JP6088896B2 - Manufacturing method of all solid state battery - Google Patents

Manufacturing method of all solid state battery Download PDF

Info

Publication number
JP6088896B2
JP6088896B2 JP2013087508A JP2013087508A JP6088896B2 JP 6088896 B2 JP6088896 B2 JP 6088896B2 JP 2013087508 A JP2013087508 A JP 2013087508A JP 2013087508 A JP2013087508 A JP 2013087508A JP 6088896 B2 JP6088896 B2 JP 6088896B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
solid electrolyte
solid
polyvinyl acetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013087508A
Other languages
Japanese (ja)
Other versions
JP2014212022A (en
Inventor
寛子 宮崎
寛子 宮崎
山内 健司
健司 山内
基邦 一谷
基邦 一谷
寛明 竹原
寛明 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013087508A priority Critical patent/JP6088896B2/en
Publication of JP2014212022A publication Critical patent/JP2014212022A/en
Application granted granted Critical
Publication of JP6088896B2 publication Critical patent/JP6088896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、バインダーを低温、短時間で脱脂することができることから、電極活物質又は固体電解質の劣化や、バインダーの残留による不具合を防止することができ、優れた特性を有する全固体電池を製造することが可能な全固体電池の製造方法に関する。また、該全固体電池の製造方法を用いた全固体電池に関する。 Since the binder can be degreased in a short time at a low temperature, the electrode active material or the solid electrolyte can be prevented from being deteriorated, and defects due to the binder remaining can be prevented, and an all-solid battery having excellent characteristics can be manufactured. The present invention relates to a method for manufacturing an all-solid battery that can be used. The present invention also relates to an all solid state battery using the method for producing the all solid state battery.

携帯電話、ノートパソコン等の携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。リチウム二次電池は、今後はハイブリッドカー、電力負荷平準化システム用等の大形電池としても実用化されると予想されており、その重要性はますます高まっている。 Most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers are lithium secondary batteries. Lithium secondary batteries are expected to be put into practical use as large batteries for hybrid cars and power load leveling systems in the future, and their importance is increasing.

リチウム二次電池は、いずれもリチウムを可逆的に吸蔵・放出することが可能な材料を含有する正極及び負極、非水系有機溶媒にリチウムイオン伝導体を溶解させた電解液、セパレータから構成されている。このうち、電解液としては、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、プロピレンカーボネート等の溶媒に溶解させたものが用いられている。 A lithium secondary battery is composed of a positive electrode and a negative electrode each containing a material capable of reversibly occluding and releasing lithium, an electrolyte in which a lithium ion conductor is dissolved in a non-aqueous organic solvent, and a separator. Yes. Among these, as the electrolytic solution, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate dissolved in a solvent such as propylene carbonate is used.

しかしながら、このような液状の電解質を採用したリチウム二次電池は、電池の構成から、正極と負極の短絡を起こしやすく、このような短絡に起因して、発熱・発火を引き起こすことから、安全上の問題があった。 However, a lithium secondary battery employing such a liquid electrolyte easily causes a short circuit between the positive electrode and the negative electrode due to the structure of the battery, and causes heat generation and ignition due to such a short circuit. There was a problem.

このような問題点を解消するため、液状の電解質ではなく、広い電位窓においても化学的に安定な高分子ポリマーや無機系のセラミックス等を用いて電解質を固体化することで、安全性を確保した電池の開発が検討されている。なかでも、酸化物セラミックス系固体電解質は、化学的な安定性が高く、安全性の観点から注目されている。 In order to solve these problems, safety is ensured by solidifying the electrolyte using a chemically stable polymer or inorganic ceramics in a wide potential window instead of a liquid electrolyte. The development of such a battery is under consideration. Among these, oxide ceramic solid electrolytes have high chemical stability and are attracting attention from the viewpoint of safety.

セラミックス系固体電解質は、セラミック粉末、ガラス粒子等の無機微粒子をバインダー樹脂に分散させた無機微粒子分散ペースト組成物を、グリーンシートに成形し、焼成体行程を経て板状の固体電解質が形成される。
例えば、特許文献1には、リチウムイオン伝導性バインダーを含む溶媒中に活物質を分散させた活物質スラリー、及び、リチウムイオン伝導性バインダーを含む溶媒中に硫化物系固体電解質を分散させた固体電解質スラリーから活物質シート及び固体電解質シートを形成した後、該固体電解質シートを2枚の活物質シートで狭持し、更に2枚の集電体シートで狭持して積層体を形成しバインダーの融点以上の温度で真空ホットプレスすることにより、セラミックス系固体電解質を有する電池を製造する方法が記載されている。
Ceramic-based solid electrolyte is formed by forming an inorganic fine particle dispersed paste composition in which inorganic fine particles such as ceramic powder and glass particles are dispersed in a binder resin into a green sheet, and a plate-like solid electrolyte is formed through a firing process. .
For example, Patent Document 1 discloses an active material slurry in which an active material is dispersed in a solvent containing a lithium ion conductive binder, and a solid in which a sulfide-based solid electrolyte is dispersed in a solvent containing a lithium ion conductive binder. After forming an active material sheet and a solid electrolyte sheet from the electrolyte slurry, the solid electrolyte sheet is sandwiched between two active material sheets, and further sandwiched between two current collector sheets to form a laminate and a binder A method of manufacturing a battery having a ceramic solid electrolyte by vacuum hot pressing at a temperature equal to or higher than the melting point of is described.

また、活物質シートや固体電解質シートといったシートが、カット時や積層時、プレス時等に、破れたりしない程度の機械的強度を付与する方法として、特許文献2には、バインダー樹脂にポリビニルブチラール樹脂を用いた検討が行われている。
しかしながら、この方法では、Li含有ガラスの結晶構造の転位を抑制するため、350℃で75時間保持することで、バインダー樹脂を分解する焼成方法が行われており、極めて非効率となっていた。一方で、焼成工程において、時間を短くすると、バインダーが充分に分解されず、電解質層中に導電性炭化物が残留し、自己放電や内部短絡等が発生するという問題があった。
In addition, as a method for imparting mechanical strength to such an extent that a sheet such as an active material sheet or a solid electrolyte sheet is not torn at the time of cutting, laminating, pressing, etc., Patent Document 2 discloses a polyvinyl butyral resin as a binder resin. Is being studied.
However, in this method, in order to suppress the dislocation of the crystal structure of the Li-containing glass, a baking method for decomposing the binder resin by holding at 350 ° C. for 75 hours is performed, which is extremely inefficient. On the other hand, when the time is shortened in the firing step, the binder is not sufficiently decomposed, and there is a problem that conductive carbide remains in the electrolyte layer and self-discharge or internal short circuit occurs.

特開2010−33918号公報JP 2010-33918 A 特開2012−238545号公報JP 2012-238545 A

本発明は、上記現状に鑑み、バインダーを低温、短時間で脱脂することができることから、電極活物質又は固体電解質の劣化や、バインダーの残留による不具合を防止することができ、優れた特性を有する全固体電池を製造することが可能な全固体電池の製造方法を提供する。また、該全固体電池の製造方法を用いた全固体電池を提供する。 In view of the above situation, the present invention is capable of degreasing the binder at a low temperature and in a short time. Therefore, the electrode active material or the solid electrolyte can be prevented from being deteriorated, and problems due to the binder remaining can be prevented. An all-solid battery manufacturing method capable of manufacturing an all-solid battery is provided. Moreover, the all-solid-state battery using the manufacturing method of this all-solid-state battery is provided.

本発明は、電極活物質層と固体電解質層とを有する全固体電池の製造方法であって、電極活物質及び電極活物質層用バインダーを含有する電極活物質層用スラリーを成形して電極活物質シートを作製する工程、固体電解質及び固体電解質層用バインダーを含有する固体電解質層用スラリーを成形して固体電解質シートを作製する工程、前記電極活物質シート及び固体電解質シートを積層して積層体を作製する工程、及び、前記積層体を400℃以下の温度で焼成する焼成工程を有し、前記体電解質層用バインダーは、水酸基量が23モル%以下のポリビニルアセタール樹脂を含有し、前記ポリビニルアセタール樹脂は、主鎖中にα−オレフィン単位を有するか、又は、メタアクリルモノマーからなるユニットがグラフト共重合したグラフト共重合体であり、前記焼成工程において、200℃/分以上の昇温速度で焼成する全固体電池の製造方法である。
以下に詳細を説明する。
The present invention relates to a method for producing an all-solid battery having an electrode active material layer and a solid electrolyte layer, wherein an electrode active material layer slurry containing an electrode active material and a binder for an electrode active material layer is formed to form an electrode active material. A step of producing a material sheet, a step of forming a solid electrolyte sheet slurry by forming a solid electrolyte and a solid electrolyte layer slurry containing a binder for the solid electrolyte layer, and laminating the electrode active material sheet and the solid electrolyte sheet step of preparing a, and has a firing step of firing the laminate at 400 ° C. below the temperature, the binder for the solid body electrolyte layer, the amount of hydroxyl groups is contained 23 mol% of a polyvinyl acetal resin, wherein Polyvinyl acetal resin has an α-olefin unit in the main chain, or a graft copolymerized unit composed of a methacrylic monomer. A polymer, in the firing step, a method for manufacturing an all-solid battery firing at 200 ° C. / min or more Atsushi Nobori rate.
Details will be described below.

本発明者らは、鋭意検討した結果、水酸基量が23モル%以下のポリビニルアセタール樹脂は、不活性ガス雰囲気中、昇温速度100℃/分以上で加熱した場合、400℃に至る前に脱脂が終了することが分かった。そして、電極活物質層用スラリー及び/又は固体電解質層用スラリーに、このような所定のポリビニルアセタール樹脂を用いることで、短時間で焼成工程を完了できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have determined that a polyvinyl acetal resin having a hydroxyl group content of 23 mol% or less is degreased before reaching 400 ° C. when heated at a temperature increase rate of 100 ° C./min or more in an inert gas atmosphere. Was found to end. And it discovered that a baking process could be completed in a short time by using such predetermined polyvinyl acetal resin for the slurry for electrode active material layers and / or the slurry for solid electrolyte layers, and came to complete this invention. .

本発明では、まず、電極活物質及び電極活物質層用バインダーを含有する電極活物質層用スラリーを成形して電極活物質シートを作製する工程、及び、固体電解質及び固体電解質層用バインダーを含有する固体電解質層用スラリーを成形して固体電解質シートを作製する工程を行う。 In the present invention, first, a process for forming an electrode active material layer slurry by forming an electrode active material layer slurry containing an electrode active material and an electrode active material layer binder, and a solid electrolyte and a solid electrolyte layer binder are included. A step of forming a solid electrolyte sheet by forming a slurry for the solid electrolyte layer is performed.

上記電極活物質層用バインダー及び/又は固体電解質層用バインダーは、水酸基量が23モル%以下のポリビニルアセタール樹脂を含有する。
従来、ポリビニルアセタール樹脂を400℃以下で熱分解させるためには、長時間かけて分解させる必要があったが、本発明では、上記ポリビニルアセタール樹脂を用いることで、熱分解時のポリビニルアセタール樹脂の脱水や、脱炭酸反応に伴う二重結合を多く有する煤の発生を抑制することが可能となる。その結果、400℃の低温でも短時間で焼成工程を完了することが可能となる。
The binder for an electrode active material layer and / or the binder for a solid electrolyte layer contains a polyvinyl acetal resin having a hydroxyl group content of 23 mol% or less.
Conventionally, in order to thermally decompose polyvinyl acetal resin at 400 ° C. or lower, it has been necessary to decompose over a long period of time. However, in the present invention, by using the polyvinyl acetal resin, the polyvinyl acetal resin at the time of thermal decomposition can be used. It becomes possible to suppress the generation of soot having many double bonds accompanying dehydration and decarboxylation reaction. As a result, the firing process can be completed in a short time even at a low temperature of 400 ° C.

上記ポリビニルアセタール樹脂は、水酸基量の上限が23モル%である。上記水酸基量を23モル%以下とすることで、高温雰囲気下で樹脂中に酸素を多く残留させることが可能となり、短時間での脱脂が可能となる。
上記水酸基量が23モル%を超えると、分解終了温度が高くなる。
上記水酸基量の好ましい上限は18モル%、好ましい下限は3モル%である。より好ましい上限は16モル%、より好ましい下限は3モル%であり、更に好ましい上限は10モル%、更に好ましい下限は4モル%である。
In the polyvinyl acetal resin, the upper limit of the amount of hydroxyl groups is 23 mol%. By making the amount of the hydroxyl group 23 mol% or less, it becomes possible to leave a large amount of oxygen in the resin under a high temperature atmosphere, and degreasing in a short time becomes possible.
When the hydroxyl group content exceeds 23 mol%, the decomposition end temperature increases.
A preferable upper limit of the amount of the hydroxyl group is 18 mol%, and a preferable lower limit is 3 mol%. A more preferred upper limit is 16 mol%, a more preferred lower limit is 3 mol%, a still more preferred upper limit is 10 mol%, and a still more preferred lower limit is 4 mol%.

上記ポリビニルアセタール樹脂のアセタール化度は70〜82モル%が好ましい。
上記アセタール化度が70モル%未満であると、ポリビニルアセタール樹脂の水酸基量が多くなり、400℃以下の焼成条件下でバインダーを分解できないおそれがある。上記アセタール化度が82モル%は理論上のアセタール化反応の上限である。好ましくは、72〜81モル%である。
The degree of acetalization of the polyvinyl acetal resin is preferably 70 to 82 mol%.
If the degree of acetalization is less than 70 mol%, the amount of hydroxyl groups in the polyvinyl acetal resin increases, and the binder may not be decomposed under baking conditions of 400 ° C or lower. The acetalization degree of 82 mol% is the theoretical upper limit of the acetalization reaction. Preferably, it is 72-81 mol%.

また、上記ポリビニルアセタール樹脂では、水酸基量を低減させることが好ましいが、その手段としては、アセタール化以外の反応によって水酸基量を低減させることが好ましい。
上記アセタール化以外の反応によって水酸基量を低減させる方法については特に限定されないが、イソシアネート化合物や酸、塩基存在下でエポキシ化合物と水酸基とを反応させる方法等が挙げられる。
また、上記ポリビニルアセタール樹脂において、最も水素引き抜き反応が起きやすい官能基は水酸基であるため、この性質を利用して、ベンゾフェノン等のカルボニル化合物の熱又は光による水素引き抜き反応、パーオキサイド化合物の熱分解ラジカルによる水素引き抜き反応(ビニル化合物のグラフト化反応)等を用いて水酸基量を低減させてもよい。なかでも、反応自体が容易で様々な官能基を付与出来る点からパーオキサイド化合物によるビニル化合物のグラフト化が好適に用いることができる。
Moreover, in the said polyvinyl acetal resin, it is preferable to reduce the amount of hydroxyl groups, but as the means, it is preferable to reduce the amount of hydroxyl groups by reactions other than acetalization.
The method for reducing the amount of hydroxyl groups by a reaction other than the acetalization is not particularly limited, and examples thereof include a method of reacting an epoxy compound and a hydroxyl group in the presence of an isocyanate compound, an acid, or a base.
Further, in the polyvinyl acetal resin, the functional group that is most likely to undergo hydrogen abstraction reaction is a hydroxyl group. Therefore, by utilizing this property, hydrogen abstraction reaction by heat or light of carbonyl compounds such as benzophenone, thermal decomposition of peroxide compounds. The amount of hydroxyl groups may be reduced using a hydrogen abstraction reaction (grafting reaction of a vinyl compound) or the like by radicals. Among these, grafting of a vinyl compound with a peroxide compound can be suitably used because the reaction itself is easy and various functional groups can be imparted.

上記ポリビニルアセタール樹脂は、ケン化度が80モル%以上のポリビニルアルコールをアセタール化することで得られるものであることが好ましい。
上記ケン化度80モル%未満のポリビニルアルコールを用いた場合、ポリビニルアルコールの水への溶解性が悪くなるためアセタール化反応が困難になることがある。
The polyvinyl acetal resin is preferably obtained by acetalizing polyvinyl alcohol having a saponification degree of 80 mol% or more.
When polyvinyl alcohol having a saponification degree of less than 80 mol% is used, the acetalization reaction may be difficult because of the poor solubility of polyvinyl alcohol in water.

上記ポリビニルアルコールは、重合度が1000〜4000であることが好ましい。
上記重合度が1000未満であると、電極活物質シートや固体電解質シートの強度が不充分となることがある。逆に重合度が4000を超えると、水への溶解性が低下したり、水溶液の粘度が高くなりすぎたりしてアセタール化が困難となることがある。また、溶液粘度が高くなりすぎて塗工性が低下する。なお、本発明において、ポリビニルアセタールの重合度は、合成する際の原料であるポリビニルアルコールの重合度を用いる。2種以上のポリビニルアルコールを混合する場合には、これらの重合度の平均を用いる。
The polyvinyl alcohol preferably has a polymerization degree of 1000 to 4000.
When the polymerization degree is less than 1000, the strength of the electrode active material sheet or the solid electrolyte sheet may be insufficient. On the other hand, when the degree of polymerization exceeds 4000, the solubility in water may decrease, or the viscosity of the aqueous solution may become too high, making acetalization difficult. In addition, the solution viscosity becomes too high and the coatability is lowered. In the present invention, the degree of polymerization of polyvinyl acetal is the degree of polymerization of polyvinyl alcohol which is a raw material for synthesis. When mixing 2 or more types of polyvinyl alcohol, the average of these polymerization degrees is used.

上記ポリビニルアルコールは、ビニルエステルの重合体をケン化することにより得られる。ビニルエステルとしては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどが挙げられるが、酢酸ビニルが経済的にみて好ましい。 The polyvinyl alcohol can be obtained by saponifying a vinyl ester polymer. Examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate and the like, and vinyl acetate is preferable from the economical viewpoint.

上記ポリビニルアルコールは、主鎖にα−オレフィンを含有していることが好ましい。α−オレフィンによってポリビニルアセタール樹脂の水素結合力が弱められるため、粘度の経時安定性を向上させることができたり、スクリーン印刷性を向上させたりすることができる。上記α−オレフィンとしては、例えば、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、へキシレン、シクロヘキシレン、シクロヘキシルエチレン、シクロヘキシルプロピレン等が挙げられ、特にエチレンが好ましい。上記α−オレフィンの含有量としては、1〜20モル%であることが好ましい。1モル%より少ないと、得られるポリビニルアセタール樹脂の特性が未変性のポリビニルアセタール樹脂と何ら変わりなく、20モル%より多いと、ポリビニルアルコールの水への溶解性が低下するため、アセタール化反応が困難になったり、できあがったポリビニルアセタール樹脂の疎水性が強くなりすぎて有機溶剤への溶解性が低下したりする。 The polyvinyl alcohol preferably contains an α-olefin in the main chain. Since the hydrogen bond strength of the polyvinyl acetal resin is weakened by the α-olefin, the viscosity stability over time can be improved, and the screen printability can be improved. Examples of the α-olefin include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, hexylene, cyclohexylene, cyclohexylethylene, and cyclohexylpropylene, and ethylene is particularly preferable. As content of the said alpha olefin, it is preferable that it is 1-20 mol%. If the amount is less than 1 mol%, the properties of the resulting polyvinyl acetal resin are the same as those of the unmodified polyvinyl acetal resin. If the amount is more than 20 mol%, the solubility of polyvinyl alcohol in water decreases. It becomes difficult or the hydrophobicity of the resulting polyvinyl acetal resin becomes too strong, so that the solubility in an organic solvent is lowered.

上記ポリビニルアルコールは本発明の効果を損なわない範囲で、その他のエチレン性不飽和単量体を共重合したものでも良い。このようなエチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸、アクリロニトリルメタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸、及びそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、N−ビニルピロリドン、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム等が挙げられる。また、チオール酢酸、メルカプトプロピオン酸等のチオール化合物の存在下で、酢酸ビニル等のビニルエステル系単量体とエチレンを共重合し、それをケン化することによって得られる末端変性ポリビニルアルコールも用いることができる。 The polyvinyl alcohol may be copolymerized with other ethylenically unsaturated monomers as long as the effects of the present invention are not impaired. Examples of such ethylenically unsaturated monomers include acrylic acid, methacrylic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, acrylonitrile methacrylonitrile, acrylamide, methacrylamide, and trimethyl. -(3-acrylamido-3-dimethylpropyl) -ammonium chloride, acrylamido-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, N-vinyl pyrrolidone, vinyl chloride, vinyl bromide, vinyl fluoride , Vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, sodium vinyl sulfonate, sodium allyl sulfonate and the like. Also use terminal-modified polyvinyl alcohol obtained by copolymerizing vinyl ester monomer such as vinyl acetate with ethylene in the presence of thiol compounds such as thiol acetic acid and mercaptopropionic acid, and saponifying it. Can do.

上記アセタール化に用いられるアルデヒドは特に限定されないが、例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、ブチルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2−エチルヘキシルアルデヒド、シクロヘキシルアルデヒド、フルフラール、グリオキザール、グルタルアルデヒド、ベンズアルデヒド、2−メチルベンズアルデヒド、3−メチルベンズアルデヒド、4−メチルベンズアルデヒド、p−ヒドロキシアルデヒド、m−ヒドロキシアルデヒド、フェニルアセトアルデヒド、フェニルプロピオンアルデヒド等が挙げられる。これらのアルデヒドは単独で用いても2種以上併用しても良く、アセトアルデヒド及び/又はブチルアルデヒドが好適に用いられる。 The aldehyde used for the acetalization is not particularly limited. For example, formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde, butyraldehyde, amylaldehyde, hexylaldehyde, heptylaldehyde, 2-ethylhexylaldehyde Cyclohexyl aldehyde, furfural, glyoxal, glutaraldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxyaldehyde, m-hydroxyaldehyde, phenylacetaldehyde, phenylpropionaldehyde and the like. These aldehydes may be used alone or in combination of two or more, and acetaldehyde and / or butyraldehyde is preferably used.

上記ポリビニルアセタール樹脂は、ポリビニルアルコール樹脂を温水で溶解した後、酸触媒の存在下で所定のアセタール化度となるようにアルデヒドを添加し、反応させた後、水洗、中和、乾燥することで得ることができる。 The polyvinyl acetal resin is prepared by dissolving a polyvinyl alcohol resin in warm water, adding an aldehyde so as to have a predetermined degree of acetalization in the presence of an acid catalyst, reacting, and then washing, neutralizing, and drying. Can be obtained.

上記酸触媒としては特に規定されず、有機酸、無機酸いずれも用いることができるが、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。また、中和に用いられるアルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等が挙げられる。 The acid catalyst is not particularly limited, and any organic acid or inorganic acid can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid. Moreover, as an alkali used for neutralization, sodium hydroxide, potassium hydroxide, ammonia, sodium acetate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate etc. are mentioned, for example.

上記水酸基量が23モル%以下のポリビニルアセタール樹脂を作製する方法としては、上記α−オレフィンを含有するポリビニルアルコールを原料とする方法のほか、例えば、一般的な製造条件で作成されたポリビニルアセタール樹脂の水酸基に単官能基のエポキシ化合物を反応させる方法、水素引き抜き性のラジカル開始剤を用いて熱分解性の好ましいメタアクリルモノマーを付加反応させる方法等が挙げられる。
上記メタアクリルモノマーを付加反応させる方法では、反応前のポリビニルアセタール樹脂の水酸基にメタアクリルモノマーからなるユニットがグラフト共重合したグラフト共重合体となる。
As a method for producing the polyvinyl acetal resin having a hydroxyl group content of 23 mol% or less, in addition to the method using the polyvinyl alcohol containing the α-olefin as a raw material, for example, a polyvinyl acetal resin produced under general production conditions And a method in which a monofunctional epoxy compound is reacted with the hydroxyl group, a method in which a thermally decomposable preferable methacrylic monomer is subjected to an addition reaction using a hydrogen abstraction radical initiator, and the like.
In the method of addition reaction of the methacrylic monomer, a graft copolymer obtained by graft-copolymerizing a unit composed of the methacrylic monomer to the hydroxyl group of the polyvinyl acetal resin before the reaction is obtained.

上記メタアクリルモノマーとしては、例えば、エステル置換基の炭素数が4以下のメタアクリルモノマーが好ましく、なかでもメチルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート等が好ましい。
上記水素引き抜きに用いるラジカル開始剤としては、特に限定されないが、例えば、パーケタール型、パーエステル型、モノカーボネート型、ジアルキル型のパーオキサイド類が好ましく用いることが出来る。また、水素引き抜きに用いるパーオキサイドはtert−ブチル基、フェニル基、クミル基などを有するパーオキサイド化合物が、水素引き抜き性が高いことから、好ましく用いることが出来る。
As said methacryl monomer, the methacryl monomer whose carbon number of an ester substituent is 4 or less is preferable, for example, methyl methacrylate, butyl methacrylate, isobutyl methacrylate, etc. are preferable.
Although it does not specifically limit as a radical initiator used for the said hydrogen abstraction, For example, perketal type, perester type | mold, a monocarbonate type, and a dialkyl type peroxide can be used preferably. As the peroxide used for hydrogen abstraction, a peroxide compound having a tert-butyl group, a phenyl group, a cumyl group, or the like can be preferably used because of its high hydrogen abstraction property.

上記ポリビニルアセタール樹脂の水酸基に付加反応させる化合物としては、上記メタクリルモノマーのほかに、アクリルモノマー、スチレン、α−メチルスチレン、酢酸ビニル等のモノマーが挙げられる。熱分解性を高めることが可能となることから、特に、メタクリルモノマー、アクリルモノマーが好ましい。 Examples of the compound that undergoes an addition reaction with the hydroxyl group of the polyvinyl acetal resin include monomers such as acrylic monomer, styrene, α-methylstyrene, and vinyl acetate in addition to the methacrylic monomer. In particular, methacrylic monomers and acrylic monomers are preferable because thermal decomposability can be improved.

上記ポリビニルアセタール樹脂がグラフト共重合体である場合、グラフト化度は特に限定されないが、1〜30モル%である。上記範囲内であることで、ポリビニルアセタール樹脂の特性を損なうことなく、水酸基量が23モル%以下のポリビニルアセタール樹脂を作製することができる。より好ましいグラフト化度は5〜20モル%である。
ポリビニルアセタール樹脂をグラフト共重合体とすることで、特に水酸基量が18モル%以下のポリビニルアセタール樹脂を容易に作製することができる。
なお、上記グラフト化度は、グラフト鎖部分のモル比のことである。
When the polyvinyl acetal resin is a graft copolymer, the degree of grafting is not particularly limited, but is 1 to 30 mol%. Within the above range, a polyvinyl acetal resin having a hydroxyl group content of 23 mol% or less can be produced without impairing the properties of the polyvinyl acetal resin. A more preferable degree of grafting is 5 to 20 mol%.
By using a polyvinyl acetal resin as a graft copolymer, a polyvinyl acetal resin having a hydroxyl group content of 18 mol% or less can be easily prepared.
The degree of grafting is the molar ratio of the graft chain portion.

上記電極活物質層用スラリーにおける上記ポリビニルアセタール樹脂の含有量としては、好ましい下限が1重量%、好ましい上限が20重量%である。1重量%未満であると、電極活物質シートが形成できないことがあり、20重量%を超えると、粘度が高すぎて平滑なシートが得られないことがある。 As content of the said polyvinyl acetal resin in the said slurry for electrode active material layers, a preferable minimum is 1 weight% and a preferable upper limit is 20 weight%. If it is less than 1% by weight, an electrode active material sheet may not be formed. If it exceeds 20% by weight, the viscosity may be too high to obtain a smooth sheet.

上記固体電解質層用スラリーにおける上記ポリビニルアセタール樹脂の含有量としては、好ましい下限が3重量%、好ましい上限が10重量%である。3重量%未満であると、固体電解質層シートの強度が低く、取り扱いできないことがあり、10重量%を超えると、焼結性で脱脂出来ずに残炭が残ることがある。 As content of the said polyvinyl acetal resin in the said slurry for solid electrolyte layers, a preferable minimum is 3 weight% and a preferable upper limit is 10 weight%. If it is less than 3% by weight, the strength of the solid electrolyte layer sheet may be low and may not be handled. If it exceeds 10% by weight, residual carbon may remain without being defatted due to sinterability.

上記電極活物質としては特に限定されず、例えば、LiO・Al・SiO系無機ガラス等の低融点ガラス、LiS−M(M=B、Si,Gc、P)等のリチウム硫黄系ガラス、LiCoO等のリチウムコバルト複合酸化物やLiMnO等のリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムバナジウム複合酸化物、リチウムジルコニウム複合酸化物、リチウムハフニウム複合酸化物、ケイリン酸リチウム(Li3.5Si0.50.5)、リン酸チタンリチウム(LiTi(PO)、チタン酸リチウム(LiTi12)、リン酸ゲルマニウムリチウム(LiGe(PO)、LiO−SiO、LiO−V−SiO、LiO−P−B、LiO−GeOBa、Li10GeP12等の酸化リチウム化合物、等が挙げられる。なお、上記電極活物質の平均粒子径は0.05〜50μmが好ましい。
また、正極活物質と負極活物質には明確な区別はなく、例えば、2種類の化合物の充放電電位を比較して貴な電位を示すものを正極に、卑な電位を示すものを負極にそれぞれ用いた場合、任意の電圧の電池を構成することができる。
It is not particularly restricted but includes the electrode active material, for example, LiO 2 · Al 2 O 3 · SiO 2 type low melting point glass such as inorganic glass, Li 2 S-M x S y (M = B, Si, Gc, P Lithium sulfur glass such as LiCoO 2 , lithium manganese composite oxide such as LiMnO 4 , lithium nickel composite oxide, lithium vanadium composite oxide, lithium zirconium composite oxide, lithium hafnium composite oxide , Lithium silicic acid phosphate (Li 3.5 Si 0.5 P 0.5 O 4 ), lithium titanium phosphate (LiTi 2 (PO 4 ) 3 ), lithium titanate (Li 4 Ti 5 O 12 ), phosphoric acid germanium lithium (LiGe 2 (PO 4) 3 ), Li 2 O-SiO 2, Li 2 O-V 2 O 5 -SiO 2, i 2 O-P 2 O 5 -B 2 O 3, Li 2 O-GeO 2 Ba, Li 10 GeP 2 S 12 lithium oxide compounds such as, and the like. In addition, the average particle diameter of the electrode active material is preferably 0.05 to 50 μm.
Further, there is no clear distinction between the positive electrode active material and the negative electrode active material. For example, the positive and negative potentials are compared with the positive and the negative potentials when comparing the charge / discharge potentials of two kinds of compounds. When each is used, a battery having an arbitrary voltage can be formed.

上記固体電解質としては特に限定されず、上記電極活物質と同様のものを用いてもよい。具体的には例えば、LiO・Al・SiO系無機ガラス等の低融点ガラス、LiS−M(M=B、Si,Gc、P)等のリチウム硫黄系ガラス、LiCoO等のリチウムコバルト複合酸化物やLiMnO等のリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムバナジウム複合酸化物、リチウムジルコニウム複合酸化物、リチウムハフニウム複合酸化物、ケイリン酸リチウム(Li3.5Si0.50.5)、リン酸チタンリチウム(LiTi(PO)、チタン酸リチウム(LiTi12)、リン酸ゲルマニウムリチウム(LiGe(PO)、LiO−SiO、LiO−V−SiO、LiO−P−B、LiO−GeOBa、Li10GeP12などの酸化リチウム化合物、等が挙げられる。なお、上記固体電解質の平均粒子径は0.05〜50μmが好ましい。 It does not specifically limit as said solid electrolyte, You may use the same thing as the said electrode active material. Specifically, for example, low melting point glass such as LiO 2 · Al 2 O 3 · SiO 2 type inorganic glass, lithium sulfur type glass such as Li 2 S-M x S y (M = B, Si, Gc, P). LiCoO 2 , lithium cobalt composite oxide such as LiMnO 4 , lithium manganese composite oxide such as LiMnO 4 , lithium nickel composite oxide, lithium vanadium composite oxide, lithium zirconium composite oxide, lithium hafnium composite oxide, lithium silicate (Li 3.5 Si 0.5 P 0.5 O 4 ), lithium titanium phosphate (LiTi 2 (PO 4 ) 3 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium germanium phosphate (LiGe 2 (PO 4) 3), Li 2 O -SiO 2, Li 2 O-V 2 O 5 -SiO 2, Li 2 O-P 2 O 5 -B 2 Examples thereof include lithium oxide compounds such as O 3 , Li 2 O—GeO 2 Ba, and Li 10 GeP 2 S 12 . The average particle size of the solid electrolyte is preferably 0.05 to 50 μm.

上記電極活物質層用スラリーにおける上記電極活物質の含有量としては特に限定されないが、好ましい下限が10重量%、好ましい上限が90重量%である。10重量%未満であると、粘度が充分に得られないことがあり、塗工性が低下することがあり、90重量%を超えると、電極活物質を分散させることが困難になることがある。 Although it does not specifically limit as content of the said electrode active material in the said slurry for electrode active material layers, A preferable minimum is 10 weight% and a preferable upper limit is 90 weight%. When the amount is less than 10% by weight, the viscosity may not be sufficiently obtained, and the coatability may be deteriorated. When the amount exceeds 90% by weight, it may be difficult to disperse the electrode active material. .

上記固体電解質層用スラリーにおける上記固体電解質の含有量としては特に限定されないが、好ましい下限が10重量%、好ましい上限が90重量%である。上記含有量が10重量%未満であると、粘度が充分に得られないことがあり、塗工性が低下することがあり、90重量%を超えると、固体電解質を分散させることが困難になることがある。 Although it does not specifically limit as content of the said solid electrolyte in the said slurry for solid electrolyte layers, A preferable minimum is 10 weight% and a preferable upper limit is 90 weight%. When the content is less than 10% by weight, the viscosity may not be sufficiently obtained and the coatability may be deteriorated. When the content exceeds 90% by weight, it is difficult to disperse the solid electrolyte. Sometimes.

上記電極活物質層用スラリーに用いる有機溶剤としては、例えば、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリメチルペンタンジオールモノイソブチレート、ブチルカルビトール、ブチルカルビトールアセテート、テルピネオール、テルピネオールアセテート、ジヒドロテルピネオール、ジヒドロテルピネオールアセテート、テキサノールと言った溶剤が挙げられる。なお、これらの有機溶剤は単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic solvent used for the electrode active material layer slurry include ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, trimethylpentanediol monoisobutyrate, Examples thereof include butyl carbitol, butyl carbitol acetate, terpineol, terpineol acetate, dihydroterpineol, dihydroterpineol acetate, and texanol. In addition, these organic solvents may be used independently and may use 2 or more types together.

また、上記固体電解質層用スラリーに用いる有機溶剤としては、例えば、トルエン、酢酸エチル、酢酸ブチル、エタノール、イソプロパノール、メチルイソブチルケトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールエチルエーテル、イソホロン、乳酸ブチル、ジオクチルフタレート、ジオクチルアジペート、ベンジルアルコール等が挙げられる。なお、これらの有機溶剤は単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic solvent used in the solid electrolyte layer slurry include toluene, ethyl acetate, butyl acetate, ethanol, isopropanol, methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol ethyl ether, isophorone, butyl lactate, and dioctyl. Examples include phthalate, dioctyl adipate, and benzyl alcohol. In addition, these organic solvents may be used independently and may use 2 or more types together.

上記電極活物質層用スラリー、固体電解質層用スラリーには、上述した電極活物質、固体電解質、ポリビニルアセタール樹脂、溶媒以外にも、必要に応じて、難燃助剤、増粘剤、消泡剤、レベリング剤、密着性付与剤のような添加剤を添加してもよい。 In addition to the electrode active material, solid electrolyte, polyvinyl acetal resin, and solvent described above, the electrode active material layer slurry and the solid electrolyte layer slurry may include a flame retardant aid, a thickener, and an antifoam as necessary. Additives such as agents, leveling agents, and adhesion-imparting agents may be added.

上記電極活物質層用スラリー、固体電解質用スラリーの製造方法としては特に限定されず、従来公知の方法が挙げられ、各成分をボールミル、ビーズミル、ブレンダーミル、3本ロール等の各種混合機を用いて混合する方法等が挙げられる。 The method for producing the slurry for the electrode active material layer and the slurry for the solid electrolyte is not particularly limited, and includes conventionally known methods. Each component is mixed using various mixers such as a ball mill, a bead mill, a blender mill, and a three roll. And the like.

上記電極活物質層用スラリーを成形して電極活物質シートを作製する方法、上記固体電解質用スラリーを成形して固体電解質シートを作製する方法としては特に限定されず、例えば、片面離型処理を施した支持フィルム上に塗工し、有機溶剤を乾燥させ、シート状に成形する方法等が挙げられる。 The method for forming the electrode active material layer slurry to prepare an electrode active material sheet and the method for forming the solid electrolyte slurry to form a solid electrolyte sheet are not particularly limited. For example, one-side mold release treatment is performed. Examples of the method include coating on the applied support film, drying the organic solvent, and forming into a sheet.

上記支持フィルムは、耐熱性及び耐溶剤性を有すると共に可撓性を有する樹脂フィルムであることが好ましい。支持フィルムが可撓性を有することにより、ロールコーター、ブレードコーターなどによって支持フィルムの表面にスラリーを塗布することができ、得られるシートをロール状に巻回した状態で保存し、供給することができる。 The support film is preferably a resin film having heat resistance and solvent resistance and flexibility. Since the support film has flexibility, the slurry can be applied to the surface of the support film by a roll coater, a blade coater, etc., and the obtained sheet can be stored and supplied in a rolled state. it can.

上記支持フィルムの材質としては、例えばポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニルアルコール、ポリ塩化ビニル、ポリフロロエチレン等の含フッ素樹脂、ナイロン、セルロース等が挙げられる。
上記支持フィルムの厚みは、例えば、20〜100μmが好ましい。
また、支持フィルムの表面には離型処理が施されていることが好ましく、これにより、支持フィルムの剥離操作を容易に行うことができる。
Examples of the material for the support film include polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, polyfluoroethylene, and other fluorine-containing resins, nylon, and cellulose.
As for the thickness of the said support film, 20-100 micrometers is preferable, for example.
Moreover, it is preferable that the surface of the support film is subjected to a release treatment, whereby the support film can be easily peeled off.

本発明では、次いで、上記電極活物質シート及び固体電解質シートを積層して積層体を作製する工程を行う。
上記積層する方法としては、それぞれシート化した後、熱プレスによる熱圧着、熱ラミネート等を行う方法等が挙げられる。
Next, in the present invention, a step of laminating the electrode active material sheet and the solid electrolyte sheet to produce a laminate is performed.
Examples of the method of laminating include a method of forming a sheet and then performing thermocompression bonding by heat pressing, heat laminating, and the like.

本発明では、次いで、上記積層体を不活性ガス雰囲気下で400℃以下の温度で焼成する焼成工程を行う。
本発明では、上記ポリビニルアセタール樹脂を用いることで、400℃以下という低温での焼成を実現することができる。
上記焼成工程において、加熱温度が400℃を超えると、固体電解質に用いるLi含有ガラスが熱劣化することがある。
なお、加熱温度の好ましい下限は350℃、好ましい上限は380℃である。
Next, in the present invention, a firing process is performed in which the laminate is fired at a temperature of 400 ° C. or lower in an inert gas atmosphere.
In the present invention, firing at a low temperature of 400 ° C. or lower can be realized by using the polyvinyl acetal resin.
In the firing step, when the heating temperature exceeds 400 ° C., the Li-containing glass used for the solid electrolyte may be thermally deteriorated.
In addition, the preferable minimum of heating temperature is 350 degreeC, and a preferable upper limit is 380 degreeC.

上記焼成工程では、200℃/分以上の昇温速度で焼成することが好ましい。これにより、バインダー樹脂の脱水、脱炭酸反応を抑えることが出来、樹脂中に酸素を残すことにより、400℃以下で分解させることができるという利点がある。
好ましくは200〜1000℃/分である。
また、焼成時間は短い方が好ましい。
本発明の全固体電池の製造方法を用いて得られる全固体電池もまた本発明の1つである。
In the firing step, firing is preferably performed at a temperature increase rate of 200 ° C./min or more. Thereby, the dehydration and decarboxylation reaction of the binder resin can be suppressed, and there is an advantage that it can be decomposed at 400 ° C. or less by leaving oxygen in the resin.
Preferably it is 200-1000 degrees C / min.
Moreover, the one where baking time is shorter is preferable.
The all solid state battery obtained by using the method for producing an all solid state battery of the present invention is also one aspect of the present invention.

本発明によれば、バインダーを低温、短時間で脱脂することができることから、電極活物質又は固体電解質の劣化や、バインダーの残留による不具合を防止することができ、優れた特性を有する全固体電池を製造することが可能な全固体電池の製造方法を提供することができる。また、該全固体電池の製造方法を用いた全固体電池を提供することができる。 According to the present invention, since the binder can be degreased at a low temperature and in a short time, the electrode active material or the solid electrolyte can be prevented from being deteriorated, and problems due to the residual binder can be prevented, and the all-solid battery having excellent characteristics. The manufacturing method of the all-solid-state battery which can be manufactured can be provided. Moreover, the all-solid-state battery using the manufacturing method of this all-solid-state battery can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(合成例1)
(ポリビニルアセタール樹脂の合成)
重合度1000、ケン化度98モル%、エチレン含有量6モル%のポリビニルアルコール230gを純水2900gに加え、90℃の温度で約2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸80gとn−ブチルアルデヒド165gを添加し、液温を15℃に下げてこの温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を50℃、3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、ポリビニルアセタール樹脂の白色粉末を得た。得られたポリビニルアセタール樹脂をDMSO−d(ジメチルスルホキサイド)に溶解し、13C−NMR(核磁気共鳴スペクトル)を用いてアセタール化度を測定したところ、アセタール化度は72モル%であり、水酸基量は20モル%であった。
(Synthesis Example 1)
(Synthesis of polyvinyl acetal resin)
230 g of polyvinyl alcohol having a polymerization degree of 1000, a saponification degree of 98 mol%, and an ethylene content of 6 mol% was added to 2900 g of pure water, and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution is cooled to 40 ° C., 80 g of hydrochloric acid having a concentration of 35% by weight and 165 g of n-butyraldehyde are added thereto, the temperature of the solution is lowered to 15 ° C., and this temperature is maintained to perform an acetalization reaction. The product was precipitated. Thereafter, the liquid temperature was maintained at 50 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a white powder of polyvinyl acetal resin. The obtained polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide), and the degree of acetalization was measured using 13 C-NMR (nuclear magnetic resonance spectrum). The degree of acetalization was 72 mol%. Yes, the amount of hydroxyl groups was 20 mol%.

(合成例2)
重合度1700、ケン化度98モル%のポリビニルアルコール230gを純水2900gに加え、90℃の温度で約2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸20gとn−ブチルアルデヒド145gを添加し、液温を15℃に下げてこの温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を40℃、3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、ポリビニルアセタール樹脂の白色粉末を得た。得られたポリビニルアセタール樹脂をDMSO−d(ジメチルスルホキサイド)に溶解し、13C−NMR(核磁気共鳴スペクトル)を用いてアセタール化度を測定したところ、アセタール化度は78モル%であった。
(Synthesis Example 2)
230 g of polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 98 mol% was added to 2900 g of pure water, and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution is cooled to 40 ° C., 20 g of hydrochloric acid having a concentration of 35% by weight and 145 g of n-butyraldehyde are added thereto, the temperature of the solution is lowered to 15 ° C., and this temperature is maintained to carry out an acetalization reaction. The product was precipitated. Thereafter, the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a white powder of polyvinyl acetal resin. When the obtained polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and the degree of acetalization was measured using 13 C-NMR (nuclear magnetic resonance spectrum), the degree of acetalization was 78 mol%. there were.

得られたポリビニルアセタール樹脂200gを計量し、攪拌機、冷却器、温度計、湯浴及び、窒素ガス導入口を備えた2Lセパラプルフラスコにメチルイソブチルケトン400gとともに添加した後、80℃条件下で攪拌し透明、均一になるまで溶解させた。
次いで、グラフト反応開始剤としてパーブチルO(日油社製)20gを、80℃のポリビニルアセタール溶液層へ添加した。3分経過後、イソブチルメタクリレート50gを滴下漏斗にて80℃のポリビニルアセタール溶液に滴下しグラフト反応させた。13C−NMR(核磁気共鳴スペクトル)を用いてグラフト化度を測定したところ、10モル%であり、水酸基量は10モル%であった。
200 g of the obtained polyvinyl acetal resin was weighed and added together with 400 g of methyl isobutyl ketone to a 2 L separable flask equipped with a stirrer, a cooler, a thermometer, a hot water bath, and a nitrogen gas inlet, and then stirred at 80 ° C. And dissolved until transparent and uniform.
Next, 20 g of perbutyl O (manufactured by NOF Corporation) as a graft reaction initiator was added to the polyvinyl acetal solution layer at 80 ° C. After 3 minutes, 50 g of isobutyl methacrylate was added dropwise to the polyvinyl acetal solution at 80 ° C. with a dropping funnel to cause a graft reaction. When the degree of grafting was measured using 13 C-NMR (nuclear magnetic resonance spectrum), it was 10 mol%, and the amount of hydroxyl groups was 10 mol%.

(実施例1)
(1)固体電解質用スラリーの調製
合成例1で得られたポリビニルアセタール樹脂10重量部に、メチルイソブチルケトン90重量部を添加して溶解させた。次いで、固体電解質ガラスとしてLiS−P系ガラス(平均粒子径2.0μm)をポリビニルアセタール樹脂10重量部に対して50重量部を添加して、高速攪拌機で混練し、固体電解質用スラリーを得た。
Example 1
(1) Preparation of slurry for solid electrolyte To 10 parts by weight of the polyvinyl acetal resin obtained in Synthesis Example 1, 90 parts by weight of methyl isobutyl ketone was added and dissolved. Next, 50 parts by weight of LiS—P 2 S 5 glass (average particle diameter of 2.0 μm) as a solid electrolyte glass is added to 10 parts by weight of polyvinyl acetal resin, kneaded with a high-speed stirrer, and a slurry for solid electrolyte. Got.

(2)固体電解質シートの作製
得られた固体電解質用スラリーを、予め離型処理したポリエチレンテレフタレート(PET)よりなる支持フィルム(幅400mm、長さ30m、厚さ38μm)上にブレードコーターを用いて塗布し、形成された塗膜を80℃で30分間乾燥することで溶剤を除去して、厚さ250μmの塗工層を支持フィルム上に形成し固体電解質シートを製造した。
(2) Production of Solid Electrolyte Sheet Using a blade coater on a support film (width 400 mm, length 30 m, thickness 38 μm) made of polyethylene terephthalate (PET), in which the obtained slurry for solid electrolyte was previously subjected to mold release treatment The applied coating was dried at 80 ° C. for 30 minutes to remove the solvent, and a 250 μm thick coating layer was formed on the support film to produce a solid electrolyte sheet.

(3)正極、負極シートの作製
負極活物質としてリン酸バナジウムリチウム30重量部、導電性カーボン(アセチレンブラック)3重量部、追加溶剤としてn−プロパノール10重量部を先に作製した固体電解質用スラリーに添加混合し、負極活物質層用スラリーを調製した。
得られた負極活物質層用スラリーを、ブレード塗工により、離型PETフィルム上に塗工し、80℃で30分乾燥させた後、離型PETフィルムを剥離し、負極活物質シートを得た。なお、負極活物質層用スラリーは、負極活物質シートの厚みが60μmとなるように塗布した。
また、負極活物質シートと同様にして、正極活物質シートを作製した。なお、正極活物質層用スラリーは、正極活物質層の厚さが30μmとなるよう塗布した。
(3) Preparation of positive electrode and negative electrode sheet Solid electrolyte slurry in which 30 parts by weight of lithium vanadium phosphate as a negative electrode active material, 3 parts by weight of conductive carbon (acetylene black) and 10 parts by weight of n-propanol as an additional solvent were prepared in advance. The slurry for negative electrode active material layers was prepared.
The obtained slurry for negative electrode active material layer was applied onto a release PET film by blade coating, dried at 80 ° C. for 30 minutes, and then released from the release PET film to obtain a negative electrode active material sheet. It was. In addition, the slurry for negative electrode active material layers was apply | coated so that the thickness of a negative electrode active material sheet might be set to 60 micrometers.
Moreover, the positive electrode active material sheet was produced similarly to the negative electrode active material sheet. In addition, the slurry for positive electrode active material layers was apply | coated so that the thickness of a positive electrode active material layer might be 30 micrometers.

(4)積層体の作製
固体電解質シートからPETフィルムを剥がした後、負極活物質シート及び正極活物質シートで挟み、80℃、10kNで60秒間、熱圧着し、積層体を作製した。
次いで、テルピネオール、銀、低融点ガラス、アクリル樹脂からなる外部電極ペーストをステンレス板状にドクターブレードで厚みが500μmになるよう塗工し、積層体の両面を付着させ、集電体を形成した。
(4) Production of laminate
After peeling off the PET film from the solid electrolyte sheet, it was sandwiched between the negative electrode active material sheet and the positive electrode active material sheet and thermocompression bonded at 80 ° C. and 10 kN for 60 seconds to prepare a laminate.
Next, an external electrode paste made of terpineol, silver, low-melting glass, and acrylic resin was applied to a stainless steel plate with a doctor blade to a thickness of 500 μm, and both surfaces of the laminate were adhered to form a current collector.

(5)積層体の脱脂焼成
管状炉AMF−N(アサヒ理化製作所社製)の中央に、得られた積層体をセットし、窒素ガスを20mL/minで送りながら、200℃/minの昇温速度で350℃まで上昇させた。次に、400℃まで昇温し、400℃で20分保持した後、ヒーターを切り、窒素ガスによって炉内を冷却した。炉内が100℃以下となったところで取り出し、全固体電池を得た。
(5) Laminate degreasing calcined tubular furnace AMF-N (Asahi Rika Seisakusho Co., Ltd.) is set in the center, the obtained laminate is set, and nitrogen gas is sent at 20 mL / min, while the temperature rises 200 ° C./min The speed was increased to 350 ° C. Next, after heating up to 400 degreeC and hold | maintaining at 400 degreeC for 20 minutes, the heater was turned off and the inside of a furnace was cooled with nitrogen gas. When the inside of the furnace became 100 ° C. or lower, the battery was taken out to obtain an all solid state battery.

(実施例2)
合成例1で得られたポリビニルアセタール樹脂に代えて、合成例2で得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして全固体電池を製造した。
(Example 2)
An all-solid battery was produced in the same manner as in Example 1 except that the polyvinyl acetal resin obtained in Synthesis Example 2 was used instead of the polyvinyl acetal resin obtained in Synthesis Example 1.

(比較例1)
合成例1で得られたポリビニルアセタール樹脂に代えて、ポリビニルブチラール樹脂(BM−2、積水化学社製、水酸基量31モル%)を用いた以外は実施例1と同様にして全固体電池を製造した。
なお、積層体の脱脂焼成は、積層体をマッフル炉に入れ、窒素雰囲気下で10℃/minの昇温速度で600℃まで昇温し、1時間保持した後、冷却することにより行った。
(Comparative Example 1)
An all-solid battery was produced in the same manner as in Example 1 except that polyvinyl butyral resin (BM-2, manufactured by Sekisui Chemical Co., Ltd., hydroxyl amount 31 mol%) was used instead of the polyvinyl acetal resin obtained in Synthesis Example 1. did.
In addition, degreasing baking of the laminated body was performed by putting the laminated body into a muffle furnace, raising the temperature to 600 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, holding the resultant for 1 hour, and then cooling.

<評価>
実施例及び比較例で得られた全固体電池について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the all-solid-state battery obtained by the Example and the comparative example. The results are shown in Table 1.

(1)定電流充電/放電評価
充放電評価装置TOSCAT−3000(東洋システム社製)を用いて、得られた全固体電池を4Vまで200mAで充電し、1時間休止後、3V放電することにより、定電流充電/放電評価を行い、以下の基準で評価した。
充放電曲線が得られた場合を「○」、短絡等何らかの原因で放電曲線が得られなかった場合を「×」とした。
(1) Constant current charge / discharge evaluation By using a charge / discharge evaluation apparatus TOSCAT-3000 (manufactured by Toyo System Co., Ltd.), the obtained all-solid-state battery is charged at 200 mA up to 4V, and after resting for 1 hour, it is discharged by 3V. The constant current charging / discharging evaluation was performed and the following criteria were evaluated.
The case where the charge / discharge curve was obtained was indicated by “◯”, and the case where the discharge curve was not obtained for some reason such as a short circuit was indicated by “x”.

(2)残留炭素評価
実施例1、2、比較例1で作製した固体電解質シートを450℃の電気炉で30分間焼成した。炭素硫黄分析装置(堀場製作所社製)を用いて残留炭素(ppm)を測定した。
残留炭素が200ppm未満である場合「〇」とし、200ppm以上である場合を「×」とした。
(2) Residual carbon evaluation The solid electrolyte sheets prepared in Examples 1 and 2 and Comparative Example 1 were baked in an electric furnace at 450 ° C. for 30 minutes. Residual carbon (ppm) was measured using a carbon sulfur analyzer (Horiba Seisakusho).
When the residual carbon was less than 200 ppm, “◯” was given, and when it was 200 ppm or more, “x” was given.

Figure 0006088896
Figure 0006088896

本発明によれば、バインダーを低温、短時間で脱脂することができることから、電極活物質又は固体電解質の劣化や、バインダーの残留による不具合を防止することができ、優れた特性を有する全固体電池を製造することが可能な全固体電池の製造方法を提供できる。また、該全固体電池の製造方法を用いた全固体電池を提供できる。 According to the present invention, since the binder can be degreased at a low temperature and in a short time, the electrode active material or the solid electrolyte can be prevented from being deteriorated, and problems due to the residual binder can be prevented, and the all-solid battery having excellent characteristics. The manufacturing method of the all-solid-state battery which can be manufactured can be provided. Moreover, the all-solid-state battery using the manufacturing method of this all-solid-state battery can be provided.

Claims (3)

電極活物質層と固体電解質層とを有する全固体電池の製造方法であって、
電極活物質及び電極活物質層用バインダーを含有する電極活物質層用スラリーを成形して電極活物質シートを作製する工程、
固体電解質及び固体電解質層用バインダーを含有する固体電解質層用スラリーを成形して固体電解質シートを作製する工程、
前記電極活物質シート及び固体電解質シートを積層して積層体を作製する工程、及び、
前記積層体を400℃以下の温度で焼成する焼成工程を有し、
前記体電解質層用バインダーは、水酸基量が23モル%以下のポリビニルアセタール樹脂を含有し、
前記ポリビニルアセタール樹脂は、主鎖中にα−オレフィン単位を有するか、又は、メタアクリルモノマーからなるユニットがグラフト共重合したグラフト共重合体であり、
前記焼成工程において、200℃/分以上の昇温速度で焼成する
とを特徴とする全固体電池の製造方法。
A method for producing an all-solid battery having an electrode active material layer and a solid electrolyte layer,
Forming an electrode active material sheet by forming an electrode active material layer slurry containing an electrode active material and an electrode active material layer binder;
Forming a solid electrolyte sheet by molding a solid electrolyte layer slurry containing a solid electrolyte and a solid electrolyte layer binder;
Laminating the electrode active material sheet and the solid electrolyte sheet to produce a laminate, and
Having a firing step of firing the laminate at a temperature of 400 ° C. or lower;
The solid body electrolyte layer binder has a hydroxyl amount contained 23 mol% of a polyvinyl acetal resin,
The polyvinyl acetal resin has a α-olefin unit in the main chain, or is a graft copolymer obtained by graft copolymerization of a unit composed of a methacryl monomer,
In the baking step, baking is performed at a temperature rising rate of 200 ° C./min or more.
Method for manufacturing an all-solid battery, wherein the this.
ポリビニルアセタール樹脂は、α−オレフィン単位の含有量が1〜20モル%であることを特徴とする請求項1記載の全固体電池の製造方法。The method for producing an all-solid-state battery according to claim 1, wherein the polyvinyl acetal resin has an α-olefin unit content of 1 to 20 mol%. メタアクリルモノマーは、エステル置換基の炭素数が4以下のメタアクリルモノマーであることを特徴とする請求項1記載の全固体電池の製造方法。The method for producing an all-solid-state battery according to claim 1, wherein the methacrylic monomer is a methacrylic monomer having an ester substituent having 4 or less carbon atoms.
JP2013087508A 2013-04-18 2013-04-18 Manufacturing method of all solid state battery Active JP6088896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087508A JP6088896B2 (en) 2013-04-18 2013-04-18 Manufacturing method of all solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087508A JP6088896B2 (en) 2013-04-18 2013-04-18 Manufacturing method of all solid state battery

Publications (2)

Publication Number Publication Date
JP2014212022A JP2014212022A (en) 2014-11-13
JP6088896B2 true JP6088896B2 (en) 2017-03-01

Family

ID=51931628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087508A Active JP6088896B2 (en) 2013-04-18 2013-04-18 Manufacturing method of all solid state battery

Country Status (1)

Country Link
JP (1) JP6088896B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979382A1 (en) * 2015-06-24 2022-04-06 QuantumScape Battery, Inc. Electrochemical cell with a composite electrolyte
JP6977932B2 (en) 2015-08-17 2021-12-08 地方独立行政法人大阪産業技術研究所 Additives for all-solid-state secondary batteries, all-solid-state secondary batteries and methods for manufacturing them
JP6705145B2 (en) * 2015-10-07 2020-06-03 株式会社豊田中央研究所 Composite and method for producing composite
JP7002199B2 (en) * 2017-01-16 2022-01-20 Fdk株式会社 Manufacturing method of all-solid-state battery
KR20190103337A (en) * 2017-02-17 2019-09-04 후지필름 가부시키가이샤 Solid electrolyte composition, solid electrolyte-containing sheet and production method thereof, all-solid-state secondary battery and production method thereof, polymer and nonaqueous solvent dispersion
WO2018180073A1 (en) * 2017-03-28 2018-10-04 積水化学工業株式会社 Binder for power storage device electrodes
JP6357603B1 (en) * 2017-03-28 2018-07-11 積水化学工業株式会社 Storage device electrode binder
JP7180863B2 (en) 2018-08-21 2022-11-30 エムテックスマート株式会社 Method for manufacturing all-solid-state battery
JP7358151B2 (en) 2018-09-28 2023-10-10 積水化学工業株式会社 Composition for all-solid-state batteries
US20220166026A1 (en) 2019-03-29 2022-05-26 Teijin Limited Polymeric binder and all-solid-state secondary battery including same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022870A (en) * 2005-07-19 2007-02-01 Nippon Shokubai Co Ltd Mixture for manufacturing ceramic green molding
JP4980734B2 (en) * 2006-01-27 2012-07-18 パナソニック株式会社 Solid battery manufacturing method
JP2008159496A (en) * 2006-12-26 2008-07-10 Sony Corp Gel electrolyte, lithium-ion secondary battery, and manufacturing method of gel electrolyte
KR101252941B1 (en) * 2008-06-02 2013-04-12 다이니치 세이카 고교 가부시키가이샤 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP5533057B2 (en) * 2010-03-11 2014-06-25 東洋インキScホールディングス株式会社 Carbon black dispersion
JPWO2011132627A1 (en) * 2010-04-23 2013-07-18 株式会社村田製作所 All-solid secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014212022A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6088896B2 (en) Manufacturing method of all solid state battery
TWI629825B (en) Electrode assembly electrode adhesive
JP5647378B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
CN104064709B (en) Ceramic diaphragm and its prepare the method and battery of lithium rechargeable battery
JP5701519B2 (en) Lithium ion secondary battery electrode binder, slurry obtained using these electrode binders, electrode obtained using these slurries, and lithium ion secondary battery obtained using these electrodes
JP5397049B2 (en) All solid state secondary battery
JP5787818B2 (en) Non-aqueous electrolyte battery separator binder containing 2-cyanoethyl group-containing polymer, separator using the same, and battery
TWI601331B (en) Binder for electrode of lithium ion secondary battery, slurry, electrode and lithium ion secondary battery
JP2017525100A (en) Aqueous composition used to improve separator for lithium ion battery and improved separator and battery
JP7017081B2 (en) Binder for all-solid-state secondary battery, manufacturing method of binder for all-solid-state secondary battery and all-solid-state secondary battery
CN110383530B (en) Binder composition, slurry composition, and nonaqueous secondary battery
JP2012150905A (en) Resin current collector and secondary battery
JP2012227134A (en) Binder for separator of non-aqueous electrolyte battery including 2-cyanoethyl group containing polymer, and separator and battery using the same
TWI687445B (en) Binder for electrode of electricity storage device
JP2022169616A (en) Aqueous binder resin composition, slurry for nonaqueous battery, nonaqueous battery electrode, nonaqueous battery separator, and nonaqueous battery
TWI682942B (en) Binder for electrode of electricity storage device
US20220085375A1 (en) Non-aqueous electrolyte cell electrode binder, non-aqueous electrolyte cell electrode binder solution, non-aqueous electrolyte cell electrode slurry, non-aqueous electrolyte cell electrode, and non-aqueous electrolyte cell
CN106797031B (en) Composition for lithium secondary battery electrode
JP5260074B2 (en) Battery separator and electrode / separator assembly obtained therefrom
KR20200091227A (en) Dispersant for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer
TWI637551B (en) Binder resin material for energy device electrode, energy device electrode and energy device
JP2017016867A (en) Coating material composition for battery electrode or separator
JP6974021B2 (en) Binder for manufacturing fuel cell power generation cells
CN112820937A (en) Solid electrolyte, preparation method thereof and high-nickel ternary all-solid-state battery
JP2018165229A (en) Slurry for producing inorganic sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6088896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250