JP6091024B2 - Internal combustion engine and control method for internal combustion engine - Google Patents

Internal combustion engine and control method for internal combustion engine Download PDF

Info

Publication number
JP6091024B2
JP6091024B2 JP2015147690A JP2015147690A JP6091024B2 JP 6091024 B2 JP6091024 B2 JP 6091024B2 JP 2015147690 A JP2015147690 A JP 2015147690A JP 2015147690 A JP2015147690 A JP 2015147690A JP 6091024 B2 JP6091024 B2 JP 6091024B2
Authority
JP
Japan
Prior art keywords
scavenging
chamber
pressure
combustion
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147690A
Other languages
Japanese (ja)
Other versions
JP2015214983A (en
Inventor
赤川 裕和
裕和 赤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015147690A priority Critical patent/JP6091024B2/en
Publication of JP2015214983A publication Critical patent/JP2015214983A/en
Application granted granted Critical
Publication of JP6091024B2 publication Critical patent/JP6091024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、燃料ガスを燃焼し燃焼ガスを発生させる内燃機関及び内燃機関の制御方法に関するものである。   The present invention relates to an internal combustion engine that burns fuel gas and generates combustion gas, and a control method for the internal combustion engine.

舶用の2ストロークエンジンは、IMO(国際海事機関)で定めるSOxの排出規制をクリアするため、燃料を重油から天然ガスに切り替えることが有効である。特許文献1では、高圧ガス噴射用のガスエンジンにおいて、ガスシステムへの燃焼ガスの侵入を排除する技術が開示されている。   For marine two-stroke engines, it is effective to switch the fuel from heavy oil to natural gas in order to satisfy the SOx emission regulations set by IMO (International Maritime Organization). Patent Document 1 discloses a technique for eliminating the invasion of combustion gas into a gas system in a gas engine for high-pressure gas injection.

特開2008−202550号公報JP 2008-202550 A 特開2002−221037号公報JP 2002-221037 A

ところで、燃料にガスを用いるエンジンであっても、筒内にガスを直接噴射する高圧ガス噴射方式の場合、燃焼によってNOxが大量に発生する。そのため、排ガス中に含まれるNOxの低減対策が必要である。特許文献1は、高圧ガス噴射用のガスエンジンに関する技術が開示されているが、排ガス中に含まれるNOx低減対策については開示されていない。   By the way, even in an engine that uses gas as fuel, in the case of a high-pressure gas injection system that directly injects gas into a cylinder, a large amount of NOx is generated by combustion. Therefore, it is necessary to take measures to reduce NOx contained in the exhaust gas. Patent Document 1 discloses a technique related to a gas engine for high-pressure gas injection, but does not disclose measures for reducing NOx contained in exhaust gas.

特許文献2には、NOxの低減を目的とするEGR(Exhaust Gas Recirculation: 排ガス再循環)を行う内燃機関に関する技術が開示されている。特許文献2では、排ガスを再循環させるため、内燃機関の排気通路とスロットバルブよりも下流の給気通路との間に通路が設けられ、該通路に流量を制御するEGRバルブが設けられる。このように、従来、EGRを行うためには、内燃機関本体とは別に専用の通路やバルブを設けており、部材数を増加させたり、部材を設置する空間を確保したりしなければならなかった。   Patent Document 2 discloses a technique related to an internal combustion engine that performs EGR (Exhaust Gas Recirculation) for the purpose of reducing NOx. In Patent Document 2, in order to recirculate exhaust gas, a passage is provided between an exhaust passage of the internal combustion engine and an air supply passage downstream of the slot valve, and an EGR valve for controlling the flow rate is provided in the passage. Thus, conventionally, in order to perform EGR, dedicated passages and valves are provided separately from the internal combustion engine body, and the number of members must be increased or a space for installing the members must be secured. It was.

本発明は、このような事情に鑑みてなされたものであって、少ない部材数で排ガスを再循環させることができ、排ガスに含まれるNOxを低減することが可能な内燃機関及び内燃機関の制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to recirculate exhaust gas with a small number of members and to control NOx contained in the exhaust gas and control of the internal combustion engine. It aims to provide a method.

上記課題を解決するために、本発明の内燃機関及び内燃機関の制御方法は以下の手段を採用する。
すなわち、本発明に係る内燃機関は、燃料ガスの燃焼によって生じた燃焼ガスを燃焼室から外部へ排出する排気口と、排気口を開閉する排気弁と、掃気室と燃焼室との間を連通し、往復動するピストンによって開閉される掃気ポートと、掃気ポートが開口を開始した時、燃焼室内の圧力が掃気室内の圧力よりも高くなるように排気弁の開閉を制御する制御部とを備え、前記掃気ポートが閉じられた後、前記排気弁によって前記排気口が閉じられる。
In order to solve the above problems, the internal combustion engine and the control method for the internal combustion engine of the present invention employ the following means.
That is, the internal combustion engine according to the present invention communicates between the exhaust port for discharging the combustion gas generated by the combustion of the fuel gas from the combustion chamber to the outside, the exhaust valve for opening and closing the exhaust port, and the scavenging chamber and the combustion chamber. And a scavenging port that is opened and closed by a reciprocating piston, and a control unit that controls opening and closing of the exhaust valve so that the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber when the scavenging port starts to open. After the scavenging port is closed, the exhaust port is closed by the exhaust valve.

この発明によれば、燃料ガスの燃焼によって生じた燃焼ガスは、排気弁が開状態であるとき、燃焼室から排気口を介して外部へ排出される。一方、排気弁が閉状態であるとき、燃焼室の圧力は、排気弁が開状態であるときよりも相対的に高い。そのため、排気弁の閉状態から開状態への移行タイミングを遅くすると、燃焼室の圧力低下時期を遅延させることができる。そこで、掃気ポートが開口を開始した時、燃焼室内圧力が掃気室内圧力よりも高くなるように、排気弁の開閉を制御することによって、掃気ポートが開口を開始した後にも、燃焼室内圧力が掃気室内圧力よりも高い時期が生じる。その結果、燃焼ガスは、掃気ポートを介して燃焼室から掃気室へ流れる。したがって、掃気室から燃焼室へ空気が掃気されるとき、COを含む燃焼ガスも混合されるようになるため、燃焼室内のCO濃度が高くなり、燃焼で発生するNOxが低減される。 According to this invention, the combustion gas generated by the combustion of the fuel gas is discharged from the combustion chamber to the outside through the exhaust port when the exhaust valve is in the open state. On the other hand, when the exhaust valve is closed, the pressure in the combustion chamber is relatively higher than when the exhaust valve is open. Therefore, if the transition timing from the closed state to the open state of the exhaust valve is delayed, the pressure drop timing of the combustion chamber can be delayed. Therefore, by controlling the opening and closing of the exhaust valve so that the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber when the scavenging port starts to open, the pressure in the combustion chamber remains after the scavenging port has started opening. A period higher than the room pressure occurs. As a result, the combustion gas flows from the combustion chamber to the scavenging chamber via the scavenging port. Therefore, when air is scavenged from the scavenging chamber to the combustion chamber, combustion gas containing CO 2 is also mixed, so that the CO 2 concentration in the combustion chamber is increased and NOx generated by combustion is reduced.

上記発明において、掃気室内の圧力を検出する第1検出部と、燃焼室内の圧力を検出する第2検出部とを更に備え、制御部は、掃気室内の圧力と燃焼室内の圧力との差分に基づいて、排気弁の開閉を制御してもよい。   In the above invention, the apparatus further includes a first detection unit that detects the pressure in the scavenging chamber and a second detection unit that detects the pressure in the combustion chamber, and the control unit calculates a difference between the pressure in the scavenging chamber and the pressure in the combustion chamber. Based on this, the opening and closing of the exhaust valve may be controlled.

この発明によれば、掃気室内の圧力と燃焼室内の圧力との差分に基づいて、排気弁が開閉される。例えば、掃気室内の圧力と燃焼室内の圧力との差分が目標範囲内の値になったか否かを判断し、判断結果に基づいて、排気弁を閉状態から開状態へ移行させる。その結果、掃気室内の圧力と燃焼室内の圧力との差分に基づいて、燃焼室の圧力低下時期を調整でき、掃気ポートを介して燃焼室から掃気室へ燃焼ガスを確実に流すことができる。   According to this invention, the exhaust valve is opened and closed based on the difference between the pressure in the scavenging chamber and the pressure in the combustion chamber. For example, it is determined whether or not the difference between the pressure in the scavenging chamber and the pressure in the combustion chamber is a value within the target range, and the exhaust valve is shifted from the closed state to the open state based on the determination result. As a result, the pressure drop timing of the combustion chamber can be adjusted based on the difference between the pressure in the scavenging chamber and the pressure in the combustion chamber, and the combustion gas can be reliably flowed from the combustion chamber to the scavenging chamber via the scavenging port.

上記発明において、制御部は、掃気ポートが開口した後に掃気ポートを介して燃焼室から掃気室へ流れる燃焼ガスのガス量を算出し、算出されたガス量に基づいて、排気弁の開閉を制御してもよい。   In the above invention, the control unit calculates a gas amount of the combustion gas flowing from the combustion chamber to the scavenging chamber through the scavenging port after the scavenging port is opened, and controls opening and closing of the exhaust valve based on the calculated gas amount. May be.

この発明によれば、掃気ポートが開口した後に掃気ポートを介して燃焼室から掃気室へ流れる燃焼ガスのガス量が算出され、排気弁は、算出されたガス量に基づいて開閉される。燃焼室から掃気室へ流れる燃焼ガスのガス量に応じて、掃気室へ流れる燃焼ガス中のCO量と、燃焼室へ掃気されるCO量も変化するため、排気弁の開閉を制御することによって、燃焼で発生するNOxを調整できる。掃気ポートを介して燃焼室から掃気室へ流れる燃焼ガスのガス量は、例えば、掃気室内圧力と燃焼室内圧力との差分と、掃気ポートの開口面積と、掃気ポートの開口時間に基づいて算出される。 According to this invention, after the scavenging port is opened, the amount of combustion gas flowing from the combustion chamber to the scavenging chamber via the scavenging port is calculated, and the exhaust valve is opened and closed based on the calculated gas amount. Depending on the gas volume of the combustion gas flowing from the combustion chamber into the transfer chamber, and amount of CO 2 in the combustion gas flowing into the scavenging chamber, to change the amount of CO 2 that is scavenged into the combustion chamber, to control the opening and closing of the exhaust valve Thus, NOx generated by combustion can be adjusted. The amount of combustion gas flowing from the combustion chamber to the scavenging chamber via the scavenging port is calculated based on, for example, the difference between the scavenging chamber pressure and the combustion chamber pressure, the scavenging port opening area, and the scavenging port opening time. The

また、本発明に係る内燃機関の制御方法は、燃料ガスの燃焼によって生じた燃焼ガスを燃焼室から外部へ排出する排気口と、排気口を開閉する排気弁と、掃気室と燃焼室との間を連通し、往復動するピストンによって開閉される掃気ポートとを備える内燃機関の制御方法であって、掃気ポートが開口を開始した時、燃焼室内の圧力が掃気室内の圧力よりも高くなるように排気弁を開閉するステップを備え、前記掃気ポートが閉じられた後、前記排気弁によって前記排気口が閉じられるステップを更に有する。   Further, the control method for an internal combustion engine according to the present invention includes an exhaust port that discharges combustion gas generated by combustion of fuel gas to the outside from the combustion chamber, an exhaust valve that opens and closes the exhaust port, a scavenging chamber, and a combustion chamber. A control method for an internal combustion engine comprising a scavenging port that communicates with each other and is opened and closed by a reciprocating piston so that when the scavenging port starts to open, the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber The method further includes the step of opening and closing the exhaust valve, and further comprising the step of closing the exhaust port by the exhaust valve after the scavenging port is closed.

この発明によれば、燃料ガスの燃焼によって生じた燃焼ガスは、排気弁が開状態であるとき、燃焼室から排気口を介して外部へ排出される。一方、排気弁が閉状態であるとき、燃焼室の圧力は、排気弁が開状態であるときよりも相対的に高い。そのため、排気弁の閉状態から開状態への移行タイミングを遅くすると、燃焼室の圧力低下時期を遅延させることができる。そこで、掃気ポートが開口を開始した時、燃焼室内圧力が掃気室内圧力よりも高くなるように、排気弁の開閉を制御することによって、掃気ポートが開口を開始した後にも、燃焼室内圧力が掃気室内圧力よりも高い時期が生じる。その結果、燃焼ガスは、掃気ポートを介して燃焼室から掃気室へ流れる。したがって、掃気室から燃焼室へ空気が掃気されるとき、COを含む燃焼ガスも混合されるため、燃焼室内のCO濃度が高くなり、燃焼で発生するNOxが低減される。 According to this invention, the combustion gas generated by the combustion of the fuel gas is discharged from the combustion chamber to the outside through the exhaust port when the exhaust valve is in the open state. On the other hand, when the exhaust valve is closed, the pressure in the combustion chamber is relatively higher than when the exhaust valve is open. Therefore, if the transition timing from the closed state to the open state of the exhaust valve is delayed, the pressure drop timing of the combustion chamber can be delayed. Therefore, by controlling the opening and closing of the exhaust valve so that the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber when the scavenging port starts to open, the pressure in the combustion chamber remains after the scavenging port has started opening. A period higher than the room pressure occurs. As a result, the combustion gas flows from the combustion chamber to the scavenging chamber via the scavenging port. Therefore, when air is scavenged from the scavenging chamber to the combustion chamber, the combustion gas containing CO 2 is also mixed, so that the CO 2 concentration in the combustion chamber increases and NOx generated by combustion is reduced.

本発明によれば、少ない部材数で排ガスを再循環させることができ、排ガスに含まれるNOxを低減することができる。   According to the present invention, exhaust gas can be recirculated with a small number of members, and NOx contained in the exhaust gas can be reduced.

本発明の第1実施形態に係るガスエンジンシステムを示す構成図である。It is a lineblock diagram showing the gas engine system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るガスエンジンの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the gas engine which concerns on 1st Embodiment of this invention. 開口面積と時間の関係を示すグラフと、圧力と時間の関係を示すグラフである。It is the graph which shows the relationship between an opening area and time, and the graph which shows the relationship between a pressure and time. 本発明の第2実施形態に係るガスエンジンを示す概略構成図である。It is a schematic block diagram which shows the gas engine which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るガスエンジンの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the gas engine which concerns on 2nd Embodiment of this invention.

以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1〜3を用いて説明する。
本実施形態のガスエンジンシステム1は、ガスエンジン本体6や掃気室10等からなるガスエンジンと、ガスエンジンに接続された過給機9などを有する。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
The gas engine system 1 according to the present embodiment includes a gas engine including a gas engine body 6 and a scavenging chamber 10 and the like, a supercharger 9 connected to the gas engine, and the like.

ガスエンジンは、例えば舶用の高圧ガス噴射方式のガスエンジンであり、燃焼室(図示せず。)を含むエンジン本体6と、エンジン本体6の燃焼室に燃料ガスを噴射する噴射弁7と、静圧排気管8と、掃気室10などを備える。   The gas engine is, for example, a marine high-pressure gas injection type gas engine, and includes an engine body 6 including a combustion chamber (not shown), an injection valve 7 for injecting fuel gas into the combustion chamber of the engine body 6, and a static engine. A pressure exhaust pipe 8 and a scavenging chamber 10 are provided.

エンジン本体6は、例えば図示しないシリンダ及びピストンを有しており、ピストンに連結された連接棒、クランク軸によって、外部に回転仕事が取り出される。シリンダ内には燃焼室が形成される。   The engine body 6 has, for example, a cylinder and a piston (not shown), and rotational work is taken out by a connecting rod and a crankshaft connected to the piston. A combustion chamber is formed in the cylinder.

供給管12は、圧縮機5と燃料タンク(図示せず。)を接続し、供給管14は、圧縮機5と噴射弁14を接続する。燃料ガスは、供給管12,14と圧縮機5を介して、噴射弁7から高圧(例えば30MPa)でエンジン本体6の燃焼室内に噴射される。   The supply pipe 12 connects the compressor 5 and a fuel tank (not shown), and the supply pipe 14 connects the compressor 5 and the injection valve 14. The fuel gas is injected into the combustion chamber of the engine body 6 through the supply pipes 12 and 14 and the compressor 5 from the injection valve 7 at a high pressure (for example, 30 MPa).

エンジン本体6に形成された排気口には、排気弁21が設けられ、排気弁21は、排気口を開閉する。排気口は、燃料ガスの燃焼によって生じた排ガスを燃焼室から外部へ排出する。排気口は、排気管15と接続されている。静圧排気管8は、排気管15を介してエンジン本体6と接続され、排気管16を介して過給機9のタービン部9aの入口側と接続されている。一方、エンジン本体6の例えばシリンダライナに形成された掃気ポート11は、掃気室10と接続されており、掃気室10は、給気管19を介して過給機9のコンプレッサ部9bと接続されている。   An exhaust valve 21 is provided at an exhaust port formed in the engine body 6, and the exhaust valve 21 opens and closes the exhaust port. The exhaust port discharges the exhaust gas generated by the combustion of the fuel gas from the combustion chamber to the outside. The exhaust port is connected to the exhaust pipe 15. The static pressure exhaust pipe 8 is connected to the engine body 6 via the exhaust pipe 15 and is connected to the inlet side of the turbine section 9 a of the supercharger 9 via the exhaust pipe 16. On the other hand, a scavenging port 11 formed in, for example, a cylinder liner of the engine body 6 is connected to a scavenging chamber 10, and the scavenging chamber 10 is connected to a compressor unit 9 b of the supercharger 9 via an air supply pipe 19. Yes.

過給機9は、排気管15、静圧排気管8及び排気管16を介してエンジン本体6から導かれた排ガス(燃焼ガス)によって駆動されるタービン部9aと、このタービン部9aによって駆動されてエンジン本体6に外気を圧送するコンプレッサ部9bと、これらタービン部9aとコンプレッサ部9bとの間に設けられてこれらを支持するケーシング(図示せず。)とを主たる要素として構成されたものである。   The turbocharger 9 is driven by exhaust gas (combustion gas) guided from the engine body 6 through the exhaust pipe 15, the static pressure exhaust pipe 8 and the exhaust pipe 16, and is driven by the turbine section 9a. A compressor unit 9b that pumps outside air to the engine body 6 and a casing (not shown) that is provided between and supports the turbine unit 9a and the compressor unit 9b are configured as main elements. .

ケーシングには、一端部をタービン部9a側に突出させ、他端部をコンプレッサ部9bに突出させた回転軸9cが挿通されている。回転軸9cの一端部は、タービン部6aを構成するタービン・ロータ(図示せず。)のタービン・ディスク(図示せず。)に取り付けられており、回転軸9cの他端部は、コンプレッサ部6bを構成するコンプレッサ羽根車(図示せず。)のハブ(図示せず。)に取り付けられている。   A rotating shaft 9c having one end projecting toward the turbine section 9a and the other end projecting into the compressor section 9b is inserted into the casing. One end portion of the rotating shaft 9c is attached to a turbine disk (not shown) of a turbine rotor (not shown) constituting the turbine portion 6a, and the other end portion of the rotating shaft 9c is a compressor portion. It is attached to a hub (not shown) of a compressor impeller (not shown) constituting 6b.

タービン部9aを通過した排ガスは、タービン部9aの出口側に接続された排気管17を介してファンネル(図示せず。)に導かれた後、船外に排出される。   The exhaust gas that has passed through the turbine section 9a is guided to a funnel (not shown) through an exhaust pipe 17 connected to the outlet side of the turbine section 9a, and then discharged out of the ship.

コンプレッサ部9bの入口側に接続された給気管18には、消音器(図示せず。)が配置されており、この消音器を通過した外気が、コンプレッサ部9bに導かれる。また、コンプレッサ部9bの出口側に接続された給気管19の途中には、空気冷却器(図示せず。)及びサージタンク(図示せず。)が接続されており、コンプレッサ部9bを通過した外気は、空気冷却器及びサージタンクを通過した後、エンジン本体6に接続された掃気室10に供給される。   A silencer (not shown) is arranged in the air supply pipe 18 connected to the inlet side of the compressor unit 9b, and outside air that has passed through the silencer is guided to the compressor unit 9b. Further, an air cooler (not shown) and a surge tank (not shown) are connected in the middle of the air supply pipe 19 connected to the outlet side of the compressor unit 9b, and passed through the compressor unit 9b. The outside air is supplied to the scavenging chamber 10 connected to the engine body 6 after passing through the air cooler and the surge tank.

掃気室10には、過給機9によって、大気から導かれ、昇圧された次の燃焼サイクルに用いられる空気が溜められている。この新しい空気は、燃焼室内の燃焼ガスの膨張後期に排気弁21が開き燃焼室内が降圧し、掃気ポート11がピストンの移動によって開くと、掃気ポート11を通って燃焼室に導入される。   In the scavenging chamber 10, air that is introduced from the atmosphere and boosted by the supercharger 9 is used for the next combustion cycle. This new air is introduced into the combustion chamber through the scavenging port 11 when the exhaust valve 21 is opened and the pressure in the combustion chamber is lowered in the latter stage of expansion of the combustion gas in the combustion chamber, and the scavenging port 11 is opened by movement of the piston.

その後、排気弁21が閉じ、次にピストンの上昇により燃焼室内の空気、及び完全に排出できずに燃焼室内に溜った前サイクルの燃焼ガスが圧縮され、ピストン上死点付近で、噴射弁7から噴射された燃料ガスが燃焼し燃焼ガスが生成される。そして、燃焼ガスの膨張によって、ピストンが下方へ押し下げられる。このように、排気弁21が閉状態であるとき、図3に示すように、燃焼室の圧力は、排気弁21が開状態であるときよりも相対的に高い。   Thereafter, the exhaust valve 21 is closed, and then the air in the combustion chamber and the combustion gas of the previous cycle accumulated in the combustion chamber without being completely discharged due to the rise of the piston are compressed, and near the top dead center of the piston, the injection valve 7 The fuel gas injected from the combustion chamber burns to generate combustion gas. Then, the piston is pushed downward by the expansion of the combustion gas. Thus, when the exhaust valve 21 is in the closed state, as shown in FIG. 3, the pressure in the combustion chamber is relatively higher than when the exhaust valve 21 is in the open state.

そして、排気弁21が開状態になると、燃焼室から排気口を介して燃焼ガスが外部へ排出される。本実施形態では、掃気ポート11が開口を開始した時、燃焼室内圧力が掃気室10内圧力よりも高くなるように、排気弁21の開閉が制御される。例えば、図3の上のグラフの破線で示すように、排気弁12の閉状態から開状態への移行タイミングを遅くすることで、燃焼ガスが排出される時期を遅延させて、図3の下のグラフの破線で示すように、燃焼室の圧力低下時期を遅延させる。   When the exhaust valve 21 is opened, the combustion gas is discharged from the combustion chamber to the outside through the exhaust port. In the present embodiment, when the scavenging port 11 starts opening, the opening / closing of the exhaust valve 21 is controlled so that the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber 10. For example, as shown by the broken line in the upper graph of FIG. 3, by delaying the transition timing of the exhaust valve 12 from the closed state to the open state, the timing at which the combustion gas is discharged is delayed, As shown by the broken line in the graph, the pressure drop timing of the combustion chamber is delayed.

従来のガスエンジンでは、燃焼ガスの膨張によって、ピストンが下方へ押し下げられた後、排気弁21が開くタイミングが、本実施形態と異なり、掃気ポート11が開口を開始する前に、排気口が完全に開かれる。そのため、掃気ポート11が開口を開始した時、燃焼室内圧力は、掃気室10内圧力よりも低い。   In the conventional gas engine, the timing at which the exhaust valve 21 opens after the piston is pushed downward by the expansion of the combustion gas is different from the present embodiment, and before the scavenging port 11 starts opening, the exhaust port is completely opened. To be opened. Therefore, when the scavenging port 11 starts opening, the pressure in the combustion chamber is lower than the pressure in the scavenging chamber 10.

すなわち、図3の上のグラフの実線で示すように、排気弁21が開状態になり、燃焼ガスが外部へ排出されて、図3の下のグラフの実線に示すように、燃焼室内圧力が掃気室10内の圧力と同じか、それ以下程度まで低下した後、掃気ポート11が開かれる。その結果、掃気ポート11が開かれると、掃気室10から燃料室へ新しい空気が導入され、次のサイクルに必要な掃気が行われる。   That is, as shown by the solid line in the upper graph of FIG. 3, the exhaust valve 21 is opened, and the combustion gas is discharged to the outside. As shown by the solid line in the lower graph of FIG. After the pressure in the scavenging chamber 10 is reduced to the same level or lower, the scavenging port 11 is opened. As a result, when the scavenging port 11 is opened, new air is introduced from the scavenging chamber 10 into the fuel chamber, and scavenging necessary for the next cycle is performed.

一方、本実施形態では、掃気ポート11が開口を開始した後に、排気口が完全に開かれる。掃気ポート11の開時期及びその直後しばらくの間は、燃焼室内圧力が掃気室10内の圧力よりも高い。そのため、掃気ポート11が開かれると、掃気ポート11を介して、燃焼室から掃気室10内へCO濃度が高い燃焼ガスが逆流する。 On the other hand, in this embodiment, after the scavenging port 11 starts opening, the exhaust port is completely opened. The combustion chamber pressure is higher than the pressure in the scavenging chamber 10 during the opening timing of the scavenging port 11 and for a while immediately thereafter. Therefore, when the scavenging port 11 is opened, the combustion gas having a high CO 2 concentration flows backward from the combustion chamber into the scavenging chamber 10 via the scavenging port 11.

そして、燃焼室内圧力が掃気室10内の圧力と同じか、それ以下程度まで低下した後、掃気室10から燃料室へ新しい空気が導入され、次のサイクルに必要な掃気が行われる。   Then, after the pressure in the combustion chamber decreases to the same or lower than the pressure in the scavenging chamber 10, new air is introduced from the scavenging chamber 10 into the fuel chamber, and scavenging necessary for the next cycle is performed.

本実施形態の排気弁21の開閉のタイミングは、ガスエンジンの開発時に燃焼室内圧力の変動及び掃気室10内圧力の変動を測定しておき、実際のガスエンジンの動作時は、測定結果に基づくタイミングで排気弁21が開閉するようにしてもよい。または、実際のガスエンジンの動作時に、燃焼室内圧力Pcyl及び掃気室10内圧力Pを測定してもよい。 The timing of opening and closing the exhaust valve 21 of the present embodiment is based on the measurement of the fluctuation of the pressure in the combustion chamber and the fluctuation of the pressure in the scavenging chamber 10 during the development of the gas engine, and based on the measurement results during the actual operation of the gas engine. The exhaust valve 21 may be opened and closed at the timing. Alternatively , the combustion chamber pressure P cyl and the scavenging chamber pressure P s may be measured during actual operation of the gas engine.

例えば、図1に示すように、掃気室10に圧力センサー13が設けられ、圧力センサー13は、掃気室10内圧力Pを測定する。また、エンジン本体6に圧力センサー20が設けられ、圧力センサー20は、エンジン本体6の燃焼室内圧力Pcylを測定する。制御部3は、例えば演算・制御回路であり、圧力センサー13で測定された掃気室内圧力Pと、圧力センサー20で測定された燃焼室内圧力Pcylを取得し、掃気室内圧力Pと燃焼室内圧力Pcylに基づいて、排気弁21の開閉を制御する。 For example, as shown in FIG. 1, the pressure sensor 13 is provided in the scavenging chamber 10, the pressure sensor 13 measures the scavenging chamber 10 in the pressure P s. Further, a pressure sensor 20 is provided in the engine body 6, and the pressure sensor 20 measures a combustion chamber pressure P cyl of the engine body 6. Control unit 3 is, for example, an arithmetic and control circuit, and the scavenging chamber pressure P s which is measured by the pressure sensor 13, obtains the combustion chamber pressure P cyl measured by the pressure sensor 20, the scavenging chamber pressure P s combustion Based on the indoor pressure P cyl , the opening and closing of the exhaust valve 21 is controlled.

以下、図2を参照して、掃気室内圧力Pと燃焼室内圧力Pcylの差分に基づく排気弁21の開閉制御について説明する。 Hereinafter, the opening / closing control of the exhaust valve 21 based on the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl will be described with reference to FIG. 2.

まず、圧力センサー13で測定された掃気室内圧力Pと、圧力センサー20で測定された燃焼室内圧力Pcylを取得する(ステップS1)。次に、掃気室内圧力Pと燃焼室内圧力Pcylの差分を算出し、(Pcyl−P)が予め定められた目標範囲内にあるか否かを判断する(ステップS2)。 First, the scavenging chamber pressure P s measured by the pressure sensor 13 and the combustion chamber pressure P cyl measured by the pressure sensor 20 are acquired (step S1). Next, the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl is calculated, and it is determined whether or not (P cyl −P s ) is within a predetermined target range (step S2).

掃気室内圧力Pと燃焼室内圧力Pcylの差が目標範囲内にないときは、掃気室内圧力Pと燃焼室内圧力Pcylの差が目標範囲内となるように、排気弁21の開時期を調整する(ステップS3)。一方、目標範囲内となったときは、排気弁21の開閉制御に関する処理が終了しているか否かを判断する(ステップS4)。 When the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl is not within the target range, as the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl is within the target range, the opening timing of the exhaust valve 21 Is adjusted (step S3). On the other hand, when it is within the target range, it is determined whether or not the processing related to the opening / closing control of the exhaust valve 21 has been completed (step S4).

掃気室内圧力Pと燃焼室内圧力Pcylの差が目標範囲内にあり、排気弁21が全開状態へ移行する前など排気弁21の開閉制御に関する処理が終了していないときは、再びステップS1に戻って、開閉制御処理を継続する。一方、排気弁21が全開状態へ移行した後や、ピストンが下死点に到達したときは、開閉制御処理を終了する。このように、掃気室内圧力Pと燃焼室内圧力Pcylとの差分に基づいて、排気弁21の開閉制御を行うことによって、燃焼室の圧力低下時期を調整でき、掃気ポート11を介して燃焼室から掃気室10へ燃焼ガスを確実に流すことができる。 When the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl is within the target range and the processing related to the opening / closing control of the exhaust valve 21 is not completed, such as before the exhaust valve 21 is shifted to the fully open state, step S1 is performed again. Returning to step 4, the open / close control process is continued. On the other hand, after the exhaust valve 21 shifts to the fully open state or when the piston reaches the bottom dead center, the opening / closing control process is terminated. As described above, the opening / closing control of the exhaust valve 21 is performed based on the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl , whereby the pressure drop timing of the combustion chamber can be adjusted and combustion is performed via the scavenging port 11. The combustion gas can surely flow from the chamber to the scavenging chamber 10.

以上、本実施形態によれば、燃料室へ導入される新しい空気には、COを含む燃焼ガスも混合されるようになるため、燃焼室内のCO濃度が高くなり、燃焼で発生するNOxが低減される。また、エンジン本体6と掃気室10間で、燃焼ガスである排ガスが再循環される。したがって、排ガス再循環を行うために、エンジン本体6や掃気室10とは別に専用の通路やバルブを設ける必要がなく、部材数を増加させたり、部材を設置する空間を確保したりする必要がない。そのため、従来に比べて、少ない部材数、かつ省スペースで排ガス再循環を実施できる。また、燃料は、油燃料ではなく、ガス燃料であるため、燃焼ガスには煤が発生せず、掃気室に煤を含むような燃焼ガスが戻されることない。 As described above, according to the present embodiment, the new air introduced into the fuel chamber is also mixed with the combustion gas containing CO 2 , so that the concentration of CO 2 in the combustion chamber increases and NOx generated by combustion is increased. Is reduced. Further, exhaust gas as combustion gas is recirculated between the engine body 6 and the scavenging chamber 10. Therefore, in order to perform exhaust gas recirculation, it is not necessary to provide a dedicated passage or valve separately from the engine body 6 or the scavenging chamber 10, and it is necessary to increase the number of members or to secure a space for installing the members. Absent. Therefore, exhaust gas recirculation can be performed with a smaller number of members and a smaller space than in the past. Further, since the fuel is not oil fuel but gas fuel, soot is not generated in the combustion gas and combustion gas containing soot is not returned to the scavenging chamber.

[第2実施形態]
次に、本発明の第2実施形態について、図4及び図5を用いて説明する。
図4では、ガスエンジンをより実際の形状に近い模式図で表しているが、基本的な構成は図1と同一である。第1実施形態は、図3に示すように、掃気室内圧力Pと燃焼室内圧力Pcylの差に応じて、排気弁21の開閉を制御していたが、第2実施形態では、内部EGR量に応じて、排気弁24の開閉を制御する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
In FIG. 4, the gas engine is represented by a schematic diagram that is closer to an actual shape, but the basic configuration is the same as that in FIG. 1. In the first embodiment, as shown in FIG. 3, the opening and closing of the exhaust valve 21 is controlled according to the difference between the scavenging chamber pressure P s and the combustion chamber pressure P cyl , but in the second embodiment, the internal EGR is controlled. The opening / closing of the exhaust valve 24 is controlled according to the amount.

ガスエンジン2は、図4に示すように、ガスエンジン内部に形成された燃焼室22や掃気室23等からなる。ガスエンジンは、例えば舶用の高圧ガス噴射方式のガスエンジンであり、燃焼室22を含むエンジン本体と、エンジン本体の燃焼室22に燃料ガスを噴射する噴射弁(図示せず。)と、静圧排気管(図示せず。)と、掃気室23などを備える。   As shown in FIG. 4, the gas engine 2 includes a combustion chamber 22 and a scavenging chamber 23 formed inside the gas engine. The gas engine is a marine high-pressure gas injection type gas engine, for example, an engine body including a combustion chamber 22, an injection valve (not shown) for injecting fuel gas into the combustion chamber 22 of the engine body, and static pressure exhaust. A trachea (not shown) and a scavenging chamber 23 are provided.

エンジン本体は、例えば図示しないシリンダ及びピストン29を有しており、ピストン29に連結された連接棒、クランク軸によって、外部に回転仕事が取り出される。シリンダ内には燃焼室22が形成される。   The engine body has, for example, a cylinder and a piston 29 (not shown), and rotational work is taken out by a connecting rod and a crankshaft connected to the piston 29. A combustion chamber 22 is formed in the cylinder.

燃料ガスは、図示しない供給管と圧縮機を介して、噴射弁から高圧(例えば30MPa)でエンジン本体の燃焼室22内に噴射される。   The fuel gas is injected into the combustion chamber 22 of the engine body at a high pressure (for example, 30 MPa) from an injection valve via a supply pipe and a compressor (not shown).

エンジン本体に形成された排気口25には、排気弁24が設けられ、排気弁24は、排気口25を開閉する。排気口25は、燃料ガスの燃焼によって生じた排ガスを燃焼室22から外部へ排出する。排気口25は、排気管(図示せず。)と接続されている。また、エンジン本体のシリンダライナに形成された掃気ポート27は、掃気室23と接続されており、掃気室23は、給気管を介して例えば過給機のコンプレッサ部と接続されている。   An exhaust valve 24 is provided in an exhaust port 25 formed in the engine body, and the exhaust valve 24 opens and closes the exhaust port 25. The exhaust port 25 discharges the exhaust gas generated by the combustion of the fuel gas from the combustion chamber 22 to the outside. The exhaust port 25 is connected to an exhaust pipe (not shown). A scavenging port 27 formed in the cylinder liner of the engine body is connected to a scavenging chamber 23, and the scavenging chamber 23 is connected to, for example, a compressor unit of a supercharger via an air supply pipe.

掃気室23には、過給機によって、大気から導かれ、昇圧された次の燃焼サイクルに用いられる空気が溜められている。この新しい空気は、燃焼室22内の燃焼ガスの膨張後期に排気弁24が開き燃焼室22内が降圧し、掃気ポート27がピストン29の移動によって開くと、掃気ポート27を通って燃焼室22に導入される。   In the scavenging chamber 23, air that is introduced from the atmosphere and boosted by the supercharger is used for the next combustion cycle. This new air passes through the scavenging port 27 and passes through the combustion chamber 22 when the exhaust valve 24 opens and the pressure in the combustion chamber 22 is lowered in the latter stage of expansion of the combustion gas in the combustion chamber 22 and the scavenging port 27 is opened by movement of the piston 29. To be introduced.

その後、排気弁24が閉じ、次にピストン29の上昇により燃焼室22内の空気、及び完全に排出できずに燃焼室22内に溜った前サイクルの燃焼ガスが圧縮され、ピストン29上死点付近で、噴射弁から噴射された燃料ガスが燃焼し燃焼ガスが生成される。そして、燃焼ガスの膨張によって、ピストン29が下方へ押し下げられる。このように、排気弁24が閉状態であるとき、図3に示すように、燃焼室22の圧力は、排気弁24が開状態であるときよりも相対的に高い。   Thereafter, the exhaust valve 24 is closed, and then the air in the combustion chamber 22 and the combustion gas of the previous cycle accumulated in the combustion chamber 22 without being completely discharged are compressed by the rising of the piston 29, and the top dead center of the piston 29 is compressed. In the vicinity, the fuel gas injected from the injection valve burns to generate combustion gas. Then, the piston 29 is pushed downward by the expansion of the combustion gas. Thus, when the exhaust valve 24 is in the closed state, as shown in FIG. 3, the pressure in the combustion chamber 22 is relatively higher than when the exhaust valve 24 is in the open state.

そして、排気弁24が開状態になると、燃焼室22から排気口25を介して燃焼ガスが外部へ排出される。本実施形態では、掃気ポート27が開口を開始した時、燃焼室22内圧力が掃気室23内圧力よりも高くなるように、排気弁24の開閉が制御される。例えば、図3の上のグラフの破線で示すように、排気弁24の閉状態から開状態への移行タイミングを遅くすることで、燃焼ガスが排出される時期を遅延させて、図3の下のグラフの破線で示すように、燃焼室22の圧力低下時期を遅延させる。   When the exhaust valve 24 is opened, the combustion gas is discharged from the combustion chamber 22 through the exhaust port 25 to the outside. In the present embodiment, when the scavenging port 27 starts to open, the opening and closing of the exhaust valve 24 is controlled so that the pressure in the combustion chamber 22 becomes higher than the pressure in the scavenging chamber 23. For example, as shown by the broken line in the upper graph of FIG. 3, by delaying the transition timing of the exhaust valve 24 from the closed state to the open state, the timing at which the combustion gas is discharged is delayed, and the lower part of FIG. As shown by the broken line in the graph, the pressure drop timing of the combustion chamber 22 is delayed.

例えば、掃気ポート27が開口を開始した後に、排気口25が完全に開かれる。掃気ポート27の開時期及びその直後しばらくの間は、燃焼室22内圧力が掃気室23内の圧力よりも高い。そのため、掃気ポート27が開かれると、掃気ポート27を介して、図4の矢印Aの方向に、燃焼室22から掃気室23内へCO濃度が高い燃焼ガスが逆流する。 For example, after the scavenging port 27 starts to open, the exhaust port 25 is fully opened. During the opening timing of the scavenging port 27 and for a while immediately thereafter, the pressure in the combustion chamber 22 is higher than the pressure in the scavenging chamber 23. Therefore, when the scavenging port 27 is opened, the combustion gas having a high CO 2 concentration flows back from the combustion chamber 22 into the scavenging chamber 23 through the scavenging port 27 in the direction of arrow A in FIG.

そして、燃焼室22内圧力が掃気室23内の圧力と同じか、それ以下程度まで低下した後、掃気室23から燃料室22へ新しい空気が導入され、次のサイクルに必要な掃気が行われる。このとき、燃料室22へ導入される新しい空気には、COを含む燃焼ガスも混合されるようになるため、燃焼室22内のCO濃度が高くなり、燃焼で発生するNOxが低減される。すなわち、本実施形態では、燃焼室22と掃気室23間で、燃焼ガスである排ガスが再循環される。したがって、排ガス再循環を行うために、燃焼室22や掃気室23とは別に専用の通路やバルブを設ける必要がなく、部材数を増加させたり、部材を設置する空間を確保したりする必要がない。 Then, after the pressure in the combustion chamber 22 has decreased to the same level as or lower than the pressure in the scavenging chamber 23, new air is introduced from the scavenging chamber 23 into the fuel chamber 22 and scavenging necessary for the next cycle is performed. . At this time, the new air introduced into the fuel chamber 22, the combustion gas containing CO 2 is also to be mixed, CO 2 concentration in the combustion chamber 22 is increased, NOx is reduced to occur in the combustion The That is, in the present embodiment, exhaust gas that is combustion gas is recirculated between the combustion chamber 22 and the scavenging chamber 23. Therefore, in order to perform exhaust gas recirculation, it is not necessary to provide a dedicated passage or valve separately from the combustion chamber 22 or the scavenging chamber 23, and it is necessary to increase the number of members or to secure a space for installing the members. Absent.

本実施形態の排気弁24の開閉のタイミングは、ガスエンジンの開発時に燃焼室内圧力の変動及び掃気室10内圧力の変動を測定しておき、実際のガスエンジンの動作時は、測定結果に基づくタイミングで排気弁24が開閉するようにしてもよい。または、実際のガスエンジンの動作時に、燃焼室内圧力Pcyl及び掃気室10内圧力Pを測定してもよい。 The timing of opening and closing of the exhaust valve 24 of the present embodiment is based on the measurement of the fluctuation in the pressure in the combustion chamber and the fluctuation in the scavenging chamber 10 during the development of the gas engine, and based on the measurement results during the actual operation of the gas engine. The exhaust valve 24 may be opened and closed at the timing. Alternatively , the combustion chamber pressure P cyl and the scavenging chamber pressure P s may be measured during actual operation of the gas engine.

例えば、図4に示すように、掃気室23に圧力センサー28が設けられ、圧力センサー28は、掃気室内圧力Pを測定する。また、燃焼室22に圧力センサー26が設けられ、圧力センサー26は、燃焼室内圧力Pcylを測定する。制御部30は、例えば演算・制御回路であり、圧力センサー28で測定された掃気室内圧力Pと、圧力センサー26で測定された燃焼室内圧力Pcylを取得し、掃気室内圧力Pと燃焼室内圧力Pcylに基づいて、排気弁24の開閉を制御する。 For example, as shown in FIG. 4, a pressure sensor 28 provided in the scavenging chamber 23, the pressure sensor 28 measures the scavenging chamber pressure P s. Further, a pressure sensor 26 is provided in the combustion chamber 22, and the pressure sensor 26 measures the pressure P cyl in the combustion chamber. Control unit 30 is, for example, an arithmetic and control circuit, and the scavenging chamber pressure P s which is measured by the pressure sensor 28, obtains the combustion chamber pressure P cyl measured by the pressure sensor 26, the scavenging chamber pressure P s combustion Based on the indoor pressure P cyl , the opening / closing of the exhaust valve 24 is controlled.

そして、第1実施形態で説明したように、掃気室内圧力Pと燃焼室内圧力Pcylの差分に基づいて、排気弁24の開閉を制御してもよい。また、第1実施形態と異なり、燃焼室22から掃気室23へ流れる燃焼ガスのガス量に基づいて、排気弁24の開閉を制御してもよい。以下では、図5を参照して、燃焼ガスのガス量(以下、「内部EGR量」ともいう。)に基づく排気弁24の開閉制御について説明する。 Then, as described in the first embodiment, based on the difference of the combustion chamber pressure P cyl scavenging chamber pressure P s, it may control the opening and closing of the exhaust valve 24. Unlike the first embodiment, the opening / closing of the exhaust valve 24 may be controlled based on the amount of combustion gas flowing from the combustion chamber 22 to the scavenging chamber 23. Hereinafter, the opening / closing control of the exhaust valve 24 based on the amount of combustion gas (hereinafter also referred to as “internal EGR amount”) will be described with reference to FIG. 5.

まず、圧力センサー28で測定された掃気室内圧力Pと、圧力センサー26で測定された燃焼室内圧力Pcylを取得する(ステップS11)。次に、掃気室内圧力Pと燃焼室内圧力Pcylに基づいて、内部EGR量を算出する(ステップS12)。内部EGR量は、例えば、燃焼室内圧力Pcylと掃気室内圧力Pとの差分と、掃気ポート27の開口面積と、掃気ポート27の開口時間に基づいて算出される。 First, the scavenging chamber pressure P s measured by the pressure sensor 28 and the combustion chamber pressure P cyl measured by the pressure sensor 26 are acquired (step S11). Next, the internal EGR amount is calculated based on the scavenging chamber pressure P s and the combustion chamber pressure P cyl (step S12). The internal EGR amount is calculated based on, for example, the difference between the combustion chamber pressure P cyl and the scavenging chamber pressure P s , the opening area of the scavenging port 27, and the opening time of the scavenging port 27.

ガス流速uは、下の式1のように、燃焼室内圧力Pcylと掃気室内圧力Pとの差分と、燃焼室内ガス密度ρから算出される。

Figure 0006091024
なお、燃焼室内ガス密度ρは、掃気温度、掃気圧力、燃料投入量などから推定して求められる。 Gas flow rate u g, as equation 1 below, the difference between the combustion chamber pressure P cyl and scavenging chamber pressure P s, is calculated from the combustion chamber gas density [rho g.
Figure 0006091024
Note that the combustion chamber gas density [rho g is scavenging temperature, scavenging pressure, determined by estimating the like the fuel input.

そして、ガス流速u、掃気ポート27の開口面積から質量流量[kg/s]を算出する。内部EGR量は、算出した質量流量を、燃焼室内圧力Pcylが掃気室内圧力Pよりも大きくなっている開口時間で積分することによって算出される。 Then, the mass flow rate [kg / s] is calculated from the gas flow rate u g and the opening area of the scavenging port 27. The internal EGR amount is calculated by integrating the calculated mass flow rate with the opening time in which the combustion chamber pressure P cyl is larger than the scavenging chamber pressure P s .

内部EGR量が算出された後は、算出された内部EGR量が予め定められた目標範囲内にあるか否かを判断する(ステップS13)。内部EGR量が目標範囲内にないときは、内部EGR量が目標範囲内となるように排気弁24の開時期を調整する(ステップS14)。   After the internal EGR amount is calculated, it is determined whether or not the calculated internal EGR amount is within a predetermined target range (step S13). When the internal EGR amount is not within the target range, the opening timing of the exhaust valve 24 is adjusted so that the internal EGR amount is within the target range (step S14).

内部EGR量の目標範囲とは、例えば、NOx排出量が規定値を満たすような酸素濃度となるように決定される流量である。例えば、内部EGR量が足りずNOx排出量が多いときは、内部EGR量を増加させて、燃焼室に供給される空気に含まれるCO濃度を上昇させることによって、NOx排出量を低減できる。一方、目標範囲内となったときは、排気弁24の開閉制御に関する処理が終了しているか否かを判断する(ステップS15)。 The target range of the internal EGR amount is, for example, a flow rate determined such that the NOx emission amount becomes an oxygen concentration that satisfies a specified value. For example, when the amount of internal EGR is insufficient and the amount of NOx emission is large, the amount of NOx emission can be reduced by increasing the amount of internal EGR and increasing the concentration of CO 2 contained in the air supplied to the combustion chamber. On the other hand, when it is within the target range, it is determined whether or not the processing related to the opening / closing control of the exhaust valve 24 has been completed (step S15).

内部EGR量が目標範囲内にあり、排気弁24が全開状態へ移行する前など排気弁24の開閉制御に関する処理が終了していないときは、再びステップS1に戻って、開閉制御処理を継続する。一方、排気弁24が全開状態へ移行した後や、ピストン27が下死点に到達したときは、開閉制御処理を終了する。   When the internal EGR amount is within the target range and the process related to the opening / closing control of the exhaust valve 24 is not completed, such as before the exhaust valve 24 is shifted to the fully open state, the process returns to step S1 and the opening / closing control process is continued. . On the other hand, after the exhaust valve 24 shifts to the fully open state or when the piston 27 reaches the bottom dead center, the opening / closing control process is terminated.

以上、本実施形態によれば、排気弁24の開閉タイミングを調整して、内部EGR量を予め定められた目標範囲とすることによって、NOx排出量を目標値まで低減できる。   As described above, according to the present embodiment, the NOx emission amount can be reduced to the target value by adjusting the opening / closing timing of the exhaust valve 24 and setting the internal EGR amount within a predetermined target range.

1 ガスエンジンシステム
2 ガスエンジン
3,30 制御部
5 圧縮機
6 ガスエンジン本体
7 噴射弁
8 静圧排気管
9 過給機
9a タービン部
9b コンプレッサ部
9c 回転軸
10,23 掃気室
11,27 掃気ポート
13,20,26,28 圧力センサー
21,24 排気弁
22 燃焼室
25 排気口
29 ピストン
DESCRIPTION OF SYMBOLS 1 Gas engine system 2 Gas engine 3,30 Control part 5 Compressor 6 Gas engine main body 7 Injection valve 8 Static pressure exhaust pipe 9 Supercharger 9a Turbine part 9b Compressor part 9c Rotating shaft 10, 23 Scavenging chamber 11, 27 Scavenging port 13 , 20, 26, 28 Pressure sensor 21, 24 Exhaust valve 22 Combustion chamber 25 Exhaust port 29 Piston

Claims (6)

燃料ガスの燃焼によって生じた燃焼ガスを燃焼室から外部へ排出する排気口と、
前記排気口を開閉する排気弁と、
掃気室と前記燃焼室との間を連通し、往復動するピストンによって開閉される掃気ポートと、
前記掃気ポートが開口を開始した時、前記燃焼室内の圧力が前記掃気室内の圧力よりも高くなるように前記排気弁の開閉を制御する制御部と、
を備え、
前記掃気ポートが閉じられた後、前記排気弁によって前記排気口が閉じられる内燃機関。
An exhaust port for discharging the combustion gas generated by the combustion of the fuel gas to the outside from the combustion chamber;
An exhaust valve for opening and closing the exhaust port;
A scavenging port that communicates between the scavenging chamber and the combustion chamber and is opened and closed by a reciprocating piston;
A control unit that controls opening and closing of the exhaust valve so that the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber when the scavenging port starts opening;
With
An internal combustion engine in which the exhaust port is closed by the exhaust valve after the scavenging port is closed.
燃料ガスの燃焼によって生じた燃焼ガスを燃焼室から外部へ排出する排気口と、  An exhaust port for discharging the combustion gas generated by the combustion of the fuel gas to the outside from the combustion chamber;
前記排気口を開閉する排気弁と、  An exhaust valve for opening and closing the exhaust port;
掃気室と前記燃焼室との間を連通し、往復動するピストンによって開閉される掃気ポートと、  A scavenging port that communicates between the scavenging chamber and the combustion chamber and is opened and closed by a reciprocating piston;
前記掃気ポートが開口を開始した時、前記燃焼室内の圧力が前記掃気室内の圧力よりも高くなるように前記排気弁の開閉を制御する制御部と、  A control unit that controls opening and closing of the exhaust valve so that the pressure in the combustion chamber becomes higher than the pressure in the scavenging chamber when the scavenging port starts opening;
を備え、With
前記排気弁が開き始めた後、前記掃気ポートが開口を開始する内燃機関。  An internal combustion engine in which the scavenging port starts to open after the exhaust valve starts to open.
前記掃気室内の圧力を検出する第1検出部と、
前記燃焼室内の圧力を検出する第2検出部と、
を更に備え、
前記制御部は、前記掃気室内の圧力と前記燃焼室内の圧力との差分に基づいて、前記排気弁の開閉を制御する請求項1又は2に記載の内燃機関。
A first detector for detecting the pressure in the scavenging chamber;
A second detector for detecting the pressure in the combustion chamber;
Further comprising
The internal combustion engine according to claim 1 or 2 , wherein the control unit controls opening and closing of the exhaust valve based on a difference between a pressure in the scavenging chamber and a pressure in the combustion chamber.
前記制御部は、前記掃気ポートが開口した後に前記掃気ポートを介して前記燃焼室から前記掃気室へ流れる前記燃焼ガスのガス量を算出し、算出された前記ガス量に基づいて、前記排気弁の開閉を制御する請求項1又は2に記載の内燃機関。 The control unit calculates a gas amount of the combustion gas flowing from the combustion chamber to the scavenging chamber through the scavenging port after the scavenging port is opened, and based on the calculated gas amount, the exhaust valve The internal combustion engine according to claim 1 or 2 , which controls opening and closing of the engine. 燃料ガスの燃焼によって生じた燃焼ガスを燃焼室から外部へ排出する排気口と、前記排気口を開閉する排気弁と、掃気室と前記燃焼室との間を連通し、往復動するピストンによって開閉される掃気ポートとを備える内燃機関の制御方法であって、
前記掃気ポートが開口を開始した時、前記燃焼室内の圧力が前記掃気室内の圧力よりも高くなるように前記排気弁を開閉するステップを備え、
前記掃気ポートが閉じられた後、前記排気弁によって前記排気口が閉じられるステップを更に有する内燃機関の制御方法。
An exhaust port that discharges combustion gas generated by the combustion of the fuel gas from the combustion chamber to the outside, an exhaust valve that opens and closes the exhaust port, a scavenging chamber and the combustion chamber communicate with each other, and is opened and closed by a reciprocating piston. An internal combustion engine control method comprising:
Opening and closing the exhaust valve so that the pressure in the combustion chamber is higher than the pressure in the scavenging chamber when the scavenging port starts opening;
A control method for an internal combustion engine, further comprising a step of closing the exhaust port by the exhaust valve after the scavenging port is closed.
燃料ガスの燃焼によって生じた燃焼ガスを燃焼室から外部へ排出する排気口と、前記排気口を開閉する排気弁と、掃気室と前記燃焼室との間を連通し、往復動するピストンによって開閉される掃気ポートとを備える内燃機関の制御方法であって、  An exhaust port that discharges combustion gas generated by the combustion of the fuel gas from the combustion chamber to the outside, an exhaust valve that opens and closes the exhaust port, a scavenging chamber and the combustion chamber communicate with each other, and is opened and closed by a reciprocating piston. An internal combustion engine control method comprising:
前記掃気ポートが開口を開始した時、前記燃焼室内の圧力が前記掃気室内の圧力よりも高くなるように前記排気弁を開閉するステップを備え、  Opening and closing the exhaust valve so that the pressure in the combustion chamber is higher than the pressure in the scavenging chamber when the scavenging port starts opening;
前記排気弁が開き始めた後、前記掃気ポートが開口を開始するステップを更に有する内燃機関の制御方法。  A control method for an internal combustion engine, further comprising: starting the opening of the scavenging port after the exhaust valve starts to open.
JP2015147690A 2015-07-27 2015-07-27 Internal combustion engine and control method for internal combustion engine Active JP6091024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147690A JP6091024B2 (en) 2015-07-27 2015-07-27 Internal combustion engine and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147690A JP6091024B2 (en) 2015-07-27 2015-07-27 Internal combustion engine and control method for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011090953A Division JP5825823B2 (en) 2011-04-15 2011-04-15 Internal combustion engine and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015214983A JP2015214983A (en) 2015-12-03
JP6091024B2 true JP6091024B2 (en) 2017-03-08

Family

ID=54752059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147690A Active JP6091024B2 (en) 2015-07-27 2015-07-27 Internal combustion engine and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6091024B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029810B2 (en) * 1979-09-21 1985-07-12 三菱重工業株式会社 Scavenging device for 2-stroke internal combustion engine
JPS5815714A (en) * 1981-07-21 1983-01-29 Hitachi Zosen Corp Uniflow-scavenged engine with scavenging control valve
AT6339U1 (en) * 2002-06-27 2003-08-25 Avl List Gmbh TWO-STROKE INTERNAL COMBUSTION ENGINE WITH RINSE PURGE
JP2005030225A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Driving control to intake/exhaust valve in internal combustion engine

Also Published As

Publication number Publication date
JP2015214983A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US9976521B1 (en) Method and system for exhaust gas recirculation system diagnostics
US11739701B2 (en) Method to determine the mass of air trapped in each cylinder of an internal combustion engine
JP5301857B2 (en) Common rail type electronic injection control engine
EP2098701A1 (en) Internal combustion engine
JP2009216084A (en) Residual burnt gas scavenging method with double intake valve lift in direct-injection supercharged internal-combusion engine, notably of diesel type
JP2009513875A (en) Exhaust gas recirculation system
EP2708721A1 (en) Internal combustion engine control apparatus
JP5822445B2 (en) Blowby gas recirculation system
US9334817B2 (en) Supercharging system and diagnostic method for supercharging system
JP2014134161A (en) Internal combustion engine control device
JP2009013814A (en) Supercharger
KR101688865B1 (en) Apparatus for testing performance of a turbocharger
JP2009281144A (en) Control device for internal combustion engine with turbocharger
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
JP2009203918A (en) Operation control method of gasoline engine
EP2698518B1 (en) Internal combustion engine control apparatus
JP5825823B2 (en) Internal combustion engine and control method for internal combustion engine
JP6091024B2 (en) Internal combustion engine and control method for internal combustion engine
JP4542489B2 (en) Exhaust manifold internal temperature estimation device for internal combustion engine
JP2021169782A (en) Engine device
JP2011085081A (en) Method for determining engine misfire
JP5621638B2 (en) Exhaust gas recirculation system for internal combustion engines
US20220205375A1 (en) Blow-by gas leak diagnostic device
EP2642102A1 (en) Control device for internal combustion engine
JP5929823B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6091024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250