JP6085181B2 - Porous water-swellable elastic material - Google Patents

Porous water-swellable elastic material Download PDF

Info

Publication number
JP6085181B2
JP6085181B2 JP2013014776A JP2013014776A JP6085181B2 JP 6085181 B2 JP6085181 B2 JP 6085181B2 JP 2013014776 A JP2013014776 A JP 2013014776A JP 2013014776 A JP2013014776 A JP 2013014776A JP 6085181 B2 JP6085181 B2 JP 6085181B2
Authority
JP
Japan
Prior art keywords
water
swellable
elastic material
porous water
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013014776A
Other languages
Japanese (ja)
Other versions
JP2014145039A (en
Inventor
温知 土屋
温知 土屋
恵一 黒坂
恵一 黒坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunimine Industries Co Ltd
Original Assignee
Kunimine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunimine Industries Co Ltd filed Critical Kunimine Industries Co Ltd
Priority to JP2013014776A priority Critical patent/JP6085181B2/en
Publication of JP2014145039A publication Critical patent/JP2014145039A/en
Application granted granted Critical
Publication of JP6085181B2 publication Critical patent/JP6085181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多孔質水膨潤性弾性材料に関する。   The present invention relates to a porous water-swellable elastic material.

従来から、止水材の材料とされる水膨潤性ゴムとして、(1)クロロプレンゴムやスチレン−ブタジエンゴム、ブチルゴムなど高い抗張力を示すゴム物質にアクリル酸系などの吸水性樹脂を混合した水膨潤性ゴムが広く知られている。
また、水膨潤性粘土を用いた水膨潤性組成物として、(2)未加硫ブチルに水膨潤性粘土を混合し成型した水膨潤性組成物、(3)水膨潤性粘土とゲル化基油もしくはアスファルト等を用いた粘着性組成物と混練・成形した水膨潤性組成物(例えば、特許文献1)が広く知られている。
Conventionally, as a water-swellable rubber used as a water-stopping material, (1) a water-swelling material in which a water-absorbing resin such as acrylic acid is mixed with a rubber material having high tensile strength such as chloroprene rubber, styrene-butadiene rubber, and butyl rubber Rubber is widely known.
Moreover, as a water-swellable composition using water-swellable clay, (2) a water-swellable composition obtained by mixing water-swellable clay with unvulcanized butyl and (3) water-swellable clay and gelling group A water-swellable composition (for example, Patent Document 1) kneaded and molded with an adhesive composition using oil or asphalt is widely known.

これら水膨潤性ゴムおよび水膨潤性組成物のうち、前記(1)の水膨潤性ゴムは、主材となる弾性ゴムの抗張力により、形状安定性に非常に優れる。しかし、コンクリート打継部等の隙間を埋める止水材として用いた場合、水膨潤性ゴムを構成する吸水性樹脂の高い膨潤圧により膨張してしまい、コンクリート躯体にクラックを発生させる問題がある。
前記(2)の水膨潤性組成物は、抗張力の弱い未加硫ブチルを水膨潤性粘土と混合することで、水膨潤性組成物自体の膨潤圧が低くなり、止水材として用いた場合でも、コンクリート躯体にクラックが発生することはない。しかし、この水膨潤性組成物は抗張力が弱いため、外力等で容易に変形する問題がある。この変形で、止水材と止水対象物との間に隙間を生じ、このことが漏水の要因となりかねない。
前記(3)の水膨潤性組成物を止水材として用いた場合も、主材となるゲル化基油およびアスファルト等は抗張力が非常に弱いため、止水材の形状が外力等で容易に変形する問題がある。
なお、止水材における「抗張力」とは外力に抵抗する力であり、「膨潤圧」とは膨潤した際に周りを押す力である。
Among these water-swellable rubbers and water-swellable compositions, the water-swellable rubber (1) is very excellent in shape stability due to the tensile strength of the elastic rubber as the main material. However, when it is used as a water-stopping material that fills gaps in concrete joints or the like, there is a problem that the water-absorbing resin constituting the water-swellable rubber expands due to the high swelling pressure, and cracks are generated in the concrete frame.
When the water-swellable composition (2) is mixed with unvulcanized butyl having a low tensile strength and water-swellable clay, the water-swellable composition itself has a low swelling pressure, and is used as a water-stopping material. However, cracks do not occur in the concrete frame. However, since this water-swellable composition has a low tensile strength, there is a problem that it is easily deformed by an external force or the like. This deformation creates a gap between the water stop material and the water stop object, which may cause water leakage.
Even when the water-swellable composition (3) is used as a water-stopping material, the gelled base oil, asphalt, etc., which are the main materials, have very weak tensile strength, so that the shape of the water-stopping material can be easily set by external force or the like. There is a problem of deformation.
The “strength” in the waterstop material is a force that resists an external force, and the “swelling pressure” is a force that pushes around when swollen.

特開2003−213260号公報JP 2003-213260 A

上述のように、弾性ゴム、未加硫ブチル、吸水性樹脂、水膨潤性粘土、ゲル化基油およびアスファルト等を含有した水膨潤性ゴム及び水膨潤性組成物は、いずれも、抗張力及び膨潤圧のバランスに欠け、必ずしも止水材としての要求を満たすものではなかった。すなわち、抗張力は止水材の形状安定性の維持にとって必要な特性であるが、この抗張力によって止水材の膨潤率が低く抑えられ、吸水による止水効果が十分に得られないことがある。十分な膨潤率を得ようとすると、抗張力に抗し得る高い膨潤圧が必要となる。しかし、これでは、止水材の吸水による膨潤がコンクリート躯体など止水対象物への圧力となりクラックの発生をもたらしかねない。   As described above, the water-swellable rubber and the water-swellable composition containing elastic rubber, unvulcanized butyl, water-absorbing resin, water-swellable clay, gelled base oil, and asphalt are all tensile strength and swelling. The balance of pressure was lacking, and it did not necessarily satisfy the demand as a water stop material. That is, the tensile strength is a characteristic necessary for maintaining the shape stability of the water-stopping material, but this tensile strength can suppress the swelling rate of the water-stopping material, and the water-stopping effect due to water absorption may not be sufficiently obtained. In order to obtain a sufficient swelling rate, a high swelling pressure that can resist the tensile strength is required. However, in this case, swelling due to water absorption of the water-stopping material may cause pressure on the water-stopping target object such as a concrete frame and cause cracks.

本発明は、上記の点に鑑み、高い抗張力を有する弾性ゴムと膨潤圧の低い水膨潤性粘土を含有する水膨潤性材料を止水材として用いた場合であっても、十分な水膨潤性能を有しかつ、コンクリート躯体等の止水対象物のクラック発生を抑え、形状安定性に優れた多孔質水膨潤性弾性材料を提供することを目的とする。   In view of the above points, the present invention has sufficient water swelling performance even when a water-swellable material containing an elastic rubber having a high tensile strength and a water-swellable clay having a low swelling pressure is used as a water-stopping material. Another object of the present invention is to provide a porous water-swellable elastic material that has excellent shape stability and suppresses the occurrence of cracks in water-stopping objects such as concrete frames.

本発明者らは、上記目的を達成するため鋭意研究の結果、高い抗張力を有する弾性ゴム及び膨潤圧の低い水膨潤性粘土を含有する多孔質水膨潤性弾性材料中に空孔(空隙)を所定量存在させることにより、多孔質水膨潤性弾性材料に水が浸透し易くなり、水膨潤性粘土のような膨潤圧の低い吸水性物質を用いても膨潤性を付与することが可能となることを見出した。また、空孔を微細にすることで抗張力の低下を防ぐことが可能となり、形状安定性と膨潤性を両立することが可能となることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have determined that pores (voids) are formed in a porous water-swellable elastic material containing an elastic rubber having a high tensile strength and a water-swellable clay having a low swelling pressure. Presence of a predetermined amount makes it easy for water to penetrate into the porous water-swellable elastic material, and it is possible to impart swelling even when using a water-absorbing substance having a low swelling pressure such as water-swellable clay. I found out. Further, it has been found that by reducing the pores, it is possible to prevent a decrease in the tensile strength, and it is possible to achieve both shape stability and swelling property. The present invention has been completed based on these findings.

本発明の課題は以下の手段により達成された。
<1>内部に空孔を有し、空孔率が1%以上、かつ、C型硬度が71以上80未満である、弾性ゴム及び水膨潤性粘土を含有する多孔質水膨潤性弾性材料。
<2>面積円相当径3μm〜2cmの空孔数が全空孔数の60%以上内部に有する前記<1>に記載の多孔質水膨潤性弾性材料。
<3>前記弾性ゴム20〜80質量部及び前記水膨潤性粘土20〜80質量部を含有する前記<1>または<2>に記載の多孔質水膨潤性弾性材料。
<4>前記水膨潤性粘土がベントナイト、スメクタイト、膨潤性雲母から選ばれる少なくとも1つ以上である前記<1>〜<3>のいずれか1項に記載の多孔質水膨潤性弾性材料。
<5>膨潤率が150%以上である前記<1>〜<4>のいずれか1項に記載の多孔質水膨張性弾性材料。
本願明細書において、「空孔」とは、多孔質水膨潤性弾性材料の内部に存在する空隙部分であり、独立孔及び連続孔の両方を含む。「連続孔」とは、任意の表面から細孔が通路状に他の表面まで連続しており、細孔が屈曲しながらある面から反対面に通じているものをいう。「独立孔」とは、外部と接しておらず、内包されているものをいう。
また、「空孔率」とは、多孔質水膨張性弾性材料を切断した任意の切断面の総面積に対する空孔箇所の総面積の割合をいう。多孔質水膨潤性弾性材料における「C型硬度」とは、JIS K 6301硬さ試験に記載されたC型硬さ試験機をいう。
The object of the present invention has been achieved by the following means.
<1> A porous water-swellable elastic material containing elastic rubber and water-swellable clay having pores therein, a porosity of 1% or more, and a C-type hardness of 71 or more and less than 80.
<2> The porous water-swellable elastic material according to <1>, wherein the number of pores having an equivalent area circle diameter of 3 μm to 2 cm is inside 60% or more of the total number of pores.
<3> The porous water-swellable elastic material according to <1> or <2>, containing 20 to 80 parts by mass of the elastic rubber and 20 to 80 parts by mass of the water-swellable clay.
<4> The porous water-swellable elastic material according to any one of <1> to <3>, wherein the water-swellable clay is at least one selected from bentonite, smectite, and swellable mica.
<5> The porous water-swellable elastic material according to any one of <1> to <4>, wherein the swelling rate is 150% or more.
In the present specification, “pores” are void portions existing inside the porous water-swellable elastic material, and include both independent pores and continuous pores. “Continuous pores” refers to pores that are continuous from an arbitrary surface to other surfaces in the form of passages, and the pores are bent from one surface to the other surface. An “independent hole” refers to one that is not in contact with the outside and is enclosed.
The “porosity” refers to the ratio of the total area of the pores to the total area of any cut surface obtained by cutting the porous water-expandable elastic material. “C-type hardness” in the porous water-swellable elastic material refers to a C-type hardness tester described in the JIS K 6301 hardness test.

本発明の多孔質水膨潤性弾性材料は、空孔を有することで内部まで水が浸入することが可能となり、十分な水膨潤性能を有しかつ、コンクリート躯体等の止水対象物のクラック発生を抑え、形状安定性に優れたものとなる。   The porous water-swellable elastic material of the present invention has pores so that water can penetrate into the inside, has sufficient water-swelling performance, and generates cracks in water-stopping objects such as concrete frames. And shape stability is improved.

C型硬度及び空孔率と、多孔質水膨潤性弾性材料の膨潤率の関係を表すグラフである。It is a graph showing the relationship between C type hardness and porosity, and the swelling rate of a porous water-swellable elastic material. 実施例で作成した多孔質水膨潤性弾性材料の切断面のマイクロスコープ画像(全視野面)の模式図である。It is a schematic diagram of the microscope image (entire visual field surface) of the cut surface of the porous water-swellable elastic material created in the example. 実施例で作成した各試験体の膨潤率測定結果を表すグラフである。It is a graph showing the swelling rate measurement result of each test body created in the Example. (a)は、膨潤試験を行うための多孔質水膨潤性弾性材料からなる水膨潤性止水材の一例を模式的に示した平面図であり、(b)はその側面図である。(A) is the top view which showed typically an example of the water-swellable water stop material which consists of a porous water-swellable elastic material for performing a swelling test, (b) is the side view. 図4の水膨潤性止水材のII−II線断面を示す断面図である。It is sectional drawing which shows the II-II line cross section of the water-swellable water stop material of FIG.

〈多孔質水膨潤性弾性材料〉
本発明の多孔質水膨潤性弾性材料は、弾性ゴムと水膨潤性粘土とを含有する。また、本発明の多孔質水膨潤性弾性材料は、内部に空孔を有し、空孔率が1%以上、かつ、C型硬
度が71以上80より低い値である。なお、多孔質水膨潤性弾性材料は、特定の形状に限定されず、例えば、板材、棒材、など任意の形状とすることができる。
以下、本発明の好ましい実施形態について説明する。まず、弾性ゴムと水膨潤性粘土について説明する。
<Porous water-swellable elastic material>
The porous water-swellable elastic material of the present invention contains elastic rubber and water-swellable clay. Further, the porous water-swellable elastic material of the present invention has pores therein, the porosity is 1% or more, and the C-type hardness is 71 or more and lower than 80. Note that the porous water-swellable elastic material is not limited to a specific shape, and may be any shape such as a plate material or a bar material.
Hereinafter, preferred embodiments of the present invention will be described. First, elastic rubber and water-swellable clay will be described.

[弾性ゴム]
本発明に用いられる多孔質水膨潤性弾性材料を構成する弾性ゴムとしては、例えば、岩波理化学辞典 第5版(1998年、岩波書店発行)に記載のゴム状弾性を示す物質であれば特に制限されるものではない。
弾性ゴムの具体例としては、天然ゴム、ブチルゴム、クロロプレンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、アクリロニトリル・ブタジエンゴム、アクリルゴム、イソブチレンゴム、イソプレンゴム、エチレンプロピレンゴム、ポリエチレン、塩素化ポリエチレン、スルホン化ポリエチレン、塩素化ポリプロピレン、スルホン化ポリプロピレン、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル又はその共重合体、ウレタンゴム、フッ素ゴム、シリコンゴム、スチレン・イソプレン・スチレンブロック共重合体又はその水添物、スチレン・イソプレン共重合体又はその水添物、スチレン・ブタジエンブロック共重合体又はその水添物、スチレン・ブタジエン・スチレンブロック共重合体又はその水添物などの一般的なものが挙げられる。
本発明において、前記弾性ゴムを1種単独で、または2種以上を組み合わせて用いることができる。
[Elastic rubber]
The elastic rubber constituting the porous water-swellable elastic material used in the present invention is not particularly limited as long as it is a substance exhibiting rubber-like elasticity described in, for example, Iwanami Rikagaku Dictionary 5th Edition (1998, published by Iwanami Shoten). Is not to be done.
Specific examples of elastic rubber include natural rubber, butyl rubber, chloroprene rubber, styrene / butadiene rubber, butadiene rubber, acrylonitrile / butadiene rubber, acrylic rubber, isobutylene rubber, isoprene rubber, ethylene propylene rubber, polyethylene, chlorinated polyethylene, and sulfonated. Polyethylene, chlorinated polypropylene, sulfonated polypropylene, ethylene / vinyl acetate copolymer, polyvinyl chloride or copolymers thereof, urethane rubber, fluororubber, silicone rubber, styrene / isoprene / styrene block copolymer or hydrogenated product thereof General examples such as styrene / isoprene copolymer or hydrogenated product thereof, styrene / butadiene block copolymer or hydrogenated product thereof, styrene / butadiene / styrene block copolymer or hydrogenated product thereof. That.
In this invention, the said elastic rubber can be used individually by 1 type or in combination of 2 or more types.

本発明の多孔質水膨潤性弾性材料は、前記弾性ゴムを20〜80質量部含有することが好ましく、30〜70質量部含有することがより好ましく、40〜65質量部含有することがさらに好ましい。
弾性ゴムの含有量が少なすぎると、多孔質水膨潤性弾性材料の抗張力が低くなり、多孔質水膨潤性弾性材料の形状安定性が不十分となる場合がある。一方、多すぎると、多孔質水膨潤性弾性材料の膨潤率が不十分となってしまう場合がある。
The porous water-swellable elastic material of the present invention preferably contains 20 to 80 parts by mass of the elastic rubber, more preferably 30 to 70 parts by mass, and even more preferably 40 to 65 parts by mass. .
If the content of the elastic rubber is too small, the tensile strength of the porous water-swellable elastic material is lowered, and the shape stability of the porous water-swellable elastic material may be insufficient. On the other hand, if the amount is too large, the swelling ratio of the porous water-swellable elastic material may be insufficient.

[水膨潤性粘土]
本発明の多孔質水膨潤性弾性材料に使用される水膨潤性粘土は、天然もしくは合成の水膨潤性粘土から選ばれた少なくとも1種類の粘土が用いられる。このような粘土としては、未変性のものでも変性したものでもよく、ベントナイト、ヘクトライト等スメクタイト系粘土、および膨潤性雲母から選ばれた少なくとも1種が好ましい。
このうち、ベントナイトは天然に産出する無機系の粘土であるため安全性に優れ、かつ土中の微生物に分解されることがなく長期的に安定で、高い止水効果を保持でき、また低価格であるため、特に好ましい粘土である。
[Water-swelling clay]
As the water-swellable clay used in the porous water-swellable elastic material of the present invention, at least one kind of clay selected from natural or synthetic water-swellable clay is used. Such clay may be unmodified or modified, and is preferably at least one selected from smectite clays such as bentonite and hectorite, and swellable mica.
Among these, bentonite is an inorganic clay that is naturally produced, so it is safe and stable for a long time without being decomposed by microorganisms in the soil. Therefore, it is a particularly preferable clay.

本発明の多孔質水膨潤性弾性材料において、前記水膨潤性粘土から選ばれた1種の粘土を単独で、または2種以上の粘土を組み合わせて用いることができる。
本発明の多孔質水膨潤性弾性材料は、前記水膨潤性粘土を20〜80質量部含有することが好ましく、30〜70質量部含有することがより好ましく、40〜65質量部含有することがさらに好ましい。
水膨潤性粘土の含有量が少なすぎると、水膨潤性ゴムが充分な膨潤率を得られない場合がある。一方、多すぎると弾性ゴムの抗張力が不十分となり、形状安定性が低下する場合がある。
In the porous water-swellable elastic material of the present invention, one kind of clay selected from the water-swellable clays can be used alone or in combination of two or more kinds.
The porous water-swellable elastic material of the present invention preferably contains 20 to 80 parts by mass of the water-swellable clay, more preferably 30 to 70 parts by mass, and 40 to 65 parts by mass. Further preferred.
If the content of the water-swellable clay is too small, the water-swellable rubber may not be able to obtain a sufficient swelling rate. On the other hand, if the amount is too large, the tensile strength of the elastic rubber becomes insufficient, and the shape stability may decrease.

次に、本発明の多孔質水膨潤性弾性材料がその内部に有する空孔、本発明の多孔質水膨潤性弾性材料の空孔率及びC型硬度について説明する。   Next, the porosity which the porous water-swellable elastic material of the present invention has, the porosity and C-type hardness of the porous water-swellable elastic material of the present invention will be described.

[空孔]
本発明の多孔質水膨潤性弾性材料の内部には、空孔が複数散在して配されている。これにより、多孔質水膨潤性弾性材料内部に水が浸入することが容易となる。また、空孔の隙間を利用して、膨潤圧の低い水膨潤性粘土が多孔質水膨潤性弾性材料の内部で十分に膨潤することができる。さらに、前記空孔を微細な空隙とすることで、多孔質水膨潤性弾性材料の抗張力が保持される。このようにして、本発明の多孔質水膨潤性弾性材料は、高い抗張力と水膨潤性機能を維持し、優れた形状安定性を奏する。
[Vacancy]
A plurality of pores are scattered inside the porous water-swellable elastic material of the present invention. Thereby, it becomes easy for water to penetrate into the porous water-swellable elastic material. Further, the water-swellable clay having a low swelling pressure can be sufficiently swollen inside the porous water-swellable elastic material by utilizing the gap between the pores. Furthermore, the tensile strength of the porous water-swellable elastic material is maintained by making the pores into fine voids. Thus, the porous water-swellable elastic material of the present invention maintains high tensile strength and water-swelling function and exhibits excellent shape stability.

前記空孔は、前述のとおり、多孔質水膨潤性弾性材料の内部に複数散在して含有されている。この空孔の含有割合である空孔率は下記の方法により測定される。この空孔率は、例えば、ベントナイト等の水膨潤性粘土中の水分の発泡により調整することができる。また、成型時の加熱により熱分解し炭酸ガス等を発生する炭酸水素ナトリウム等を使用することも出来る。さらに、上記方法により成型前の水膨潤性ゴム中に空孔を設けた後、成型する方法や揮発性の高い溶剤を混合し空孔を設ける方法、液化ガスを混合し空孔を設ける方法、溶媒に溶解する素材を混合し、成形後その溶媒に浸せきさせ、素材を溶出することで空孔を設ける方法なども挙げられる。   As described above, a plurality of the pores are scattered and contained inside the porous water-swellable elastic material. The porosity, which is the content ratio of the pores, is measured by the following method. This porosity can be adjusted by, for example, foaming of water in water-swellable clay such as bentonite. Moreover, sodium hydrogen carbonate etc. which are thermally decomposed by heating at the time of molding and generate carbon dioxide gas can be used. Furthermore, after providing pores in the water-swellable rubber before molding by the above method, a method of molding, a method of mixing highly volatile solvent to provide pores, a method of mixing liquefied gas and providing pores, Examples include a method in which a material that dissolves in a solvent is mixed, soaked in the solvent after molding, and the material is eluted to provide holes.

(空孔率の測定方法)
前記空孔率は、次の方法により測定することができる。まず、多孔質水膨潤性弾性材料をカッターナイフを用い切断する。次いで、その断面をマイクロスコープ(キーエンス社製、DHX−2000にて観察する。具体的には、マイクロスコープの倍率を150倍に固定し、図2の模式図に示されるように、前記断面の全視野面積A(3,752,762μm2)に占める視野中の空孔箇所の総面積Bを測定し、視野中の空孔箇所の総面積B/全視野面積A×100より算出する。また、全視野面積Aおよび視野中の空孔箇所の面積測定は前記マイクロスコープDHX−2000に内蔵の計測ソフトを用いて行う。この測定を3回行い、計測された数値の平均を空孔率とする。
(Measurement method of porosity)
The porosity can be measured by the following method. First, the porous water-swellable elastic material is cut using a cutter knife. Next, the cross section is observed with a microscope (manufactured by Keyence Corporation, DHX-2000. Specifically, the magnification of the microscope is fixed to 150 times, and as shown in the schematic diagram of FIG. The total area B of the hole locations in the field of view occupying the total field area A (3,752,762 μm 2) is measured and calculated from the total area B of the hole locations in the field of view / total field area A × 100. Measurement of the total visual field area A and the area of the holes in the visual field is performed using measurement software built in the microscope DHX-2000. This measurement is performed three times, and the average of the measured numerical values is defined as the porosity. .

本発明の多孔質水膨潤性弾性材料は、十分な膨潤性能を具備する観点から、前記空孔の面積円相当径が3μm〜2cmであり、好ましくは20μm〜1cmであり、より好ましくは50μm〜5mmである。この範囲より小さい場合、高い抗張力を維持したまま、優れた膨潤率を発揮することが困難となる場合がある。この範囲より大きい場合は比表面積が低下するため、膨潤率を発揮することが困難となることや多孔質水膨潤性組成物が脆くなる恐れがある。そのため、面積円相当径3μm〜2cmの空孔が全空孔の60%以上となることが好ましい。ここでいう「空孔の面積円相当径」とは、前記(空孔率の測定方法)で観察の対象とする切断面において、観察される空孔の面積より空孔を円に換算した場合の直径をいう。また、前記面積円相当径3μm〜2cmの空孔数が「全空孔数の60%以上」とは、前記観察対象の切断面における割合であり、前記(空孔率の測定方法)で用いた3つの切断面の平均割合である。   In the porous water-swellable elastic material of the present invention, the area equivalent circle diameter of the pores is 3 μm to 2 cm, preferably 20 μm to 1 cm, more preferably 50 μm to the viewpoint of having sufficient swelling performance. 5 mm. If it is smaller than this range, it may be difficult to exhibit an excellent swelling ratio while maintaining a high tensile strength. When it is larger than this range, the specific surface area decreases, so that it may be difficult to exhibit the swelling ratio and the porous water-swellable composition may become brittle. Therefore, it is preferable that the holes having an equivalent area circle diameter of 3 μm to 2 cm are 60% or more of all the holes. The “area equivalent circle diameter of the vacancies” referred to here is the case where the vacancies are converted into a circle from the area of the observable vacancies on the cut surface to be observed in the above (method for measuring the porosity). The diameter of The number of holes having an area equivalent circle diameter of 3 μm to 2 cm is “60% or more of the total number of holes” is a ratio in the cut surface of the observation target, and is used in the above (Method for measuring porosity). The average ratio of the three cut surfaces.

[空孔率及びC型硬度]
前述のとおり空孔は、多孔質水膨潤性弾性材料の膨潤性に寄与する。また、この空孔の含有割合である空孔率と、多孔質水膨潤性弾性材料の形状安定性を示すC型硬度との組み合わせが多孔質水膨潤性弾性材料の膨潤率に影響する。この関係をグラフで示すと図1のようになる。図1において、「○」は膨潤率が150%以上となる多孔質水膨潤性弾性材料を表し、「×」は膨潤率が150%に達しない多孔質水膨潤性弾性材料を表す。
図1に示すとおり、C型硬度が80以上となると、膨潤性能を示す膨潤率の低下をもたらす。一方、C型硬度が低くなっても膨潤には影響しないが、71より低くなると抗張力の低下をもたらし、荷重が長時間かかった場合に容易に変形・破断してしまう恐れがある。よって、本発明の多孔質水膨潤性弾性材料は、前記膨潤率を好適な範囲とし良好な抗張力を保持する観点から、C型硬度は71以上80未満である。より好ましくは、72以上79以下であり、さらに好ましくは73以上78以下である。
[Porosity and C-type hardness]
As described above, the pores contribute to the swellability of the porous water-swellable elastic material. In addition, the combination of the porosity, which is the content ratio of the pores, and the C-type hardness indicating the shape stability of the porous water-swellable elastic material affects the swelling rate of the porous water-swellable elastic material. This relationship is shown as a graph in FIG. In FIG. 1, “◯” represents a porous water-swellable elastic material having a swelling ratio of 150% or more, and “X” represents a porous water-swellable elastic material that does not reach 150%.
As shown in FIG. 1, when the C-type hardness is 80 or more, a reduction in the swelling rate showing swelling performance is brought about. On the other hand, even if the C-type hardness is lowered, the swelling is not affected. However, if the C-type hardness is lower than 71, the tensile strength is lowered, and when the load is applied for a long time, it may be easily deformed or broken. Therefore, the porous water-swellable elastic material of the present invention has a C-type hardness of 71 or more and less than 80 from the viewpoint of keeping the swelling ratio in a suitable range and maintaining good tensile strength. More preferably, it is 72 or more and 79 or less, More preferably, it is 73 or more and 78 or less.

一方、C型硬度が80以下でも空孔率が低すぎると多孔質水膨潤性弾性材料は十分な膨潤性能を示さない。そのため、本発明の多孔質水膨潤性弾性材料は、空孔率が1%以上であり、より好ましくは、3%以上であり、さらに好ましくは5%以上である。空孔率の上限は特に制限されない。しかし、空孔率が40%より多くなると成型した止水材の形状安定性が悪くなる恐れがあるため、空孔率は40%以下であることが好ましく、35%以下であることがより好ましく、30%以下であることがさらに好ましい。   On the other hand, if the porosity is too low even if the C-type hardness is 80 or less, the porous water-swellable elastic material does not exhibit sufficient swelling performance. Therefore, the porous water-swellable elastic material of the present invention has a porosity of 1% or more, more preferably 3% or more, and further preferably 5% or more. The upper limit of the porosity is not particularly limited. However, since the shape stability of the molded water-stopping material may be deteriorated when the porosity is higher than 40%, the porosity is preferably 40% or less, more preferably 35% or less. More preferably, it is 30% or less.

(C型硬度の測定方法)
前記C型硬度は、例えばC型硬度計(株式会社古里精機製作所製)を用いて測定することができる。この測定を多孔質水膨潤性弾性材料の表面の5箇所について測定し、その平均値をC型硬度とする。
(Method for measuring C-type hardness)
The C-type hardness can be measured using, for example, a C-type hardness meter (manufactured by Furusato Seiki Co., Ltd.). This measurement is performed at five locations on the surface of the porous water-swellable elastic material, and the average value is defined as C-type hardness.

[膨潤率]
本発明の多孔質水膨潤性弾性材料は、膨潤率が150%以上1,000%以下であることが好ましく、200%以上600%以下であることがより好ましい。この膨潤率とは、多孔質水膨潤性弾性材料の膨潤性能を示す数値であり、後述の測定方法で得られる体積の比率である。この膨潤率が小さすぎると十分な止水効果が得られない場合があり、大きすぎると前述のクラックの問題が生じてしまう場合がある。
また、本発明の多孔質水膨潤性弾性材料は、特に、止水材として使用を開始してから1か月後に膨潤率が上記範囲内にあり、1か月経過後も膨潤率が上記範囲内にあり続けることが好ましい。この場合、本発明の多孔質水膨潤性弾性材料は、水分を吸収して止水効果の高いものである一方、材料全体の急激な膨潤が抑えられ、膨潤性能を長期に亘って保持することができる。このような長期の膨潤性能は、前述の空孔率とC型硬度との数値範囲の組み合わせにより得られる。
[Swelling rate]
The porous water-swellable elastic material of the present invention preferably has a swelling ratio of 150% to 1,000%, more preferably 200% to 600%. This swelling rate is a numerical value indicating the swelling performance of the porous water-swellable elastic material, and is a volume ratio obtained by a measurement method described later. If the swelling rate is too small, a sufficient water-stopping effect may not be obtained, and if it is too large, the above-described crack problem may occur.
In addition, the porous water-swellable elastic material of the present invention has a swelling ratio within the above range after one month from the start of use as a water-stopping material, and the swelling ratio is within the above range even after one month has elapsed. It is preferable to remain within. In this case, while the porous water-swellable elastic material of the present invention absorbs moisture and has a high water-stopping effect, rapid swelling of the entire material is suppressed, and swelling performance is maintained for a long time. Can do. Such long-term swelling performance is obtained by a combination of the above-described numerical ranges of porosity and C-type hardness.

(膨潤率の測定方法)
前記膨潤率は、次の方法により測定することができる。すなわち、多孔質水膨潤性弾性材料の浸せき前の空気中(気温23±2℃、湿度40±10%)での質量(W1)を量り、次に23±2℃の水中の質量(W2)を量る。次に水中に浸せきした後、速やかに取り出し、ろ紙等で軽くふいて水分を除き、多孔質水膨潤性弾性材料の空気中での質量(W3)を量り、次にさらに23±2℃の水中の質量(W4)を量る。膨潤率は「JIS K 6301 浸せき試験」に記載された方法の体積変化率の式に基づき、{(W3−W4)−(W1−W2)}÷(W1−W2)×100により比重差を体積換算することにより算出できる。
(Measurement method of swelling rate)
The swelling ratio can be measured by the following method. That is, the mass (W1) in the air (temperature 23 ± 2 ° C., humidity 40 ± 10%) before immersion of the porous water-swellable elastic material is measured, and then the mass (W2) in water at 23 ± 2 ° C. Weigh. Next, after soaking in water, take it out quickly, wipe it with a filter paper, etc. to remove the water, measure the mass (W3) of the porous water-swellable elastic material in the air, and then further in water at 23 ± 2 ° C. The mass (W4) of The swelling rate is based on the volume change rate equation of the method described in “JIS K 6301 immersion test”, and the difference in specific gravity is expressed as {(W3−W4) − (W1−W2)} ÷ (W1−W2) × 100. It can be calculated by conversion.

また、本発明の多孔質水膨潤性弾性材料は上記必須成分の他に、本発明の目的を損なわない範囲で、必要に応じ従来止水材料に用いられている種々の添加成分を任意成分として配合することが出来る。この添加剤としては、例えば軟化剤(例えば鉱油、合成油、脂肪性油等の油)、安定剤、日興や熱による老化を防止するための老化防止剤、補強剤、凍結防止剤、酸化防止剤、着色剤などを挙げることが出来る。   In addition to the above essential components, the porous water-swellable elastic material of the present invention includes various additive components conventionally used in water-stopping materials as optional components as long as the purpose of the present invention is not impaired. Can be blended. Examples of such additives include softeners (for example, oils such as mineral oils, synthetic oils and fatty oils), stabilizers, antiaging agents for preventing aging due to Nikko and heat, reinforcing agents, antifreezing agents, and antioxidants. Agents, colorants and the like.

本発明の多孔質水膨潤性弾性材料は、この種の材料の製造方法として採用される方法により製造することができる。多孔質水膨潤性弾性材料を製造するにあたり、各成分を添加、混合する順序、方法について特に制限はない。本発明の多孔質水膨潤性弾性材料は、水膨潤性粘土、弾性ゴムを十分に混合することにより均一な混合物として得られる。本発明の多孔質水膨潤性弾性材料の好ましい製造方法の一例として以下の方法が挙げられる。   The porous water-swellable elastic material of the present invention can be manufactured by a method adopted as a method for manufacturing this type of material. In producing a porous water-swellable elastic material, there is no particular limitation on the order and method of adding and mixing the components. The porous water-swellable elastic material of the present invention can be obtained as a uniform mixture by sufficiently mixing water-swellable clay and elastic rubber. The following method is mentioned as an example of the preferable manufacturing method of the porous water-swellable elastic material of the present invention.

弾性ゴムとしてブチルゴム20〜80質量部及び水膨潤性粘土としてベントナイト20〜80質量部を用いた場合、これらをニーダーを用いて20〜100℃で15〜120分間混練する。その後、120〜200℃で3〜15分間加硫成型することにより、所定の形状及び大きさを有する多孔質水膨潤性弾性材料を得ることができる。
なお、多孔質水膨潤性弾性材料内部の空孔率の調整は前述したいずれかの方法を組み合わせることにより行なうことができる。
When 20-80 parts by weight of butyl rubber is used as the elastic rubber and 20-80 parts by weight of bentonite is used as the water-swellable clay, these are kneaded at 20-100 ° C. for 15-120 minutes using a kneader. Thereafter, a porous water-swellable elastic material having a predetermined shape and size can be obtained by vulcanization molding at 120 to 200 ° C. for 3 to 15 minutes.
The porosity inside the porous water-swellable elastic material can be adjusted by combining any of the methods described above.

本発明の多孔質水膨潤性弾性材料は、止水材として配置する部分の形状や求められる機能に応じて任意の形状として用いることができる。その使用例としては、前記多孔質水膨潤性弾性材料の一部を、必要な形状や大きさに適宜切り出して止水箇所に設置することが挙げられる。また、あらかじめ、多孔質水膨潤性弾性材料の製造時に、止水材として要求される形状の金型を用いて加硫成型したものとすることもできる。あらかじめ成型したものとして、例えば、図4及び5のように、直径60〜500mm、厚み2〜15mmの円板状の板状本体と、中央に直径10〜40mm、高さ5〜40mmの円錐状の突起部と、突起部の中央に直径5〜20mm、深さ5〜40mmの穴を有するものとすることが挙げられる。   The porous water-swellable elastic material of the present invention can be used in any shape depending on the shape of the portion to be disposed as the water-stopping material and the required function. As an example of its use, a part of the porous water-swellable elastic material may be appropriately cut into a necessary shape and size and installed at a water stop. Alternatively, it may be preliminarily molded by vulcanization using a mold having a shape required as a water-stopping material when producing a porous water-swellable elastic material. For example, as shown in FIGS. 4 and 5, a disk-shaped plate-like body having a diameter of 60 to 500 mm and a thickness of 2 to 15 mm and a conical shape having a diameter of 10 to 40 mm and a height of 5 to 40 mm as shown in FIGS. And a hole having a diameter of 5 to 20 mm and a depth of 5 to 40 mm at the center of the protrusion.

以下、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.

(実施例1)
ベントナイト(クニミネ工業株式会社製;商品名:クニゲルVA)50質量部、ブチルゴム硬度40度50質量部、添加剤(オイル 商品名:コスモピュアセーフティー150 コスモ石油ルブリカンツ製)6.5質量部をニーダーを用いて60℃で40分間混練した。その後、金型を用いて160℃で6分間加硫成型し、直径約80mm、厚み7mmの円板状の板状本体と、中央に直径40mm、高さ10mmの円錐状の突起部と、突起部の中央に直径20mm、深さ10mmの穴を有する多孔質水膨潤性弾性材料を得た(図4及び5参照)。
使用したベントナイトの水分は11.2質量%であった。また、空孔率:24.80%、面積円相当径:1.89〜494.9μmであった。
Example 1
Bentonite (Kunimine Kogyo Co., Ltd .; trade name: Kunigel VA) 50 parts by weight, butyl rubber hardness 40 degrees 50 parts by weight, additive (oil trade name: Cosmo Pure Safety 150 Cosmo Oil Lubricants) 6.5 parts by weight And kneaded at 60 ° C. for 40 minutes. After that, vulcanization molding was performed at 160 ° C. for 6 minutes using a mold, a disc-shaped main body having a diameter of about 80 mm and a thickness of 7 mm, a conical projection having a diameter of 40 mm and a height of 10 mm, and a projection A porous water-swellable elastic material having a hole with a diameter of 20 mm and a depth of 10 mm at the center of the part was obtained (see FIGS. 4 and 5).
The water content of the bentonite used was 11.2% by mass. Further, the porosity was 24.80%, and the equivalent circle diameter was 1.89 to 494.9 μm.

(実施例2)
実施例1において、ベントナイトの水分を5.7質量%、加硫成型時間を5分間とした以外は、実施例1と同様にして、実施例2の多孔質水膨潤性弾性材料を得た。空孔率:10.51%、面積円相当径:18.74〜539.58μmであった。
(Example 2)
In Example 1, the porous water-swellable elastic material of Example 2 was obtained in the same manner as Example 1 except that the moisture of bentonite was 5.7% by mass and the vulcanization molding time was 5 minutes. The porosity was 10.51%, and the equivalent circle diameter was 18.74-539.58 μm.

(実施例3)
実施例1において、ベントナイトの水分を5.7質量%、加硫成型時間を6分間とした以外は、実施例1と同様にして、実施例3の多孔質水膨潤性弾性材料を得た。空孔率:10.28%、面積円相当径:19.71〜439.48μmであった。
(Example 3)
A porous water-swellable elastic material of Example 3 was obtained in the same manner as in Example 1 except that the moisture content of bentonite was 5.7% by mass and the vulcanization molding time was 6 minutes. The porosity was 10.28%, and the equivalent circle diameter was 19.71 to 439.48 μm.

(実施例4)
実施例1において、ベントナイトの水分を2.4質量%、加硫成型条件を140℃で4分間とした以外は、実施例1と同様にして実施例4の多孔質水膨潤性弾性材料を得た。空孔率:1.43%、面積円相当径:17.2〜112.5μmであった。
Example 4
In Example 1, the porous water-swellable elastic material of Example 4 was obtained in the same manner as in Example 1 except that the moisture of bentonite was 2.4% by mass and the vulcanization molding conditions were 140 ° C. for 4 minutes. It was. The porosity was 1.43%, and the area equivalent circle diameter was 17.2 to 112.5 μm.

(実施例5)
実施例1において、ベントナイトの水分を11.2質量%、加硫成型条件を、140℃で4分間とした以外は、実施例1と同様にして実施例5の多孔質水膨潤性弾性材料を得た。空孔率:4.30%、面積円相当径:17.3〜212.2μmであった。
(Example 5)
In Example 1, the porous water-swellable elastic material of Example 5 was used in the same manner as in Example 1 except that the water content of bentonite was 11.2% by mass and the vulcanization molding conditions were set at 140 ° C. for 4 minutes. Obtained. The porosity was 4.30%, and the area equivalent circle diameter was 17.3 to 212.2 μm.

(比較例1〜3)
実施例1において、ベントナイトの水分を2.4質量%、加硫成型時間を、ぞれぞれ、5分間、5分30秒間、6分間とした以外は、実施例1と同様にして、比較例1〜3の多孔質水膨潤性弾性材料を得た。空孔率:1.19%、0.96%、0.86%、面積円相当径:19.0〜111.0μm、19.0〜453.09μm、16.3〜134.7μmであった。
(Comparative Examples 1-3)
In Example 1, the moisture content of bentonite was 2.4% by mass, and the vulcanization molding time was 5 minutes, 5 minutes 30 seconds, and 6 minutes, respectively. The porous water-swellable elastic materials of Examples 1 to 3 were obtained. Porosity: 1.19%, 0.96%, 0.86%, equivalent area circle diameter: 19.0-111.0 μm, 19.0-453.09 μm, 16.3-134.7 μm .

(比較例
実施例1において、ベントナイトの水分を11.2質量%、加硫成型条件を、120℃で4分間とした以外は、実施例1と同様にして比較例5の多孔質水膨潤性弾性材料を得た。空孔率:18.75%、面積円相当径:19.1〜523.0μmであった。
(Comparative Example 4 )
In Example 1, the porous water-swellable elastic material of Comparative Example 5 was prepared in the same manner as in Example 1 except that the water content of bentonite was 11.2% by mass and the vulcanization molding condition was 120 ° C. for 4 minutes. Obtained. The porosity was 18.75%, and the area equivalent circle diameter was 19.1 to 523.0 μm.

実施例1〜5及び比較例1〜で得た多孔質水膨潤性弾性材料について、前述の(空孔率の測定方法)、(C型硬度の測定方法)、及び(膨潤率の測定方法)に基づき測定した。その結果を下記表1に示す。表1に示す膨潤率の欄において、水膨潤性止水材として1か月後に膨潤倍率が1.5倍未満の場合、膨潤し空孔を閉塞する時間が長くなってしまい、初期止水効果を得にくいことから膨潤率が1か月後に1.5倍以上になるものを良品:「○」、それ未満のものを膨潤率不足品:「×」とした。また、形状安定性は形状が安定するC型高度71以上のものを「○」、71より低くなるものを「×」とした。
また、実施例及び比較例の試料について測定した膨潤率の経時変化を図3に示す。なお、1か月後の膨潤率とは、作製した各多孔質水膨潤性弾性材料を1ヶ月間水中に完全浸せきした状態で23±2℃で保管した後、前記(膨潤率の測定方法)に基づいて測定したものである。また、図3に示す経過日数における膨潤率も同様にして行った。
About the porous water-swellable elastic materials obtained in Examples 1 to 5 and Comparative Examples 1 to 4 , the above-mentioned (Measurement method of porosity), (Measurement method of C-type hardness), and (Measurement method of swelling ratio) ). The results are shown in Table 1 below. In the column of the swelling rate shown in Table 1, when the swelling ratio is less than 1.5 times after 1 month as a water-swellable water-stopping material, the time for swelling and closing the pores becomes long, and the initial water-stop effect In the case where the swelling ratio is 1.5 times or more after one month, the product having a swelling ratio of 1.5 or more was judged as “good”, and the product having a swelling ratio less than that was designated as “x”. In addition, the shape stability was C type altitude 71 or higher where the shape is stable, and “X” was lower than 71.
Moreover, the time-dependent change of the swelling rate measured about the sample of the Example and the comparative example is shown in FIG. In addition, the swelling rate after one month means that each porous water-swellable elastic material thus prepared was completely immersed in water for one month and stored at 23 ± 2 ° C. Measured based on Moreover, the swelling rate in the elapsed days shown in FIG.

Figure 0006085181
Figure 0006085181

各実施例の試料はいずれも、膨潤率が良好であった。また、各実施例の試料は、空孔率1%以上、C型硬度が71以上80未満にあり、良好な膨潤率とともに良好な抗張力を保持して形状安定性に優れるものであった。一方、比較例1〜はいずれも抗張力が高く形状安定性に優れるものの、膨潤率が悪いものであった。比較例は、膨潤率に優れるものの、抗張力が低く形状安定性の劣るものであった。
Each sample of each example had a good swelling rate. Further, the samples of each example had a porosity of 1% or more and a C-type hardness of 71 or more and less than 80, and maintained excellent tensile strength as well as good swelling rate and excellent shape stability. On the other hand, Comparative Examples 1 to 3 all had high tensile strength and excellent shape stability, but the swelling rate was poor. In Comparative Example 4 , although the swelling rate was excellent, the tensile strength was low and the shape stability was inferior.

1 止水材
3 板状本体
4 突起部
5 穴
6 多孔質水膨潤性弾性材料の切断面における全視野面
7 多孔質水膨潤性弾性材料の切断面における空孔以外の部分
8 空孔部分
DESCRIPTION OF SYMBOLS 1 Water stop material 3 Plate-shaped main body 4 Protrusion part 5 Hole 6 Whole view surface in the cut surface of porous water-swellable elastic material 7 Portions other than the hole in the cut surface of porous water-swellable elastic material 8 Hole portion

Claims (5)

内部に空孔を有し、空孔率が1%以上、かつ、C型硬度が71以上80未満である、弾性ゴム及び水膨潤性粘土を含有する多孔質水膨潤性弾性材料。   A porous water-swellable elastic material containing elastic rubber and water-swellable clay, having pores therein, having a porosity of 1% or more and a C-type hardness of 71 or more and less than 80. 面積円相当径3μm〜2cmの空孔数が全空孔数の60%以上内部に有する請求項1に記載の多孔質水膨潤性弾性材料。   2. The porous water-swellable elastic material according to claim 1, wherein the number of pores having an area equivalent circle diameter of 3 μm to 2 cm is inside 60% or more of the total number of pores. 前記弾性ゴム20〜80質量部及び前記水膨潤性粘土20〜80質量部を含有する請求項1または2に記載の多孔質水膨潤性弾性材料。   The porous water-swellable elastic material according to claim 1 or 2, comprising 20 to 80 parts by mass of the elastic rubber and 20 to 80 parts by mass of the water-swellable clay. 前記水膨潤性粘土がベントナイト、スメクタイト、膨潤性雲母から選ばれる少なくとも1つ以上である請求項1から3のいずれか1項に記載の多孔質水膨潤性弾性材料。   The porous water-swellable elastic material according to any one of claims 1 to 3, wherein the water-swellable clay is at least one selected from bentonite, smectite, and swellable mica. 膨潤率が150%以上である請求項1〜4のいずれか1項に記載の多孔質水膨張性弾性材料。   The porous water-swellable elastic material according to any one of claims 1 to 4, having a swelling rate of 150% or more.
JP2013014776A 2013-01-29 2013-01-29 Porous water-swellable elastic material Active JP6085181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014776A JP6085181B2 (en) 2013-01-29 2013-01-29 Porous water-swellable elastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014776A JP6085181B2 (en) 2013-01-29 2013-01-29 Porous water-swellable elastic material

Publications (2)

Publication Number Publication Date
JP2014145039A JP2014145039A (en) 2014-08-14
JP6085181B2 true JP6085181B2 (en) 2017-02-22

Family

ID=51425545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014776A Active JP6085181B2 (en) 2013-01-29 2013-01-29 Porous water-swellable elastic material

Country Status (1)

Country Link
JP (1) JP6085181B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141374A (en) * 1980-04-05 1981-11-05 Hayakawa Rubber Co Ltd Water cut-off material composition
US4534926A (en) * 1982-11-22 1985-08-13 American Colloid Company Uninhibited bentonite composition
JPS59142275A (en) * 1983-02-04 1984-08-15 Hayakawa Rubber Co Ltd Water-absorptive, swellable sealing material
JPH0673216A (en) * 1992-08-26 1994-03-15 Tonen Chem Corp Foam of water-absorptive resin composition
JP4100850B2 (en) * 2000-01-14 2008-06-11 株式会社カネカ Polystyrene resin extruded foam and method for producing the same
JP4212217B2 (en) * 2000-04-18 2009-01-21 西川ゴム工業株式会社 Method for producing foam
JP2004197031A (en) * 2002-12-20 2004-07-15 Hayakawa Rubber Co Ltd Adhesive water-swelling water cutoff material
JP5681914B2 (en) * 2010-03-18 2015-03-11 シンジーテック株式会社 Rubber member, rubber roll, and method of manufacturing rubber member

Also Published As

Publication number Publication date
JP2014145039A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
EP1512713B1 (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
US10427977B2 (en) Fire resistant geopolymer foam
US9079450B2 (en) Plastic eraser, plastic eraser composite body, and method for producing thereof
BRPI0504861A (en) vulcanized rubber composition, and vulcanized product
TW201339183A (en) Porous body
JP2008138180A (en) Rubber mixture for thermally expansible joint filling material, thermally expansible joint filling material and joint for fire-resistant double-layer pipe
JP6085181B2 (en) Porous water-swellable elastic material
JP6043467B2 (en) Chloroprene rubber foam and method for producing the same
JP2005350654A (en) Joint material and gasket
JP2018059707A (en) Air-conditioning drain pipe
EP2781542A2 (en) Ethylene-propylene-diene buffer material and sealing material
KR20180046722A (en) Foam composition of low density resins
JP2006087819A (en) Joint filling material and gasket for fire prevention
JPH09111899A (en) Shaped seal member, and manufacture thereof
TWI717251B (en) Rubber-plastic composite foamed material
JP2010031137A (en) Closed cell foam sheet
JP2011063783A (en) Intumescent resin composition for fire prevention
JP5734589B2 (en) Rubber packing for water supply
JP2017008163A (en) Water-swellable foaming cutoff material and method for producing the same
JP5474913B2 (en) Transparent adhesive
JP6117320B2 (en) Non-curing thermal expansion putty composition
EP2781543A2 (en) Ethylene-propylene-diene rubber foamed material and sealing material
WO2022024490A1 (en) Foamable composition and foam body
JP2002115341A (en) Water sealing material
JP2008189737A (en) Water-swellable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250