JP6085235B2 - Manufacturing method of mechanical resonator - Google Patents

Manufacturing method of mechanical resonator Download PDF

Info

Publication number
JP6085235B2
JP6085235B2 JP2013176642A JP2013176642A JP6085235B2 JP 6085235 B2 JP6085235 B2 JP 6085235B2 JP 2013176642 A JP2013176642 A JP 2013176642A JP 2013176642 A JP2013176642 A JP 2013176642A JP 6085235 B2 JP6085235 B2 JP 6085235B2
Authority
JP
Japan
Prior art keywords
manufacturing
nitrogen
compound semiconductor
mechanical resonator
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013176642A
Other languages
Japanese (ja)
Other versions
JP2015046754A (en
Inventor
恒二 小野満
恒二 小野満
学 満原
学 満原
山本 秀樹
秀樹 山本
山口 浩司
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013176642A priority Critical patent/JP6085235B2/en
Publication of JP2015046754A publication Critical patent/JP2015046754A/en
Application granted granted Critical
Publication of JP6085235B2 publication Critical patent/JP6085235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は機械的に振動する微小部分を備えた微小機械共振器の作製方法に関する。   The present invention relates to a method for manufacturing a micromechanical resonator having a minute portion that mechanically vibrates.

微小機械共振器は、微細加工によって作製されたMEMS共振器であって、機械的に振動することから、例えば圧力、応力、流量、温度、または加速度などの検出器などに使用される(非特許文献1,2,3,4参照)。代表的な微小機械共振器を図3(c)に示す。図3(c)の微小機械共振器は、GaAs基板301、AlGaAs犠牲層302、GaAsもしくはAlGaAs振動部形成層303から構成され、振動部形成層303は、支持部305、梁構造306を有する。GaAs基板301と梁構造306との間には空間が存在しているため、梁構造306は機械的に振動する。   A micromechanical resonator is a MEMS resonator manufactured by microfabrication, and mechanically vibrates. Therefore, the micromechanical resonator is used for a detector such as pressure, stress, flow rate, temperature, or acceleration (non-patent document). Reference 1, 2, 3, 4). A typical micromechanical resonator is shown in FIG. 3C includes a GaAs substrate 301, an AlGaAs sacrificial layer 302, a GaAs or AlGaAs vibrating part forming layer 303, and the vibrating part forming layer 303 includes a support part 305 and a beam structure 306. Since there is a space between the GaAs substrate 301 and the beam structure 306, the beam structure 306 vibrates mechanically.

図3は、III-V族化合物半導体を用いた微小機械共振器の従来の作製工程図である。GaAs基板を使った例を次に述べる。   FIG. 3 is a conventional manufacturing process diagram of a micro mechanical resonator using a III-V group compound semiconductor. An example using a GaAs substrate is described below.

まず図3(a)に示すように、GaAs基板301上にAl濃度65%程度のAlGaAs犠牲層302を形成し、最表面の振動部形成層にGaAsもしくはAl濃度35%以下のAlGaAs振動部形成層303を形成する。   First, as shown in FIG. 3A, an AlGaAs sacrificial layer 302 having an Al concentration of about 65% is formed on a GaAs substrate 301, and GaAs or an AlGaAs vibrating portion having an Al concentration of 35% or less is formed on the outermost vibrating portion forming layer. Layer 303 is formed.

次に、公知のフォトリソグラフィー技術や電子ビームリソグラフィーなどによって微細なパターンを形成し、形成したパターンをマスクとして、開口部をメサエッチングすることにより、AlGaAs犠牲層302およびGaAsもしくはAl濃度35%以下のAlGaAs振動部形成層303を除去する。このようにして、図3(b)に示すように、GaAs基板301の上に細線構造304を形成する。   Next, a fine pattern is formed by a known photolithography technique, electron beam lithography, or the like, and the opening is mesa-etched using the formed pattern as a mask, so that the AlGaAs sacrificial layer 302 and the GaAs or Al concentration of 35% or less are formed. The AlGaAs vibration part forming layer 303 is removed. In this way, a thin line structure 304 is formed on the GaAs substrate 301 as shown in FIG.

最後に、GaAsもしくはAl濃度35%以下のAlGaAsと比較して、Al濃度65%程度であるAlGaAsをより選択的に溶解するフッ酸などのエッチング溶液を用いたウエットエッチングより、Al濃度65%程度のAlGaAs犠牲層302の表面に露出している部分を除去する。このようにして、図3(c)に示すように、2箇所の支持部305により支持された梁構造306を、GaAs基板301の上に、GaAs基板301から離間して形成する。つまりAl濃度65%程度であるAlGaAs302を犠牲層とし、この犠牲層を部分的に除去することによって梁構造306を形成する。上記はGaAs基板を用いた例であるが、Si基板を基板301に、SiO2を犠牲層302に、Siを振動部形成層303として、上記と同じ加工方法で同様の梁構造を作製することが可能である。 Finally, compared to GaAs or AlGaAs having an Al concentration of 35% or less, an Al concentration of about 65% is obtained by wet etching using an etching solution such as hydrofluoric acid that selectively dissolves AlGaAs having an Al concentration of about 65%. A portion exposed on the surface of the AlGaAs sacrificial layer 302 is removed. In this manner, as shown in FIG. 3C, the beam structure 306 supported by the two support portions 305 is formed on the GaAs substrate 301 so as to be separated from the GaAs substrate 301. That is, AlGaAs 302 having an Al concentration of about 65% is used as a sacrificial layer, and the sacrificial layer is partially removed to form the beam structure 306. Although the above is an example using a GaAs substrate, a similar beam structure is manufactured by the same processing method as described above, using the Si substrate as the substrate 301, SiO 2 as the sacrificial layer 302, and Si as the vibration part forming layer 303. Is possible.

このようにして作製した梁構造306は、基板301から離隔されて形成されているため、機械的に振動することができる。この振動の共振を用いることにより、梁構造306を備えた構造を、機械共振器として用いることができる(非特許文献1参照)。同様の構造の試料を用いて、梁構造306の代わりにメンブレン構造を作製し、機械共振器として用いることも可能である(非特許文献2参照)。   Since the beam structure 306 manufactured in this manner is formed apart from the substrate 301, it can vibrate mechanically. By using this vibration resonance, the structure including the beam structure 306 can be used as a mechanical resonator (see Non-Patent Document 1). It is also possible to produce a membrane structure instead of the beam structure 306 using a sample having a similar structure and use it as a mechanical resonator (see Non-Patent Document 2).

共振器の特性を示す最も重要な指標として、共振周波数ならびに性能指数(Q値)がある。これらの機械共振器は、コンデンサやコイルなどを用いて構成した電気回路による共振器と比較すると、機械共振を用いているため、高い性能指数(Q値)と優れた周波数特性とを有している。また、上述したような機械共振器の共振周波数は、機械共振器に加えられた力により変化するため、共振周波数の変化を検出することにより、感度の非常に高い力検出素子を作製することが可能である(非特許文献3,4参照)。   The most important index indicating the characteristics of the resonator includes a resonance frequency and a figure of merit (Q value). These mechanical resonators have higher performance index (Q value) and superior frequency characteristics because they use mechanical resonance compared to resonators with electrical circuits configured using capacitors and coils. Yes. In addition, since the resonance frequency of the mechanical resonator as described above changes depending on the force applied to the mechanical resonator, it is possible to produce a force detection element with extremely high sensitivity by detecting a change in the resonance frequency. It is possible (see Non-Patent Documents 3 and 4).

高い共振周波数ならびに大きなQを持つ共振器を得る手法として、機械振動子に引っ張り歪みを印加する方法があるが、III-V族化合物半導体を用いる場合はIII-V族化合物半導体に窒素をドープした層を振動部形成層として用い、機械振動子に引っ張り歪みを印加する方法が有望である(特許文献1参照)。   As a method of obtaining a resonator having a high resonance frequency and a large Q, there is a method of applying tensile strain to a mechanical vibrator. When a III-V compound semiconductor is used, nitrogen is doped into the III-V compound semiconductor. A method of applying tensile strain to a mechanical vibrator using a layer as a vibration part forming layer is promising (see Patent Document 1).

特願2012―180384号公報Japanese Patent Application No. 2012-180384

D.W.Carr, et al., "Measurement of mechanical resonance and losses in nanometer scale silicon wires", Applied Physics Letters, Vol.75, No.7, pp.920-922, 1999.D.W.Carr, et al., "Measurement of mechanical resonance and losses in nanometer scale silicon wires", Applied Physics Letters, Vol.75, No.7, pp.920-922, 1999. J-P.Raskin, et al.,"A Nobel Parameter-Effect MEMS Amplifier", Journal of Microelectromechanical Systems, Vol.9, No.4, pp.528-537,2000.J-P. Raskin, et al., "A Nobel Parameter-Effect MEMS Amplifier", Journal of Microelectromechanical Systems, Vol.9, No.4, pp.528-537, 2000. A.N.Cleland and M.L.Roukes, "A nanometre-scale mechanical electrometer", Nature, Vol.392, pp.160-162, 1998.A.N.Cleland and M.L.Roukes, "A nanometre-scale mechanical electrometer", Nature, Vol.392, pp.160-162, 1998. H.L.C.Tilmans, M.Elewenspoek, and, J.H.Fluitman, Sensor and Actuators, A, 30, 35, 1998.H.L.C.Tilmans, M. Elewenspoek, and, J.H.Fluitman, Sensor and Actuators, A, 30, 35, 1998. F. Ishikawa, S. Fuyuno, K. Higashi, M. Kondow, M. Machida et al. “Direct observation of N-(group V) bonding defects in dilute nitride semiconductors using hard x-ray photoelectron spectroscopy” Appl. Phys. Lett. 98, 121915 (2011)F. Ishikawa, S. Fuyuno, K. Higashi, M. Kondow, M. Machida et al. “Direct observation of N- (group V) bonding defects in dilute nitride semiconductors using hard x-ray photoelectron spectroscopy” Appl. Phys. Lett. 98, 121915 (2011) G. Mussler, J.-M. Chauveau, A. Trampert, M. Ramsteiner, L. D.aweritz, K.H. Ploog “Nitrogen-dependent optimum annealing temperature of Ga(As,N)” Journal of Crystal Growth 267 (2004) 60-66G. Mussler, J.-M. Chauveau, A. Trampert, M. Ramsteiner, L. D. aweritz, K.H. Ploog “Nitrogen-dependent optimum annealing temperature of Ga (As, N)” Journal of Crystal Growth 267 (2004) 60-66

窒素原子はV族元素の中で最小の原子半径を持つため、GaAs、InAs、GaSb、InSb、InP、GaPなどの2元III-V族化合物半導体混晶ならびにこれらの2元III-V族化合物半導体混晶を組み合わせた3元以上のIII-V族化合物半導体混晶に、窒素原子をドープすることによって、上記のIII-V族化合物半導体混晶のいずれの格子定数も小さくすることができる。ここでは、一例としてGaAsに窒素をドープしたGaNAsを振動部形成層として用いる場合について説明する。GaAsを基板とし、GaNAsを振動部形成層として用いる場合、GaAs基板よりもGaNAs振動部形成層の格子定数が小さいため、GaNAs振動部形成層が引っ張り歪を有することになる。ここで、GaNAs振動部形成層のAsサイトが1つの窒素原子によって置換された状態を、この窒素原子の理想的な状態とする。取り混まれた窒素の中には、Asサイトが2つの窒素原子によって置換された状態、AsサイトがAsと窒素の両方によって置換された状態、格子間に窒素が存在する状態など、理想的な状態で取り混まれていない窒素が存在することが知られている。これらの理想的な状態ではない窒素は、GaNAs振動部形成層において、トラップ、非発光再結合を引き起こすものとして作用することが知られている(非特許文献5、6)。機械振動器においては、これらの理想的ではない状態で存在する窒素が振動体の弾性エネルギーの散逸を増大させる原因となるため、ドープした窒素がすべて理想的な状態にない場合の機械振動器のQ値は、ドープした窒素がすべて理想的な状態にある場合よりも低くなるといった課題がある。   Since nitrogen atom has the smallest atomic radius among group V elements, binary III-V compound semiconductor mixed crystals such as GaAs, InAs, GaSb, InSb, InP, GaP, etc., and these binary III-V compounds By doping a nitrogen atom into a ternary or higher group III-V compound semiconductor mixed crystal combined with a semiconductor mixed crystal, any of the lattice constants of the above-mentioned III-V group compound semiconductor mixed crystal can be reduced. Here, as an example, a case where GaAs in which GaAs is doped with nitrogen is used as the vibration part forming layer will be described. When GaAs is used as the substrate and GaNAs is used as the vibration part forming layer, the lattice constant of the GaNAs vibration part forming layer is smaller than that of the GaAs substrate, so that the GaNAs vibration part forming layer has tensile strain. Here, the state in which the As site of the GaNAs vibration part forming layer is replaced by one nitrogen atom is an ideal state of this nitrogen atom. Among the mixed nitrogen, ideal is the state where the As site is replaced by two nitrogen atoms, the state where the As site is replaced by both As and nitrogen, and the state where nitrogen exists between the lattices. It is known that there is nitrogen that is not mixed in the state. Nitrogen that is not in an ideal state is known to act as a trap and cause non-radiative recombination in the GaNAs vibration part forming layer (Non-Patent Documents 5 and 6). In mechanical vibrators, the nitrogen present in these non-ideal states causes the dissipation of the elastic energy of the vibrating body, thus increasing the mechanical vibrators when all of the doped nitrogen is not in the ideal state. There is a problem that the Q value becomes lower than when all the doped nitrogen is in an ideal state.

上記の例では、GaNAsを例にとって説明したが、GaAs、InAs、GaSb、InSb、InP、GaPなどの2元III-V族化合物半導体混晶ならびにこれらの2元III-V族化合物半導体混晶を組み合わせた3元以上のIII-V族化合物半導体混晶のいずれに対して窒素原子をドープしても、理想的ではない状態で取り混まれる窒素が存在することが知られており、これらの窒素原子がドープされた材料を振動部形成層として用いた場合にも上記のGaNAsの場合と同様の課題がある。   In the above example, the explanation was made by taking GaNAs as an example. However, binary III-V compound semiconductor mixed crystals such as GaAs, InAs, GaSb, InSb, InP, and GaP and these binary III-V compound semiconductor mixed crystals are used. It is known that there is nitrogen that is mixed in a non-ideal state even if nitrogen atoms are doped into any of the combined ternary or more group III-V compound semiconductor mixed crystals. Even when an atom-doped material is used as the vibration part forming layer, there is the same problem as in the case of the GaNAs described above.

本発明による微小機械共振器は、選択的にエッチングできる犠牲層と、すべてもしくは一部に窒素をドープしたIII-V族化合物半導体を用いた振動部形成層と、犠牲層を選択エッチングしてできた空間と、振動部形成層に形成された振動部とから構成される。この振動部形成層のすべてもしくは一部を形成する窒素ドープIII-V族化合物半導体において、V族サイトが1つの窒素によって置換された状態を理想的な状態とすると、理想的ではない状態で存在する窒素は共振器の弾性エネルギーの散逸を促進しQ値を低下させる。これらの理想的ではない状態で存在する窒素を、試料がウエハー状態のとき、もしくは微小機械共振器の製作工程の途中、もしくは微小機械共振器の製作工程終了後にアニール処理によって取り除くことで、きわめて高いQ値を有する微小機械振動器を得ることができる。アニールは水素中で施すのが効果的であるが、窒素やアルゴンなどの不活性ガス中、真空中、真空中でAs照射下、As雰囲気中、大気中、もしくはこれらの混合ガス中で行っても効果がある。   The micromechanical resonator according to the present invention is formed by selectively etching a sacrificial layer that can be selectively etched, a vibration part forming layer using a III-V group compound semiconductor doped with nitrogen in all or part thereof, and a sacrificial layer. And a vibration part formed in the vibration part forming layer. In a nitrogen-doped group III-V compound semiconductor that forms all or part of this vibration part forming layer, if the state in which the group V site is replaced by one nitrogen is an ideal state, it exists in a non-ideal state Nitrogen that promotes dissipation of the elastic energy of the resonator reduces the Q value. Nitrogen present in these non-ideal states is extremely high by removing it by annealing when the sample is in a wafer state, during the manufacturing process of the micro mechanical resonator, or after the manufacturing process of the micro mechanical resonator is completed. A micro mechanical vibrator having a Q value can be obtained. Annealing is effective in hydrogen, but it can be performed in an inert gas such as nitrogen or argon, in a vacuum, under vacuum, under As irradiation, in an As atmosphere, in the air, or a mixture of these. Is also effective.

上記微小機械共振器において、振動部は梁もちの梁構造であっても片持ちの梁構造であっても、メンブレンであってもよい。   In the above micro mechanical resonator, the vibration part may be a beam structure having a beam, a cantilever beam structure, or a membrane.

本発明によれば、振動部形成層のすべてもしくは一部に窒素をドープしたIII-V族化合物半導体を用いた微小機械共振器の作製において、ウエハー状態、もしくは素子作製中、もしくは素子作製後にアニール処理を行うことにより、きわめて高いQ値の微小機械振動器を得ることができる。   According to the present invention, in the fabrication of a micro mechanical resonator using a III-V group compound semiconductor doped with nitrogen in all or part of the vibration part forming layer, annealing is performed in a wafer state, during element fabrication, or after element fabrication. By performing the processing, a micro mechanical vibrator having an extremely high Q value can be obtained.

本発明の実施形態にかかる微小機械共振器の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the micro mechanical resonator concerning embodiment of this invention. 本発明の実施形態にかかる微小機械共振器の共振特性を、(a)アニール処理なしの試料、(b)水素中500℃でアニールした試料、(c)水素中600℃でアニールした試料、(d)水素中700℃でアニールした試料をそれぞれ用いた場合のグラフである。The resonance characteristics of the micromechanical resonator according to the embodiment of the present invention are as follows: (a) a sample without annealing, (b) a sample annealed at 500 ° C. in hydrogen, (c) a sample annealed at 600 ° C. in hydrogen, d) A graph in the case of using samples annealed at 700 ° C. in hydrogen. 従来の微小機械共振器の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the conventional micro mechanical resonator.

図1は、本実施形態にかかる微小機械共振器の製造工程を示す模式図である。本実施形態では、微小機械共振器の基板としてGaAsを、犠牲層としてAlGaAsを、振動部形成層としてGaNAsを用いる。図1(a)に示すように、GaAs基板101上に、65%程度の高濃度Alを含有するAlGaAs犠牲層102を形成し、最表面にGaNAsよる振動部形成層103を形成する。振動部形成層103には、積層方向で一部にのみGaNAsを用い、残りはGaAsを用いてもよい。これらの試料に対して、水素中でアニール処理を施し、理想的でない状態で存在する窒素を取り除く。次にメサエッチングを施し、図1(b)のような細線構造104を作成する。最後に、犠牲層をフッ化水素水により選択エッチングを施してAlGaAs犠牲層102の表面に露出している部分を除去することによって、図1(c)のような、支持部105に支えられた梁構造(振動部)106を形成することができる。   FIG. 1 is a schematic diagram illustrating a manufacturing process of the micro mechanical resonator according to the present embodiment. In this embodiment, GaAs is used as the substrate of the micromechanical resonator, AlGaAs is used as the sacrificial layer, and GaNAs is used as the vibration part forming layer. As shown in FIG. 1A, an AlGaAs sacrificial layer 102 containing about 65% high-concentration Al is formed on a GaAs substrate 101, and a vibrating part forming layer 103 made of GaNAs is formed on the outermost surface. For the vibration part forming layer 103, GaNAs may be used only for a part in the stacking direction, and GaAs may be used for the rest. These samples are annealed in hydrogen to remove nitrogen that is present in a non-ideal state. Next, mesa etching is performed to create a thin line structure 104 as shown in FIG. Finally, the sacrificial layer was selectively etched with hydrogen fluoride water to remove the portion exposed on the surface of the AlGaAs sacrificial layer 102, thereby supporting the sacrificial layer 105 as shown in FIG. A beam structure (vibrating portion) 106 can be formed.

図2は、振動部形成層103を窒素濃度1%のGaNAsで形成した試料を用いて作製した微小機械振動器の共振特性である。図2(a)アニール処理を施さなかった場合、図2(b)は図1(a)の構造を作製する工程後に試料を水素中500℃で1分間アニールした後に図1(b)の構造を作製する工程を行った場合、図2(c)は図2(b)の場合と同様であるが600℃で1分間、図2(d)は700℃で1分間アニールした場合の、作製した微小機械振動器の共振特性を示す。図2のグラフにおいて、点は実験値、曲線は実験値をローレンツ関数でフィッティングしたものである。Q値は、フィッティングしたローレンツ関数より算出した。   FIG. 2 shows resonance characteristics of a micromechanical vibrator manufactured using a sample in which the vibration part forming layer 103 is formed of GaNAs having a nitrogen concentration of 1%. FIG. 2A shows the structure shown in FIG. 2B after annealing the sample in hydrogen at 500 ° C. for 1 minute after the step of producing the structure shown in FIG. 2 (c) is the same as that of FIG. 2 (b), but FIG. 2 (d) is prepared when annealing is performed at 700 ° C. for 1 minute. Shows the resonance characteristics of the micromechanical vibrator. In the graph of FIG. 2, the points are experimental values, and the curves are the experimental values fitted with Lorentz functions. The Q value was calculated from the fitted Lorentz function.

図2(a)、(b)、(c)、(d)はいずれも、振動部形成層103を100nm厚、全体の幅を10μm、長さを200μmとした場合の機械振動器の振動特性である。図2をみても明らかなように、アニール処理を施すとQ値が上昇することがわかる。これは、Asサイトに置換したN−N、N−Asがアニールにより減少することで、機械振動器の弾性エネルギーの散逸が減少したためである。   2 (a), 2 (b), 2 (c), and 2 (d), the vibration characteristics of the mechanical vibrator when the vibration portion forming layer 103 is 100 nm thick, the entire width is 10 μm, and the length is 200 μm. It is. As is apparent from FIG. 2, it can be seen that the Q value increases when annealing is performed. This is because the dissipation of the elastic energy of the mechanical vibrator is reduced by reducing NN and N-As substituted for the As site by annealing.

本発明の機械振動子の製造方法は、上記のように窒素をドープしたIII-V族化合物半導体に適時アニール処理を施すことにより機械振動器の弾性エネルギーの散逸を減少させることに特徴がある。窒素をドープしたIII-V族化合物半導体に関しては、アニール処理によって発光特性が改善することが報告されており(非特許文献5、6)、この場合のアニールは非発光再結合中心の低減を狙ったものである。これに対して、本発明におけるアニール処理はフォノン振動数の分散が抑制されることによるものであり、従来技術とは目的ならびに効果が異なるものである。   The mechanical vibrator manufacturing method of the present invention is characterized in that the dissipation of elastic energy of the mechanical vibrator is reduced by performing timely annealing treatment on the group III-V compound semiconductor doped with nitrogen as described above. With respect to III-V compound semiconductors doped with nitrogen, it has been reported that the light emission characteristics are improved by annealing treatment (Non-Patent Documents 5 and 6). In this case, annealing aims to reduce non-radiative recombination centers. It is a thing. On the other hand, the annealing process in the present invention is due to the suppression of dispersion of the phonon frequency, and has a different purpose and effect from the prior art.

本実施形態では、GaNAsを振動部形成層に用いた微小機械振動器について説明したが、GaAs、InAs、GaSb、InSb、InP、GaPなどの2元III-V族化合物半導体混晶ならびにこれらの2元III-V族化合物半導体混晶を組み合わせた3元以上のIII-V族化合物半導体混晶に窒素をドープした場合、アニール処理によってGaNAsの場合と同様に理想的でない状態で取り混まれた窒素を低減できるため、本実施形態と同様の効果が得られることは明らかである。   In the present embodiment, the micro mechanical vibrator using GaNAs as the vibration part forming layer has been described. However, binary III-V compound semiconductor mixed crystals such as GaAs, InAs, GaSb, InSb, InP, and GaP, and their two When nitrogen is doped into a ternary or more group III-V compound semiconductor mixed crystal combined with a group III-V compound semiconductor mixed crystal, the nitrogen is mixed in a non-ideal state as in the case of GaNAs by annealing treatment. Therefore, it is clear that the same effect as that of the present embodiment can be obtained.

また、本実施形態では、500℃から700℃でアニールした場合について示したが、850℃までは試料表面の劣化は起き難いため、850℃までの温度でのアニールした場合についても本実施形態と同様の効果が得られることは明らかである。   In the present embodiment, the case where annealing is performed from 500 ° C. to 700 ° C. is shown. However, since the sample surface hardly deteriorates up to 850 ° C., the case where annealing is performed at a temperature up to 850 ° C. It is clear that the same effect can be obtained.

また、本実施形態では、水素中でアニール処理を施した場合について示したが、試料の表面処理を行うことにより水素中以外にも様々な雰囲気中でアニール処理することが可能であり、窒素に代表される不活性ガス雰囲気中、ヒ素雰囲気中、真空中、大気中、ならびに水素、窒素などの不活性ガス、ヒ素、大気の全てまたは一部混合した雰囲気中でアニール処理しても、理想的でない状態で取り混まれた窒素を低減できるため、本実施形態と同様の効果が得られることは明らかである。   In the present embodiment, the case where the annealing treatment is performed in hydrogen is shown. However, by performing the surface treatment of the sample, it is possible to perform the annealing treatment in various atmospheres other than in hydrogen. Ideal for annealing in typical inert gas atmospheres, arsenic atmospheres, vacuums, air, and inert gases such as hydrogen and nitrogen, arsenic, and atmospheres of all or part of air It is clear that the same effect as that of the present embodiment can be obtained because nitrogen mixed in the state can be reduced.

また、本実施形態では、図1(a)の構造を作製する工程後にアニール処理し、その後図1(b)の構造を作製する工程を行ったが、図1(b)の構造を作製する工程後にアニール処理し、その後図1(c)の構造を作製する工程を行う場合、図1(c)の構造を作製する工程後にアニール処理する場合についても同様に、本実施形態と同様の効果が得られることは明らかである。   Further, in this embodiment, the annealing process is performed after the step of manufacturing the structure of FIG. 1A, and then the step of manufacturing the structure of FIG. 1B is performed, but the structure of FIG. 1B is manufactured. In the case where the annealing process is performed after the process and then the process of manufacturing the structure of FIG. 1C is performed, and the annealing process is performed after the process of manufacturing the structure of FIG. It is clear that is obtained.

101 GaAs基板
102 AlGaAs犠牲層
103 GaNAs振動部形成層
104 細線構造
105 支持部
106 梁構造(振動部)
301 GaAs基板
302 AlGaAs犠牲層
303 GaAsもしくはAlGaAs振動部形成層
304 細線構造
305 支持部
306 梁構造(振動部)
DESCRIPTION OF SYMBOLS 101 GaAs substrate 102 AlGaAs sacrificial layer 103 GaNAs vibration part formation layer 104 Fine wire structure 105 Support part 106 Beam structure (vibration part)
301 GaAs substrate 302 AlGaAs sacrificial layer 303 GaAs or AlGaAs vibrating part forming layer 304 Fine wire structure 305 Supporting part 306 Beam structure (vibrating part)

Claims (7)

基板上に、犠牲層を形成する工程と、
前記犠牲層上に窒素をドーピングしたIII-V族化合物半導体を含む振動部形成層を形成する工程と、
前記振動部形成層に振動部を形成する工程と、
エッチングにより、前記犠牲層の表面に露出している部分を除去する工程と
を備え、
前記犠牲層と、前記振動部形成層とが形成された前記基板をアニール処理する工程をさらに備えたことを特徴とする機械共振器の作製方法。
On a substrate, forming a sacrificial layer,
Forming a vibration part forming layer including a group III-V compound semiconductor doped with nitrogen on the sacrificial layer;
Forming a vibration part in the vibration part forming layer;
And a step of removing a portion exposed on the surface of the sacrificial layer by etching, and
A method for manufacturing a mechanical resonator, further comprising a step of annealing the substrate on which the sacrificial layer and the vibration part forming layer are formed.
請求項1に記載の機械共振器の作製方法において、前記犠牲層は、GaAs、InAs、GaSb、InSb、InP、GaPの2元III-V族化合物半導体混晶ならびにこれらの2元III-V族化合物半導体混晶を組み合わせた3元以上のIII-V族化合物半導体混晶のいずれかであることを特徴とする方法。   2. The method for manufacturing a mechanical resonator according to claim 1, wherein the sacrificial layer includes a binary III-V compound semiconductor mixed crystal of GaAs, InAs, GaSb, InSb, InP, and GaP and a binary III-V group thereof. A method comprising any one of a ternary or more group III-V compound semiconductor mixed crystal in which compound semiconductor mixed crystals are combined. 請求項1または2に記載の機械共振器の作製方法において、500℃から850℃でアニール処理をすることを特徴とする方法。   3. The method for manufacturing a mechanical resonator according to claim 1, wherein annealing is performed at 500 to 850.degree. 請求項1乃至3のいずれかに記載の機械共振器の作製方法において、前記アニール処理する工程は、前記振動部形成層を形成する工程と前記振動部を形成する工程との間、または、前記振動部を形成する工程と前記除去する工程との間、または、前記除去する工程のあとのいずれかに行われることを特徴とする方法。 In the method for manufacturing a mechanical resonator according to any one of claims 1 to 3, wherein the step of annealing, between the step of forming a pre-Symbol vibration section forming layer and the step of forming the vibrating portion, or, The method is performed either between the step of forming the vibrating portion and the step of removing, or after the step of removing. 請求項1乃至4のいずれかに記載の機械共振器の作製方法において、前記アニール処理する工程は、水素雰囲気、または、不活性ガス雰囲気、または、砒素雰囲気、または、真空中、または、大気中のいずれかまたはいずれか2つ以上を混合した雰囲気中で行われることを特徴とする方法。   5. The method for manufacturing a mechanical resonator according to claim 1, wherein the annealing is performed in a hydrogen atmosphere, an inert gas atmosphere, an arsenic atmosphere, a vacuum, or in the air. Any one of these, or the method of performing in the atmosphere which mixed any two or more. 請求項1乃至5のいずれかに記載の機械共振器の作製方法において、前記振動部形成層は、積層方向で一部分が窒素をドーピングしたIII-V族化合物半導体であり、前記振動部形成層の残りの部分は窒素をドーピングしていないIII-V族化合物半導体であることを特徴とする方法。 In the method for manufacturing a mechanical resonator according to any one of claims 1 to 5, wherein the vibration section forming layer is a Group III-V compound semiconductor partially doped with nitrogen in the laminating direction, the vibration section forming layer The remaining portion is a group III-V compound semiconductor not doped with nitrogen. 請求項1乃至6のいずれかに記載の機械共振器の作製方法において、前記振動部は、梁構造、またはメンブレン構造のいずれかの構造をなしていることを特徴とする方法。   7. The method of manufacturing a mechanical resonator according to claim 1, wherein the vibration part has a beam structure or a membrane structure.
JP2013176642A 2013-08-28 2013-08-28 Manufacturing method of mechanical resonator Active JP6085235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176642A JP6085235B2 (en) 2013-08-28 2013-08-28 Manufacturing method of mechanical resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176642A JP6085235B2 (en) 2013-08-28 2013-08-28 Manufacturing method of mechanical resonator

Publications (2)

Publication Number Publication Date
JP2015046754A JP2015046754A (en) 2015-03-12
JP6085235B2 true JP6085235B2 (en) 2017-02-22

Family

ID=52671942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176642A Active JP6085235B2 (en) 2013-08-28 2013-08-28 Manufacturing method of mechanical resonator

Country Status (1)

Country Link
JP (1) JP6085235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035958B2 (en) 2018-10-29 2022-03-15 トヨタ自動車株式会社 Vehicle occupant protection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100759B2 (en) * 1998-03-24 2008-06-11 住友電気工業株式会社 Method for manufacturing compound semiconductor device
JP2000196138A (en) * 1998-12-24 2000-07-14 Toshiba Corp Semiconductor element
JP4204166B2 (en) * 2000-03-10 2009-01-07 株式会社リコー Semiconductor device manufacturing method, semiconductor device manufactured by the manufacturing method, and optical system using the semiconductor device
JP4666967B2 (en) * 2004-07-20 2011-04-06 株式会社リコー Semiconductor light emitting device, surface emitting semiconductor laser, surface emitting semiconductor laser array, optical transmission module, optical transmission / reception module, and optical communication system
EP1777815A1 (en) * 2005-10-18 2007-04-25 Seiko Epson Corporation Flap resonator, method of manufacturing a flap resonator, and integrated circuit including the flap resonator
JP5006402B2 (en) * 2007-09-27 2012-08-22 日本電信電話株式会社 Logic element
JP5030163B2 (en) * 2008-03-19 2012-09-19 日本電信電話株式会社 Micromechanical resonator and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035958B2 (en) 2018-10-29 2022-03-15 トヨタ自動車株式会社 Vehicle occupant protection device

Also Published As

Publication number Publication date
JP2015046754A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
Oshidari et al. High quality factor graphene resonator fabrication using resist shrinkage-induced strain
JP5403519B2 (en) Method for producing crystalline diamond air gap structure
Phan et al. Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching
Bhaskar et al. On-chip tensile testing of nanoscale silicon free-standing beams
US9656859B2 (en) Method for fabricating suspended MEMS structures
JP2010212705A (en) Process for varying characteristic of thin film layer, and substrate for applying same process thereto
JP6085235B2 (en) Manufacturing method of mechanical resonator
Shah et al. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry
Onomitsu et al. Ultrahigh-Q micromechanical resonators by using epitaxially induced tensile strain in GaNAs
Foerster et al. Processing of novel SiC and group III‐nitride based micro‐and nanomechanical devices
JP5030163B2 (en) Micromechanical resonator and manufacturing method thereof
JP2005528987A5 (en)
JP5848210B2 (en) Mechanical vibrator and manufacturing method thereof
US12049711B2 (en) Method for producing a mechanical vibrator comprising epitaxially growing a cubic crystal on a material layer to form a laminate structure which is patterned to form a vibrator shape part
JP4085168B2 (en) Microcantilever and method for producing the same
Lee et al. Integration of clamped-clamped suspended single-walled carbon nanotubes into SOI MEMS
JP6032759B2 (en) Fabrication method of micro mechanical resonator
JP6156881B2 (en) Fabrication method of micro mechanical vibration structure
Jun et al. Evaluation of 3C-SiC nanomechanical resonators using room temperature magnetomotive transduction
Hamawandi et al. Electrical properties of sub-100 nm SiGe nanowires
JP5618374B2 (en) Mechanical resonator
Nakata et al. MEMS-based mechanical characterization of core-shell silicon carbide nanowires for harsh environmental nanomechanical elements
Kwon et al. Frequency tuning of nanowire resonator using electrostatic spring effect
Warisawa et al. Ultra-thin Carbon Nanomechanical Resonator Fabrication and Its Dynamic Property Characterization.
Kozeki et al. 29pm2-F-3 Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150