子を製造する。次に、その粒子を水や有機溶媒に分散させることによって、液体(S)(金属酸化物(A)を含む分散液)が得られる。水や有機溶媒への分散性を高めるため、金属酸化物(A)の粒子に対して表面処理を施したり、界面活性剤などの安定化剤を添加したりしてもよい。また、pHを制御することによって、金属酸化物(A)の分散性を向上させてもよい。 Another example of the method for preparing the liquid (S) includes a method including the following steps. First, metal is vaporized as a metal atom by thermal energy, and the metal atom is brought into contact with a reactive gas (oxygen) to generate metal oxide molecules and clusters. Then, the metal oxide (A) particle | grains with a small particle size are manufactured by cooling them instantaneously. Next, the liquid (S) (dispersion containing a metal oxide (A)) is obtained by dispersing the particles in water or an organic solvent. In order to improve the dispersibility in water or an organic solvent, the metal oxide (A) particles may be subjected to a surface treatment or a stabilizer such as a surfactant may be added. Moreover, you may improve the dispersibility of a metal oxide (A) by controlling pH.
液体(S)を調製するための方法のさらに別の例としては、バルク体の金属酸化物(A)をボールミルやジェットミルなどの粉砕機を用いて粉砕し、これを水や有機溶媒に分散させることによって、液体(S)(金属酸化物(A)を含む分散液)とする方法を挙げることができる。ただし、この場合には、金属酸化物(A)の粒子の形状や大きさの分布を制御することが困難となる場合がある。 As another example of the method for preparing the liquid (S), the bulk metal oxide (A) is pulverized using a pulverizer such as a ball mill or a jet mill, and dispersed in water or an organic solvent. By making it, the method of setting it as liquid (S) (dispersion containing a metal oxide (A)) can be mentioned. However, in this case, it may be difficult to control the shape and size distribution of the metal oxide (A) particles.
工程(a)において使用できる有機溶媒の種類に特に制限はなく、例えば、メタノール、エタノール、イソプロパノール、ノルマルプロパノールなどのアルコール類が好適に用いられる。 There is no restriction | limiting in particular in the kind of organic solvent which can be used in a process (a), For example, alcohol, such as methanol, ethanol, isopropanol, normal propanol, is used suitably.
液体(S)中における金属酸化物(A)の含有率は、0.1〜40質量%の範囲内であることが好ましく、1〜30質量%の範囲内であることがより好ましく、2〜20質量%の範囲内であることがさらに好ましい。 The content of the metal oxide (A) in the liquid (S) is preferably in the range of 0.1 to 40% by mass, more preferably in the range of 1 to 30% by mass, More preferably, it is within the range of 20% by mass.
工程(b)では、リン化合物(B)を含む溶液(T)を調製する。溶液(T)は、リン化合物(B)を溶媒に溶解することによって調製できる。リン化合物(B)の溶解性が低い場合には、加熱処理や超音波処理を施すことによって溶解を促進してもよい。 In step (b), a solution (T) containing the phosphorus compound (B) is prepared. The solution (T) can be prepared by dissolving the phosphorus compound (B) in a solvent. When the solubility of the phosphorus compound (B) is low, dissolution may be promoted by heat treatment or ultrasonic treatment.
溶液(T)の調製に用いられる溶媒は、リン化合物(B)の種類に応じて適宜選択すればよいが、水を含むことが好ましい。リン化合物(B)の溶解の妨げにならない限り、溶媒は、メタノール、エタノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン、ジメトキシエタンなどのエーテル;アセトン、メチルエチルケトンなどのケトン;エチレングリコール、プロピレングリコールなどのグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブなどのグリコール誘導体;グリセリン;アセトニトリル;ジメチルホルムアミドなどのアミド;ジメチルスルホキシド;スルホランなどを含んでもよい。 The solvent used for preparing the solution (T) may be appropriately selected depending on the type of the phosphorus compound (B), but preferably contains water. The solvent is alcohol such as methanol and ethanol; ether such as tetrahydrofuran, dioxane, trioxane and dimethoxyethane; ketone such as acetone and methyl ethyl ketone; glycol such as ethylene glycol and propylene glycol, as long as the dissolution of the phosphorus compound (B) is not hindered. Glycol derivatives such as methyl cellosolve, ethyl cellosolve, n-butyl cellosolve; glycerin; acetonitrile; amides such as dimethylformamide; dimethyl sulfoxide; sulfolane and the like.
溶液(T)中におけるリン化合物(B)の含有率は、0.1〜99質量%の範囲内であることが好ましく、0.1〜95質量%の範囲内であることがより好ましく、0.1〜90質量%の範囲内であることがさらに好ましい。また、溶液(T)中におけるリン化合物(B)の含有率は、0.1〜50質量%の範囲内にあってもよく、1〜40質量%の範囲内にあってもよく、2〜30質量%の範囲内にあってもよい。 The content of the phosphorus compound (B) in the solution (T) is preferably in the range of 0.1 to 99% by mass, more preferably in the range of 0.1 to 95% by mass, More preferably, it is in the range of 1 to 90% by mass. The content of the phosphorus compound (B) in the solution (T) may be in the range of 0.1 to 50% by mass, in the range of 1 to 40% by mass, It may be in the range of 30% by mass.
工程(c)では、液体(S)と溶液(T)とを混合する。液体(S)と溶液(T)との混合時には、局所的な反応を抑制するため、添加速度を抑え、攪拌を強く行いながら混合することが好ましい。この際、攪拌している液体(S)に溶液(T)を添加してもよいし、攪拌している溶液(T)に液体(S)を添加してもよい。工程(c)で混合される際の、液体(S)の温度および溶液(T)の温度は、ともに50℃以下であることが好ましく、ともに30℃以下であることがより好ましく、ともに20℃以下であることがさらに好ましい。混合時におけるそれらの温度を50℃以下とすることによって、金属酸化物(A)とリン化合物(B)が均一に混合し、得られる多層構造体のガスバリア性を向上することができる。さらに、混合完了時点からさらに30分程度攪拌を続けることによって、保存安定性に優れたコーティング液(U)を得ることができる場合がある。 In the step (c), the liquid (S) and the solution (T) are mixed. At the time of mixing the liquid (S) and the solution (T), in order to suppress a local reaction, it is preferable to mix while suppressing the addition rate and vigorously stirring. At this time, the solution (T) may be added to the stirring liquid (S), or the liquid (S) may be added to the stirring solution (T). When mixed in the step (c), the temperature of the liquid (S) and the temperature of the solution (T) are both preferably 50 ° C. or less, more preferably 30 ° C. or less, and both 20 ° C. More preferably, it is as follows. By setting the temperature at the time of mixing to 50 ° C. or less, the metal oxide (A) and the phosphorus compound (B) are uniformly mixed, and the gas barrier properties of the resulting multilayer structure can be improved. Furthermore, the coating liquid (U) excellent in storage stability may be obtained by continuing stirring for about 30 minutes after the completion of mixing.
また、コーティング液(U)は、重合体(C)を含んでもよい。コーティング液(U)に重合体(C)を含ませる方法は、特に制限されない。例えば、液体(S)、溶液(T)、または液体(S)と溶液(T)との混合液に、重合体(C)を粉末またはペレットの状態で添加した後に溶解させてもよい。また、液体(S)、溶液(T)、または液体(S)と溶液(T)との混合液に、重合体(C)の溶液を添加して混合してもよい。また、重合体(C)の溶液に、液体(S)、溶液(T)、または液体(S)と溶液(T)との混合液を添加して混合してもよい。工程(c)の前に、液体(S)または溶液(T)のいずれか一方に重合体(C)を含有させることによって、工程(c)において液体(S)と溶液(T)とを混合する際に、金属酸化物(A)とリン化合物(B)との反応速度が緩和され、その結果、経時安定性に優れたコーティング液(U)が得られる場合がある。 Moreover, the coating liquid (U) may contain a polymer (C). The method for including the polymer (C) in the coating liquid (U) is not particularly limited. For example, the polymer (C) may be dissolved in the liquid (S), the solution (T), or the liquid mixture of the liquid (S) and the solution (T) after being added in the form of powder or pellets. Further, the polymer (C) solution may be added to and mixed with the liquid (S), the solution (T), or the liquid mixture of the liquid (S) and the solution (T). Moreover, you may add and mix the liquid (S), the solution (T), or the liquid mixture of a liquid (S) and a solution (T) to the solution of a polymer (C). Before the step (c), the liquid (S) and the solution (T) are mixed in the step (c) by containing the polymer (C) in either the liquid (S) or the solution (T). In this case, the reaction rate between the metal oxide (A) and the phosphorus compound (B) is relaxed, and as a result, a coating liquid (U) having excellent temporal stability may be obtained.
コーティング液(U)が重合体(C)を含むことによって、重合体(C)を含有する層(YA)を含む多層構造体を容易に製造できる。 When the coating liquid (U) contains the polymer (C), a multilayer structure including the layer (YA) containing the polymer (C) can be easily produced.
コーティング液(U)は、必要に応じて、酢酸、塩酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸から選ばれる少なくとも1種の酸化合物(D)を含んでもよい。以下では、当該少なくとも1種の酸化合物(D)を、単に「酸化合物(D)」と略称する場合がある。コーティング液(U)に酸化合物(D)を含ませる方法は、特に制限されない。例えば、液体(S)、溶液(T)、または液体(S)と溶液(T)との混合液に、酸化合物(D)をそのまま添加して混合してもよい。また、液体(S)、溶液(T)、または液体(S)と溶液(T)との混合液に、酸化合物(D)の溶液を添加して混合してもよい。また、酸化合物(D)の溶液に、液体(S)、溶液(T)、または液体(S)と溶液(T)との混合液を添加して混合してもよい。工程(c)の前に、液体(S)または溶液(T)のいずれか一方が酸化合物(D)を含むことによって、工程(c)において液体(S)と溶液(T)とを混合する際に、金属酸化物(A)とリン化合物(B)との反応速度が緩和され、その結果、経時安定性に優れたコーティング液(U)が得られる場合がある。 The coating liquid (U) may contain at least one acid compound (D) selected from acetic acid, hydrochloric acid, nitric acid, trifluoroacetic acid, and trichloroacetic acid, if necessary. Hereinafter, the at least one acid compound (D) may be simply referred to as “acid compound (D)”. The method for including the acid compound (D) in the coating liquid (U) is not particularly limited. For example, the acid compound (D) may be added as it is to the liquid (S), the solution (T), or the liquid mixture of the liquid (S) and the solution (T) and mixed. Alternatively, the acid compound (D) solution may be added to and mixed with the liquid (S), the solution (T), or the liquid mixture of the liquid (S) and the solution (T). Moreover, you may add and mix the liquid (S), the solution (T), or the liquid mixture of a liquid (S) and a solution (T) to the solution of an acid compound (D). Prior to the step (c), either the liquid (S) or the solution (T) contains the acid compound (D), whereby the liquid (S) and the solution (T) are mixed in the step (c). In some cases, the reaction rate between the metal oxide (A) and the phosphorus compound (B) is relaxed, and as a result, a coating liquid (U) having excellent temporal stability may be obtained.
酸化合物(D)を含むコーティング液(U)においては、金属酸化物(A)とリン化合物(B)との反応が抑制され、コーティング液(U)中での反応物の沈澱や凝集を抑制することができる。そのため、酸化合物(D)を含むコーティング液(U)を用いることによって、得られる多層構造体の外観が向上する場合がある。また、酸化合物(D)の沸点は200℃以下であるため、多層構造体の製造過程において、酸化合物(D)を揮発させるなどすることによって、酸化合物(D)を層(YA)から容易に除去できる。 In the coating liquid (U) containing the acid compound (D), the reaction between the metal oxide (A) and the phosphorus compound (B) is suppressed, and the precipitation and aggregation of the reaction product in the coating liquid (U) are suppressed. can do. Therefore, the appearance of the obtained multilayer structure may be improved by using the coating liquid (U) containing the acid compound (D). Moreover, since the boiling point of the acid compound (D) is 200 ° C. or less, the acid compound (D) can be easily removed from the layer (YA) by volatilizing the acid compound (D) in the production process of the multilayer structure. Can be removed.
コーティング液(U)における酸化合物(D)の含有率は、0.1〜5.0質量%の範囲内であることが好ましく、0.5〜2.0質量%の範囲内であることがより好ましい。これらの範囲では、酸化合物(D)の添加による効果が得られ、且つ、酸化合物(D)の除去が容易である。液体(S)中に酸成分が残留している場合には、その残留量を考慮して、酸化合物(D)の添加量を決定すればよい。 The content of the acid compound (D) in the coating liquid (U) is preferably in the range of 0.1 to 5.0% by mass, and is preferably in the range of 0.5 to 2.0% by mass. More preferred. Within these ranges, the effect of adding the acid compound (D) can be obtained, and the acid compound (D) can be easily removed. When the acid component remains in the liquid (S), the addition amount of the acid compound (D) may be determined in consideration of the residual amount.
工程(c)における混合によって得られた液は、そのままコーティング液(U)として使用できる。この場合、通常、液体(S)や溶液(T)に含まれる溶媒が、コーティング液(U)の溶媒となる。また、工程(c)における混合によって得られた液に処理を行って、コーティング液(U)を調製してもよい。例えば、有機溶媒の添加、pHの調製、粘度の調製、添加物の添加などの処理を行ってもよい。 The liquid obtained by mixing in the step (c) can be used as it is as the coating liquid (U). In this case, the solvent contained in the liquid (S) or solution (T) is usually the solvent for the coating liquid (U). Further, the coating liquid (U) may be prepared by treating the liquid obtained by mixing in the step (c). For example, treatments such as addition of an organic solvent, pH adjustment, viscosity adjustment, and additive addition may be performed.
工程(c)の混合によって得られた液に、得られるコーティング液(U)の安定性が阻害されない範囲で有機溶剤を添加してもよい。有機溶剤の添加によって、工程(II)における基材(X)へのコーティング液(U)の塗布が容易になる場合がある。有機溶剤としては、得られるコーティング液(U)において均一に混合されるものが好ましい。好ましい有機溶剤の例としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン、ジメトキシエタンなどのエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトンなどのケトン;エチレングリコール、プロピレングリコールなどのグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブなどのグリコール誘導体;グリセリン;アセトニトリル;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド;ジメチルスルホキシド;スルホランなどが挙げられる。 You may add an organic solvent to the liquid obtained by mixing of a process (c) in the range which does not inhibit stability of the coating liquid (U) obtained. The addition of the organic solvent may facilitate the application of the coating liquid (U) to the substrate (X) in the step (II). As an organic solvent, what is mixed uniformly in the coating liquid (U) obtained is preferable. Examples of preferred organic solvents include, for example, alcohols such as methanol, ethanol, n-propanol and isopropanol; ethers such as tetrahydrofuran, dioxane, trioxane and dimethoxyethane; ketones such as acetone, methyl ethyl ketone, methyl vinyl ketone and methyl isopropyl ketone; Examples include glycols such as ethylene glycol and propylene glycol; glycol derivatives such as methyl cellosolve, ethyl cellosolve, and n-butyl cellosolve; glycerin; acetonitrile; amides such as dimethylformamide and dimethylacetamide; dimethyl sulfoxide;
コーティング液(U)の保存安定性、およびコーティング液(U)の基材に対する塗工性の観点から、コーティング液(U)の固形分濃度は、1〜20質量%の範囲にあることが好ましく、2〜15質量%の範囲にあることがより好ましく、3〜10質量%の範囲にあることがさらに好ましい。コーティング液(U)の固形分濃度は、例えば、シャーレにコーティング液(U)を所定量加え、当該シャーレごと100℃の温度で溶媒などの揮発分の除去を行い、残留した固形分の質量を、最初に加えたコーティング液(U)の質量で除して算出することができる。その際、一定時間乾燥するごとに残留した固形分の質量を測定し、連続した2回の質量差が無視できるレベルにまで達した際の質量を残留した固形分の質量として、固形分濃度を算出するのが好ましい。 From the viewpoint of the storage stability of the coating liquid (U) and the coating property of the coating liquid (U) on the substrate, the solid content concentration of the coating liquid (U) is preferably in the range of 1 to 20% by mass. More preferably, it is in the range of 2 to 15% by mass, and further preferably in the range of 3 to 10% by mass. The solid content concentration of the coating liquid (U) is determined by, for example, adding a predetermined amount of the coating liquid (U) to the petri dish, removing volatiles such as a solvent at 100 ° C. together with the petri dish, and calculating the mass of the remaining solid content. It can be calculated by dividing by the mass of the coating liquid (U) added first. At that time, measure the mass of the remaining solid every time it dries for a certain period of time, and the solid content concentration is defined as the mass of the remaining solids when the mass difference between the two consecutive masses reaches a negligible level. It is preferable to calculate.
コーティング液(U)の保存安定性および多層構造体のガスバリア性の観点から、コーティング液(U)のpHは0.1〜6.0の範囲にあることが好ましく、0.2〜5.0の範囲にあることがより好ましく、0.5〜4.0の範囲にあることがさらに好ましい。 From the viewpoint of the storage stability of the coating liquid (U) and the gas barrier property of the multilayer structure, the pH of the coating liquid (U) is preferably in the range of 0.1 to 6.0, and is preferably 0.2 to 5.0. More preferably, it is in the range of 0.5 to 4.0.
コーティング液(U)のpHは公知の方法で調整することができ、例えば、酸性化合物や塩基性化合物を添加することによって調整することができる。酸性化合物の例には、塩酸、硝酸、硫酸、酢酸、酪酸、および硫酸アンモニウムが含まれる。塩基性化合物の例には、水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、および酢酸ナトリウムが含まれる。 The pH of the coating liquid (U) can be adjusted by a known method, for example, by adding an acidic compound or a basic compound. Examples of acidic compounds include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, butyric acid, and ammonium sulfate. Examples of basic compounds include sodium hydroxide, potassium hydroxide, ammonia, trimethylamine, pyridine, sodium carbonate, and sodium acetate.
コーティング液(U)は、時間の経過とともに状態が変化し、最終的にはゲル状の組成物となるか、または沈殿を生じる傾向がある。そのように状態が変化するまでの時間は、コーティング液(U)の組成に依存する。基材(X)上にコーティング液(U)を安定して塗布するためには、コーティング液(U)は、長時間にわたってその粘度が安定していることが好ましい。溶液(U)は、工程(I)の完了時の粘度を基準粘度として、25℃で2日間静置した後においても、ブルックフィールド粘度計(B型粘度計:60rpm)で測定した粘度が基準粘度の5倍以内となるように調製されることが好ましい。コーティング液(U)の粘度が上記の範囲にある場合、貯蔵安定性に優れるとともに、より優れたガスバリア性を有する多層構造体が得られることが多い。 The state of the coating liquid (U) changes with the passage of time, and eventually tends to become a gel-like composition or precipitate. The time until the state changes as such depends on the composition of the coating liquid (U). In order to stably apply the coating liquid (U) on the substrate (X), it is preferable that the viscosity of the coating liquid (U) is stable over a long period of time. The solution (U) had a viscosity measured with a Brookfield viscometer (B-type viscometer: 60 rpm) even after standing at 25 ° C. for 2 days, with the viscosity at the completion of step (I) as the reference viscosity. It is preferable to prepare so that it may become within 5 times the viscosity. When the viscosity of the coating liquid (U) is within the above range, a multilayer structure having excellent storage stability and more excellent gas barrier properties is often obtained.
コーティング液(U)の粘度が上記範囲内になるように調整する方法として、例えば、固形分の濃度を調整する、pHを調整する、粘度調節剤を添加する、といった方法を採用することができる。粘度調節剤の例には、カルボキシメチルセルロース、でんぷん、ベントナイト、トラガカントゴム、ステアリン酸塩、アルギン酸塩、メタノール、エタノール、n−プロパノール、およびイソプロパノールが含まれる。 As a method of adjusting the viscosity of the coating liquid (U) to be within the above range, for example, a method of adjusting the concentration of solid content, adjusting pH, or adding a viscosity modifier can be employed. . Examples of viscosity modifiers include carboxymethylcellulose, starch, bentonite, tragacanth gum, stearate, alginate, methanol, ethanol, n-propanol, and isopropanol.
本発明の効果が得られる限り、コーティング液(U)は、上述した物質以外の他の物質を含んでもよい。例えば、コーティング液(U)は、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩、アルミン酸塩などの無機金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩などの有機酸金属塩;アセチルアセトナート金属錯体(アルミニウムアセチルアセトナートなど)、シクロペンタジエニル金属錯体(チタノセンなど)、シアノ金属錯体などの金属錯体;層状粘土化合物;架橋剤;重合体(C)以外の高分子化合物;可塑剤;酸化防止剤;紫外線吸収剤;難燃剤などを含んでいてもよい。 As long as the effects of the present invention can be obtained, the coating liquid (U) may contain other substances than the substances described above. For example, the coating liquid (U) is an inorganic metal salt such as carbonate, hydrochloride, nitrate, hydrogen carbonate, sulfate, hydrogen sulfate, borate, aluminate; oxalate, acetate, tartrate Organic acid metal salts such as stearates; metal complexes such as acetylacetonate metal complexes (such as aluminum acetylacetonate), cyclopentadienyl metal complexes (such as titanocene), cyano metal complexes; layered clay compounds; It may contain a polymer compound other than the polymer (C); a plasticizer; an antioxidant; an ultraviolet absorber;
[工程(II)]
工程(II)では、基材(X)上にコーティング液(U)を塗布することによって、基材(X)上に層(YA)の前駆体層を形成する。コーティング液(U)は、基材(X)の少なくとも一方の面の上に直接塗布してもよい。また、コーティング液(U)を塗布する前に、基材(X)の表面を公知のアンカーコーティング剤で処理したり、基材(X)の表面に公知の接着剤を塗布したりするなどして、基材(X)の表面に接着層(H)を形成しておいてもよい。また、後述する工程(IV)によって基材(X)上に予め形成された層(Z)上に、コーティング液(U)を塗布することによって、層(Z)上に層(YA)の前駆体層を形成することもできる。
[Step (II)]
In the step (II), a precursor layer of the layer (YA) is formed on the substrate (X) by applying the coating liquid (U) on the substrate (X). The coating liquid (U) may be applied directly on at least one surface of the substrate (X). Also, before applying the coating liquid (U), the surface of the substrate (X) is treated with a known anchor coating agent, or a known adhesive is applied to the surface of the substrate (X). Then, the adhesive layer (H) may be formed on the surface of the substrate (X). Moreover, the precursor of the layer (YA) is formed on the layer (Z) by applying the coating liquid (U) on the layer (Z) previously formed on the substrate (X) by the step (IV) described later. A body layer can also be formed.
また、コーティング液(U)は、必要に応じて、脱気および/または脱泡処理してもよい。脱気および/または脱泡処理の方法としては、例えば、真空引き、加熱、遠心、超音波、などによる方法があるが、真空引きを含む方法を好ましく使用することができる。 In addition, the coating liquid (U) may be degassed and / or defoamed as necessary. As a method of deaeration and / or defoaming treatment, for example, there are methods by evacuation, heating, centrifugation, ultrasonic waves, etc., but a method including evacuation can be preferably used.
工程(II)で塗布される際のコーティング液(U)の粘度であってブルックフィールド形回転粘度計(SB型粘度計:ローターNo.3、回転速度60rpm)で測定された粘度が、塗布時の温度において3000mPa・s以下であることが好ましく、2000mPa・s以下であることがさらに好ましい。当該粘度が3000mPa・s以下であることによって、コーティング液(U)のレベリング性が向上し、外観により優れる多層構造体を得ることができる。工程(II)で塗布される際のコーティング液(U)の粘度は、濃度、温度、工程(c)の混合後の攪拌時間や攪拌強度によって調整できる。例えば、工程(c)の混合後の攪拌を長く行うことによって、粘度を低くすることができる場合がある。 The viscosity of the coating liquid (U) applied in the step (II) and measured with a Brookfield rotational viscometer (SB type viscometer: rotor No. 3, rotational speed 60 rpm) The temperature is preferably 3000 mPa · s or less, and more preferably 2000 mPa · s or less. When the viscosity is 3000 mPa · s or less, the leveling property of the coating liquid (U) is improved, and a multilayer structure having a better appearance can be obtained. The viscosity of the coating liquid (U) when applied in the step (II) can be adjusted by the concentration, temperature, stirring time after mixing in the step (c) and stirring strength. For example, in some cases, the viscosity can be lowered by lengthening the stirring after mixing in the step (c).
コーティング液(U)を基材(X)上に塗布する方法は、特に限定されず、公知の方法を採用することができる。好ましい方法としては、例えば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。 The method for applying the coating liquid (U) on the substrate (X) is not particularly limited, and a known method can be employed. Preferred methods include, for example, a casting method, a dipping method, a roll coating method, a gravure coating method, a screen printing method, a reverse coating method, a spray coating method, a kiss coating method, a die coating method, a metalling bar coating method, and a chamber doctor combined coating method. And curtain coating method.
通常、工程(II)において、コーティング液(U)中の溶媒を除去することによって、層(YA)の前駆体層が形成される。溶媒の除去方法に特に制限はなく、公知の乾燥方法を適用することができる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの乾燥方法を、単独で、または組み合わせて適用することができる。乾燥温度は、基材(X)の流動開始温度よりも0〜15℃以上低いことが好ましい。コーティング液(U)が重合体(C)を含む場合には、乾燥温度は、重合体(C)の熱分解開始温度よりも15〜20℃以上低いことが好ましい。乾燥温度は70〜200℃の範囲にあることが好ましく、80〜180℃の範囲にあることがより好ましく、90〜160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。また、後述する工程(III)における熱処理によって、溶媒を除去してもよい。 Usually, in the step (II), the precursor layer of the layer (YA) is formed by removing the solvent in the coating liquid (U). There is no restriction | limiting in particular in the removal method of a solvent, A well-known drying method is applicable. Specifically, drying methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied alone or in combination. The drying temperature is preferably 0 to 15 ° C. or lower than the flow start temperature of the substrate (X). When the coating liquid (U) contains the polymer (C), the drying temperature is preferably 15 to 20 ° C. lower than the thermal decomposition start temperature of the polymer (C). The drying temperature is preferably in the range of 70 to 200 ° C, more preferably in the range of 80 to 180 ° C, and further preferably in the range of 90 to 160 ° C. The removal of the solvent may be carried out under normal pressure or reduced pressure. Further, the solvent may be removed by a heat treatment in step (III) described later.
層状の基材(X)の両面に層(YA)を積層する場合、コーティング液(U)を基材(X)の一方の面に塗布した後、溶媒を除去することによって第1の層(第1の層(YA)の前駆体層)を形成し、次いで、コーティング液(U)を基材(X)の他方の面に塗布した後、溶媒を除去することによって第2の層(第2の層(YA)の前駆体層)を形成してもよい。それぞれの面に塗布するコーティング液(U)の組成は同一であってもよいし、異なってもよい。 When laminating the layer (YA) on both surfaces of the layered substrate (X), the coating liquid (U) is applied to one surface of the substrate (X), and then the first layer ( First layer (YA) precursor layer) and then applying the coating liquid (U) to the other surface of the substrate (X), and then removing the solvent to remove the second layer (first layer). 2 layers (YA) precursor layers) may be formed. The composition of the coating liquid (U) applied to each surface may be the same or different.
立体形状を有する基材(X)の複数の面に層(YA)を積層する場合、上記の方法でそれぞれの面ごとに層(層(YA)の前駆体層)を形成してもよい。あるいは、コーティング液(U)を基材(X)の複数の面に同時に塗布して乾燥させることによって、複数の層(層(YA)の前駆体層)を同時に形成してもよい。 When a layer (YA) is laminated on a plurality of surfaces of the substrate (X) having a three-dimensional shape, a layer (a precursor layer of the layer (YA)) may be formed for each surface by the above method. Or you may form a several layer (precursor layer of a layer (YA)) simultaneously by apply | coating a coating liquid (U) to several surfaces of a base material (X), and drying it simultaneously.
[工程(III)]
工程(III)では、工程(II)で形成された前駆体層(層(YA)の前駆体層)を、140℃以上の温度で熱処理することによって層(YA)を形成する。
[Step (III)]
In step (III), the layer (YA) is formed by heat-treating the precursor layer (precursor layer of layer (YA)) formed in step (II) at a temperature of 140 ° C. or higher.
工程(III)では、金属酸化物(A)の粒子同士がリン原子(リン化合物(B)に由来するリン原子)を介して結合される反応が進行する。別の観点では、工程(III)では、反応生成物(R)が生成する反応が進行する。当該反応を充分に進行させるため、熱処理の温度は、140℃以上であり、170℃以上であることがより好ましく、190℃以上であることがさらに好ましい。熱処理温度が低いと、充分な反応度を得るのにかかる時間が長くなり、生産性が低下する原因となる。熱処理の温度の好ましい上限は、基材(X)の種類などによって異なる。例えば、ポリアミド系樹脂からなる熱可塑性樹脂フィルムを基材(X)として用いる場合には、熱処理の温度は190℃以下であることが好ましい。また、ポリエステル系樹脂からなる熱可塑性樹脂フィルムを基材(X)として用いる場合には、熱処理の温度は220℃以下であることが好ましい。熱処理は、空気中、窒素雰囲気下、またはアルゴン雰囲気下などで実施することができる。 In step (III), a reaction in which the metal oxide (A) particles are bonded via phosphorus atoms (phosphorus atoms derived from the phosphorus compound (B)) proceeds. In another aspect, in the step (III), a reaction for generating the reaction product (R) proceeds. In order to allow the reaction to proceed sufficiently, the temperature of the heat treatment is 140 ° C. or higher, more preferably 170 ° C. or higher, and even more preferably 190 ° C. or higher. If the heat treatment temperature is low, it takes a long time to obtain a sufficient degree of reactivity, which causes a decrease in productivity. The preferable upper limit of the temperature of heat processing changes with kinds etc. of base material (X). For example, when a thermoplastic resin film made of polyamide resin is used as the base material (X), the heat treatment temperature is preferably 190 ° C. or lower. Moreover, when using the thermoplastic resin film which consists of polyester resins as a base material (X), it is preferable that the temperature of heat processing is 220 degrees C or less. The heat treatment can be performed in air, a nitrogen atmosphere, an argon atmosphere, or the like.
熱処理の時間は0.1秒〜1時間の範囲にあることが好ましく、1秒〜15分の範囲にあることがより好ましく、5〜300秒の範囲にあることがさらに好ましい。一例の熱処理は、140〜220℃の範囲で0.1秒〜1時間行われる。また、他の一例の熱処理では、170〜200℃の範囲で、5〜300秒間(例えば10〜300秒間)行われる。 The heat treatment time is preferably in the range of 0.1 second to 1 hour, more preferably in the range of 1 second to 15 minutes, and still more preferably in the range of 5 to 300 seconds. An example of the heat treatment is performed in the range of 140 to 220 ° C. for 0.1 second to 1 hour. In another example of the heat treatment, the heat treatment is performed in the range of 170 to 200 ° C. for 5 to 300 seconds (for example, 10 to 300 seconds).
多層構造体を製造するための本発明の方法は、層(YA)の前駆体層または層(YA)に紫外線を照射する工程を含んでもよい。紫外線照射は、工程(II)の後(例えば塗布されたコーティング液(U)の溶媒の除去がほぼ終了した後)のいずれの段階で行ってもよい。その方法は特に限定されず、公知の方法を適用することができる。照射する紫外線の波長は170〜250nmの範囲にあることが好ましく、170〜190nmの範囲および/または230〜250nmの範囲にあることがより好ましい。また、紫外線照射に代えて、電子線やγ線などの放射線の照射を行ってもよい。紫外線照射を行うことによって、多層構造体のガスバリア性能がより高度に発現する場合がある。 The method of the present invention for producing a multilayer structure may include irradiating the precursor layer of layer (YA) or layer (YA) with ultraviolet light. The ultraviolet irradiation may be performed at any stage after the step (II) (for example, after the removal of the solvent of the applied coating liquid (U) is almost completed). The method is not particularly limited, and a known method can be applied. The wavelength of the irradiated ultraviolet light is preferably in the range of 170 to 250 nm, more preferably in the range of 170 to 190 nm and / or in the range of 230 to 250 nm. Further, instead of ultraviolet irradiation, radiation such as an electron beam or γ-ray may be irradiated. By performing ultraviolet irradiation, the gas barrier performance of the multilayer structure may be expressed more highly.
基材(X)と層(YA)との間に接着層(H)を配置するために、コーティング液(U)を塗布する前に、基材(X)の表面を公知のアンカーコーティング剤で処理したり、基材(X)の表面に公知の接着剤を塗布したりする場合には、熟成処理を行うことが好ましい。具体的には、コーティング液(U)を塗布した後であって工程(III)の熱処理工程の前に、コーティング液(U)が塗布された基材(X)を比較的低温下に長時間放置することが好ましい。熟成処理の温度は、110℃未満であることが好ましく、100℃以下であることがより好ましく、90℃以下であることがさらに好ましい。また、熟成処理の温度は、10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることがさらに好ましい。熟成処理の時間は、0.5〜10日の範囲にあることが好ましく、1〜7日の範囲にあることがより好ましく、1〜5日の範囲にあることがさらに好ましい。このような熟成処理を行うことによって、基材(X)と層(YA)との間の接着力がより強固になる。 In order to dispose the adhesive layer (H) between the substrate (X) and the layer (YA), the surface of the substrate (X) is coated with a known anchor coating agent before applying the coating liquid (U). When the treatment is performed or a known adhesive is applied to the surface of the substrate (X), an aging treatment is preferably performed. Specifically, after the coating liquid (U) is applied and before the heat treatment step of step (III), the base material (X) to which the coating liquid (U) is applied is kept at a relatively low temperature for a long time. It is preferable to leave. The temperature of the aging treatment is preferably less than 110 ° C, more preferably 100 ° C or less, and further preferably 90 ° C or less. The temperature of the aging treatment is preferably 10 ° C or higher, more preferably 20 ° C or higher, and further preferably 30 ° C or higher. The aging time is preferably in the range of 0.5 to 10 days, more preferably in the range of 1 to 7 days, and still more preferably in the range of 1 to 5 days. By performing such an aging treatment, the adhesive force between the substrate (X) and the layer (YA) becomes stronger.
[工程(IV)]
工程(IV)では、リン原子を有する単量体単位を含む重合体(E)を含むコーティング液(V)を塗布することによって、基材(X)上(または層(Y)上)に層(Z)を形成する。通常、コーティング液(V)は、重合体(E)が溶媒に溶解された溶液である。
[Step (IV)]
In step (IV), a layer is formed on the substrate (X) (or on the layer (Y)) by applying a coating liquid (V) containing a polymer (E) containing a monomer unit having a phosphorus atom. (Z) is formed. Usually, the coating liquid (V) is a solution in which the polymer (E) is dissolved in a solvent.
コーティング液(V)は、重合体(E)を溶媒に溶解することによって調製してもよいし、重合体(E)を製造した際に得られた溶液をそのまま使用してもよい。重合体(E)の溶解性が低い場合には、加熱処理や超音波処理を施すことによって溶解を促進してもよい。 The coating liquid (V) may be prepared by dissolving the polymer (E) in a solvent, or the solution obtained when the polymer (E) is produced may be used as it is. When the solubility of the polymer (E) is low, dissolution may be promoted by heat treatment or ultrasonic treatment.
コーティング液(V)に用いられる溶媒は、重合体(E)の種類に応じて適宜選択すればよいが、水、アルコール類またはそれらの混合溶媒であることが好ましい。重合体(E)の溶解の妨げにならない限り、溶媒は、テトラヒドロフラン、ジオキサン、トリオキサン、ジメトキシエタンなどのエーテル;アセトン、メチルエチルケトンなどのケトン;エチレングリコール、プロピレングリコールなどのグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブなどのグリコール誘導体;グリセリン;アセトニトリル;ジメチルホルムアミドなどのアミド;ジメチルスルホキシド;スルホランなどを含んでもよい。 The solvent used in the coating liquid (V) may be appropriately selected according to the type of the polymer (E), but is preferably water, alcohols or a mixed solvent thereof. As long as the dissolution of the polymer (E) is not hindered, the solvent is an ether such as tetrahydrofuran, dioxane, trioxane or dimethoxyethane; a ketone such as acetone or methyl ethyl ketone; a glycol such as ethylene glycol or propylene glycol; a methyl cellosolve, an ethyl cellosolve, A glycol derivative such as n-butyl cellosolve; glycerin; acetonitrile; an amide such as dimethylformamide; dimethyl sulfoxide;
コーティング液(V)における重合体(E)の固形分濃度は、溶液の保存安定性や塗工性の観点から、0.1〜60質量%の範囲内であることが好ましく、0.5〜50質量%の範囲内であることがより好ましく、1.0〜40質量%の範囲内であることがさらに好ましい。固形分濃度は、コーティング液(U)に対して記載したのと同様の方法により求めることができる。 The solid content concentration of the polymer (E) in the coating liquid (V) is preferably in the range of 0.1 to 60% by mass from the viewpoint of storage stability and coating property of the solution, More preferably within the range of 50% by weight, even more preferably within the range of 1.0 to 40% by weight. The solid content concentration can be determined by the same method as described for the coating liquid (U).
コーティング液(V)の保存安定性および多層構造体のガスバリア性の観点から、重合体(E)の溶液のpHは0.1〜6.0の範囲にあることが好ましく、0.2〜5.0の範囲にあることがより好ましく、0.5〜4.0の範囲にあることがさらに好ましい。 From the viewpoint of the storage stability of the coating liquid (V) and the gas barrier properties of the multilayer structure, the pH of the solution of the polymer (E) is preferably in the range of 0.1 to 6.0, 0.2 to 5 More preferably, it is in the range of 0.0, and more preferably in the range of 0.5 to 4.0.
コーティング液(V)のpHは公知の方法で調整することができ、例えば、酸性化合物や塩基性化合物を添加することによって調整することができる。酸性化合物の例には、塩酸、硝酸、硫酸、酢酸、酪酸、および硫酸アンモニウムが含まれる。塩基性化合物の例には、水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、および酢酸ナトリウムが含まれる。 The pH of the coating liquid (V) can be adjusted by a known method, for example, by adding an acidic compound or a basic compound. Examples of acidic compounds include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, butyric acid, and ammonium sulfate. Examples of basic compounds include sodium hydroxide, potassium hydroxide, ammonia, trimethylamine, pyridine, sodium carbonate, and sodium acetate.
また、コーティング液(V)の粘度を制御する必要がある場合には、例えば、固形分の濃度を調整する、pHを調整する、粘度調節剤を添加する、といった方法を採用することができる。粘度調節剤の例には、カルボキシメチルセルロース、でんぷん、ベントナイト、トラガカントゴム、ステアリン酸塩、アルギン酸塩、メタノール、エタノール、n−プロパノール、およびイソプロパノールが含まれる。 Moreover, when it is necessary to control the viscosity of the coating liquid (V), for example, methods such as adjusting the solid content concentration, adjusting the pH, and adding a viscosity modifier can be employed. Examples of viscosity modifiers include carboxymethylcellulose, starch, bentonite, tragacanth gum, stearate, alginate, methanol, ethanol, n-propanol, and isopropanol.
コーティング液(V)は、上述した物質以外の他の物質を含んでもよい。例えば、重合体(E)の溶液は、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩、アルミン酸塩などの無機金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩などの有機酸金属塩;アセチルアセトナート金属錯体(アルミニウムアセチルアセトナートなど)、シクロペンタジエニル金属錯体(チタノセンなど)、シアノ金属錯体などの金属錯体;層状粘土化合物;架橋剤;重合体(E)以外の高分子化合物;可塑剤;酸化防止剤;紫外線吸収剤;難燃剤などを含んでいてもよい。 The coating liquid (V) may contain a substance other than the substances described above. For example, the solution of the polymer (E) includes carbonates, hydrochlorides, nitrates, hydrogen carbonates, sulfates, hydrogen sulfates, borates, aluminates, etc .; oxalates, acetates, Organic acid metal salts such as tartrate and stearate; metal complexes such as acetylacetonate metal complexes (such as aluminum acetylacetonate), cyclopentadienyl metal complexes (such as titanocene), cyano metal complexes; layered clay compounds; An agent; a polymer compound other than the polymer (E); a plasticizer; an antioxidant; an ultraviolet absorber;
また、コーティング液(V)は、必要に応じて、脱気および/または脱泡処理してもよい。脱気および/または脱泡処理の方法としては、例えば、真空引き、加熱、遠心、超音波、などによる方法があるが、真空引きを含む方法を好ましく使用することができる。 In addition, the coating liquid (V) may be degassed and / or defoamed as necessary. As a method of deaeration and / or defoaming treatment, for example, there are methods by evacuation, heating, centrifugation, ultrasonic waves, etc., but a method including evacuation can be preferably used.
工程(IV)で塗布される際のコーティング液(V)の粘度であってブルックフィールド形回転粘度計(SB型粘度計:ローターNo.3、回転速度60rpm)で測定された粘度が、塗布時の温度において1000mPa・s以下であることが好ましく、500mPa・s以下であることがさらに好ましい。当該粘度が1000mPa・s以下であることによって、コーティング液(V)のレベリング性が向上し、外観により優れる多層構造体を得ることができる。工程(IV)で塗布される際のコーティング液(V)の粘度は、濃度、温度などによって調整できる。 The viscosity of the coating liquid (V) applied in step (IV) and measured with a Brookfield type rotational viscometer (SB type viscometer: rotor No. 3, rotation speed 60 rpm) The temperature is preferably 1000 mPa · s or less, more preferably 500 mPa · s or less. When the viscosity is 1000 mPa · s or less, the leveling property of the coating liquid (V) is improved, and a multilayer structure having a better appearance can be obtained. The viscosity of the coating liquid (V) when applied in the step (IV) can be adjusted by the concentration, temperature and the like.
コーティング液(V)の溶液を基材(X)または層(Y)上に塗布する方法は、特に限定されず、公知の方法を採用することができる。好ましい方法としては、例えば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。 The method for applying the solution of the coating liquid (V) on the substrate (X) or the layer (Y) is not particularly limited, and a known method can be adopted. Preferred methods include, for example, a casting method, a dipping method, a roll coating method, a gravure coating method, a screen printing method, a reverse coating method, a spray coating method, a kiss coating method, a die coating method, a metalling bar coating method, and a chamber doctor combined coating method. And curtain coating method.
通常、工程(IV)において、コーティング液(V)中の溶媒を除去することによって、層(Z)が形成される。溶媒の除去方法に特に制限はなく、公知の乾燥方法を適用することができる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの乾燥方法を、単独で、または組み合わせて適用することができる。乾燥温度は、基材(X)の流動開始温度よりも0〜15℃以上低いことが好ましい。乾燥温度は70〜200℃の範囲にあることが好ましく、80〜180℃の範囲にあることがより好ましく、90〜160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。また、工程(IV)を工程(II)に次いで実施する場合は、先述した工程(III)における熱処理によって、溶媒を除去してもよい。 Usually, in the step (IV), the layer (Z) is formed by removing the solvent in the coating liquid (V). There is no restriction | limiting in particular in the removal method of a solvent, A well-known drying method is applicable. Specifically, drying methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied alone or in combination. The drying temperature is preferably 0 to 15 ° C. or lower than the flow start temperature of the substrate (X). The drying temperature is preferably in the range of 70 to 200 ° C, more preferably in the range of 80 to 180 ° C, and further preferably in the range of 90 to 160 ° C. The removal of the solvent may be carried out under normal pressure or reduced pressure. When step (IV) is performed after step (II), the solvent may be removed by the heat treatment in step (III) described above.
層状の基材(X)の両面に層(Y)を介して、または介さずに層(Z)を積層する場合、コーティング液(V)を一方の面に塗布した後、溶媒を除去することによって第1の層(Z)を形成し、次いで、コーティング液(V)を他方の面に塗布した後、溶媒を除去することによって第2の層(Z)を形成してもよい。それぞれの面に塗布するコーティング液(V)の組成は同一であってもよいし、異なってもよい。 When laminating the layer (Z) on both sides of the layered substrate (X) with or without the layer (Y), the solvent is removed after applying the coating liquid (V) on one side. The first layer (Z) may be formed by applying the coating liquid (V) to the other surface, and then the solvent may be removed to form the second layer (Z). The composition of the coating liquid (V) applied to each surface may be the same or different.
立体形状を有する基材(X)の複数の面に層(Y)を介して、または介さずに層(Z)を積層する場合、上記の方法でそれぞれの面ごとに層(Z)を形成してもよい。あるいは、コーティング液(V)を複数の面に同時に塗布して乾燥させることによって、複数の層(Z)を同時に形成してもよい。 When a layer (Z) is laminated on a plurality of surfaces of a substrate (X) having a three-dimensional shape with or without a layer (Y), the layer (Z) is formed for each surface by the above method. May be. Or you may form a some layer (Z) simultaneously by apply | coating a coating liquid (V) to a some surface simultaneously, and making it dry.
上述したように、典型的には工程は、(I)、(II)、(III)、(IV)の順で実施されるが、層(Z)を基材(X)と層(Y)の間に形成する場合には、工程(IV)を工程(II)の前に実施すればよく、さらに、工程(IV)の後に工程(III)を実施することも可能である。外観に優れた多層構造体を得る観点からは、工程(III)の後に工程(IV)を実施することが好ましい。 As described above, the steps are typically carried out in the order of (I), (II), (III), and (IV), but the layer (Z) is divided into the substrate (X) and the layer (Y). In the case where it is formed between the step (IV), the step (IV) may be carried out before the step (II), and further, the step (III) may be carried out after the step (IV). From the viewpoint of obtaining a multilayer structure having an excellent appearance, it is preferable to carry out step (IV) after step (III).
こうして得られた多層構造体は、そのまま真空断熱体の被覆材を構成するための多層構造体として使用できる。しかし、当該多層構造体に、上記したように他の部材(他の層など)をさらに接着または形成して多層構造体としてもよい。当該部材の接着は、公知の方法で行うことができる。 The multilayer structure thus obtained can be used as it is as a multilayer structure for constituting a coating material for a vacuum heat insulator. However, another member (other layer or the like) may be further bonded or formed on the multilayer structure as described above to form a multilayer structure. The member can be bonded by a known method.
1つの観点では、多層構造体の製造方法は、アルミニウム原子を含む層(Y)を形成する工程(W)と、リン原子を有する単量体単位を含む重合体(E)を含むコーティング液(V)を塗布することによって前記層(Z)を形成する工程(IV)とを含んでいてもよい。上述したように、層(Y)が層(YA)である場合には、工程(W)は、工程(I)、(II)および(III)を含んでもよい。また、層(Y)が層(YB)または層(YC)である場合には、工程(W)は、蒸着法によってそれらの層を形成する工程を含んでもよい。 In one aspect, a method for producing a multilayer structure includes a step (W) of forming a layer (Y) containing aluminum atoms, and a coating liquid (E) containing a polymer (E) containing monomer units having phosphorus atoms. Step (IV) of forming the layer (Z) by applying V) may be included. As described above, when the layer (Y) is the layer (YA), the step (W) may include steps (I), (II), and (III). Further, when the layer (Y) is the layer (YB) or the layer (YC), the step (W) may include a step of forming those layers by a vapor deposition method.
以下に、実施例によって本発明をより具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。なお、実施例および比較例における各測定および評価は、以下の(1)〜(6)の方法によって実施した。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the following examples. In addition, each measurement and evaluation in an Example and a comparative example were implemented with the method of the following (1)-(6).
(1)層(Y)の赤外線吸収スペクトル
層(YA)の赤外線吸収スペクトルは、以下の方法で測定した。
(1) Infrared absorption spectrum of layer (Y) The infrared absorption spectrum of layer (YA) was measured by the following method.
まず、基材(X)上に積層した層(YA)について、フーリエ変換赤外分光光度計(Perkin Elmer社製、「Spectrum One」)を用いて、赤外線吸収スペクトルを測定した。赤外線吸収スペクトルは、ATR(全反射測定)のモードで、700〜4000cm-1の範囲で吸光度を測定した。層(YA)の厚さが1μm以下である場合には、ATR法による赤外線吸収スペクトルでは基材(X)由来の吸収ピークが検出され、層(YA)のみに由来する吸収強度を正確に求めることができない場合がある。このような場合には、基材(X)のみの赤外線吸収スペクトルを別途測定し、それを差し引くことで層(X)由来のピークのみを抽出した。層(YA)が層(Z)上に積層されている場合にも、同様の方法を採用することができる。なお、層(YA)が多層構造体の内部に形成される場合には(例えば、基材(X)/層(YA)/層(Z)の積層順を有する場合)、層(YA)の赤外線吸収スペクトルは、層(Z)を形成する前に測定するか、層(Z)を形成した後に、層(YA)の界面で剥離させ、露出した層(YA)の赤外線吸収スペクトルを測定することで得ることができる。 First, an infrared absorption spectrum of the layer (YA) laminated on the base material (X) was measured using a Fourier transform infrared spectrophotometer (manufactured by Perkin Elmer, “Spectrum One”). The infrared absorption spectrum was measured in the ATR (total reflection measurement) mode in the range of 700 to 4000 cm −1 . When the thickness of the layer (YA) is 1 μm or less, an absorption peak derived from the base material (X) is detected in the infrared absorption spectrum by the ATR method, and the absorption intensity derived only from the layer (YA) is accurately obtained. It may not be possible. In such a case, the infrared absorption spectrum of only the substrate (X) was separately measured, and only the peak derived from the layer (X) was extracted by subtracting it. A similar method can also be adopted when the layer (YA) is laminated on the layer (Z). In addition, when the layer (YA) is formed inside the multilayer structure (for example, in the case of having a stacking order of base material (X) / layer (YA) / layer (Z)), the layer (YA) The infrared absorption spectrum is measured before forming the layer (Z), or after the layer (Z) is formed, it is peeled off at the interface of the layer (YA), and the infrared absorption spectrum of the exposed layer (YA) is measured. Can be obtained.
このようにして得られた層(YA)の赤外線吸収スペクトルに基づいて、800〜1400cm-1の範囲における最大吸収波数(n1)、および、最大吸収波数(n1)における吸光度(α1)を求めた。また、2500〜4000cm-1の範囲における水酸基の伸縮振動に基づく最大吸収波数(n2)、および、最大吸収波数(n2)における吸光度(α2)を求めた。また、最大吸収波数(n1)の吸収ピークの半値幅は、当該吸収ピークにおいて吸光度(α1)の半分の吸光度(吸光度(α1)/2)を有する2点の波数を求め、それらの波数の差を算出することによって得た。また、最大吸収波数(n1)の吸収ピークが、他の成分に由来する吸収ピークと重なっている場合には、ガウス関数を用いて最小二乗法により、それぞれの成分に由来する吸収ピークに分離した後に、上記した場合と同様に最大吸収波数(n1)の吸収ピークの半値幅を得た。 Based on the infrared absorption spectrum of the thus obtained layer (YA), the maximum absorption wave numbers (n 1) in the range of 800~1400Cm -1, and the absorbance at the maximum absorption wave (n 1) (α 1) Asked. The maximum absorption wave numbers (n 2) based on the stretching vibration of the hydroxyl group in the range of 2500~4000Cm -1, and were determined absorbance at the maximum absorption wave (n 2) a (alpha 2). Further, the half width of the absorption peak of the maximum absorption wave number (n 1 ) is obtained by calculating the wave number of two points having an absorbance (absorbance (α 1 ) / 2) half of the absorbance (α 1 ) at the absorption peak. Obtained by calculating the difference in wave numbers. When the absorption peak with the maximum absorption wave number (n 1 ) overlaps with the absorption peak derived from other components, it is separated into absorption peaks derived from the respective components by the least square method using a Gaussian function. After that, the half width of the absorption peak of the maximum absorption wave number (n 1 ) was obtained in the same manner as described above.
(2)多層構造体の外観
得られた多層構造体の外観を、目視によって下記のように評価した。
A:無色透明で均一であり、極めて良好な外観であった。
B:わずかにくもりまたはムラが見られたが、良好な外観であった。
(2) Appearance of multilayer structure The appearance of the obtained multilayer structure was evaluated visually as follows.
A: It was colorless and transparent and uniform and had a very good appearance.
B: Slight cloudiness or unevenness was observed, but the appearance was good.
(3)真空断熱体の作製方法
得られた多層構造体から以下の構成を有するラミネート体を作製し、そのラミネート体を被覆材として真空断熱体を作製した。
(3) Manufacturing method of vacuum heat insulating body The laminated body which has the following structures was produced from the obtained multilayered structure, and the vacuum heat insulating body was produced using the laminated body as a coating | covering material.
a.「OPA/多層構造体/CPP」からなるラミネート体
厚さ60μmの無延伸ポリプロピレンフィルム(三井化学東セロ株式会社製トーセロCPRXC−18、(CPP))の片面、および厚さ15μmの延伸ポリアミドフィルム(ユニチカ株式会社製、エンブレムON−BC、(OPA))の片面のそれぞれに2液型の接着剤(三井化学株式会社製、A−520(商品名)およびA−50(商品名))を塗布し、OPA層/接着剤層/多層構造体/接着剤層/CPP層、という構成となるように、CPPフィルム、OPAフィルム、および多層構造体をラミネートすることによって、ラミネート体を得た。なお、多層構造体は層(Y)を有する側(層(Y)を有さない多層構造体については、層(Z)あるいは層(Y’)を有する側)をOPA側としてラミネートした。
a. Laminate made of “OPA / multilayer structure / CPP” One side of a 60 μm-thick unstretched polypropylene film (Tosello CPRXC-18, (CPP), manufactured by Mitsui Chemicals, Inc.), and a stretched polyamide film (Unitika, 15 μm) Apply two-component adhesive (Mitsui Chemicals, A-520 (trade name) and A-50 (trade name)) to one side of the emblem ON-BC, (OPA). The laminate was obtained by laminating the CPP film, the OPA film, and the multilayer structure so as to have a constitution of OPA layer / adhesive layer / multilayer structure / adhesive layer / CPP layer. The multilayer structure was laminated with the side having the layer (Y) (for the multilayer structure having no layer (Y), the side having the layer (Z) or layer (Y ′)) as the OPA side.
b.「OPA/多層構造体/VM−EVOH/CPP」からなるラミネート体
CPP、OPA、およびアルミニウム蒸着層が形成された二軸延伸エチレン−ビニルアルコール共重合体フィルム(株式会社クラレ製、VM−XL、厚さ12μm (VM−EVOH))の片面のそれぞれに上記2液型の接着剤を塗布し、OPA層/接着剤層/多層構造体/接着剤層/VM−EVOH層/接着剤層/CPP層、という構成となるように、CPPフィルム、OPAフィルム、VM−EVOHフィルムおよび多層構造体をラミネートすることによって、ラミネート体を得た。なお、多層構造体は層(Y)を有する側(層(Y)を有さない多層構造体については、層(Z)あるいは層(Y’)を有する側)をVM−EVOH側としてラミネートした。また、VM−EVOHはアルミニウム蒸着層を有する側を多層構造体側としてラミネートした。
b. Laminated body made of “OPA / multilayer structure / VM-EVOH / CPP” CPP, OPA, and biaxially stretched ethylene-vinyl alcohol copolymer film formed with an aluminum vapor deposition layer (manufactured by Kuraray Co., Ltd., VM-XL, The two-component adhesive is applied to each of one side of 12 μm thickness (VM-EVOH), and OPA layer / adhesive layer / multilayer structure / adhesive layer / VM-EVOH layer / adhesive layer / CPP A laminate was obtained by laminating a CPP film, an OPA film, a VM-EVOH film, and a multilayer structure so as to form a layer. The multilayer structure was laminated with the side having the layer (Y) (for the multilayer structure having no layer (Y), the side having the layer (Z) or the layer (Y ′)) as the VM-EVOH side. . Further, VM-EVOH was laminated with the side having the aluminum vapor deposition layer as the multilayer structure side.
得られたラミネート体を裁断し、サイズが70cm×30cmである被覆材を2枚得た。その2枚のラミネート体をCPP層同士が内面となるように重ね合わせ、3方を10mm幅でヒートシールして3方袋を作製した。次に、3方袋の開口部から断熱性の芯材を充填し、真空包装機(FrimarkGmbH製VAC−STAR2500型)を用いて温度20℃で内部圧力10Paの状態で3方袋を密封することによって、真空断熱体を得た。断熱性の芯材には、120℃の雰囲気下で4時間乾燥したシリカ微粉末を用いた。 The obtained laminate was cut to obtain two coating materials having a size of 70 cm × 30 cm. The two laminates were overlapped so that the CPP layers were the inner surfaces, and the three sides were heat-sealed with a width of 10 mm to produce a three-sided bag. Next, a heat insulating core material is filled from the opening of the three-sided bag, and the three-sided bag is sealed at a temperature of 20 ° C. and an internal pressure of 10 Pa using a vacuum packaging machine (VAC-STAR 2500 type manufactured by Frimark GmbH). A vacuum insulator was obtained. Silica fine powder dried for 4 hours in an atmosphere at 120 ° C. was used as the heat insulating core material.
(4)放置後の真空断熱体の内部圧力
得られた真空断熱体を40℃、15%RHで360日間放置した後、ピラニー真空計を用いて真空断熱体の内部の圧力を測定した。
(4) Internal pressure of vacuum insulator after standing After the obtained vacuum insulator was left at 40 ° C. and 15% RH for 360 days, the pressure inside the vacuum insulator was measured using a Pirani vacuum gauge.
(5)真空断熱体の被覆材の酸素透過度(Os)
酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、作製した真空断熱体より21cm×30cmの大きさの被覆材を切り出した。酸素供給側に層(YZ)が向き、キャリアガス側に基材(X)が向くように被覆材をセットし、温度が20℃、酸素供給側の湿度が85%RH、キャリアガス側の湿度が85%RH、酸素圧が1気圧、キャリアガス圧力が1気圧の条件下で酸素透過度(単位:ml/(m2・day・atm))を測定した。キャリアガスとしては2体積%の水素ガスを含む窒素ガスを使用した。
(5) Oxygen permeability (Os) of coating material for vacuum insulation
The oxygen transmission rate was measured using an oxygen transmission amount measuring device ("MOCON OX-
(6)5%延伸、保持後の真空断熱体の被覆材の酸素透過度(Of)
作製した真空断熱体より21cm×30cmの大きさの被覆材を切り出した。そして、その被覆材を23℃、50%RHの条件下で24時間以上放置した後、同条件下で長軸方向に相当する一方向に5%延伸し、延伸した状態を5分間保持することで、延伸後の多層構造体を得た。酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、酸素供給側に層(YZ)が向き、キャリアガス側に基材(X)が向くように多層構造体をセットし、温度が20℃、酸素供給側の湿度が85%RH、キャリアガス側の湿度が85%RH、酸素圧が1気圧、キャリアガス圧力が1気圧の条件下で酸素透過度(単位:ml/(m2・day・atm))を測定した。キャリアガスとしては2体積%の水素ガスを含む窒素ガスを使用した。
(6) Oxygen permeability (Of) of the coating material of the vacuum heat insulator after 5% stretching and holding
A covering material having a size of 21 cm × 30 cm was cut out from the produced vacuum insulator. And after leaving the covering material for 24 hours or more under the conditions of 23 ° C. and 50% RH, it is stretched 5% in one direction corresponding to the major axis direction under the same conditions, and the stretched state is maintained for 5 minutes. Thus, a multilayer structure after stretching was obtained. The oxygen transmission rate was measured using an oxygen transmission amount measuring device ("MOCON OX-
[コーティング液(U)の製造例]
層(YA)を製造するために使用したコーティング液(U)の製造例を示す。
蒸留水230質量部を撹拌しながら70℃に昇温した。その蒸留水に、アルミニウムイソプロポキシド88質量部を1時間かけて滴下し、液温を徐々に95℃まで上昇させ、発生するイソプロパノールを留出させることによって加水分解縮合を行った。得られた液体に、60質量%の硝酸水溶液4.0質量部を添加し、95℃で3時間撹拌することによって加水分解縮合物の粒子の凝集体を解膠させた後に、固形分濃度がアルミナ換算で10質量%になるように濃縮した。こうして得られた分散液18.66質量部に対して、蒸留水58.19質量部、メタノール19.00質量部、および5質量%のポリビニルアルコール水溶液0.50質量部を加え、均一になるように撹拌することによって、分散液(S1)を得た。また、85質量%のリン酸水溶液3.66質量部を、溶液(T1)として使用した。続いて、分散液(S1)および溶液(T1)をともに15℃に調節した。次に、15℃の液温を維持した状態で、分散液(S1)を攪拌しながら溶液(T1)を滴下してコーティング液(U1)を得た。得られたコーティング液(U1)を15℃に保持したまま、粘度が1500mPa・sになるまで攪拌を続けた。なお、当該コーティング液(U1)における、金属酸化物(A)(アルミナ)を構成する金属原子のモル数(NM)とリン化合物(B)(リン酸)を構成するリン原子のモル数(NP)との比率(モル数(NM)/モル数(NP))は、1.15であった。
[Example of production of coating liquid (U)]
The manufacture example of the coating liquid (U) used in order to manufacture a layer (YA) is shown.
The temperature was raised to 70 ° C. while stirring 230 parts by mass of distilled water. In the distilled water, 88 parts by mass of aluminum isopropoxide was added dropwise over 1 hour, the liquid temperature was gradually raised to 95 ° C., and the generated isopropanol was distilled off to carry out hydrolysis and condensation. After adding 4.0 parts by mass of a 60% by mass nitric acid aqueous solution to the obtained liquid and stirring the mixture at 95 ° C. for 3 hours, the aggregates of the hydrolyzed condensate particles were peptized, and then the solid content concentration was It concentrated so that it might become 10 mass% in conversion of an alumina. To 18.66 parts by mass of the dispersion thus obtained, 58.19 parts by mass of distilled water, 19.00 parts by mass of methanol, and 0.50 parts by mass of a 5% by mass aqueous polyvinyl alcohol solution are added so as to be uniform. To obtain a dispersion liquid (S1). Moreover, 3.66 mass parts of 85 mass% phosphoric acid aqueous solution was used as a solution (T1). Subsequently, both the dispersion (S1) and the solution (T1) were adjusted to 15 ° C. Next, while maintaining the liquid temperature of 15 ° C., the solution (T1) was dropped while stirring the dispersion (S1) to obtain a coating liquid (U1). While maintaining the obtained coating liquid (U1) at 15 ° C., stirring was continued until the viscosity reached 1500 mPa · s. In the coating liquid (U1), the number of moles of metal atoms (N M ) constituting the metal oxide (A) (alumina) and the number of moles of phosphorus atoms constituting the phosphorus compound (B) (phosphoric acid) ( N p ) (number of moles (N M ) / number of moles (N p )) was 1.15.
NM/NPの比率をそれぞれ4.48、1.92および0.82に変更したこと以外は同様の方法によって、コーティング液(U2)、コーティング液(U3)およびコーティング液(U4)をそれぞれ得た。 The coating solution (U2), the coating solution (U3) and the coating solution (U4) were respectively changed in the same manner except that the ratio of N M / N P was changed to 4.48, 1.92 and 0.82, respectively. Obtained.
[コーティング液(V1〜4)の製造例]
まず、攪拌機、還流冷却機、滴下ロートおよび温度計を備えた丸底フラスコ(内容積:50ml)を窒素置換し、溶媒としてメチルエチルケトン(以下、「MEK」と略記する場合がある)を12g仕込み、オイルバスに漬けて80℃に加熱し還流を開始した。この時から重合の全過程を通じて微量の窒素ガスを流し続けた。次に、アシッドホスホオキシエチルメタクリレート(以下、「PHM」と略記する場合がある)8.5g、MEK5gおよびアゾビスイソブチロニトリル100mgの混合溶液を調整し、滴下ロートから10分間かけて等速で滴下した。滴下終了後も80℃を維持し、12時間程度攪拌を続けて、帯黄色の粘調な液状の重合体溶液を得た。
[Production Example of Coating Liquid (V1-4)]
First, a round bottom flask (internal volume: 50 ml) equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was purged with nitrogen, and 12 g of methyl ethyl ketone (hereinafter sometimes abbreviated as “MEK”) was charged as a solvent. It was immersed in an oil bath and heated to 80 ° C. to start refluxing. From this time, a small amount of nitrogen gas was allowed to flow throughout the entire polymerization process. Next, a mixed solution of 8.5 g of acid phosphooxyethyl methacrylate (hereinafter sometimes abbreviated as “PHM”), 5 g of MEK, and 100 mg of azobisisobutyronitrile was prepared, and the mixture was stirred at a constant speed over 10 minutes from the dropping funnel. It was dripped at. After completion of the dropping, the temperature was maintained at 80 ° C., and stirring was continued for about 12 hours to obtain a yellowish viscous liquid polymer solution.
重合体溶液を約10倍量の1,2−ジクロロエタン中へ注入し、上澄液をデカンテーションにて除去して沈殿物を回収し、重合体を単離した。回収した重合体は当該重合体の良溶媒であるテトラヒドロフラン(以下、「THF」と略記する場合がある)に溶解し約10倍量の1,2−ジクロロエタン中に再沈殿させる操作を3回繰り返して行って精製した。精製した重合体をゲル・パーミエーション・クロマトグラフで、溶媒としてTHFを用い重合体濃度1wt%で分子量を測定したところ、分子量はポリスチレン換算で約10,000であった。 The polymer solution was poured into about 10 times the amount of 1,2-dichloroethane, the supernatant was removed by decantation, the precipitate was recovered, and the polymer was isolated. The recovered polymer is dissolved in tetrahydrofuran (hereinafter sometimes abbreviated as “THF”), which is a good solvent for the polymer, and reprecipitated in about 10 times the amount of 1,2-dichloroethane by repeating the operation three times. And purified. When the molecular weight of the purified polymer was measured by gel permeation chromatography using THF as a solvent at a polymer concentration of 1 wt%, the molecular weight was about 10,000 in terms of polystyrene.
精製した重合体を水とイソプロパノールの混合溶媒に10wt%濃度で溶解し、コーティング液(V1)を得た。 The purified polymer was dissolved in a mixed solvent of water and isopropanol at a concentration of 10 wt% to obtain a coating liquid (V1).
コーティング液(V1)の調製と同様の方法によって、アシッドホスホオキシポリオキシプロピレングリコールメタクリレート(以下、「PHP」と略記する場合がある)の単独重合体からなるコーティング液(V2)を得た。さらに、同様にして、PHMとアクリロニトリル(以下、「AN」と略記する場合がある)をモル比率2/1および1/1でそれぞれ共重合させた共重合体のコーティング液(V3)およびコーティング液(V4)をそれぞれ得た。 By a method similar to the preparation of the coating liquid (V1), a coating liquid (V2) comprising a homopolymer of acid phosphooxypolyoxypropylene glycol methacrylate (hereinafter sometimes abbreviated as “PHP”) was obtained. Further, similarly, a coating liquid (V3) and a coating liquid obtained by copolymerizing PHM and acrylonitrile (hereinafter sometimes abbreviated as “AN”) at a molar ratio of 2/1 and 1/1, respectively. (V4) was obtained respectively.
[コーティング液(V5〜8)の製造例]
攪拌機および温度計を備えた丸底フラスコ(内容積:50ml)を窒素置換し、溶媒として水2.5gを仕込み、攪拌しながらビニルホスホニックアシッド(以下、「VPA」と略記する場合がある)10g、水2.5gおよび2,2’−アゾビス(2−アミジノプロパン)2塩酸塩(以下、「AIBA」と略記する場合がある)25mgの混合溶液を丸底フラスコに滴下した。この時から重合の全過程を通じて微量の窒素ガスを流し続けた。丸底フラスコをオイルバスに漬けて80℃で3時間反応させた後、反応混合物を15gの水で希釈し、セルロース膜(スペクトラム・ラボラトリーズ社製、「Spectra/Por」(商品名))でろ過した。次に、エバポレーターによってろ液の溶媒を留去し、50℃で24時間真空乾燥することによって白色の重合体を得た。この重合体をゲル・パーミエーション・クロマトグラフで、溶媒として1.2wt%のNaCl水溶液を用い重合体濃度0.1wt%で分子量を測定したところ、分子量はポリエチレングリコール換算で約10,000であった。
[Production Example of Coating Liquid (V5-8)]
A round bottom flask (internal volume: 50 ml) equipped with a stirrer and a thermometer was purged with nitrogen, charged with 2.5 g of water as a solvent, and vinylphosphonic acid (hereinafter sometimes abbreviated as “VPA”) while stirring. A mixed solution of 10 g, 2.5 g of water and 25 mg of 2,2′-azobis (2-amidinopropane) dihydrochloride (hereinafter sometimes abbreviated as “AIBA”) was added dropwise to the round bottom flask. From this time, a small amount of nitrogen gas was allowed to flow throughout the entire polymerization process. After soaking the round bottom flask in an oil bath and reacting at 80 ° C. for 3 hours, the reaction mixture is diluted with 15 g of water and filtered through a cellulose membrane (Spectra / Por (trade name) manufactured by Spectrum Laboratories). did. Next, the solvent of the filtrate was distilled off with an evaporator, and a white polymer was obtained by vacuum drying at 50 ° C. for 24 hours. When this polymer was measured by gel permeation chromatography using a 1.2 wt% NaCl aqueous solution as a solvent at a polymer concentration of 0.1 wt%, the molecular weight was about 10,000 in terms of polyethylene glycol. It was.
精製した重合体を水とメタノールの混合溶媒に10wt%濃度で溶解し、コーティング液(V5)を得た。 The purified polymer was dissolved in a mixed solvent of water and methanol at a concentration of 10 wt% to obtain a coating liquid (V5).
コーティング液(V5)の調製と同様の方法によって、4−ビニルベンジルホスホニックアシッド(以下、「VBPA」と略記する場合がある)の単独重合体からなるコーティング液(V6)を得た。さらに、同様にして、VPAとメタクリル酸(以下、「MA」と略記する場合がある)をモル比率2/1および1/1でそれぞれ共重合させた共重合体のコーティング液(V7)およびコーティング液(V8)を得た。 By a method similar to the preparation of the coating liquid (V5), a coating liquid (V6) composed of a homopolymer of 4-vinylbenzylphosphonic acid (hereinafter sometimes abbreviated as “VBPA”) was obtained. Further, similarly, a coating solution (V7) and a coating of a copolymer obtained by copolymerizing VPA and methacrylic acid (hereinafter sometimes abbreviated as “MA”) at a molar ratio of 2/1 and 1/1, respectively. A liquid (V8) was obtained.
[実施例1]
基材として、延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、「ルミラーP60」(商品名)、厚さ12μm、以下では「PET」と略記することがある)を準備した。その基材(PET)上に、乾燥後の厚さが0.5μmとなるようにバーコータによってコーティング液(U1)を塗布し、110℃で5分間乾燥した。次いで、180℃で1分間の熱処理を施し、層(Y1)(0.5μm)/PET(12μm)という構造を有する構造体(A1)を得た。次いで、構造体(A1)の層(Y1)上に、乾燥後の厚さが0.3μmとなるようにバーコータによってコーティング液(V1)を塗布し、110℃で5分間乾燥することで、層(Z1)(0.3μm)/層(Y1)(0.5μm)/PET(12μm)という構造を有する多層構造体(B1)を得た。
[Example 1]
As a base material, a stretched polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror P60” (trade name), thickness 12 μm, hereinafter sometimes abbreviated as “PET”) was prepared. On the substrate (PET), the coating liquid (U1) was applied by a bar coater so that the thickness after drying was 0.5 μm, and dried at 110 ° C. for 5 minutes. Next, heat treatment was performed at 180 ° C. for 1 minute to obtain a structure (A1) having a structure of layer (Y1) (0.5 μm) / PET (12 μm). Next, the coating liquid (V1) is applied on the layer (Y1) of the structure (A1) by a bar coater so that the thickness after drying is 0.3 μm, and dried at 110 ° C. for 5 minutes, A multilayer structure (B1) having a structure of (Z1) (0.3 μm) / layer (Y1) (0.5 μm) / PET (12 μm) was obtained.
得られた多層構造体(B1)の透湿度(水蒸気透過度;WVTR)を、水蒸気透過量測定装置(モダンコントロール社製「MOCON PERMATRAN3/33」)を用いて測定した。具体的には、水蒸気供給側に層(Z1)が向き、キャリアガス側にPETの層が向くように複合構造体をセットし、温度40℃、水蒸気供給側の湿度90%RH、キャリアガス側の湿度0%RHの条件下で透湿度(単位:g/(m2・day))を測定した。多層構造体(B1)の透湿度は0.2g/(m2・day)であった。 The moisture permeability (water vapor transmission rate: WVTR) of the obtained multilayer structure (B1) was measured using a water vapor transmission amount measuring device ("MOCON PERMATRAN 3/33" manufactured by Modern Control). Specifically, the composite structure is set so that the layer (Z1) faces the water vapor supply side and the PET layer faces the carrier gas side, the temperature is 40 ° C., the water vapor supply side humidity is 90% RH, the carrier gas side The moisture permeability (unit: g / (m 2 · day)) was measured under the condition of 0% RH. The moisture permeability of the multilayer structure (B1) was 0.2 g / (m 2 · day).
得られた多層構造体(B1)について、上記の方法にて真空断熱体を作製し、評価を行った。 About the obtained multilayer structure (B1), the vacuum heat insulating body was produced by said method, and evaluation was performed.
[実施例2]
コーティング液(V)をV5に変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Example 2]
A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except that the coating liquid (V) was changed to V5.
[実施例3〜6、41、42]
層(Z)の厚みおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 3 to 6, 41, 42]
A multilayer structure and a vacuum heat insulating body were obtained by the same method as in Example 1 except that the thickness of the layer (Z) and the coating liquid (V) were changed according to Table 1.
[実施例7〜12]
使用するコート液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 7 to 12]
A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except that the coating liquid (V) used was changed according to Table 1.
[実施例13〜18]
熱処理の条件およびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 13 to 18]
A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except that the heat treatment conditions and the coating liquid (V) were changed according to Table 1.
[実施例19〜24]
使用するコート液(U)およびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 19 to 24]
A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except that the coating liquid (U) and the coating liquid (V) to be used were changed according to Table 1.
[実施例25、26]
熱処理工程を層(Z)の形成後に実施したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 25 and 26]
A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except that the heat treatment step was performed after the formation of the layer (Z).
[実施例27、28]
層(Y)および層(Z)を基材の両面に積層およびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。得られた多層構造体(A1)の透湿度を、実施例1と同様にして測定したところ0.1g/(m2・day)以下であった。
[Examples 27 and 28]
A multilayer structure and a vacuum insulator were obtained by the same method as in Example 1 except that the layers (Y) and (Z) were laminated on both surfaces of the substrate and the coating liquid (V) was changed according to Table 1. . The moisture permeability of the obtained multilayer structure (A1) was measured in the same manner as in Example 1, and was 0.1 g / (m 2 · day) or less.
[実施例29、30]
基材を延伸ナイロンフィルム(ユニチカ株式会社製 「エンブレム ONBC」(商品名)、厚さ15μm、「ONY」と略記することがある)としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 29 and 30]
The base material was a stretched nylon film (“Emblem ONBC” (trade name), unit: 15 μm, sometimes abbreviated as “ONY”) manufactured by Unitika Ltd. and the coating solution (V) was changed according to Table 1. A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except for the above.
[実施例31、32]
基材をPET表面に蒸着された酸化アルミニウム蒸着層としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 31 and 32]
A multilayer structure and a vacuum insulator were obtained by the same method as in Example 1 except that the base material was an aluminum oxide vapor deposition layer deposited on the PET surface and the coating liquid (V) was changed according to Table 1. .
[実施例33、34]
基材をPET表面に蒸着された酸化ケイ素蒸着層としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 33 and 34]
A multilayer structure and a vacuum insulator were obtained by the same method as in Example 1 except that the substrate was a silicon oxide vapor-deposited layer deposited on the PET surface and the coating liquid (V) was changed according to Table 1. .
[実施例35、36]
基材をPET表面に蒸着されたアルミニウムの蒸着層としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 35 and 36]
A multilayer structure and a vacuum insulator were obtained by the same method as in Example 1 except that the base material was an aluminum deposition layer deposited on the PET surface and the coating liquid (V) was changed according to Table 1. .
[実施例37、38]
層(Y)を厚み0.03μmのアルミニウムの蒸着層としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。アルミニウム層は、真空蒸着法で形成した。
[Examples 37 and 38]
A multilayer structure and a vacuum heat insulating body are obtained by the same method as in Example 1 except that the layer (Y) is an aluminum deposited layer having a thickness of 0.03 μm and the coating liquid (V) is changed according to Table 1. It was. The aluminum layer was formed by a vacuum evaporation method.
[実施例39、40]
層(Y)を厚み0.03μmの酸化アルミニウムの蒸着層としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。酸化アルミニウム層は、真空蒸着法で形成した。
[Examples 39 and 40]
A multilayer structure and a vacuum heat insulating body were formed in the same manner as in Example 1 except that the layer (Y) was a vapor-deposited layer of aluminum oxide having a thickness of 0.03 μm and the coating liquid (V) was changed according to Table 1. Obtained. The aluminum oxide layer was formed by a vacuum evaporation method.
[実施例43、44]
層(Z)の形成後に層(Y)を形成およびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Examples 43 and 44]
A multilayer structure and a vacuum insulator were obtained by the same method as in Example 1 except that the layer (Y) was formed after the formation of the layer (Z) and the coating liquid (V) was changed according to Table 1.
[比較例1]
実施例1において、層(Z)を形成しなかったものを比較例1とした。
[Comparative Example 1]
In Example 1, the layer (Z) was not formed as Comparative Example 1.
[比較例2]
実施例13において、層(Z)を形成しなかったものを比較例2とした。
[Comparative Example 2]
In Example 13, the layer (Z) was not formed as Comparative Example 2.
[比較例3]
実施例15において、層(Z)を形成しなかったものを比較例3とした。
[Comparative Example 3]
In Example 15, the layer (Z) was not formed as Comparative Example 3.
[比較例4]
実施例17において、層(Z)を形成しなかったものを比較例4とした。
[Comparative Example 4]
In Example 17, the layer (Z) was not formed as Comparative Example 4.
[比較例5]
実施例19において、層(Z)を形成しなかったものを比較例5とした。
[Comparative Example 5]
In Example 19, the layer (Z) was not formed as Comparative Example 5.
[比較例6]
実施例21において、層(Z)を形成しなかったものを比較例6とした。
[Comparative Example 6]
In Example 21, the layer (Z) was not formed as Comparative Example 6.
[比較例7]
実施例23において、層(Z)を形成しなかったものを比較例7とした。
[Comparative Example 7]
In Example 23, the layer (Z) was not formed as Comparative Example 7.
[比較例8]
実施例27において、層(Z)を形成しなかったものを比較例8とした。
[Comparative Example 8]
In Example 27, the layer (Z) was not formed as Comparative Example 8.
[比較例9]
実施例29において、層(Z)を形成しなかったものを比較例9とした。
[Comparative Example 9]
In Example 29, the layer (Z) was not formed as Comparative Example 9.
[比較例10]
実施例31において、層(Z)を形成しなかったものを比較例10とした。
[Comparative Example 10]
In Example 31, the layer (Z) was not formed as Comparative Example 10.
[比較例11]
実施例33において、層(Z)を形成しなかったものを比較例11とした。
[Comparative Example 11]
In Example 33, the layer (Z) was not formed as Comparative Example 11.
[比較例12]
実施例35において、層(Z)を形成しなかったものを比較例12とした。
[Comparative Example 12]
In Example 35, the layer (Z) was not formed as Comparative Example 12.
[比較例13]
実施例37において、層(Z)を形成しなかったものを比較例13とした。
[Comparative Example 13]
In Example 37, the layer (Z) was not formed as Comparative Example 13.
[比較例14、15]
層(Y)を厚み0.03μmの酸化ケイ素の蒸着層である層(Y’)としたことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。酸化ケイ素層は、真空蒸着法で形成した。
[Comparative Examples 14 and 15]
A multilayer was formed in the same manner as in Example 1 except that the layer (Y) was a layer (Y ′) which is a deposited layer of silicon oxide having a thickness of 0.03 μm and the coating liquid (V) was changed according to Table 1. A structure and a vacuum insulator were obtained. The silicon oxide layer was formed by a vacuum evaporation method.
[比較例16、17]
層(Y)を形成しなかったことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。
[Comparative Examples 16 and 17]
A multilayer structure and a vacuum heat insulator were obtained by the same method as in Example 1 except that the layer (Y) was not formed and the coating liquid (V) was changed according to Table 1.
[比較例18、19]
層(Z)をPET上に形成したことおよびコーティング液(V)を表1に従って変更したこと以外は実施例1と同様の方法によって、多層構造体および真空断熱体を得た。すなわち、比較例18では、層(Y1)(0.5μm)/PET(12μm)/層(Z1)(0.3μm)という構造を有する、比較例18の多層構造体および真空断熱体を作製した。
[Comparative Examples 18 and 19]
A multilayer structure and a vacuum insulator were obtained by the same method as in Example 1 except that the layer (Z) was formed on PET and the coating liquid (V) was changed according to Table 1. That is, in Comparative Example 18, a multilayer structure and a vacuum heat insulating body of Comparative Example 18 having a structure of layer (Y1) (0.5 μm) / PET (12 μm) / layer (Z1) (0.3 μm) were produced. .
[比較例20]
比較例14において層(Z)を形成しなかったものを、比較例20とした。
[Comparative Example 20]
In Comparative Example 14, the layer (Z) was not formed as Comparative Example 20.
[比較例21]
比較例16において層(Z)を形成しなかったもの、すなわち基材(PET)のみを比較例21とした。
[Comparative Example 21]
In Comparative Example 16, the layer (Z) was not formed, that is, only the base material (PET) was used as Comparative Example 21.
上記実施例および比較例の製造条件および評価結果を以下の表1〜表3に示す。なお、表において、「−」は、「使用していない」、「計算できない」、「実施していない」、「測定できない」などを意味する。 The production conditions and evaluation results of the above Examples and Comparative Examples are shown in Tables 1 to 3 below. In the table, “-” means “not used”, “cannot be calculated”, “not implemented”, “cannot be measured”, and the like.
表から明らかなように、各実施例の真空断熱体は、作製後、さらに強い物理的ストレス(5%延伸)を受けても、良好なガスバリア性を維持していた。これに対し、比較例の真空断熱体は、強い物理的ストレス(5%延伸)を受けた後には、そのすべてについてガスバリア性が顕著に低下した。各実施例の真空断熱体では、長期間放置しても内部圧力の大幅な上昇は抑制されていた。 As is clear from the table, the vacuum heat insulators of each example maintained good gas barrier properties even after being subjected to a stronger physical stress (5% stretching) after production. On the other hand, after the vacuum heat insulating material of the comparative example was subjected to strong physical stress (5% stretching), the gas barrier properties of all of them were significantly reduced. In the vacuum heat insulating body of each example, a significant increase in internal pressure was suppressed even when left for a long time.
1、2 真空断熱体
10 被覆材
11 周縁部
20 隔壁
31、32 フィルム材
51、52 芯材
DESCRIPTION OF
Claims (10)
前記被覆材は、基材(X)、層(Y)および層(Z)をそれぞれ1層以上有する多層構造体を含み、
前記層(Y)はアルミニウム原子を含み、前記層(Z)はリン原子を有する単量体単位を含む重合体(E)を含み、少なくとも1組の前記層(Y)と前記層(Z)とが隣接して積層されており、
前記層(Y)が反応生成物(R)を含む層(YA)であり、
前記反応生成物(R)は、アルミニウムを含む金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物である、真空断熱体。 A vacuum insulating body comprising a coating material and a core material disposed inside the coating material, wherein the interior is depressurized;
The covering material includes a multilayer structure having one or more layers of a base material (X), a layer (Y), and a layer (Z),
The layer (Y) contains an aluminum atom, the layer (Z) contains a polymer (E) containing a monomer unit having a phosphorus atom, and at least one set of the layer (Y) and the layer (Z) Are stacked adjacent to each other,
The layer (Y) is a layer (YA) containing the reaction product (R),
The said reaction product (R) is a vacuum heat insulating body which is a reaction product formed by the reaction of the metal oxide (A) containing aluminum and the phosphorus compound (B) .
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013212246A JP6091396B2 (en) | 2013-10-09 | 2013-10-09 | Vacuum insulation |
EP14749153.4A EP2955019B1 (en) | 2013-02-08 | 2014-02-07 | Product provided with packaging material containing multilayer structure |
AU2014215299A AU2014215299B2 (en) | 2013-02-08 | 2014-02-07 | Product comprising packaging material comprising multilayer structure |
US14/765,957 US10265935B2 (en) | 2013-02-08 | 2014-02-07 | Product comprising packaging material comprising multilayer structure |
CN201480008030.5A CN104968496B (en) | 2013-02-08 | 2014-02-07 | Possesses the product of the packaging material comprising multilayer structure making |
KR1020157024422A KR20150119011A (en) | 2013-02-08 | 2014-02-07 | Product provided with packaging material containing multilayer structure |
PCT/JP2014/000682 WO2014122941A1 (en) | 2013-02-08 | 2014-02-07 | Product provided with packaging material containing multilayer structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013212246A JP6091396B2 (en) | 2013-10-09 | 2013-10-09 | Vacuum insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015075182A JP2015075182A (en) | 2015-04-20 |
JP6091396B2 true JP6091396B2 (en) | 2017-03-08 |
Family
ID=53000188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013212246A Active JP6091396B2 (en) | 2013-02-08 | 2013-10-09 | Vacuum insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6091396B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10647487B2 (en) | 2015-09-17 | 2020-05-12 | Kurray Co., Ltd. | Multilayer structure, method for producing same, packaging material and product including same, and protective sheet for electronic device |
JP6891050B2 (en) * | 2017-06-08 | 2021-06-18 | 株式会社クラレ | Multi-layer structure, vacuum packaging bag and vacuum insulation |
WO2019004324A1 (en) * | 2017-06-27 | 2019-01-03 | 株式会社クラレ | Vacuum heat insulation material |
JP6607276B2 (en) | 2018-03-29 | 2019-11-20 | 大日本印刷株式会社 | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302150A (en) * | 2001-02-01 | 2002-10-15 | Toyo Seikan Kaisha Ltd | Gas barrier material excellent in resistance to retort- packing |
CN102821945B (en) * | 2010-03-30 | 2015-01-28 | 可乐丽股份有限公司 | Composite structure, packaging material and molded article each produced using same, process for production of composite structure, and coating solution |
-
2013
- 2013-10-09 JP JP2013212246A patent/JP6091396B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015075182A (en) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5735835B2 (en) | Vacuum insulation | |
JP6306522B2 (en) | Multilayer structure and manufacturing method thereof | |
JP5801744B2 (en) | Multilayer structure, product using the same, and method for producing multilayer structure | |
JP5801743B2 (en) | Multilayer structure, product using the same, and method for producing multilayer structure | |
JP6306521B2 (en) | Electronic devices | |
US8383245B2 (en) | Gas barrier multilayer structure precursor,gas barrier multilayer structure and processes for producing the same | |
WO2014122941A1 (en) | Product provided with packaging material containing multilayer structure | |
JP6091396B2 (en) | Vacuum insulation | |
WO2013051287A1 (en) | Composite structure, product using same, and method for producing composite structure | |
JP4205241B2 (en) | Laminated body | |
JP6230864B2 (en) | Paper container | |
JP6230863B2 (en) | Infusion bag | |
JP2017206315A (en) | Paper container | |
JP6184828B2 (en) | Laminated tube container | |
JP7150715B2 (en) | vacuum insulation | |
JP6124762B2 (en) | Vacuum packaging bag | |
JP6124760B2 (en) | Vertical bag filling and sealing bag | |
JP6124761B2 (en) | Container lid | |
JP6124759B2 (en) | Container including multilayer structure as wall member | |
JP6200760B2 (en) | Pouch | |
JP5732363B2 (en) | Composite structure, packaging material and molded product using the same, and method for producing composite structure | |
TWI638721B (en) | Electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6091396 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |