JP6088765B2 - Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same - Google Patents

Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same Download PDF

Info

Publication number
JP6088765B2
JP6088765B2 JP2012185664A JP2012185664A JP6088765B2 JP 6088765 B2 JP6088765 B2 JP 6088765B2 JP 2012185664 A JP2012185664 A JP 2012185664A JP 2012185664 A JP2012185664 A JP 2012185664A JP 6088765 B2 JP6088765 B2 JP 6088765B2
Authority
JP
Japan
Prior art keywords
solidified body
contaminants
radioactive cesium
adsorbent
solidifying agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012185664A
Other languages
Japanese (ja)
Other versions
JP2014044082A (en
Inventor
宮本 真哉
真哉 宮本
三倉 通孝
通孝 三倉
俊昭 杉森
俊昭 杉森
加苗 川内
加苗 川内
金子 昌章
昌章 金子
哲哉 峰
哲哉 峰
轟木 朋浩
朋浩 轟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012185664A priority Critical patent/JP6088765B2/en
Publication of JP2014044082A publication Critical patent/JP2014044082A/en
Application granted granted Critical
Publication of JP6088765B2 publication Critical patent/JP6088765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射性セシウム汚染物の固化処理技術に関する。   The present invention relates to a technique for solidifying radioactive cesium contaminants.

原子力発電所の事故によって放射性物質が外部に放出された場合、環境中に放射能汚染が拡散する。汚染された土壌や汚泥に含有される放射性核種の大部分は134Csや137Csであり、特に137Csは半減期が30.2年と長く、長期に影響を及ぼすことが知られている。
そして、各地の清掃工場などで発生する焼却灰や下水処理場で発生する汚泥の焼却灰には、減容化処理の結果、放射性セシウムが濃縮されてしまっている。
When radioactive materials are released to the outside due to an accident at a nuclear power plant, radioactive contamination diffuses into the environment. Most of the radionuclides contained in the contaminated soil and sludge are 134 Cs and 137 Cs. In particular, 137 Cs has a long half-life of 30.2 years, and is known to affect the long term.
As a result of the volume reduction treatment, radioactive cesium has been concentrated in the incineration ash generated at various cleaning factories and sludge incineration ash generated at sewage treatment plants.

このような焼却灰に含まれるセシウム塩は、水溶性であるために、そのまま埋設処分すると、雨水や海水に接触し環境へ容易に漏洩して、更なる汚染の拡大が懸念される。
このため、含有する放射性セシウムを再び環境に漏洩させないように閉じ込める、放射性セシウム汚染物の固化処理技術の確立が待望されている。
なお、これまでに、放射能汚染物質の除染技術(例えば、特許文献1−5)や、放射性物質の環境漏洩の防止技術(例えば、特許文献6−8)に関するいくつもの提案がなされている。
Since the cesium salt contained in such incineration ash is water-soluble, if it is buried as it is, it will come into contact with rainwater or seawater and easily leak to the environment, and there is a concern that further contamination will expand.
For this reason, establishment of the solidification processing technology of the radioactive cesium contamination which confine | contains so that the contained radioactive cesium may not leak again to an environment is awaited.
Heretofore, several proposals have been made regarding decontamination techniques for radioactive pollutants (for example, Patent Documents 1-5) and techniques for preventing environmental leakage of radioactive substances (for example, Patent Documents 6-8). .

特許第4128620号公報Japanese Patent No. 4128620 特開2006−1228370号公報JP 2006-1228370 A 特願2011−162423号公報Japanese Patent Application No. 2011-162423 特願2011−231715号公報Japanese Patent Application No. 2011-231715 特願2012−53633号公報Japanese Patent Application No. 2012-53633 特開平10−71380号公報JP 10-71380 A 特開平10−71381号公報Japanese Patent Laid-Open No. 10-71381 特開平06−273589号公報Japanese Patent Laid-Open No. 06-273589

しかし、上述の放射能汚染物質の除染技術では、汚染物質に含まれる放射性セシウムを吸着させた吸着剤が新たに排出されるため、放射性廃棄物の増加を招くといった課題が指摘される。
また上述の放射性物質の環境漏洩の防止技術においては、セシウムが漏洩防止の対象元素に含まれていない若しくは海水環境下における漏洩防止効果が十分に発揮されないといった課題が指摘される。
However, in the above-mentioned decontamination technique for radioactive pollutants, the adsorbent that adsorbs the radioactive cesium contained in the pollutants is newly discharged, so that there is a problem that the radioactive waste increases.
Moreover, in the above-described technology for preventing environmental leakage of radioactive substances, problems are pointed out that cesium is not included in the target element for leakage prevention, or the leakage prevention effect in the seawater environment is not sufficiently exhibited.

本発明はこのような事情を考慮してなされたもので、含まれる放射性セシウムの環境漏洩の防止と汚染物の減容化とを実現する放射性セシウム汚染物の固化処理技術を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a solidification technology for radioactive cesium contaminants that can prevent environmental leakage of contained radioactive cesium and reduce the volume of contaminants. And

放射性セシウム汚染物の処理方法において、焼却炉の燃焼時にセシウム塩が気化した後
に冷却されて凝縮・析出して形成された飛灰を放射性セシウムの汚染物として回収する工
程と、前記汚染物にフェロシアン化物、ケイチタン酸、ゼオライトの中から選択されるも
ののうち少なくとも一つを含む前記放射性セシウムの吸着剤を添加する工程と、前記汚染
物にポルトランドセメント、アルミナセメント、マグネシウム系固化材、ケイ酸アルカリ
、シリカゾルの中から選択されるもののうち少なくとも一つを含む無機固形化剤を添加す
る工程と、前記汚染物に水分を添加する工程と、前記吸着剤、前記無機固形化剤及び前記
水分の添加された前記汚染物を圧縮して固化体にする工程と、を含み、前記固化体には重
量比で前記汚染物が少なくとも60wt%含まれ、前記固化体には重量比で前記吸着剤が
1〜10wt%の範囲で含まれ、前記固化体には重量比で前記無機固形化剤が30wt%
を超えない範囲で含まれることを特徴とする。
In the method of treating radioactive cesium contaminants, a step of recovering fly ash formed by cooling, condensing and depositing after cesium salt is vaporized during combustion in an incinerator as radioactive cesium contaminants; Adding a radioactive cesium adsorbent containing at least one selected from a Russianized material, silicic titanic acid, and zeolite; and Portland cement, alumina cement, magnesium-based solidified material, alkali silicate to the contaminant Adding an inorganic solidifying agent containing at least one selected from silica sol; adding water to the contaminant; and adding the adsorbent, the inorganic solidifying agent and the water is the observed free the steps of the contaminant solidified body by compressing the, was heavy in the solidified body
The contaminant is contained at least 60 wt% in a quantity ratio, and the adsorbent is contained in the solidified body in a weight ratio.
1 to 10 wt% is included, and the solidified body contains 30 wt% of the inorganic solidifying agent in a weight ratio.
It is included in the range which does not exceed .

本発明により、含まれる放射性セシウムの環境漏洩の防止と汚染物の減容化とを実現する放射性セシウム汚染物の固化処理技術が提供される。   The present invention provides a solidification processing technology for radioactive cesium contaminants that prevents environmental leakage of contained radioactive cesium and reduces the volume of contaminants.

本発明に係る放射性セシウム汚染物の固化処理方法の実施形態を示すフローチャート。The flowchart which shows embodiment of the solidification processing method of the radioactive cesium contaminant which concerns on this invention. (A)吸着剤としてゼオライトを添加した場合の固化体の比重及び硬度の測定結果を示すテーブル、(B)吸着剤としてフェロシアン化ニッケルを添加した場合の固化体の比重及び硬度の測定結果を示すテーブル。(A) Table showing measurement results of specific gravity and hardness of solidified body when zeolite is added as adsorbent, (B) Measurement results of specific gravity and hardness of solidified body when nickel ferrocyanide is added as adsorbent Table to show. (A)放射性セシウムの溶出試験結果を示すグラフ、(B)溶出試験の条件を示すテーブル。(A) The graph which shows the dissolution test result of radioactive cesium, (B) The table which shows the conditions of a dissolution test. (A)(B)(C)固化体の水平断面形状及び埋設時の配列を示す図。(A) (B) (C) The figure which shows the horizontal cross-sectional shape of a solidified body, and the arrangement | sequence at the time of embedding. 本発明に係る放射性セシウム汚染物の固化処理装置の実施形態を示すブロック図。The block diagram which shows embodiment of the solidification processing apparatus of the radioactive cesium contaminant which concerns on this invention.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1のフローチャートに示すように、実施形態に係る放射性セシウム汚染物の固化処理方法は、放射性セシウムの汚染物を回収する工程(S11)と、汚染物に放射性セシウムの吸着剤を添加する工程(S12)と、吸着剤の添加された汚染物を圧縮して固化体にする工程(S16)と、を含んでいる。
そして、作製された固化体は、中間貯蔵を相当期間行った後に、最終処分場に埋設される(S17)。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in the flowchart of FIG. 1, the solidification method for radioactive cesium contaminants according to the embodiment includes a step of collecting radioactive cesium contaminants (S11), and a step of adding a radioactive cesium adsorbent to the contaminants ( S12) and a step of compressing the adsorbent-added contaminants into a solidified body (S16).
And the produced solidified body is embed | buried in a final disposal site, after performing intermediate storage for a considerable period (S17).

なお、実施形態に係る放射性セシウム汚染物の固化処理方法は、必要に応じて汚染物に無機固形化剤を添加する工程(S13)、汚染物に水分を添加する工程(S14)、構成成分を撹拌して均一に混合する工程(S15)をさらに含めることができる。   In addition, the solidification processing method of the radioactive cesium contaminant which concerns on embodiment has the process (S13) of adding an inorganic solidification agent to a contaminant as needed, the process of adding a water | moisture content to a contaminant (S14), and a component. A step (S15) of stirring and mixing uniformly may be further included.

原子力発電所のシビアアクシデントにより環境に放出される放射性物質のうち放射性セシウムは、気体状・微粒子状に移行して拡散する。このために、汚染物質が広範囲に分布することが懸念される。
この放射性セシウムのうち半減期が約30年である137Csは、強い放射線を放出するとともに生体に食物摂取などにより移行することが知られている。このような性質により、生体は、比較的長期間に渡りに被ばくの影響を受けることが懸念されている。
Of the radioactive materials released into the environment by severe accidents at nuclear power plants, radioactive cesium migrates and diffuses into gaseous and particulate forms. For this reason, there is a concern that contaminants are distributed over a wide range.
Among these radioactive cesiums, 137 Cs, which has a half-life of about 30 years, is known to emit strong radiation and transfer to the living body due to food intake. Due to such properties, it is feared that living bodies are affected by exposure for a relatively long period of time.

実施形態において対象となる汚染物は、清掃工場から排出される焼却飛灰及び焼却主灰、並びに上下水処理場から排出される汚泥及びその焼却灰等が挙げられる。
一般的に廃棄物は、排出量を低減するために焼却処分されるが、含まれている放射性セシウムは、濃縮されることになる。
このため含まれる放射性セシウムCsの放射能濃度(Bq/kg;ベクレル/キログラム)が基準値を超えると、焼却灰等をそのまま一般廃棄することが不可能になる。
Contaminants targeted in the embodiment include incineration fly ash and incineration main ash discharged from a cleaning factory, sludge discharged from a water and sewage treatment plant, and incineration ash thereof.
Generally, waste is incinerated to reduce emissions, but the contained radioactive cesium will be concentrated.
For this reason, if the radioactive concentration of the radioactive cesium Cs contained (Bq / kg; becquerel / kilogram) exceeds the reference value, it becomes impossible to generally dispose of the incinerated ash as it is.

焼却場で発生する焼却灰とは、焼却排ガスに浮遊する固体の粒子状物質であって集塵装置、ボイラ、ガス冷却室、再燃焼室等で捕集された飛灰(フライアッシュ)と、焼却炉の底から回収される主灰(ボトムアッシュ)とに、大きく分類される。
このうち飛灰は、燃焼時にセシウム塩が気化した後に冷却されて凝縮・析出するために、放射性セシウムの濃縮度がさらに高まる傾向がある。
Incineration ash generated at the incineration site is a solid particulate matter floating in the incineration exhaust gas, and fly ash (fly ash) collected in a dust collector, boiler, gas cooling chamber, recombustion chamber, etc. The main ash (bottom ash) recovered from the bottom of the incinerator is broadly classified.
Among these, fly ash is cooled and condensed / deposited after the cesium salt is vaporized during combustion, so that the concentration of radioactive cesium tends to further increase.

このような焼却灰等の汚染物は、重量比で少なくとも60wt%含まれるように、固化体が作製されることが望ましい。
固化体に含まれる汚染物が60wt%未満であると、前記した焼却灰等のように大量に継続的に発生する放射性セシウム汚染物に対し、作製された固化体の埋設場所を確保することが困難になるからである。
It is desirable that the solidified body is prepared so that such contaminants such as incineration ash are contained at least 60 wt% by weight.
If the contamination contained in the solidified body is less than 60 wt%, it is possible to secure a place where the produced solidified body is buried against radioactive cesium contaminants that are continuously generated in large quantities such as the incineration ash described above. Because it becomes difficult.

セシウムの吸着剤としては、フェロシアン化物、ケイチタン酸、ゼオライト等が挙げられるが、セシウムを吸着させることができるものであれば特に限定はない。
このような吸着剤は、重量比で1〜10wt%含まれるように、固化体が作製されることが望ましい。
固化体に含まれる吸着剤が1wt%未満であると、放射性セシウムの閉じ込め能力が低下して環境に漏洩し易くなる。また含まれる吸着剤が10wt%を超えるあたりで、前記した焼却灰等のように大量に継続的に発生する放射性セシウム汚染物に対し、作製された固化体の埋設場所を確保することが困難になるからである。
Examples of the cesium adsorbent include ferrocyanide, silicotitanate, and zeolite, but are not particularly limited as long as they can adsorb cesium.
It is desirable that the solidified body is produced so that such an adsorbent is contained in an amount of 1 to 10 wt% by weight.
When the adsorbent contained in the solidified body is less than 1 wt%, the confinement capability of radioactive cesium is lowered and it is easy to leak into the environment. Moreover, when the adsorbent contained exceeds 10 wt%, it is difficult to secure a place to bury the produced solidified body against radioactive cesium contaminants that are continuously generated in large quantities such as the incineration ash described above. Because it becomes.

フェロシアン化物として、フェロシアン化カルシウム、フェロシアン化鉄、フェロシアン化ニッケル、フェロシアン化銅、フェロシアン化コバルトなどが挙げられる。
ケイチタン酸は、ケイチタン酸バリウム、チタン酸カリウム、チタン酸ナトリウムなどが挙げられる。
ゼオライトは、モルデナイト型ゼオライト、チャバサイト型ゼオライト、クリノプチロライト型ゼオライト、A型ゼオライト、Y型ゼオライト、X型ゼオライトなどが挙げられる。
Examples of the ferrocyanide include calcium ferrocyanide, iron ferrocyanide, nickel ferrocyanide, copper ferrocyanide, cobalt ferrocyanide, and the like.
Examples of silicic titanate include barium silicotitanate, potassium titanate, and sodium titanate.
Examples of the zeolite include mordenite type zeolite, chabazite type zeolite, clinoptilolite type zeolite, A type zeolite, Y type zeolite, X type zeolite and the like.

無機固形化剤は、ポルトランドセメント、アルミナセメント、マグネシウム系固化材、ケイ酸アルカリ、シリカゾル等が挙げられる。
このような無機固形化剤は、重量比で30wt%を超えない範囲で、固化体が作製されることが望ましい。含まれる無機固形化剤が30wt%を超えるあたりで、固化体の機械的強度は、飽和状態になる。
Examples of the inorganic solidifying agent include Portland cement, alumina cement, magnesium-based solidifying material, alkali silicate, silica sol and the like.
As for such an inorganic solidification agent, it is desirable that a solidified body is produced within a range not exceeding 30 wt% by weight. When the inorganic solidifying agent contained exceeds 30 wt%, the mechanical strength of the solidified body becomes saturated.

水分は、汚染物、吸着剤、無機固形化剤といった構成成分のそれぞれに元々含まれるものを含めて重量比で水分が15wt%を超えない範囲で、固化体が作製されることが望ましい。この水分は、固化体の構成成分の親水性表面に対し、バインダとして機能する。
含まれる水分が15wt%を超えると、バインダとしての機能が低下する他に、圧縮して固化体を作製する際に、余分な水分がにじみ出るおそれがある。
It is desirable that the solidified body is produced in such a range that the moisture does not exceed 15 wt% by weight, including those originally contained in the constituent components such as contaminants, adsorbents, and inorganic solidifying agents. This moisture functions as a binder for the hydrophilic surface of the constituent components of the solidified body.
When the water content exceeds 15 wt%, the function as a binder is lowered, and excessive water may ooze out when the solidified body is produced by compression.

固化体は、成形型に汚染物、吸着剤、無機固形化剤といった構成成分の混合体を投入した後に、10MPa以下の圧縮応力により、1.5g/cm3以上の比重のものを得る。
このような固化体の作製は、熱処理を経ることなく実施されることが望ましい。
固化体の作製に10MPaを超える圧縮応力が必要となると、設備の出力規模が大きくなり、大量に継続的に発生する放射性セシウム汚染物の円滑処理の妨げになる
また固化体の比重が1.5g/cm3を下回ると、放射性セシウム汚染物の減容化の目的が達成されないばかりでなく、固化体の機械的強度の低下を招くことになる。
The solidified body is obtained with a specific gravity of 1.5 g / cm 3 or more by compressive stress of 10 MPa or less after charging a mixture of constituents such as contaminants, adsorbents and inorganic solidifying agents into the mold.
The production of such a solidified body is preferably performed without heat treatment.
If a compressive stress exceeding 10 MPa is required for the production of the solidified body, the output scale of the equipment becomes large, which hinders the smooth treatment of radioactive cesium contaminants that are continuously generated in large quantities. The specific gravity of the solidified body is 1.5 g. If it is less than / cm 3 , not only the purpose of reducing the volume of radioactive cesium contaminants is achieved, but also the mechanical strength of the solidified body is reduced.

図2(A)のテーブルは、吸着剤としてモルデナイト型ゼオライトを添加した場合に作製された固化体の比重及び硬度の測定結果を示している。
図2(B)のテーブルは、吸着剤としてフェロシアン化ニッケルを添加した場合に作製された固化体の比重及び硬度の測定結果を示している。
The table in FIG. 2 (A) shows the measurement results of the specific gravity and hardness of the solidified material produced when mordenite-type zeolite is added as an adsorbent.
The table in FIG. 2 (B) shows the measurement results of the specific gravity and hardness of the solidified body produced when nickel ferrocyanide is added as an adsorbent.

それぞれの測定結果に用いた固化体は、焼却飛灰10gに対し、吸着剤1g、無機固形化剤としてのアルミナセメントを3g(添加有り)又は0g(添加無し)の割合で混合し、10MPaで1時間かけて圧縮成型したものである。
なお、水分は、汚染物、吸着剤、無機固形化剤のそれぞれに元々含まれるもののみを使用し、別個に加えていない。
The solidified material used for each measurement result was obtained by mixing 1 g of adsorbent and 3 g of alumina cement as an inorganic solidifying agent in an amount of 3 g (with addition) or 0 g (without addition) with 10 g of incinerated fly ash at 10 MPa. It was compression molded over 1 hour.
In addition, the water | moisture content uses only what was originally contained in each of a contaminant, an adsorbent, and an inorganic solidification agent, and is not added separately.

比重の測定結果より、圧縮応力を10MPa以下として、比重が1.5g/cm3以上の一定の固さを有する固化体を作製できることが実証された。
硬度測定は、JISK6253に準拠した硬質ゴム硬度計を用いて測定を行った。
硬度の測定結果より、無機固形化剤(アルミナセメント)を添加することにより、固化体の機械的強度が向上することが実証された。
また、無機固形化剤が添加無しの場合であっても、固化体は、その後の埋設処理等を実施するのに十分な耐久性を有する機械的強度を示すことが判った。
From the measurement results of the specific gravity, it was proved that a solidified body having a certain hardness with a specific gravity of 1.5 g / cm 3 or more can be produced with a compressive stress of 10 MPa or less.
The hardness was measured using a hard rubber hardness meter conforming to JISK6253.
From the hardness measurement results, it was proved that the mechanical strength of the solidified body was improved by adding an inorganic solidifying agent (alumina cement).
Further, it was found that even when the inorganic solidifying agent was not added, the solidified body exhibited mechanical strength having sufficient durability for carrying out the subsequent embedding treatment and the like.

図3(A)のグラフは、放射性セシウムの溶出試験結果を示している。
図3(B)のテーブルは、溶出試験の条件を示している。
放射性セシウムの溶出試験は、JISK0058−1に準拠して行った。
溶出試験を行うサンプルとして、(a)飛灰に吸着剤を添加しない場合、(b)飛灰1g当り吸着剤としてモルデナイト型ゼオライトを0.1g添加した場合、(c)飛灰1g当り吸着剤としてフェロシアン化物を0.1g添加した場合、の3通りを準備した。
The graph of FIG. 3A shows the dissolution test result of radioactive cesium.
The table in FIG. 3B shows the conditions for the dissolution test.
The dissolution test of radioactive cesium was performed according to JISK0058-1.
As a sample for the dissolution test, (a) when no adsorbent is added to fly ash, (b) when 0.1 g of mordenite type zeolite is added as adsorbent per 1 g of fly ash, (c) adsorbent per gram of fly ash When 0.1 g of ferrocyanide was added, the following three types were prepared.

これらサンプルに、液固比が10mL/gとなるように、海水を溶媒として加え、毎分約200回転で6時間撹拌し、この溶媒中に放射性セシウムを溶出させた。
そして、サンプル毎に溶出を行った溶媒を採取し、それぞれの放射性セシウムの溶出率を測定した。
To these samples, seawater was added as a solvent so that the liquid-solid ratio was 10 mL / g, and the mixture was stirred at about 200 rpm for 6 hours to elute radioactive cesium in this solvent.
And the solvent which eluted for every sample was extract | collected, and the elution rate of each radioactive cesium was measured.

この溶出試験結果から、海水に対するセシウム溶出率は、吸着剤を添加しない場合は約80%、モルデナイト型ゼオライトを添加した場合は約25%、フェロシアン化物を添加した場合は1%以下であることが判明した。   From the results of this dissolution test, the cesium dissolution rate for seawater is about 80% when no adsorbent is added, about 25% when mordenite-type zeolite is added, and 1% or less when ferrocyanide is added. There was found.

図4(A)(B)(C)は、固化体の水平断面形状及び埋設時の配列を示している。
図示されるように、固化体が円柱に成型された場合は、配列時に隙間を生じるが、固化体が四角柱又は六角柱に成型された場合は稠密に配列させることができる。
4A, 4B, and 4C show the horizontal cross-sectional shape of the solidified body and the arrangement at the time of embedding.
As shown in the figure, when the solidified body is formed into a cylinder, a gap is generated during the arrangement, but when the solidified body is formed into a quadrangular column or a hexagonal column, it can be arranged densely.

図5に示すように、実施形態に係る放射性セシウム汚染物の固化処理装置10は、汚染物、吸着剤、無機固形化剤及び水分のうち固化体の構成成分になるものをそれぞれ個別に収容する収容部11(11a,11b,11c,11d)と、それぞれの収容部11から取り分けた各種の構成成分を均一に混合する混合部12と、構成成分の混合体を圧縮して固化体にする固化部13と、を備えている。   As shown in FIG. 5, the radioactive cesium contaminant solidification treatment apparatus 10 according to the embodiment individually accommodates contaminants, adsorbents, inorganic solidifying agents, and moisture that are constituents of the solidified body. Container 11 (11a, 11b, 11c, 11d), mixing unit 12 for uniformly mixing various components separated from each container 11, and solidification by compressing the mixture of components into a solidified body Part 13.

収容部11(11a,11b,11c,11d)のそれぞれには、収容する構成成分を所望する分量(又は比率)で混合部12に投入する第1投入手段(図示略)が設けられている。
混合部12は、構成成分の混合体を、固化体を成型するのに必要な分量だけ固化部13に投入する第2投入手段(図示略)が設けられている。
固化部13には、成形型が設けられ、構成成分の混合体が投入された後、所定の圧力で圧縮し緻密な固化体を成型する。
Each of the accommodating portions 11 (11a, 11b, 11c, 11d) is provided with a first throwing means (not shown) for throwing the constituent components to be accommodated into the mixing portion 12 in a desired amount (or ratio).
The mixing unit 12 is provided with second charging means (not shown) for charging the mixture of constituent components into the solidifying unit 13 in an amount necessary for molding the solidified body.
The solidifying unit 13 is provided with a molding die, and after a mixture of constituent components is charged, it is compressed with a predetermined pressure to mold a dense solidified body.

以上述べた少なくともひとつの実施形態の放射性セシウム汚染物の固化処理方法によれば、放射性セシウムの汚染物に吸着剤を添加して圧縮し緻密な固化体を成型することにより、放射性セシウムの環境漏洩の防止及び汚染物の減容化を図ることが可能となる。   According to the solidification processing method for radioactive cesium contaminants of at least one embodiment described above, by adding an adsorbent to the radioactive cesium contaminants and compressing them to form a dense solidified body, radioactive cesium environmental leakage Prevention and volume reduction of pollutants can be achieved.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…固化処理装置、11(11a,11b,11c,11d)…収容部、12…混合部、13…固化部。   DESCRIPTION OF SYMBOLS 10 ... Solidification processing apparatus, 11 (11a, 11b, 11c, 11d) ... Storage part, 12 ... Mixing part, 13 ... Solidification part.

Claims (5)

焼却炉の燃焼時にセシウム塩が気化した後に冷却されて凝縮・析出して形成された飛灰
を放射性セシウムの汚染物として回収する工程と、
前記汚染物にフェロシアン化物、ケイチタン酸、ゼオライトの中から選択されるものの
うち少なくとも一つを含む前記放射性セシウムの吸着剤を添加する工程と、
前記汚染物にポルトランドセメント、アルミナセメント、マグネシウム系固化材、ケイ
酸アルカリ、シリカゾルの中から選択されるもののうち少なくとも一つを含む無機固形化
剤を添加する工程と、
前記汚染物に水分を添加する工程と、
前記吸着剤、前記無機固形化剤及び前記水分の添加された前記汚染物を圧縮して固化体
にする工程と、を含み、
前記固化体には重量比で前記汚染物が少なくとも60wt%含まれ、
前記固化体には重量比で前記吸着剤が1〜10wt%の範囲で含まれ、
前記固化体には重量比で前記無機固形化剤が30wt%を超えない範囲で含まれることを
特徴とする放射性セシウム汚染物の処理方法。
A step of recovering fly ash formed by cooling and condensing and depositing after the cesium salt is vaporized during combustion in the incinerator as radioactive cesium contaminants;
Adding the radioactive cesium adsorbent containing at least one selected from ferrocyanide, silicotitanate, and zeolite to the contaminants;
Adding an inorganic solidifying agent containing at least one selected from Portland cement, alumina cement, magnesium-based solidifying material, alkali silicate, and silica sol to the contaminants;
Adding water to the contaminants;
The adsorbent viewed including the steps, a to solidified body by compressing the inorganic solidifying agent and the added the contamination of the water,
The solidified body contains at least 60 wt% of the contaminant by weight,
The solidified body contains the adsorbent in a range of 1 to 10 wt% by weight,
The method for treating radioactive cesium contaminants, wherein the solidified body contains the inorganic solidifying agent in a range not exceeding 30 wt% by weight .
前記固化体には重量比で水分が15wt%を超えない範囲で含まれている請求項1に
載の放射性セシウム汚染物の処理方法。
The method for treating radioactive cesium contaminants according to claim 1, wherein the solidified body contains moisture in a range not exceeding 15 wt% by weight.
成型時の圧縮応力を10MPa以下に設定し比重が1.5g/cm以上の前記固化体
を得る請求項1または請求項2に記載の放射性セシウム汚染物の処理方法。
The method for treating radioactive cesium contaminants according to claim 1 or 2, wherein a compression stress at the time of molding is set to 10 MPa or less to obtain the solidified body having a specific gravity of 1.5 g / cm 3 or more.
前記固化体を四角柱又は六角柱に成型する請求項1から請求項3のいずれか1項に記載
の放射性セシウム汚染物の処理方法。
The method for treating radioactive cesium contaminants according to any one of claims 1 to 3 , wherein the solidified body is molded into a square column or a hexagonal column.
請求項1から請求項4のいずれか1項に記載の放射性セシウム汚染物の処理方法を実行
するために、
前記汚染物、前記吸着剤、無機固形化剤及び水分のうち前記固化体の構成成分になるも
のをそれぞれ個別に収容する収容部と、
それぞれの前記収容部から取り分けた各種の前記構成成分を均一に混合する混合部と、
前記構成成分の混合体を圧縮して前記固化体にする固化部と、を備える放射性セシウム
汚染物の処理装置。
In order to carry out the method for treating radioactive cesium contaminants according to any one of claims 1 to 4 ,
A container that individually accommodates each of the contaminants, the adsorbent, the inorganic solidifying agent, and moisture, which are components of the solidified body, and
A mixing unit for uniformly mixing the various components separated from each of the storage units;
A radioactive cesium contaminant treatment apparatus comprising: a solidification unit that compresses the mixture of the constituent components into the solidified body.
JP2012185664A 2012-08-24 2012-08-24 Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same Expired - Fee Related JP6088765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185664A JP6088765B2 (en) 2012-08-24 2012-08-24 Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185664A JP6088765B2 (en) 2012-08-24 2012-08-24 Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same

Publications (2)

Publication Number Publication Date
JP2014044082A JP2014044082A (en) 2014-03-13
JP6088765B2 true JP6088765B2 (en) 2017-03-01

Family

ID=50395449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185664A Expired - Fee Related JP6088765B2 (en) 2012-08-24 2012-08-24 Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same

Country Status (1)

Country Link
JP (1) JP6088765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363399B2 (en) * 2014-05-29 2018-07-25 株式会社東芝 Method and apparatus for treating radioactive material adsorbent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343422A1 (en) * 1983-12-01 1985-06-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR CONDITIONING CONTAMINATED WASTE BY CEMENTING
JPS62187297A (en) * 1986-02-13 1987-08-15 三井建設株式会社 Method of processing waste
JPH0249200A (en) * 1988-08-11 1990-02-19 Hitachi Ltd Method of pelletizing incineration ash
JP2807381B2 (en) * 1992-10-30 1998-10-08 日本原子力研究所 Method for producing large-scale fired solid containing cesium and / or strontium, and heating element obtained from the solid
JPH06273589A (en) * 1993-03-22 1994-09-30 Hitachi Ltd Method for pelletizing radioactive waste and solidifying method for the radioactive waste pellet
JPH06300893A (en) * 1993-04-14 1994-10-28 Toshiba Corp Solidifying material for radioactive waste
FR2955320B1 (en) * 2010-01-20 2016-02-26 Commissariat Energie Atomique PROCESS FOR PREPARING COMPOSITE MATERIAL FROM WASTE AND MATERIAL THUS OBTAINED

Also Published As

Publication number Publication date
JP2014044082A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
Rodríguez et al. Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Kobayashi et al. Decontamination of extra-diluted radioactive cesium in fukushima water using zeolite–polymer composite fibers
JP5839459B2 (en) Radioactive material-containing incineration ash and radioactive material-containing soil compression molding and compression molding method thereof
Szajerski et al. Cesium retention and release from sulfur polymer concrete matrix under normal and accidental conditions
JP5047400B1 (en) Method for producing radioactive waste incineration ash cement solidified body and solidified body thereof
JP6088765B2 (en) Method for solidifying radioactive cesium contaminants and apparatus for solidifying the same
JP5881482B2 (en) Method and apparatus for treating radioactive cesium contaminants
JP4488976B2 (en) Method and apparatus for solidifying radioactive waste
JP2016023995A (en) Method for immobilizing radioactive cesium in surface soil contaminated with radioactive cesium
JP2016099264A (en) Radioactive substance adsorption ceramic for disposing of radioactive substance safely
JP6066160B2 (en) Radioactive contaminant cleaning agent and method for cleaning radioactive contaminant
Safari et al. Preliminary assessment of cement kiln dust in solidification and stabilization of mercury containing waste from a chlor-alkali unit
JP5956745B2 (en) Method for removing radioactive cesium from an aqueous solution containing radioactive cesium
Agamuthu et al. Solidification/stabilization disposal of medical waste incinerator flyash using cement
JP2013190257A (en) Immobilizing material for radioactive substance and processing method of radioactive contaminant
JP4431664B2 (en) A leaching inhibitor for harmful elements, fly ash that has been used to suppress the leaching of harmful elements
JP5934021B2 (en) Method for producing cesium adsorbent
JP2013024812A (en) Processing method of radioactive cesium polluted solid
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
JP2014228406A (en) Method for manufacturing cement solidified material of radioactive waste incineration ash, and cement solidified material
Mohamed et al. Leachate Characteristics of Contaminated Soil Containing Lead by Stabilisation/Solidification Technique
Azmi et al. Remediation of zinc contaminated soils by stabilization/solidification technique
JP2008188570A (en) Cleaning material and manufacturing method thereof
JP2009280439A (en) Cement molded body, cement composition and method for producing cement molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6088765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees