JP6088244B2 - Method for producing carbon-doped photocatalyst - Google Patents

Method for producing carbon-doped photocatalyst Download PDF

Info

Publication number
JP6088244B2
JP6088244B2 JP2012288452A JP2012288452A JP6088244B2 JP 6088244 B2 JP6088244 B2 JP 6088244B2 JP 2012288452 A JP2012288452 A JP 2012288452A JP 2012288452 A JP2012288452 A JP 2012288452A JP 6088244 B2 JP6088244 B2 JP 6088244B2
Authority
JP
Japan
Prior art keywords
carbon
doped
sample
titanium
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012288452A
Other languages
Japanese (ja)
Other versions
JP2014128768A (en
Inventor
次雄 佐藤
次雄 佐藤
しゅう 殷
しゅう 殷
田中 洋
洋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2012288452A priority Critical patent/JP6088244B2/en
Publication of JP2014128768A publication Critical patent/JP2014128768A/en
Application granted granted Critical
Publication of JP6088244B2 publication Critical patent/JP6088244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、カーボンドープ光触媒の製造方法に関する。 The present invention relates to a method for producing a carbon-doped photocatalyst.

光が照射された場合に触媒作用を示す光触媒としては、酸化チタンが広く知られている。酸化チタンに紫外線が照射されると、酸化チタンの光触媒活性によって、たとえば、大気汚染の原因物質とされる窒素酸化物や、シックハウス症候群の一因と考えられているアセトアルデヒドなどの有害物質が分解される。酸化チタンのこのような光触媒活性は、太陽光や白熱灯・蛍光灯などの自然光にごく一部含まれる紫外線の吸収によって発現されるが、可視光の照射では、酸化チタンの光触媒活性は紫外線照射の場合に比べて大幅に低下する。このため、酸化チタンは、自然光のもとでの光触媒活性としては不十分であった。   Titanium oxide is widely known as a photocatalyst that exhibits catalytic action when irradiated with light. When titanium oxide is irradiated with ultraviolet rays, the photocatalytic activity of titanium oxide decomposes harmful substances such as nitrogen oxide, which is a cause of air pollution, and acetaldehyde, which is thought to contribute to sick house syndrome. The Such photocatalytic activity of titanium oxide is expressed by the absorption of ultraviolet rays contained in a part of natural light such as sunlight, incandescent lamps and fluorescent lamps. This is much lower than For this reason, titanium oxide was insufficient as photocatalytic activity under natural light.

このため、可視光領域で用いることができる光触媒が望まれ、二酸化チタンに遷移金属をドープする方法(たとえば特許文献1)や、二酸化チタンに窒素をドープする方法(たたとえば特許文献2)などが提案されている。   For this reason, a photocatalyst that can be used in the visible light region is desired, and a method of doping titanium dioxide with a transition metal (for example, Patent Document 1), a method of doping titanium dioxide with nitrogen (for example, Patent Document 2), and the like. Proposed.

しかしながら、これらの方法は、煩雑であるとともに、これらの方法で製造された光触媒は、可視光のもとでの光触媒活性において、いまだ十分に満足できるものではなかった。   However, these methods are complicated, and the photocatalysts produced by these methods are still not fully satisfactory in photocatalytic activity under visible light.

特開平9−262482号公報JP-A-9-262482 特開2007−90336号公報JP 2007-90336 A

本発明は、上記した事情のもとで考え出されたものであって、可視光下での光触媒活性がより高められたカーボンドープ光触媒を簡便に製造する方法を提供することをその課題としている。 The present invention has been conceived under the circumstances described above, and an object thereof is to provide a method for easily producing a carbon-doped photocatalyst having a higher photocatalytic activity under visible light. .

本発明によって提供されるカーボンドープ光触媒の製造方法は、エタノール水溶液中にチタニウムブトキシドを混合し、150〜220℃に加熱して上記チタニウムブトキシドを加水分解し、これを乾燥させてカーボンがドープされた中間生成物を得る第1ステップ、および上記中間生成物においてドープされたカーボンの熱消失を抑制するべく、上記中間生成物を150〜300℃で焼成する第2ステップ、を含ことを特徴とする。 In the method for producing a carbon-doped photocatalyst provided by the present invention, titanium butoxide is mixed in an ethanol aqueous solution, heated to 150 to 220 ° C. to hydrolyze the titanium butoxide, and dried to be doped with carbon. the first step to obtain an intermediate product, and in order to suppress heat loss of the doped carbon in the intermediate product, and wherein the second step, the including firing the intermediate product at 150 to 300 ° C. To do.

好ましくは、上記第2ステップにおける焼成温度は、160〜270℃である。   Preferably, the firing temperature in the second step is 160 to 270 ° C.

好ましくは、上記チタニウムブトキシドは、チタニウムテトライソブトキシドである。   Preferably, the titanium butoxide is titanium tetraisobutoxide.

好ましくは、上記乾燥は、真空乾燥である。Preferably, the drying is vacuum drying.

本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

本発明に係る光触媒の製造工程の一例を示す。An example of the manufacturing process of the photocatalyst concerning this invention is shown. 各波長の光を照射した場合のNO分解光触媒活性を示す The NO decomposition photocatalytic activity when irradiated with light of each wavelength is shown .

本発明に係る光触媒の製造工程を図1に示す。この製造方法は、有機溶媒の一例であるエタノールの水溶液を準備する工程(S1)、チタニウムブトキシドを上記エタノール水溶液に混合する工程(S2)、S2で得られた混合物を水熱反応させる工程(S3)、S3で得られた第1中間生成物を遠心分離する工程(S4)、S4で得られた第2中間生成物をたとえば60℃で12時間真空乾燥する工程(S5)、および、S5で得られた第3中間生成物を所定の温度で焼成する工程(S6)を含んでいる。   The manufacturing process of the photocatalyst according to the present invention is shown in FIG. This production method includes a step of preparing an aqueous solution of ethanol which is an example of an organic solvent (S1), a step of mixing titanium butoxide with the aqueous ethanol solution (S2), and a step of hydrothermally reacting the mixture obtained in S2 (S3). ), Centrifuging the first intermediate product obtained in S3 (S4), vacuum-drying the second intermediate product obtained in S4, for example, at 60 ° C. for 12 hours (S5), and S5 A step (S6) of firing the obtained third intermediate product at a predetermined temperature is included.

チタニウムブトキシドは、好ましくは、チタニウムテトライソブトキシドが用いられる。   As titanium butoxide, titanium tetraisobutoxide is preferably used.

S3では、たとえば150〜220℃でたとえば2時間水熱反応させられ、より好ましくは、約190℃で水熱反応させられる。   In S3, the hydrothermal reaction is performed, for example, at 150 to 220 ° C. for 2 hours, and more preferably, the hydrothermal reaction is performed at about 190 ° C.

S6では、150〜300℃でたとえば1時間焼成され、より好ましくは、160〜270℃でたとえば1時間焼成される。   In S6, baking is performed at 150 to 300 ° C., for example, for 1 hour, and more preferably baking is performed at 160 to 270 ° C., for example, for 1 hour.

かかる方法で製造された光触媒は、優れた可視光吸収能を示す。これは、溶媒として用いたエタノールおよびチタン源として用いたチタニウムブトキシド中のカーボンが酸化チタンに効果的にドープされたためと考えられる。   The photocatalyst produced by such a method exhibits excellent visible light absorption ability. This is presumably because the titanium oxide was effectively doped with the carbon used in the ethanol used as the solvent and the titanium butoxide used as the titanium source.

以下、実施例および比較例に基づいて、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail based on examples and comparative examples.

〔実施例1〕
(1)光触媒の製造
13mlのチタニウムテトライソブトキシドと35mlのエタノール水溶液(エタノール:水=30:5)との混合物を耐圧容器に入れ、190℃で2時間反応させた。続いてその生成物を遠心分離し、蒸留水およびエタノールで4回洗浄し、60℃で12時間真空乾燥させた(以下、この段階での生成物を「初期生成物」という)。次に、この初期生成物を265℃で1時間焼成し、試料1を得た。試料1の平均粒径は11.7nmであった。
[Example 1]
(1) Production of photocatalyst A mixture of 13 ml of titanium tetraisobutoxide and 35 ml of an aqueous ethanol solution (ethanol: water = 30: 5) was placed in a pressure vessel and reacted at 190 ° C. for 2 hours. Subsequently, the product was centrifuged, washed four times with distilled water and ethanol, and vacuum-dried at 60 ° C. for 12 hours (hereinafter, the product at this stage is referred to as “initial product”). Next, this initial product was baked at 265 ° C. for 1 hour to obtain Sample 1. The average particle size of Sample 1 was 11.7 nm.

(2)一酸化窒素(NO)分解測定
上記方法によって得られた試料1の光触媒活性について、種々の波長によるNOガスの分解測定によって評価した。NOガスの分解は、内容積373cm3の通流式反応器を用
いて行った。本測定では、試料1の粉末0.2gをガラスホルダ(長さ20mm、幅16mm、深さ0.5mm)の窪み部分に入れ、このガラスホルダを反応器の中央底部に載置した。光源は450W高圧水銀ランプが用いられ、反応器に照射される光の波長は、フィルタを選択することによって調整した。フィルタとしては、290nmを超える波長(>290nm)についてはパイレックス(登録商標)を用い、400nmを超える波長(>400nm)についてはケンコー製(商品名:L41 Super Pro)を用い、510nmを超える波長(>510nm)については富士製のトリアセチルセルロースフィルタを用いた。反応器内に流通させるガスは、NO濃度2ppmの窒素ガスと、空気とを1:1の割合で混合したガス(NO濃度1ppm)を用い、この混合ガスの流量は200cm3とした。反応器を通過したガスのNO濃度は、窒素酸化物分析計(ヤナコ製、商品
名:ECL−88A)を用いて測定した。上記した各波長の光を照射した場合のNO分解光触媒活性を図2に示す。
(2) Nitrogen monoxide (NO) decomposition measurement The photocatalytic activity of Sample 1 obtained by the above method was evaluated by NO gas decomposition measurement at various wavelengths. The decomposition of the NO gas was performed using a flow reactor having an internal volume of 373 cm 3 . In this measurement, 0.2 g of the powder of Sample 1 was placed in a hollow portion of a glass holder (length 20 mm, width 16 mm, depth 0.5 mm), and this glass holder was placed on the center bottom of the reactor. A 450 W high-pressure mercury lamp was used as the light source, and the wavelength of light irradiated to the reactor was adjusted by selecting a filter. As a filter, Pyrex (registered trademark) is used for wavelengths exceeding 290 nm (> 290 nm), Kenko (trade name: L41 Super Pro) is used for wavelengths exceeding 400 nm (> 400 nm), and wavelengths exceeding 510 nm ( For> 510 nm), a Fuji triacetyl cellulose filter was used. As a gas to be circulated in the reactor, a gas (NO concentration 1 ppm) in which nitrogen gas having a NO concentration of 2 ppm and air were mixed at a ratio of 1: 1 was used, and the flow rate of the mixed gas was 200 cm 3 . The NO concentration of the gas that passed through the reactor was measured using a nitrogen oxide analyzer (manufactured by Yanaco, trade name: ECL-88A). FIG. 2 shows the NO decomposition photocatalytic activity when irradiated with light of each wavelength described above.

〔実施例2〕
実施例1において生成した初期生成物を165℃で1時間焼成し、試料2を得た。試料2の平均粒径は11.6nmであった。NO分解測定については実施例1と同じ装置を用い、実施例1の場合と同量(0.2g)の試料2を実施例1と同じ態様で反応器にセットした。NOガスの供給態様および光照射の態様も実施例1と同様とした。各波長の光を照射した場合のNO分解光触媒活性を図2に示す。
[Example 2]
The initial product produced in Example 1 was baked at 165 ° C. for 1 hour to obtain Sample 2. Sample 2 had an average particle size of 11.6 nm. For the NO decomposition measurement, the same apparatus as in Example 1 was used, and the same amount (0.2 g) of Sample 2 as in Example 1 was set in the reactor in the same manner as in Example 1. The supply mode of NO gas and the mode of light irradiation were the same as in Example 1. The NO decomposition photocatalytic activity when irradiated with light of each wavelength is shown in FIG.

〔比較例1〕
実施例1において形成した初期生成物を400℃で1時間焼成し、試料3を得た。試料3の平均粒径は12.2nmであった。NO分解測定については実施例1と同じ装置を用い、実施例1の場合と同量(0.2g)の試料3を実施例1と同じ態様で反応器にセットした。NOガスの供給態様および光照射の態様も実施例1と同様とした。各波長の光を照射した場合のNO分解光触媒活性を図2に示す。
[Comparative Example 1]
The initial product formed in Example 1 was baked at 400 ° C. for 1 hour to obtain Sample 3. Sample 3 had an average particle size of 12.2 nm. For the NO decomposition measurement, the same apparatus as in Example 1 was used, and the same amount (0.2 g) of Sample 3 as in Example 1 was set in the reactor in the same manner as in Example 1. The supply mode of NO gas and the mode of light irradiation were the same as in Example 1. The NO decomposition photocatalytic activity when irradiated with light of each wavelength is shown in FIG.

〔比較例2〕
本比較例では、実施例1における初期生成物を試料4として用いた。試料4の平均粒径は11.5nmであった。NO分解測定については実施例1と同じ装置を用い、実施例1の場合と同量(0.2g)の試料4を実施例1と同じ態様で反応器にセットした。NOガスの供給態様および光照射の態様も実施例1と同様とした。各波長の光を照射した場合のNO分解光触媒活性を図2に示す。
[Comparative Example 2]
In this comparative example, the initial product in Example 1 was used as Sample 4. Sample 4 had an average particle size of 11.5 nm. For the NO decomposition measurement, the same apparatus as in Example 1 was used, and the same amount (0.2 g) of Sample 4 as in Example 1 was set in the reactor in the same manner as in Example 1. The supply mode of NO gas and the mode of light irradiation were the same as in Example 1. The NO decomposition photocatalytic activity when irradiated with light of each wavelength is shown in FIG.

〔比較例3〕
本比較例では、市販の酸化チタン粉末(デグザ製、商品名:P25)を試料5として用いた。NO分解測定については実施例1と同じ装置を用い、実施例1の場合と同量(0.2g)の試料5を実施例1と同じ態様で反応器にセットした。NOガスの供給態様および光照射の態様も実施例1と同様とした。各波長の光を照射した場合のNO分解光触媒活性を図2に示す。
[Comparative Example 3]
In this comparative example, a commercially available titanium oxide powder (manufactured by Degussa, trade name: P25) was used as Sample 5. For the NO decomposition measurement, the same apparatus as in Example 1 was used, and the same amount (0.2 g) of Sample 5 as in Example 1 was set in the reactor in the same manner as in Example 1. The supply mode of NO gas and the mode of light irradiation were the same as in Example 1. The NO decomposition photocatalytic activity when irradiated with light of each wavelength is shown in FIG.

〔比較例4〕
本比較例では、13mlの塩化チタニウムと35mlのエタノール水溶液(エタノール:水=30:5)との混合物を耐圧容器に入れ、190℃で2時間反応させた。続いてその生成物を遠心分離し、蒸留水およびエタノールで4回洗浄し、60℃で12時間真空乾燥させ、次にこの生成物を265℃で1時間焼成し、試料6を得た。試料6の平均粒径は17.2nmであった。NO分解測定については実施例1と同じ装置を用い、実施例1の場合と同量(0.2g)の試料6を実施例1と同じ態様で反応器にセットした。NOガスの供給態様および光照射の態様も実施例1と同様とした。各波長の光を照射した場合のNO分解光触媒活性を図2に示す。
[Comparative Example 4]
In this comparative example, a mixture of 13 ml of titanium chloride and 35 ml of an aqueous ethanol solution (ethanol: water = 30: 5) was placed in a pressure vessel and reacted at 190 ° C. for 2 hours. The product was then centrifuged, washed 4 times with distilled water and ethanol, vacuum dried at 60 ° C. for 12 hours, and then the product was calcined at 265 ° C. for 1 hour to obtain Sample 6. Sample 6 had an average particle size of 17.2 nm. For the NO decomposition measurement, the same apparatus as in Example 1 was used, and the same amount (0.2 g) of Sample 6 as in Example 1 was set in the reactor in the same manner as in Example 1. The supply mode of NO gas and the mode of light irradiation were the same as in Example 1. The NO decomposition photocatalytic activity when irradiated with light of each wavelength is shown in FIG.

図2に示す各試料についての測定データから分かるように、試料1(実施例1)および試料2(実施例2)における可視光領域でのNO分解光触媒活性は、NO除去率がそれぞれ37%、32%と高く、とりわけ、試料1(実施例1)については、一般的な窒素ドープ酸化チタンの可視光下でのNO分解光触媒活性を凌駕するが、その他の試料3〜6(比較例1〜4)については、すべてNO除去率が20%を下回る。   As can be seen from the measurement data for each sample shown in FIG. 2, the NO decomposition photocatalytic activity in the visible light region in Sample 1 (Example 1) and Sample 2 (Example 2) is 37% NO removal rate, In particular, Sample 1 (Example 1) surpasses the NO decomposition photocatalytic activity of general nitrogen-doped titanium oxide under visible light, but other Samples 3 to 6 (Comparative Examples 1 to 3). For 4), the NO removal rate is all below 20%.

このような可視光下での試料1、2(実施例1、2)の光触媒活性は、上記したように、製造過程において溶媒として用いたエタノールおよびチタン源として用いたチタニウムブトキシド中のカーボンが酸化チタンに効果的にドープされたためと考えられるが、製造過程における初期生成物に対する焼成温度がこの触媒活性に大きく関わる。すなわち、焼成温度を400℃まで高めてしまうと(試料3、比較例1)、NO分解光触媒活性が著しく低下するが、これは、ドープされたカーボンが熱により消失してしまうからであると考えられる。図2の傾向から、NOの除去率を約30%以上に高く維持するためには、上記初期生成物に対する焼成温度を150〜300℃程度に維持するとよいと推定される。   As described above, the photocatalytic activity of Samples 1 and 2 (Examples 1 and 2) under visible light is such that ethanol used as a solvent in the production process and carbon in titanium butoxide used as a titanium source were oxidized. It is considered that titanium was effectively doped, but the calcination temperature for the initial product in the production process is greatly related to this catalytic activity. That is, when the firing temperature is increased to 400 ° C. (Sample 3, Comparative Example 1), the NO decomposition photocatalytic activity is remarkably lowered, which is considered because the doped carbon is lost by heat. It is done. From the tendency of FIG. 2, it is estimated that the firing temperature for the initial product should be maintained at about 150 to 300 ° C. in order to maintain the NO removal rate as high as about 30% or more.

Claims (4)

エタノール水溶液中にチタニウムブトキシドを混合し、150〜220℃に加熱して上記チタニウムブトキシドを加水分解し、これを乾燥させてカーボンがドープされた中間生成物を得る第1ステップ、および
上記中間生成物においてドープされたカーボンの熱消失を抑制するべく、上記中間生成物を150〜300℃で焼成する第2ステップ、
を含ことを特徴とする、カーボンドープ光触媒の製造方法。
A first step of mixing titanium butoxide in an aqueous ethanol solution, heating to 150-220 ° C. to hydrolyze the titanium butoxide, and drying it to obtain a carbon-doped intermediate product; and
A second step of firing the intermediate product at 150 to 300 ° C. in order to suppress heat dissipation of the carbon doped in the intermediate product;
Characterized in including that the method of manufacturing a carbon-doped photocatalyst.
上記第2ステップにおける焼成温度は、165〜265℃である、請求項1に記載のカーボンドープ光触媒の製造方法。 The method for producing a carbon-doped photocatalyst according to claim 1, wherein the firing temperature in the second step is 165 to 265 ° C. 上記チタニウムブトキシドは、チタニウムテトライソブトキシドである、請求項1または2に記載のカーボンドープ光触媒の製造方法。 The method for producing a carbon-doped photocatalyst according to claim 1 or 2, wherein the titanium butoxide is titanium tetraisobutoxide. 上記乾燥は、真空乾燥である、請求項1ないし3のいずれかに記載のカーボンドープ光触媒の製造方法。The method for producing a carbon-doped photocatalyst according to any one of claims 1 to 3, wherein the drying is vacuum drying.
JP2012288452A 2012-12-28 2012-12-28 Method for producing carbon-doped photocatalyst Active JP6088244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288452A JP6088244B2 (en) 2012-12-28 2012-12-28 Method for producing carbon-doped photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288452A JP6088244B2 (en) 2012-12-28 2012-12-28 Method for producing carbon-doped photocatalyst

Publications (2)

Publication Number Publication Date
JP2014128768A JP2014128768A (en) 2014-07-10
JP6088244B2 true JP6088244B2 (en) 2017-03-01

Family

ID=51407678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288452A Active JP6088244B2 (en) 2012-12-28 2012-12-28 Method for producing carbon-doped photocatalyst

Country Status (1)

Country Link
JP (1) JP6088244B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471417B2 (en) 2016-03-04 2019-11-12 Fuji Xerox Co., Ltd. Titanium oxide particle and method for producing the same
US10265680B2 (en) 2016-03-04 2019-04-23 Fuji Xerox Co., Ltd. Silica particle comprising a titania coating and method for producing the same
JP6872114B2 (en) 2016-12-12 2021-05-19 富士フイルムビジネスイノベーション株式会社 Titanium oxide particles and a method for producing the same, a composition for forming a photocatalyst, a photocatalyst, and a structure.
JP6876908B2 (en) 2016-12-12 2021-05-26 富士フイルムビジネスイノベーション株式会社 Titanium oxide particles and their production method, photocatalyst forming composition, photocatalyst, and structure
JP6961931B2 (en) 2016-12-12 2021-11-05 富士フイルムビジネスイノベーション株式会社 Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures
JP6939056B2 (en) 2017-04-26 2021-09-22 富士フイルムビジネスイノベーション株式会社 Titanium oxide particles and their production method, photocatalyst forming composition, photocatalyst, and structure
JP6939055B2 (en) 2017-04-26 2021-09-22 富士フイルムビジネスイノベーション株式会社 Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
JP7000753B2 (en) 2017-09-08 2022-01-19 富士フイルムビジネスイノベーション株式会社 Titanium oxide airgel particles, method for producing titanium oxide airgel particles, composition for forming a photocatalyst, photocatalyst, and structure.
JP7167445B2 (en) 2018-01-25 2022-11-09 富士フイルムビジネスイノベーション株式会社 Method for producing titanium oxide film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262008A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
JP2004122056A (en) * 2002-10-04 2004-04-22 Toto Ltd Porous titanium oxide and production method of the same
JP4493282B2 (en) * 2003-04-28 2010-06-30 財団法人かがわ産業支援財団 Method for producing a novel visible light excitation type photocatalyst
DE102004027549A1 (en) * 2004-04-07 2005-10-27 Kronos International, Inc. Carbonaceous titania photocatalyst and process for its preparation
TWI272250B (en) * 2004-06-30 2007-02-01 Ind Tech Res Inst Visible light-activated photocatalyst and method for producing the same
JP4240310B2 (en) * 2004-09-22 2009-03-18 独立行政法人科学技術振興機構 Visible light responsive photocatalyst and synthesis method thereof

Also Published As

Publication number Publication date
JP2014128768A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6088244B2 (en) Method for producing carbon-doped photocatalyst
Saison et al. New insights into Bi2WO6 properties as a visible-light photocatalyst
Li et al. Mesostructured CeO2/g-C3N4 nanocomposites: remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
Bhattacharyya et al. Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene
Wang et al. Water-assisted production of honeycomb-like gC 3 N 4 with ultralong carrier lifetime and outstanding photocatalytic activity
Ismail et al. Study of the efficiency of UV and visible‐light photocatalytic oxidation of methanol on mesoporous RuO2–TiO2 nanocomposites
Obregón et al. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism
Song et al. Multi-shelled ZnO decorated with nitrogen and phosphorus co-doped carbon quantum dots: synthesis and enhanced photodegradation activity of methylene blue in aqueous solutions
TWI476043B (en) Photocatalytic materials and process for producing the same
D’Arienzo et al. Crystal surfaces and fate of photogenerated Defects in shape-controlled anatase nanocrystals: drawing useful relations to improve the H2 yield in methanol photosteam reforming
Fu et al. Photocatalytic enhancement of TiO2 by B and Zr co-doping and modulation of microstructure
KR101141725B1 (en) Manufacturing method of impurities doped titanium dioxide photocatalysts with excellent photo activity at visible light and ultraviolet light region
CN107176671B (en) WO (WO)3Method for degrading phenol wastewater
CN103007913A (en) Preparation method of Ti<3+>-doped TiO2 composite graphene photocatalyst
Ziarati et al. Designer hydrogenated wrinkled yolk@ shell TiO 2 architectures towards advanced visible light photocatalysts for selective alcohol oxidation
KR20130000667A (en) Manufacturing method of titanium photocatalyst using hydrothermal method
Chai et al. Efficient visible-light photocatalysts from Gd–La codoped TiO2 nanotubes
KR101749673B1 (en) Manufacturing method of mesoporous anatase titanium dioxide spheres photocatalyst
Baranowska et al. Bifunctional catalyst based on molecular structure: spherical mesoporous TiO2 and gCN for photocatalysis
CN104841463A (en) BiOCl/P25 composite photocatalyst, and preparation method and applications thereof
CN104511280B (en) A kind of visible light catalyst and preparation method thereof
CN108671956B (en) Preparation method of ion-filled graphite-phase carbon nitride nanosheet
KR101811017B1 (en) Manufacturing method of mesoporous titanium dioxide sphere/multi-walled carbon nanotubes composites for photocatalyst
KR101447206B1 (en) The manufacturing method of titanium dioxide nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250