JP6081279B2 - Conductive structure - Google Patents

Conductive structure Download PDF

Info

Publication number
JP6081279B2
JP6081279B2 JP2013085225A JP2013085225A JP6081279B2 JP 6081279 B2 JP6081279 B2 JP 6081279B2 JP 2013085225 A JP2013085225 A JP 2013085225A JP 2013085225 A JP2013085225 A JP 2013085225A JP 6081279 B2 JP6081279 B2 JP 6081279B2
Authority
JP
Japan
Prior art keywords
holding member
conductive
conductive structure
magnet
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085225A
Other languages
Japanese (ja)
Other versions
JP2014207822A (en
Inventor
拓人 福原
拓人 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2013085225A priority Critical patent/JP6081279B2/en
Publication of JP2014207822A publication Critical patent/JP2014207822A/en
Application granted granted Critical
Publication of JP6081279B2 publication Critical patent/JP6081279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3224Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip capable of accommodating changes in distances or misalignment between the surfaces, e.g. able to compensate for defaults of eccentricity or angular deviations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Description

本発明は、相対的に移動する2つの部材を電気的に接続する導電構造に関する。   The present invention relates to a conductive structure that electrically connects two members that move relatively.

従来、相対的に移動する2つの部材を電気的に接続するための技術が知られている(例えば、特許文献1、2参照)。特許文献1には、スピンドルモータのアース手段に関し、静止軸部材と、この静止軸部材に対して回転するロータハブに設けられたポールピースとの間の環状隙間に導電性磁性流体を充填することによって、両部材間の電気的導通を確保する技術が開示されている。   2. Description of the Related Art Conventionally, techniques for electrically connecting two members that move relatively are known (see, for example, Patent Documents 1 and 2). Patent Document 1 relates to a grounding means for a spindle motor by filling a conductive magnetic fluid in an annular gap between a stationary shaft member and a pole piece provided on a rotor hub that rotates with respect to the stationary shaft member. A technique for ensuring electrical continuity between both members is disclosed.

特開2002−191152号公報JP 2002-191152 A 特開平11−86247号公報JP-A-11-86247

上述の特許文献1に記載の技術では、導電性磁性流体は、静止軸部材とポールピースとの隙間に充填されて、磁気的に保持される。しかしながら、ロータハブの回転中に軸振れが生じると、静止軸部材とポールピースとの隙間の間隔が大きくなるため、磁性流体が静止軸部材やポールピースと接触しない状態が生じる可能性がある。その結果、両部材間の電気的導通が損なわれる虞がある。   In the technique described in Patent Document 1 described above, the conductive magnetic fluid is filled in the gap between the stationary shaft member and the pole piece and magnetically held. However, if shaft runout occurs during rotation of the rotor hub, the gap between the stationary shaft member and the pole piece increases, and there is a possibility that the magnetic fluid does not contact the stationary shaft member or the pole piece. As a result, the electrical continuity between the two members may be impaired.

本発明は、このような実情に鑑みてなされたものであり、その目的は、相対的に移動する2つの部材を電気的に接続する導電構造において、両部材間の電気的接続を安定的に確保することができる導電構造を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to stably connect an electric connection between both members in a conductive structure that electrically connects two members that move relatively. An object is to provide a conductive structure that can be secured.

本発明は、上記課題を解決するために以下の手段を採用した。
すなわち、本発明の導電構造は、
相対的に移動する第1部材と第2部材を電気的に接続する導電構造であって、
前記第1部材に設けられた、磁場を形成する磁場形成部材と、
前記第2部材に設けられた、磁性流体を吸い込んで保持可能な、柔軟性を有する保持部材と、
前記保持部材に保持された磁性流体と、
を備え、
前記磁性流体を保持した前記保持部材が、前記磁場形成部材に引き寄せられることによって前記第1部材と前記第2部材が電気的に接続されることを特徴とする。
The present invention employs the following means in order to solve the above problems.
That is, the conductive structure of the present invention is
A conductive structure that electrically connects the first member and the second member that move relatively,
A magnetic field forming member for forming a magnetic field provided in the first member;
A flexible holding member provided on the second member, capable of sucking and holding magnetic fluid; and
A magnetic fluid held by the holding member;
With
The holding member holding the magnetic fluid is attracted to the magnetic field forming member, whereby the first member and the second member are electrically connected.

保持部材に吸い込まれて保持された磁性流体には、磁場形成部材が形成する磁場からの磁力が作用する。そのため、磁性流体を吸い込んで保持した保持部材は、当該磁力によって、磁性流体と共に磁場形成部材に引き寄せられる。本発明によれば、このようにして、第2部材に設けられた保持部材が、第1部材に設けられた磁場形成部材に引き寄せられることによって、第1部材と第2部材が電気的に接続される。ここで、保持部材は、柔軟性を有するため、磁場形成部材に引き寄せられるときに変形することができる。ゆえに、第1部材と第2部材の相対的な移動中において、両部材間の間隔や相対的な位置関係が変化しても、磁性流体を吸い込んで保持した保持部材は、両部材間の間隔や相対的な位置関係
の変化に応じて変形することによって、磁場形成部材に引き寄せられる状態が維持される。その結果、第1部材と第2部材が電気的に接続された状態が維持される。したがって、本発明によれば、相対的に移動する2つの部材間の電気的接続を安定的に確保することができる。
A magnetic force from the magnetic field formed by the magnetic field forming member acts on the magnetic fluid sucked and held by the holding member. Therefore, the holding member that sucks and holds the magnetic fluid is attracted to the magnetic field forming member together with the magnetic fluid by the magnetic force. According to the present invention, the holding member provided on the second member is attracted to the magnetic field forming member provided on the first member in this manner, so that the first member and the second member are electrically connected. Is done. Here, since the holding member has flexibility, it can be deformed when it is attracted to the magnetic field forming member. Therefore, during the relative movement of the first member and the second member, even if the distance between the two members and the relative positional relationship change, the holding member that sucks and holds the magnetic fluid is spaced from the two members. Further, by being deformed according to a change in relative positional relationship, the state of being attracted to the magnetic field forming member is maintained. As a result, the state where the first member and the second member are electrically connected is maintained. Therefore, according to the present invention, it is possible to stably ensure electrical connection between two members that move relatively.

ここで、磁場形成部材は導電性を有し、保持部材は、磁性流体を保持する保持部と、第2部材に電気的に接続された導電部を備え、磁場形成部材に引き寄せられた保持部材の導電部が、該磁場形成部材と接触することによって第1部材と第2部材が電気的に接続されるようにしてもよい。これにより、第1部材と第2部材は、磁場形成部材と導電部を介して電気的に接続される。また、導電部の接触部分は、保持部材が保持する磁性流体に作用する磁力によって、磁場形成部材に対して押圧される。その結果、磁場形成部材と導電部の接触が安定して維持されるため、相対的に移動する2つの部材間の電気的接続を安定的に確保することができる。   Here, the magnetic field forming member has conductivity, and the holding member includes a holding portion that holds the magnetic fluid, and a conductive portion that is electrically connected to the second member, and is held by the magnetic field forming member. The first member and the second member may be electrically connected by contacting the conductive portion of the first magnetic member with the magnetic field forming member. Thereby, the first member and the second member are electrically connected to the magnetic field forming member via the conductive portion. The contact portion of the conductive portion is pressed against the magnetic field forming member by the magnetic force acting on the magnetic fluid held by the holding member. As a result, since the contact between the magnetic field forming member and the conductive portion is stably maintained, it is possible to stably ensure the electrical connection between the two members that move relatively.

また、磁場形成部材と磁性流体は導電性を有し、磁場形成部材に引き寄せられた保持部材が、該磁場形成部材と接触することによって第1部材と第2部材が電気的に接続されるようにしてもよい。これにより、第1部材と第2部材は、磁場形成部材と保持部材に保持された磁性流体を介して電気的に接続される。また、保持部材の接触部分は、保持部材が保持する磁性流体に作用する磁力によって、磁場形成部材に対して押圧される。その結果、磁場形成部材と保持部材の接触が安定して維持されるため、相対的に移動する2つの部材間の電気的接続を安定的に確保することができる。   In addition, the magnetic field forming member and the magnetic fluid have conductivity, and the first member and the second member are electrically connected when the holding member drawn to the magnetic field forming member comes into contact with the magnetic field forming member. It may be. Thus, the first member and the second member are electrically connected via the magnetic fluid held by the magnetic field forming member and the holding member. The contact portion of the holding member is pressed against the magnetic field forming member by the magnetic force acting on the magnetic fluid held by the holding member. As a result, since the contact between the magnetic field forming member and the holding member is stably maintained, it is possible to stably ensure the electrical connection between the two members that move relatively.

また、第1部材は、磁場形成部材と保持部材との間に配置された導電部材を備え、保持部材は、磁性流体を保持する保持部と、第2部材に電気的に接続された導電部を備え、磁場形成部材に引き寄せられた保持部材の導電部が、導電部材と接触することによって第1部材と第2部材が電気的に接続されるようにしてもよい。これにより、第1部材と第2部材は、導電部材と導電部を介して電気的に接続される。また、導電部の接触部分は、保持部材が保持する磁性流体に作用する磁力によって、導電部材に対して押圧される。その結果、導電部材と導電部の接触が安定して維持されるため、相対的に移動する2つの部材間の電気的接続を安定的に確保することができる。   The first member includes a conductive member disposed between the magnetic field forming member and the holding member. The holding member includes a holding unit that holds the magnetic fluid, and a conductive unit that is electrically connected to the second member. The first member and the second member may be electrically connected by contacting the conductive member of the conductive member of the holding member drawn to the magnetic field forming member. Thereby, the first member and the second member are electrically connected via the conductive member and the conductive portion. In addition, the contact portion of the conductive portion is pressed against the conductive member by the magnetic force acting on the magnetic fluid held by the holding member. As a result, since the contact between the conductive member and the conductive portion is stably maintained, it is possible to stably ensure an electrical connection between the two members that move relatively.

また、第1部材は、磁場形成部材と保持部材との間に配置された導電部材を備え、磁性流体は導電性を有し、磁場形成部材に引き寄せられた保持部材が、導電部材と接触することによって第1部材と第2部材が電気的に接続されるようにしてもよい。これにより、第1部材と第2部材は、導電部材と保持部材に保持された磁性流体を介して電気的に接続される。また、保持部材の接触部分は、保持部材が保持する磁性流体に作用する磁力によって、導電部材に対して押圧される。その結果、導電部材と保持部材の接触が安定して維持されるため、相対的に移動する2つの部材間の電気的接続を安定的に確保することができる。   The first member includes a conductive member disposed between the magnetic field forming member and the holding member, the magnetic fluid has conductivity, and the holding member attracted to the magnetic field forming member contacts the conductive member. Thus, the first member and the second member may be electrically connected. Thereby, the first member and the second member are electrically connected via the magnetic fluid held by the conductive member and the holding member. Further, the contact portion of the holding member is pressed against the conductive member by the magnetic force acting on the magnetic fluid held by the holding member. As a result, since the contact between the conductive member and the holding member is stably maintained, it is possible to stably ensure the electrical connection between the two members that move relatively.

本発明によれば、相対的に移動する2つの部材を電気的に接続する導電構造において、両部材間の電気的接続を安定的に確保することができる。   According to the present invention, in a conductive structure that electrically connects two members that move relatively, it is possible to stably ensure electrical connection between the two members.

本発明の実施例1に係る導電構造の模式的断面図である。It is a typical sectional view of the conductive structure concerning Example 1 of the present invention. 本発明の実施例2に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 2 of this invention. 本発明の実施例3に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 3 of this invention. 本発明の実施例4に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 4 of this invention. 本発明の実施例5に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 5 of this invention. 本発明の実施例6に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 6 of this invention. 本発明の実施例7に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 7 of this invention. 本発明の実施例8に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 8 of this invention. 本発明の実施例9に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 9 of this invention. 本発明の実施例10に係る導電構造の模式的断面図である。It is typical sectional drawing of the electrically conductive structure which concerns on Example 10 of this invention. 実施例1に係る保持部材の変形例を示す模式的断面図である。6 is a schematic cross-sectional view showing a modification of the holding member according to Embodiment 1. FIG. 実施例2に係る保持部材の変形例を示す模式的断面図である。10 is a schematic cross-sectional view showing a modified example of the holding member according to Embodiment 2. FIG. 実施例3に係る保持部材の変形例を示す模式的断面図である。10 is a schematic cross-sectional view showing a modified example of the holding member according to Embodiment 3. FIG. 実施例4に係る保持部材の変形例を示す模式的断面図である。10 is a schematic cross-sectional view showing a modified example of the holding member according to Embodiment 4. FIG. 実施例5に係る保持部材の変形例を示す模式的断面図である。FIG. 10 is a schematic cross-sectional view showing a modified example of the holding member according to the fifth embodiment. 実施例6に係る保持部材の変形例を示す模式的断面図である。10 is a schematic cross-sectional view showing a modified example of the holding member according to Embodiment 6. FIG. 実施例7に係る保持部材の変形例を示す模式的断面図である。10 is a schematic cross-sectional view showing a modified example of the holding member according to Embodiment 7. FIG. 実施例8に係る保持部材の変形例を示す模式的断面図である。10 is a schematic cross-sectional view showing a modified example of the holding member according to Example 8. FIG. 実施例9に係る保持部材の変形例を示す模式的断面図である。FIG. 10 is a schematic cross-sectional view showing a modified example of the holding member according to Example 9. 実施例1に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing a modification when the holding member according to Example 1 holds a conductive magnetic fluid. 実施例2に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 9 is a schematic cross-sectional view showing a modification when the holding member according to Example 2 holds a conductive magnetic fluid. 実施例3に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 9 is a schematic cross-sectional view showing a modification when the holding member according to Example 3 holds a conductive magnetic fluid. 実施例4に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 10 is a schematic cross-sectional view showing a modification when the holding member according to Example 4 holds a conductive magnetic fluid. 実施例5に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 10 is a schematic cross-sectional view showing a modification when the holding member according to Example 5 holds a conductive magnetic fluid. 実施例6に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 12 is a schematic cross-sectional view showing a modification when the holding member according to Example 6 holds a conductive magnetic fluid. 実施例7に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。FIG. 12 is a schematic cross-sectional view showing a modification when the holding member according to Example 7 holds a conductive magnetic fluid. 実施例8に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。It is a typical sectional view showing a modification when a holding member concerning Example 8 is holding conductive magnetic fluid. 実施例9に係る保持部材が導電性磁性流体を保持しているときの変形例を示す模式的断面図である。It is a typical sectional view showing a modification when a holding member concerning Example 9 is holding a conductive magnetic fluid. 実施例1に係る磁石の正面図である。1 is a front view of a magnet according to Example 1. FIG. 実施例1に係る他の磁石の正面図である。6 is a front view of another magnet according to Embodiment 1. FIG. 実施例1に係る他の磁石の正面図である。6 is a front view of another magnet according to Embodiment 1. FIG. 実施例1に係る導電構造に更に導電部材が設けられているときの模式的断面図である。3 is a schematic cross-sectional view when a conductive member is further provided in the conductive structure according to Embodiment 1. FIG. 実施例2に係る導電構造に更に導電部材が設けられているときの模式的断面図である。6 is a schematic cross-sectional view when a conductive member is further provided in the conductive structure according to Example 2. FIG. 実施例3に係る導電構造に更に導電部材が設けられているときの模式的断面図である。6 is a schematic cross-sectional view when a conductive member is further provided in the conductive structure according to Example 3. FIG. 実施例4に係る導電構造に更に導電部材が設けられているときの模式的断面図である。6 is a schematic cross-sectional view when a conductive member is further provided in the conductive structure according to Example 4. FIG. 実施例5に係る導電構造に更に導電部材が設けられているときの模式的断面図である。10 is a schematic cross-sectional view when a conductive member is further provided in the conductive structure according to Example 5. FIG. 実施例6に係る導電構造に更に導電部材が設けられているときの模式的断面図である。FIG. 10 is a schematic cross-sectional view when a conductive member is further provided in the conductive structure according to Example 6.

以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に
詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。なお、以下に説明する実施例においては、磁場形成部材が設けられた部材(軸、ハウジング含む)が本発明に係る第1部材に相当し、保持部材が設けられた部材(軸、ハウジング含む)が本発明に係る第2部材に相当する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. . In the embodiments described below, the member (including the shaft and the housing) provided with the magnetic field forming member corresponds to the first member according to the present invention, and the member (including the shaft and the housing) provided with the holding member. Corresponds to the second member according to the present invention.

[実施例1]
図1を参照して、本発明の実施例1に係る導電構造について説明する。なお、本実施例に係る導電構造100は、一般産業用の機器、鉄道、自動車等の各種装置における回転構造部において、相対的に回転する2つの部材間を電気的に接続するために適用可能である。これにより、回転によって発生する静電気を除去するためのアースとして利用したり、相対的に回転する2つの部材間に電流を流すために利用したりすることができる。
[Example 1]
With reference to FIG. 1, a conductive structure according to Example 1 of the present invention will be described. The conductive structure 100 according to the present embodiment can be applied to electrically connect two relatively rotating members in a rotating structure portion of various devices such as general industrial equipment, railways, and automobiles. It is. Thereby, it can utilize as an earth | ground for removing the static electricity which generate | occur | produces by rotation, or can be used in order to flow an electric current between two members rotating relatively.

<導電構造の構成>
図1を参照して、本発明の実施例1に係る導電構造の構成について説明する。なお、図1は、本実施例に係る導電構造100の構成を示す模式的断面図である。
<Configuration of conductive structure>
With reference to FIG. 1, the structure of the electrically conductive structure which concerns on Example 1 of this invention is demonstrated. FIG. 1 is a schematic cross-sectional view showing the configuration of the conductive structure 100 according to the present embodiment.

相対的に回転(いずれか一方が固定された状態で他方が回転する場合の他、両者が回転する場合も含む)する2つの部材としてのハウジング10と、ハウジング10の軸孔内に配置された軸20は、それぞれ鉄などの金属や、カーボン等の導電性を有する物質により構成されている。そして、導電構造100は、ハウジング10の軸孔内周面に設けられた磁場形成部材としての磁石110と、軸20に設けられた保持部材120と、保持部材120に吸い込まれて保持された磁性流体130と、軸20に電気的に接続された状態で保持部材120の磁石110側の面に設けられた導電部140とから構成される。   The housing 10 as two members that relatively rotate (including the case where the other rotates while the other rotates while one of them is fixed) and the shaft 10 of the housing 10 are disposed. Each of the shafts 20 is made of a metal such as iron or a conductive material such as carbon. The conductive structure 100 includes a magnet 110 as a magnetic field forming member provided on the inner peripheral surface of the shaft hole of the housing 10, a holding member 120 provided on the shaft 20, and a magnetic material sucked and held by the holding member 120. The fluid 130 and the conductive portion 140 provided on the surface of the holding member 120 on the magnet 110 side while being electrically connected to the shaft 20 are configured.

磁石110は、導電性を有する環状の永久磁石であり、その一端としての内周面が軸20側に位置する自由端(非固定端)となるように、その他端としての外周面がハウジング10の軸孔内周面に電気的に接続された状態で固定されている。磁石110によって、磁石110の周囲に磁場が形成される。   The magnet 110 is an annular permanent magnet having conductivity, and the outer peripheral surface as the other end is the housing 10 so that the inner peripheral surface as one end becomes a free end (non-fixed end) positioned on the shaft 20 side. The shaft hole is fixed while being electrically connected to the inner peripheral surface of the shaft hole. A magnetic field is formed around the magnet 110 by the magnet 110.

環状の保持部材120は、その一端としての外周面がハウジング10側に位置する自由端となるように、その他端としての内周面が軸20の外周面に固定される。保持部材120は、磁性流体130を吸い込んで保持可能な、柔軟性を有する材料から構成される。このような性質を有する材料としては、フェルトなどの布、紙、ポーラスシリコン等を挙げることができる。なお、保持部材120は、磁性流体130を吸い込んで保持した状態でも十分な柔軟性を有する。また、本実施例においては、保持部材120の全体が、磁性流体130を吸い込んで保持している。なお、ゴムや樹脂など、材料自体の性質では磁性流体130を吸い込んで保持することができないものであっても、発泡性の構造にすることによって、磁性流体130を毛細管現象によって吸い込んで保持することが可能になる。   The annular holding member 120 has an inner peripheral surface as the other end fixed to the outer peripheral surface of the shaft 20 so that the outer peripheral surface as one end is a free end located on the housing 10 side. The holding member 120 is made of a flexible material that can suck and hold the magnetic fluid 130. Examples of the material having such properties include cloth such as felt, paper, and porous silicon. The holding member 120 has sufficient flexibility even when the magnetic fluid 130 is sucked and held. In the present embodiment, the entire holding member 120 sucks and holds the magnetic fluid 130. Even if the magnetic fluid 130 cannot be sucked and held due to the properties of the material itself such as rubber or resin, the magnetic fluid 130 is sucked and held by capillary action by using a foaming structure. Is possible.

ここで、保持部材120が固定される位置は、磁石110によって形成される磁場内であって、磁性流体130を吸い込んで保持した保持部材120が磁石110に引き寄せられる位置である。より詳細には、この位置は、保持部材120に保持された磁性流体130に作用する磁力によって、保持部材120が磁性流体130と共に磁石110に引き寄せられる位置である。このような位置に固定されることにより、保持部材120は、磁性流体130に作用する磁力によって、自由端側を変形しながら磁石110に引き寄せられる。   Here, the position where the holding member 120 is fixed is a position where the holding member 120 that sucks and holds the magnetic fluid 130 is attracted to the magnet 110 in the magnetic field formed by the magnet 110. More specifically, this position is a position where the holding member 120 is attracted to the magnet 110 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 120. By being fixed in such a position, the holding member 120 is attracted to the magnet 110 while deforming the free end side by the magnetic force acting on the magnetic fluid 130.

導電部140は、保持部材120における磁石110側の面全体に、軸20に電気的に接続された状態で設けられる。導電部140は、導電性を有する膜であり、金属薄膜やカ
ーボン材料などから構成される。このようにして導電部140を設けることにより、保持部材120と導電部140が一体として柔軟性を有するように構成される。ここで、本実施例においては、保持部材120と導電部140が全体として本発明に係る保持部材を構成する。そして、保持部材120と導電部140が、それぞれ本発明に係る保持部と導電部に相当する。
The conductive portion 140 is provided on the entire surface of the holding member 120 on the magnet 110 side while being electrically connected to the shaft 20. The conductive portion 140 is a conductive film and is made of a metal thin film, a carbon material, or the like. By providing the conductive portion 140 in this manner, the holding member 120 and the conductive portion 140 are configured to have flexibility as a unit. Here, in the present embodiment, the holding member 120 and the conductive portion 140 constitute the holding member according to the present invention as a whole. The holding member 120 and the conductive portion 140 correspond to the holding portion and the conductive portion according to the present invention, respectively.

以上のような構成を備える導電構造100においては、図1に示されるように、保持部材120が保持した磁性流体130に作用する磁力によって、保持部材120が磁性流体130と共に磁石110に引き寄せられる。これにより、保持部材120が変形して、導電部140の自由端側が磁石110に接触する。その結果、ハウジング10と軸20が、磁石110と導電部140を介して電気的に接続される。つまり、ハウジング10と軸20との間に、電流が流れる経路が形成される。   In the conductive structure 100 having the above configuration, as shown in FIG. 1, the holding member 120 is attracted to the magnet 110 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 120. As a result, the holding member 120 is deformed and the free end side of the conductive portion 140 comes into contact with the magnet 110. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 110 and the conductive portion 140. That is, a path through which a current flows is formed between the housing 10 and the shaft 20.

ここで、保持部材120は、その全体に磁性流体130を吸い込んで保持しているため、磁石110が形成する磁場から作用する磁力は、保持部材120の全体に作用する。また、保持部材120は、柔軟性を有する材料から構成されているため、磁石110の表面形状に沿うように変形することができる。そのため、保持部材120は、導電部140と磁石110との接触面積が広くなるように変形しながら磁石110に引き寄せられる。これにより、導電部140は、磁石110に対して面接触する。また、このようにして面接触している導電部140の接触部分は、保持部材120に保持されている磁性流体130に作用する回転軸線方向(以下、「軸方向」という)の磁力によって、磁石110に対して軸方向に押圧される。   Here, since the holding member 120 sucks and holds the magnetic fluid 130 in its entirety, the magnetic force acting from the magnetic field formed by the magnet 110 acts on the entire holding member 120. Moreover, since the holding member 120 is comprised from the material which has a softness | flexibility, it can deform | transform so that the surface shape of the magnet 110 may be met. Therefore, the holding member 120 is attracted to the magnet 110 while being deformed so that the contact area between the conductive portion 140 and the magnet 110 is increased. Thereby, the conductive part 140 is in surface contact with the magnet 110. Further, the contact portion of the conductive portion 140 that is in surface contact in this way is magnetized by the magnetic force in the rotation axis direction (hereinafter referred to as “axial direction”) acting on the magnetic fluid 130 held by the holding member 120. 110 is pressed in the axial direction.

<導電構造の使用状態及び作用効果>
次に、図1を参照して、本実施例に係る導電構造100の使用時の状態について説明する。
ハウジング10と軸20の相対的な回転時においては、磁石110と導電部140との接触部分が回転摺動する。ここで、導電部140は、磁石110に対して面接触している。また、導電部140の接触部分は、磁石110に対して押圧されている。そのため、導電部140の接触部分が磁石110に対して回転摺動しているときであっても、導電部140と磁石110との接触は安定して維持される。その結果、相対的に回転しているハウジング10と軸20の電気的接続を安定して確保することができる。
<Use state and effect of conductive structure>
Next, with reference to FIG. 1, the state at the time of use of the conductive structure 100 which concerns on a present Example is demonstrated.
When the housing 10 and the shaft 20 are rotated relative to each other, the contact portion between the magnet 110 and the conductive portion 140 rotates and slides. Here, the conductive portion 140 is in surface contact with the magnet 110. Further, the contact portion of the conductive portion 140 is pressed against the magnet 110. Therefore, even when the contact portion of the conductive portion 140 is rotating and sliding with respect to the magnet 110, the contact between the conductive portion 140 and the magnet 110 is stably maintained. As a result, the electrical connection between the relatively rotating housing 10 and the shaft 20 can be stably secured.

ここで、ハウジング10と軸20が相対的に回転しているときは、両部材に偏心や軸方向の相対的な往復運動などの、不規則な運動が発生することがある。   Here, when the housing 10 and the shaft 20 are rotating relatively, irregular movement such as eccentricity and relative reciprocation in the axial direction may occur in both members.

偏心が発生すると、両部材は軸20の径方向に相対的に移動する。これにより、ハウジング10と軸20との間の隙間(間隔)が変化する。ここで、保持部材120は柔軟性を有するため、両部材間の隙間の変化に応じて、導電部140と磁石110との面接触を保ちながら変形することができる。つまり、両部材間の隙間が小さくなるときには、保持部材120は撓むように変形し、この隙間が大きくなるときには、保持部材120が平らになるように変形する。保持部材120がこのように変形することにより、保持部材120が磁石110に引き寄せられる状態が維持されるため、導電部140と磁石110の接触が維持される。その結果、ハウジング10と軸20の電気的接続を安定して確保することができる。   When eccentricity occurs, both members move relatively in the radial direction of the shaft 20. As a result, the gap (interval) between the housing 10 and the shaft 20 changes. Here, since the holding member 120 has flexibility, it can be deformed while maintaining the surface contact between the conductive portion 140 and the magnet 110 in accordance with the change in the gap between the two members. That is, when the gap between the two members is reduced, the holding member 120 is deformed to bend, and when the gap is increased, the holding member 120 is deformed to be flat. Since the holding member 120 is deformed in this way, the state in which the holding member 120 is attracted to the magnet 110 is maintained, so that the contact between the conductive portion 140 and the magnet 110 is maintained. As a result, the electrical connection between the housing 10 and the shaft 20 can be stably secured.

なお、偏心の発生時においては、磁石110に対する導電部140の押圧状態によっては、ハウジング10と軸20との間の隙間の変化に応じて、導電部140の接触部分が磁石110に対して径方向に摺動することができる。この場合においても、磁石110に引き寄せられる保持部材120から作用する押圧力によって、導電部140と磁石110と
の接触は安定して維持される。したがって、ハウジング10と軸20の電気的接続を安定して確保することができる。
At the time of occurrence of eccentricity, depending on the pressing state of the conductive portion 140 against the magnet 110, the contact portion of the conductive portion 140 has a diameter with respect to the magnet 110 according to the change in the gap between the housing 10 and the shaft 20. Can slide in the direction. Even in this case, the contact between the conductive portion 140 and the magnet 110 is stably maintained by the pressing force acting from the holding member 120 attracted to the magnet 110. Therefore, the electrical connection between the housing 10 and the shaft 20 can be secured stably.

一方、ハウジング10と軸20との間に軸方向の相対的な往復運動が発生すると、磁石110と保持部材120との軸方向における位置関係が変化する。ここで、保持部材120は柔軟性を有するため、両部材の位置関係の変化に応じて、導電部140と磁石110との面接触を保ちながら変形することができる。つまり、保持部材120は、導電部140と磁石110との面接触を保ちながら、相対的に移動する磁石110に追随して揺動するように変形する。保持部材120がこのように変形することにより、保持部材120が磁石110に引き寄せられる状態が維持されるため、導電部140と磁石110の接触が維持される。その結果、ハウジング10と軸20の電気的接続を安定して確保することができる。   On the other hand, when a relative reciprocating motion in the axial direction occurs between the housing 10 and the shaft 20, the positional relationship between the magnet 110 and the holding member 120 in the axial direction changes. Here, since the holding member 120 has flexibility, it can be deformed while maintaining the surface contact between the conductive portion 140 and the magnet 110 according to the change in the positional relationship between the two members. That is, the holding member 120 is deformed so as to swing following the relatively moving magnet 110 while maintaining the surface contact between the conductive portion 140 and the magnet 110. Since the holding member 120 is deformed in this way, the state in which the holding member 120 is attracted to the magnet 110 is maintained, so that the contact between the conductive portion 140 and the magnet 110 is maintained. As a result, the electrical connection between the housing 10 and the shaft 20 can be stably secured.

なお、ハウジング10と軸20が相対的に回転している場合において、偏心と軸方向の相対的な往復運動が同時に発生するときであっても、保持部材120が変形することによって、導電部140と磁石110との接触は安定して維持される。その結果、ハウジング10と軸20の電気的接続を安定して確保することができる。   When the housing 10 and the shaft 20 are relatively rotated, even when the eccentricity and the relative reciprocating motion in the axial direction occur at the same time, the conductive member 140 is deformed by the deformation of the holding member 120. And the magnet 110 are stably maintained. As a result, the electrical connection between the housing 10 and the shaft 20 can be stably secured.

また、本実施例においては、保持部材120は、磁性流体130を吸い込んで保持しているため、磁性流体130をより確実に保持することができる。これにより、磁性流体130が飛散することが抑制されるため、磁性流体130が減少することによって保持部材120に作用する磁力が低下することが抑制される。その結果、ハウジング10と軸20との電気的接続を、長期に亘って安定的に確保することができる。したがって、導電構造100の寿命を延ばすことができる。また、磁性流体130は保持部材120内に保持されるため、導電構造100を磁石110と保持部材120に分割する際に、磁性流体130が流出することが抑制される。そのため、導電構造100の装着や交換作業が容易になる。   In the present embodiment, since the holding member 120 sucks and holds the magnetic fluid 130, the magnetic fluid 130 can be held more reliably. Thereby, since it is suppressed that the magnetic fluid 130 is scattered, it is suppressed that the magnetic force which acts on the holding member 120 by the magnetic fluid 130 reducing is reduced. As a result, the electrical connection between the housing 10 and the shaft 20 can be stably ensured over a long period of time. Therefore, the lifetime of the conductive structure 100 can be extended. Further, since the magnetic fluid 130 is held in the holding member 120, the magnetic fluid 130 is prevented from flowing out when the conductive structure 100 is divided into the magnet 110 and the holding member 120. Therefore, the mounting and replacement work of the conductive structure 100 is facilitated.

また、本実施例においては、導電部140の接触部分は、磁石110に引き寄せられている保持部材120によって、磁石110に対して押圧される。そのため、磁石110の磁気特性や磁性流体130の磁性を変更することによって、導電部140の接触部分に作用する押圧力を調節することができる。このようにして押圧力を調節することにより、例えば、導電部140と磁石110との摺動摩擦を低下させて、導電部140の摩耗を低減させることができる。   In this embodiment, the contact portion of the conductive portion 140 is pressed against the magnet 110 by the holding member 120 attracted to the magnet 110. Therefore, the pressing force acting on the contact portion of the conductive portion 140 can be adjusted by changing the magnetic properties of the magnet 110 and the magnetism of the magnetic fluid 130. By adjusting the pressing force in this manner, for example, sliding friction between the conductive portion 140 and the magnet 110 can be reduced, and wear of the conductive portion 140 can be reduced.

また、本実施例においては、保持部材120は、導電部140と磁石110との接触面積が広くなるように変形しながら磁石110に引き寄せられているため、導電部140が磁石110に対して面接触している。これにより、導電部140の接触部分の面積が広くなるため、当該接触部分を流れる電流の電流密度が低下する。その結果、ハウジング10と軸20の間を流れる電流による発熱が低減されるため、大きい電流を安定して流すことができる。   Further, in this embodiment, the holding member 120 is attracted to the magnet 110 while being deformed so that the contact area between the conductive portion 140 and the magnet 110 is widened, so that the conductive portion 140 faces the magnet 110. In contact. Thereby, since the area of the contact part of the electroconductive part 140 becomes large, the current density of the electric current which flows through the said contact part falls. As a result, since heat generation due to the current flowing between the housing 10 and the shaft 20 is reduced, a large current can be stably supplied.

また、本実施例においては、導電部140を介してハウジング10と軸20とが電気的に接続される。そのため、保持部材120や磁性流体130が導電性である必要が無くなるため、これらの材料の選択肢を増やすことができる。また、導電部140の導電性を変更することによって、ハウジング10と軸20との間に流れる電流の特性を変化させることができる。   In the present embodiment, the housing 10 and the shaft 20 are electrically connected via the conductive portion 140. This eliminates the need for the holding member 120 and the magnetic fluid 130 to be conductive, so that the choice of these materials can be increased. In addition, by changing the conductivity of the conductive portion 140, the characteristics of the current flowing between the housing 10 and the shaft 20 can be changed.

[実施例2]
次に、図2を用いて、本発明の実施例2に係る導電構造について説明する。上述の実施
例1とは異なり、本実施例においては、軸側に磁場形成部材が設けられており、ハウジング側に保持部材が設けられている。なお、実施例1と同一の構成部分については同一の符号を付して、その説明は適宜省略する。なお、図2は、本実施例に係る導電構造101の構成を示す模式的断面図である。
[Example 2]
Next, the conductive structure according to the second embodiment of the present invention will be described with reference to FIG. Unlike the first embodiment, in this embodiment, the magnetic field forming member is provided on the shaft side, and the holding member is provided on the housing side. In addition, the same code | symbol is attached | subjected about the component same as Example 1, and the description is abbreviate | omitted suitably. FIG. 2 is a schematic cross-sectional view showing the configuration of the conductive structure 101 according to this example.

本実施例においては、軸20の外周面に磁場形成部材としての磁石111が設けられている。磁石111は、導電性を有する環状の永久磁石であり、その一端としての外周面がハウジング10側に位置する自由端となるように、その他端としての内周面が軸20の外周面に電気的に接続された状態で固定されている。また、ハウジング10の軸孔内周面には、磁性流体130を吸い込んで保持する、柔軟性を有する環状の保持部材121が設けられている。保持部材121は、その一端としての内周面が軸20側に位置する自由端となるように、その他端としての外周面がハウジング10の軸孔内周面に固定される。また、保持部材121の磁石111側の面全体には、ハウジング10の軸孔内周面に電気的に接続された状態で導電部141が設けられている。なお、本実施例における磁石111、保持部材121、導電部141の位置、材料や性質等は、それぞれ導電構造100における磁石110、保持部材120、導電部140と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材121と導電部141が全体として本発明に係る保持部材を構成し、保持部材121と導電部141が、それぞれ本発明に係る保持部と導電部に相当する。   In the present embodiment, a magnet 111 as a magnetic field forming member is provided on the outer peripheral surface of the shaft 20. The magnet 111 is an annular permanent magnet having conductivity. The inner peripheral surface as the other end is electrically connected to the outer peripheral surface of the shaft 20 so that the outer peripheral surface as one end is a free end located on the housing 10 side. Fixed in a connected state. A flexible annular holding member 121 that sucks and holds the magnetic fluid 130 is provided on the inner peripheral surface of the shaft hole of the housing 10. The holding member 121 has an outer peripheral surface as the other end fixed to the inner peripheral surface of the shaft hole of the housing 10 such that the inner peripheral surface as one end is a free end located on the shaft 20 side. In addition, a conductive portion 141 is provided on the entire surface of the holding member 121 on the magnet 111 side so as to be electrically connected to the inner peripheral surface of the shaft hole of the housing 10. Note that the positions, materials, properties, and the like of the magnet 111, the holding member 121, and the conductive portion 141 in the present embodiment are the same as those of the magnet 110, the holding member 120, and the conductive portion 140 in the conductive structure 100, respectively. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 121 and the conductive portion 141 constitute the holding member according to the present invention as a whole, and the holding member 121 and the conductive portion 141 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造101においては、図2に示されるように、保持部材121が保持した磁性流体130に作用する磁力によって、保持部材121が磁性流体130と共に磁石111に引き寄せられる。これにより、保持部材121が変形して、導電部141の自由端側が磁石111に接触する。その結果、ハウジング10と軸20が、磁石111と導電部141を介して電気的に接続される。   In the conductive structure 101 having the above configuration, as shown in FIG. 2, the holding member 121 is attracted to the magnet 111 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 121. As a result, the holding member 121 is deformed and the free end side of the conductive portion 141 comes into contact with the magnet 111. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 111 and the conductive portion 141.

また、柔軟性を有する保持部材121は、導電部141と磁石111との接触面積が広くなるように変形しながら磁石111に引き寄せられるため、導電部141は、磁石111に対して面接触する。また、導電部141の接触部分は、保持部材121に保持されている磁性流体130に作用する軸方向の磁力によって、磁石111に対して軸方向に押圧される。   Further, since the holding member 121 having flexibility is attracted to the magnet 111 while being deformed so that the contact area between the conductive portion 141 and the magnet 111 is increased, the conductive portion 141 is in surface contact with the magnet 111. In addition, the contact portion of the conductive portion 141 is pressed in the axial direction against the magnet 111 by the axial magnetic force acting on the magnetic fluid 130 held by the holding member 121.

以上のような構成を有する導電構造101によれば、ハウジング10と軸20の相対的な回転時において、上述の実施例1に係る導電構造100と同様の効果が発揮される。つまり、導電部141の接触部分が磁石111に対して回転摺動しているときであっても、導電部141と磁石111との接触は安定して維持される。また、両部材に偏心が発生しても、両部材間の隙間の変化に応じて、柔軟性を有する保持部材121が、導電部141と磁石111との面接触を保ちながら変形するため、導電部141と磁石111の接触が維持される。更にまた、両部材間に軸方向の相対的な往復運動が発生しても、両部材の位置関係の変化に応じて、保持部材121が、導電部141と磁石111との面接触を保ちながら変形するため、導電部141と磁石111の接触が維持される。以上より、相対的に回転するハウジング10と軸20の電気的接続を安定して確保することができる。   According to the conductive structure 101 having the above-described configuration, the same effects as those of the conductive structure 100 according to the first embodiment described above are exhibited during relative rotation of the housing 10 and the shaft 20. That is, even when the contact portion of the conductive portion 141 is rotationally slid with respect to the magnet 111, the contact between the conductive portion 141 and the magnet 111 is stably maintained. Further, even if eccentricity occurs in both members, the flexible holding member 121 is deformed while maintaining the surface contact between the conductive portion 141 and the magnet 111 in accordance with the change in the gap between the two members. Contact between the portion 141 and the magnet 111 is maintained. Furthermore, even if relative reciprocation in the axial direction occurs between the two members, the holding member 121 maintains the surface contact between the conductive portion 141 and the magnet 111 in accordance with the change in the positional relationship between the two members. Due to the deformation, the contact between the conductive portion 141 and the magnet 111 is maintained. As described above, the electrical connection between the relatively rotating housing 10 and the shaft 20 can be stably secured.

また、本実施例によれば、上述の実施例1において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   In addition, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of each component described in the first embodiment are exhibited.

[実施例3]
次に、図3を用いて、本発明の実施例3に係る導電構造について説明する。上述の実施例とは異なり、本実施例に係る導電構造は、対向した状態で相対的に平行移動する2つの部材に適用される。なお、上述の実施例と同一の構成部分については同一の符号を付して
、その説明は適宜省略する。また、図3は、本実施例に係る導電構造102の構成を示す模式的断面図である。
[Example 3]
Next, a conductive structure according to Example 3 of the present invention will be described with reference to FIG. Unlike the above-described embodiment, the conductive structure according to this embodiment is applied to two members that relatively move in parallel with each other. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 3 is a schematic cross-sectional view showing the configuration of the conductive structure 102 according to this example.

相対的に平行移動(いずれか一方が固定された状態で他方が平行移動する場合の他、両者が平行移動する場合も含む)する2つの部材としての第1部材11と第2部材21は、それぞれ鉄などの金属や、カーボン等の導電性を有する物質により構成されている。導電構造102は、第1部材11に設けられた磁場形成部材としての磁石112と、第2部材21に設けられた柔軟性を有する保持部材122と、保持部材122に吸い込まれて保持された磁性流体130と、第2部材21に電気的に接続された状態で保持部材122の磁石112側に設けられた導電部142とから構成される。   The first member 11 and the second member 21 as two members that relatively translate (including the case where the other translates in addition to the case where the other translates while one of them is fixed) Each of them is made of a metal such as iron or a conductive material such as carbon. The conductive structure 102 includes a magnet 112 as a magnetic field forming member provided in the first member 11, a flexible holding member 122 provided in the second member 21, and a magnetic material sucked and held in the holding member 122. The fluid 130 and a conductive portion 142 provided on the magnet 112 side of the holding member 122 in a state of being electrically connected to the second member 21.

磁石112は、導電性を有する板状の永久磁石であり、その一端が第2部材21側に位置する自由端となるように、その他端が第1部材11の側面に電気的に接続された状態で固定される。同じく板状の保持部材122は、その一端が第1部材11側に位置する自由端となるように、その他端が第2部材21の側面に固定される。また、導電部142は、保持部材122における磁石112側の面全体に、第2部材21に電気的に接続された状態で設けられる。なお、本実施例における磁石112、保持部材122、導電部142の位置、材料や性質等は、それぞれ上述の実施例における磁石、保持部材、導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材122と導電部142が全体として本発明に係る保持部材を構成し、保持部材122と導電部142が、それぞれ本発明に係る保持部と導電部に相当する。   The magnet 112 is a plate-like permanent magnet having conductivity, and the other end is electrically connected to the side surface of the first member 11 so that one end thereof is a free end located on the second member 21 side. Fixed in state. Similarly, the other end of the plate-like holding member 122 is fixed to the side surface of the second member 21 so that one end thereof is a free end located on the first member 11 side. In addition, the conductive portion 142 is provided in a state of being electrically connected to the second member 21 on the entire surface of the holding member 122 on the magnet 112 side. The positions, materials, properties, and the like of the magnet 112, the holding member 122, and the conductive portion 142 in this embodiment are the same as those of the magnet, the holding member, and the conductive portion in the above-described embodiments. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 122 and the conductive portion 142 constitute the holding member according to the present invention as a whole, and the holding member 122 and the conductive portion 142 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造102においては、図3に示されるように、保持部材122が保持した磁性流体130に作用する磁力によって、保持部材122が磁性流体130と共に磁石112に引き寄せられる。これにより、保持部材122が変形して、導電部142の自由端側が磁石112に接触する。その結果、第1部材11と第2部材21が、磁石112と導電部142を介して電気的に接続される。   In the conductive structure 102 having the above configuration, as shown in FIG. 3, the holding member 122 is attracted to the magnet 112 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 122. As a result, the holding member 122 is deformed and the free end side of the conductive portion 142 contacts the magnet 112. As a result, the first member 11 and the second member 21 are electrically connected via the magnet 112 and the conductive portion 142.

また、柔軟性を有する保持部材122は、導電部142と磁石112との接触面積が広くなるように変形しながら磁石112に引き寄せられるため、導電部142は、磁石112に対して面接触する。また、導電部142の接触部分は、保持部材122に保持されている磁性流体130に作用する図3におけるY軸方向の磁力によって、磁石112に対してY軸方向に押圧される。なお、この方向は、第1部材11と第2部材21の対向方向(X軸方向)に垂直な方向である。   In addition, since the flexible holding member 122 is attracted to the magnet 112 while being deformed so that the contact area between the conductive portion 142 and the magnet 112 is widened, the conductive portion 142 is in surface contact with the magnet 112. Further, the contact portion of the conductive portion 142 is pressed against the magnet 112 in the Y-axis direction by the magnetic force in the Y-axis direction in FIG. 3 acting on the magnetic fluid 130 held by the holding member 122. This direction is a direction perpendicular to the facing direction (X-axis direction) of the first member 11 and the second member 21.

以上のような構成を有する導電構造102によれば、第1部材11と第2部材21の相対的な平行移動時において、導電部142と磁石112との接触は安定して維持される。両部材が、図3におけるY軸方向に平行移動する場合は、両部材間のY軸方向の位置関係が変化する。ここで、保持部材122は、位置関係の変化に応じて、導電部142と磁石112との面接触を保ちながら変形するため、導電部142と磁石112の接触が維持される。また、両部材が、図3におけるZ軸方向に平行移動する場合は、導電部142の接触部分が磁石112に対して摺動するが、導電部142の接触部分は磁石112に対して押圧されているため、導電部142と磁石112との接触は安定して維持される。以上より、相対的に平行移動する第1部材11と第2部材21の電気的接続を安定して確保することができる。なお、両部材が、図3におけるX軸方向に移動する場合は、両部材間の隙間が変化する。ここで、柔軟性を有する保持部材122は、両部材間の隙間の変化に応じて、導電部142と磁石112との面接触を保ちながら変形するため、導電部142と磁石112の接触が維持される。   According to the conductive structure 102 having the above-described configuration, the contact between the conductive portion 142 and the magnet 112 is stably maintained during the relative translation of the first member 11 and the second member 21. When both members move in parallel in the Y-axis direction in FIG. 3, the positional relationship between both members in the Y-axis direction changes. Here, since the holding member 122 is deformed while maintaining the surface contact between the conductive portion 142 and the magnet 112 in accordance with the change in the positional relationship, the contact between the conductive portion 142 and the magnet 112 is maintained. Further, when both members move in parallel in the Z-axis direction in FIG. 3, the contact portion of the conductive portion 142 slides with respect to the magnet 112, but the contact portion of the conductive portion 142 is pressed against the magnet 112. Therefore, the contact between the conductive portion 142 and the magnet 112 is stably maintained. From the above, it is possible to stably ensure the electrical connection between the first member 11 and the second member 21 that move relatively in parallel. When both members move in the X-axis direction in FIG. 3, the gap between both members changes. Here, since the flexible holding member 122 is deformed while maintaining the surface contact between the conductive portion 142 and the magnet 112 according to the change in the gap between the two members, the contact between the conductive portion 142 and the magnet 112 is maintained. Is done.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等
に由来する他の作用効果と同様の作用効果が発揮される。
Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例4]
次に、図4を用いて、本発明の実施例4に係る導電構造について説明する。上述の実施例とは異なり、本実施例に係る導電構造は、保持部材に設けられた導電部が、磁場形成部材に対して径方向に押圧されるように構成される。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。なお、図4は、本実施例に係る導電構造200の構成を示す模式的断面図である。
[Example 4]
Next, a conductive structure according to Example 4 of the present invention will be described with reference to FIG. Unlike the above-described embodiment, the conductive structure according to this embodiment is configured such that the conductive portion provided in the holding member is pressed in the radial direction against the magnetic field forming member. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 4 is a schematic cross-sectional view showing the configuration of the conductive structure 200 according to this example.

導電構造200は、ハウジング10に埋め込まれて設けられた磁場形成部材としての磁石210と、軸20の外周面に設けられた柔軟性を有する保持部材220と、保持部材220に吸い込まれて保持された磁性流体130と、軸20の外周面に電気的に接続された状態で保持部材220に設けられた導電部240とから構成される。   The conductive structure 200 is sucked and held by the magnet 210 as a magnetic field forming member provided embedded in the housing 10, the flexible holding member 220 provided on the outer peripheral surface of the shaft 20, and the holding member 220. The magnetic fluid 130 and a conductive portion 240 provided on the holding member 220 in a state of being electrically connected to the outer peripheral surface of the shaft 20.

磁石210は、導電性を有する円筒形状の永久磁石であり、ハウジング10に電気的に接続された状態でハウジング10に固定されている。なお、磁石210は、磁石210の内周面とハウジング10の内周面とが略平坦となるように固定されている。磁石210によって、磁石210の周囲に磁場が形成される。   The magnet 210 is a cylindrical permanent magnet having conductivity, and is fixed to the housing 10 while being electrically connected to the housing 10. The magnet 210 is fixed so that the inner peripheral surface of the magnet 210 and the inner peripheral surface of the housing 10 are substantially flat. A magnet 210 forms a magnetic field around the magnet 210.

環状の保持部材220は、その一端としての外周面がハウジング10側に位置する自由端となるように、その他端としての内周面が軸20の外周面に対して固定される。ここで、保持部材220の自由端側は軸方向に湾曲している。保持部材220の性質や材料等は、上述の実施例における保持部材と同様である。また、保持部材220が固定される位置は、磁石210によって形成される磁場内であって、磁性流体130を吸い込んで保持した保持部材220が磁石210に引き寄せられるような位置である。このような位置に固定されることにより、保持部材220の自由端側が、磁性流体130に作用する磁力によって磁石210に引き寄せられる。   The annular holding member 220 has an inner peripheral surface as the other end fixed to the outer peripheral surface of the shaft 20 so that the outer peripheral surface as one end is a free end located on the housing 10 side. Here, the free end side of the holding member 220 is curved in the axial direction. The properties and materials of the holding member 220 are the same as those of the holding member in the above-described embodiment. The holding member 220 is fixed at a position in the magnetic field formed by the magnet 210 such that the holding member 220 that sucks and holds the magnetic fluid 130 is attracted to the magnet 210. By being fixed in such a position, the free end side of the holding member 220 is attracted to the magnet 210 by the magnetic force acting on the magnetic fluid 130.

導電部240は、保持部材220における磁石210側の面全体に、軸20に電気的に接続された状態で設けられる。ここで、「磁石210側」とは、図4に示されるように、保持部材220の湾曲部分における外周側である。なお、導電部240の性質や材料等は、上述の実施例における導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材220と導電部240が全体として本発明に係る保持部材を構成し、保持部材220と導電部240が、それぞれ本発明に係る保持部と導電部に相当する。   The conductive portion 240 is provided on the entire surface of the holding member 220 on the magnet 210 side while being electrically connected to the shaft 20. Here, the “magnet 210 side” is the outer peripheral side of the curved portion of the holding member 220, as shown in FIG. Note that the properties, materials, and the like of the conductive portion 240 are the same as those of the conductive portion in the above-described embodiment. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 220 and the conductive portion 240 constitute the holding member according to the present invention as a whole, and the holding member 220 and the conductive portion 240 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造200においては、保持部材220が保持した磁性流体130に作用する磁力によって、保持部材220が磁性流体130と共に磁石210に引き寄せられる。これにより、保持部材220の自由端側が変形して、導電部240の自由端側の面が磁石210に接触する。その結果、ハウジング10と軸20が、磁石210と導電部240を介して電気的に接続される。   In the conductive structure 200 having the above-described configuration, the holding member 220 is attracted to the magnet 210 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 220. As a result, the free end side of the holding member 220 is deformed, and the surface on the free end side of the conductive portion 240 contacts the magnet 210. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 210 and the conductive portion 240.

また、柔軟性を有する保持部材220は、導電部240と磁石210との接触面積が広くなるように変形しながら磁石210に引き寄せられる。そのため、導電部240は、磁石210に対して面接触する。また、導電部240の接触部分は、保持部材220に保持されている磁性流体130に作用する径方向の磁力によって、磁石210に対して径方向に押圧される。   Further, the holding member 220 having flexibility is attracted to the magnet 210 while being deformed so that the contact area between the conductive portion 240 and the magnet 210 is widened. Therefore, the conductive portion 240 is in surface contact with the magnet 210. Further, the contact portion of the conductive portion 240 is pressed in the radial direction against the magnet 210 by the radial magnetic force acting on the magnetic fluid 130 held by the holding member 220.

以上のような構成を有する導電構造200によれば、ハウジング10と軸20の相対的な回転時において、上述の実施例1に係る導電構造100と同様の効果が発揮される。つまり、導電部240の接触部分が磁石210に対して回転摺動しているときであっても、
導電部240と磁石210との接触は安定して維持される。また、両部材に偏心が発生しても、両部材間の隙間の変化に応じて、柔軟性を有する保持部材220が、導電部240と磁石210との面接触を保ちながら変形するため、導電部240と磁石210の接触が維持される。更にまた、両部材間に軸方向の相対的な往復運動が発生しても、両部材の位置関係の変化に応じて、保持部材220が、導電部240と磁石210との面接触を保ちながら変形するため、導電部240と磁石210の接触が維持される。以上より、相対的に回転するハウジング10と軸20の電気的接続を安定して確保することができる。
According to the conductive structure 200 having the above-described configuration, the same effects as those of the conductive structure 100 according to the first embodiment described above are exhibited during relative rotation of the housing 10 and the shaft 20. That is, even when the contact portion of the conductive portion 240 is rotationally slid with respect to the magnet 210,
The contact between the conductive portion 240 and the magnet 210 is stably maintained. Even if eccentricity occurs in both members, the flexible holding member 220 is deformed while maintaining the surface contact between the conductive portion 240 and the magnet 210 in accordance with the change in the gap between the two members. Contact between the portion 240 and the magnet 210 is maintained. Furthermore, even if relative reciprocation in the axial direction occurs between the two members, the holding member 220 maintains the surface contact between the conductive portion 240 and the magnet 210 in accordance with the change in the positional relationship between the two members. Due to the deformation, the contact between the conductive portion 240 and the magnet 210 is maintained. As described above, the electrical connection between the relatively rotating housing 10 and the shaft 20 can be stably secured.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例5]
次に、図5を用いて、本発明の実施例5に係る導電構造について説明する。上述の実施例4とは異なり、本実施例においては、軸側に磁場形成部材が設けられており、ハウジング側に保持部材が設けられている。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。なお、図5は、本実施例に係る導電構造201の構成を示す模式的断面図である。
[Example 5]
Next, a conductive structure according to Example 5 of the present invention will be described with reference to FIG. Unlike Example 4 described above, in this example, a magnetic field forming member is provided on the shaft side, and a holding member is provided on the housing side. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 5 is a schematic cross-sectional view showing the configuration of the conductive structure 201 according to this example.

本実施例においては、磁場形成部材としての円筒形状の磁石211が、軸20の外周側に埋め込まれて設けられている。なお、磁石211の外周面と軸20の外周面とが略平坦となるように構成されている。また、ハウジング10の軸孔内周面には、環状の保持部材221が固定される。保持部材221は、その一端としての内周面が軸20側に位置する自由端となるように、その他端としての外周面が、ハウジング10の外周面に対して固定される。ここで、保持部材221の自由端側は軸方向に湾曲している。また、導電部241は、保持部材221における磁石211側の面全体に、ハウジング10に電気的に接続された状態で設けられる。ここで、「磁石211側」とは、図5に示されるように、保持部材221の湾曲部分における内周側である。なお、本実施例における磁石211、保持部材221、導電部241の材料や性質等は、それぞれ上述の実施例における磁石、保持部材、導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材221と導電部241が全体として本発明に係る保持部材を構成し、保持部材221と導電部241が、それぞれ本発明に係る保持部と導電部に相当する。   In the present embodiment, a cylindrical magnet 211 as a magnetic field forming member is embedded in the outer peripheral side of the shaft 20. The outer peripheral surface of the magnet 211 and the outer peripheral surface of the shaft 20 are configured to be substantially flat. An annular holding member 221 is fixed to the inner peripheral surface of the shaft hole of the housing 10. The holding member 221 has an outer peripheral surface as the other end fixed to the outer peripheral surface of the housing 10 such that an inner peripheral surface as one end thereof is a free end located on the shaft 20 side. Here, the free end side of the holding member 221 is curved in the axial direction. In addition, the conductive portion 241 is provided on the entire surface of the holding member 221 on the magnet 211 side in a state of being electrically connected to the housing 10. Here, the “magnet 211 side” is the inner peripheral side of the curved portion of the holding member 221 as shown in FIG. 5. Note that the materials, properties, and the like of the magnet 211, the holding member 221, and the conductive portion 241 in the present embodiment are the same as those of the magnet, the holding member, and the conductive portion in the above-described embodiments. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 221 and the conductive portion 241 constitute the holding member according to the present invention as a whole, and the holding member 221 and the conductive portion 241 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造201においては、保持部材221が保持した磁性流体130に作用する磁力によって、保持部材221が磁性流体130と共に磁石211に引き寄せられる。これにより、保持部材221の自由端側が変形して、導電部241の自由端側が磁石211に接触する。その結果、ハウジング10と軸20が、磁石211と導電部241を介して電気的に接続される。   In the conductive structure 201 having the above configuration, the holding member 221 is attracted to the magnet 211 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 221. As a result, the free end side of the holding member 221 is deformed, and the free end side of the conductive portion 241 contacts the magnet 211. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 211 and the conductive portion 241.

また、柔軟性を有する保持部材221は、導電部241と磁石211との接触面積が広くなるように変形しながら磁石211に引き寄せられる。そのため、導電部241は、磁石211に対して面接触する。また、導電部241の接触部分は、保持部材221に保持されている磁性流体130に作用する径方向の磁力によって、磁石211に対して径方向に押圧される。   The flexible holding member 221 is attracted to the magnet 211 while being deformed so that the contact area between the conductive portion 241 and the magnet 211 is increased. Therefore, the conductive portion 241 is in surface contact with the magnet 211. The contact portion of the conductive portion 241 is pressed in the radial direction against the magnet 211 by the radial magnetic force acting on the magnetic fluid 130 held by the holding member 221.

ここで、本実施例と実施例4との関係は、ハウジング10に設けられている構成と、軸20に設けられている構成とが入れ替わっているという点において、上述の実施例2と実施例1との関係と同様である。そのため、本実施例においても、実施例4と同様に、ハウジング10と軸20の相対的な回転時において、柔軟性を有する保持部材221が変形することにより、導電部241と磁石211との接触が安定して維持される。その結果、本実施例によれば、相対的に回転するハウジング10と軸20の電気的接続を安定して確保
することができる。
Here, the relationship between the present embodiment and the fourth embodiment is that the configuration provided in the housing 10 and the configuration provided in the shaft 20 are interchanged with each other in the above-described second embodiment and the second embodiment. It is the same as the relationship with 1. Therefore, also in the present embodiment, as in the fourth embodiment, when the housing 10 and the shaft 20 are rotated relative to each other, the flexible holding member 221 is deformed so that the conductive portion 241 and the magnet 211 are in contact with each other. Is maintained stably. As a result, according to the present embodiment, the electrical connection between the relatively rotating housing 10 and the shaft 20 can be stably secured.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例6]
次に、図6を用いて、本発明の実施例6に係る導電構造について説明する。本実施例に係る導電構造は、上述の実施例3と同様に、対向した状態で相対的に平行移動する2つの部材に適用される。ただし、本実施例においては、実施例3とは異なり、保持部材に設けられた導電部が、磁場形成部材に対して対向した2つの部材の対向方向に平行な方向に押圧されるように構成される。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。また、図6は、本実施例に係る導電構造202の構成を示す模式的断面図である。
[Example 6]
Next, a conductive structure according to Example 6 of the present invention will be described with reference to FIG. The conductive structure according to the present embodiment is applied to two members that relatively move in parallel with each other in the same manner as in the third embodiment described above. However, in this embodiment, unlike Embodiment 3, the conductive portion provided in the holding member is configured to be pressed in a direction parallel to the facing direction of the two members facing the magnetic field forming member. Is done. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 6 is a schematic cross-sectional view showing the configuration of the conductive structure 202 according to this example.

導電構造202は、第1部材11内の側面側に埋め込まれて設けられた磁場形成部材としての磁石212と、第2部材21に設けられた柔軟性を有する保持部材222と、保持部材222に吸い込まれて保持された磁性流体130と、第2部材21に電気的に接続された状態で保持部材222の磁石212側に設けられた導電部242とから構成される。   The conductive structure 202 includes a magnet 212 as a magnetic field forming member embedded in the side surface of the first member 11, a flexible holding member 222 provided in the second member 21, and a holding member 222. The magnetic fluid 130 is sucked and held, and a conductive portion 242 provided on the magnet 212 side of the holding member 222 while being electrically connected to the second member 21.

磁石212は、導電性を有する板状の永久磁石であり、第1部材11に電気的に接続された状態で、第1部材の側面側に固定される。なお、磁石212は、磁石212の側面と第1部材11の側面とが略平坦となるように固定されている。また、板状の保持部材222は、その一端が第1部材11側に位置する自由端となるように、その他端が第2部材21の側面に固定される。ここで、保持部材222の自由端側は図6におけるY軸方向、すなわち、第1部材11と第2部材21の対向方向に垂直な方向に湾曲している。また、保持部材222における磁石212側の面全体に、第2部材21に電気的に接続された状態で導電部242が設けられる。ここで、「磁石212側」とは、図6に示されるように、保持部材222の湾曲している部分における磁石212側である。なお、本実施例における磁石212、保持部材222、導電部242の位置、材料や性質等は、それぞれ上述の実施例における磁石、保持部材、導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材222と導電部242が全体として本発明に係る保持部材を構成し、保持部材222と導電部242が、それぞれ本発明に係る保持部と導電部に相当する。   The magnet 212 is a plate-like permanent magnet having conductivity, and is fixed to the side surface side of the first member while being electrically connected to the first member 11. The magnet 212 is fixed so that the side surface of the magnet 212 and the side surface of the first member 11 are substantially flat. Further, the other end of the plate-like holding member 222 is fixed to the side surface of the second member 21 so that one end thereof is a free end located on the first member 11 side. Here, the free end side of the holding member 222 is curved in the Y-axis direction in FIG. 6, that is, in a direction perpendicular to the opposing direction of the first member 11 and the second member 21. Further, the conductive portion 242 is provided on the entire surface of the holding member 222 on the magnet 212 side in a state of being electrically connected to the second member 21. Here, the “magnet 212 side” is the magnet 212 side in the curved portion of the holding member 222, as shown in FIG. The positions, materials, properties, and the like of the magnet 212, the holding member 222, and the conductive portion 242 in the present embodiment are the same as those of the magnet, the holding member, and the conductive portion in the above-described embodiments. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 222 and the conductive portion 242 constitute the holding member according to the present invention as a whole, and the holding member 222 and the conductive portion 242 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造202においては、図6に示されるように、保持部材222が保持した磁性流体130に作用する磁力によって、保持部材222の磁石212側が、磁性流体130と共に磁石212に引き寄せられる。これにより、保持部材222の自由端側が変形して、導電部242の自由端側が磁石112に接触する。その結果、第1部材11と第2部材21が、磁石212と導電部242を介して電気的に接続される。   In the conductive structure 202 having the above-described configuration, as shown in FIG. 6, the magnet 212 side of the holding member 222 together with the magnetic fluid 130 causes the magnet 212 side to move by the magnetic force acting on the magnetic fluid 130 held by the holding member 222. Be drawn to. As a result, the free end side of the holding member 222 is deformed, and the free end side of the conductive portion 242 contacts the magnet 112. As a result, the first member 11 and the second member 21 are electrically connected via the magnet 212 and the conductive portion 242.

また、柔軟性を有する保持部材222は、導電部242と磁石212との接触面積が広くなるように変形しながら磁石212に引き寄せられる。そのため、導電部242は、磁石212に対して面接触する。また、導電部242の接触部分は、保持部材222に保持されている磁性流体130に作用する図6におけるX軸方向の磁力によって、磁石212に対してX軸方向に押圧される。なお、この方向は、第1部材11と第2部材21の対向方向(X軸方向)に平行な方向である。   Further, the flexible holding member 222 is attracted to the magnet 212 while being deformed so that the contact area between the conductive portion 242 and the magnet 212 is increased. Therefore, the conductive portion 242 is in surface contact with the magnet 212. Further, the contact portion of the conductive portion 242 is pressed against the magnet 212 in the X-axis direction by the magnetic force in the X-axis direction in FIG. 6 acting on the magnetic fluid 130 held by the holding member 222. This direction is a direction parallel to the facing direction (X-axis direction) of the first member 11 and the second member 21.

以上のような構成を有する導電構造202によれば、第1部材11と第2部材21の相対的な平行移動時において、導電部242と磁石212との接触は安定して維持される。
両部材が、図6におけるY軸方向に平行移動する場合は、両部材間のY軸方向の位置関係が変化する。ここで、保持部材222は、位置関係の変化に応じて、導電部242と磁石212との面接触を保ちながら変形するため、導電部242と磁石212の接触が維持される。また、両部材が、図6におけるZ軸方向に平行移動する場合は、導電部242の接触部分が磁石212に対して摺動するが、導電部242の接触部分は磁石212に対して押圧されているため、導電部242と磁石212との接触は安定して維持される。以上より、相対的に平行移動する第1部材11と第2部材21の電気的接続を安定して確保することができる。なお、両部材が、図6におけるX軸方向に移動する場合は、両部材間の隙間が変化する。ここで、柔軟性を有する保持部材222は、両部材間の隙間の変化に応じて、導電部242と磁石212との面接触を保ちながら変形するため、導電部242と磁石212の接触が維持される。
According to the conductive structure 202 having the above-described configuration, the contact between the conductive portion 242 and the magnet 212 is stably maintained during the relative translation of the first member 11 and the second member 21.
When both members move in parallel in the Y-axis direction in FIG. 6, the positional relationship in the Y-axis direction between both members changes. Here, since the holding member 222 is deformed while maintaining the surface contact between the conductive portion 242 and the magnet 212 according to the change in the positional relationship, the contact between the conductive portion 242 and the magnet 212 is maintained. Further, when both members move in parallel in the Z-axis direction in FIG. 6, the contact portion of the conductive portion 242 slides with respect to the magnet 212, but the contact portion of the conductive portion 242 is pressed against the magnet 212. Therefore, the contact between the conductive portion 242 and the magnet 212 is stably maintained. From the above, it is possible to stably ensure the electrical connection between the first member 11 and the second member 21 that move relatively in parallel. In addition, when both members move in the X-axis direction in FIG. 6, the gap between both members changes. Here, since the flexible holding member 222 is deformed while maintaining the surface contact between the conductive portion 242 and the magnet 212 according to the change in the gap between the two members, the contact between the conductive portion 242 and the magnet 212 is maintained. Is done.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例7]
次に、図7を用いて、本発明の実施例7に係る導電構造について説明する。上述の実施例4とは異なり、本実施例に係る導電構造は、保持部材に設けられた導電部の自由端側の端面が、磁場形成部材に対して押圧されるように構成される。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。なお、図7は、本実施例に係る導電構造300の構成を示す模式的断面図である。
[Example 7]
Next, a conductive structure according to Example 7 of the present invention will be described with reference to FIG. Unlike the above-described fourth embodiment, the conductive structure according to the present embodiment is configured such that the end surface on the free end side of the conductive portion provided in the holding member is pressed against the magnetic field forming member. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 7 is a schematic cross-sectional view showing the configuration of the conductive structure 300 according to this example.

導電構造300は、磁石210と、軸20の外周面に設けられた柔軟性を有する保持部材320と、保持部材320に吸い込まれて保持された磁性流体130と、保持部材320に設けられた導電部340とから構成される。   The conductive structure 300 includes a magnet 210, a flexible holding member 320 provided on the outer peripheral surface of the shaft 20, a magnetic fluid 130 sucked and held by the holding member 320, and a conductive material provided to the holding member 320. Part 340.

環状の保持部材320は、その一端としての外周面がハウジング10側に位置する自由端となるように、その他端としての内周面が軸20の外周面に固定される。ここで、保持部材320の自由端側は固定端側に比してより肉厚に形成されている。導電部340は、軸20に電気的に接続された状態で、保持部材320の表面全体(軸20に固定された軸孔の内周面は除く)に設けられる。なお、保持部材320と導電部340の性質や材料等は、上述の実施例における保持部材と導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材320と導電部340が全体として本発明に係る保持部材を構成し、保持部材320と導電部340が、それぞれ本発明に係る保持部と導電部に相当する。   The annular holding member 320 has an inner peripheral surface as the other end fixed to the outer peripheral surface of the shaft 20 so that the outer peripheral surface as one end is a free end located on the housing 10 side. Here, the free end side of the holding member 320 is formed thicker than the fixed end side. The conductive portion 340 is provided on the entire surface of the holding member 320 (excluding the inner peripheral surface of the shaft hole fixed to the shaft 20) while being electrically connected to the shaft 20. Note that the properties and materials of the holding member 320 and the conductive portion 340 are the same as those of the holding member and the conductive portion in the above-described embodiment. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 320 and the conductive portion 340 constitute the holding member according to the present invention as a whole, and the holding member 320 and the conductive portion 340 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造300においては、図7に示されるように、保持部材320が保持した磁性流体130に作用する磁力によって、保持部材320が磁性流体130と共に磁石210に引き寄せられる。これにより、保持部材320の自由端側の端面が変形して、導電部340の自由端側の端面が磁石210に面接触する。その結果、ハウジング10と軸20が、磁石210と導電部340を介して電気的に接続される。   In the conductive structure 300 having the above configuration, as shown in FIG. 7, the holding member 320 is attracted to the magnet 210 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 320. Thereby, the end surface on the free end side of the holding member 320 is deformed, and the end surface on the free end side of the conductive portion 340 comes into surface contact with the magnet 210. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 210 and the conductive portion 340.

また、柔軟性を有する保持部材320は、導電部340と磁石210との接触面積が広くなるように変形しながら磁石210に引き寄せられる。そのため、導電部340は、磁石210に対して面接触する。また、導電部340の接触部分は、保持部材320に保持されている磁性流体130に作用する径方向の磁力によって、磁石210に対して径方向に押圧される。   Further, the flexible holding member 320 is attracted to the magnet 210 while being deformed so that the contact area between the conductive portion 340 and the magnet 210 is widened. Therefore, the conductive portion 340 is in surface contact with the magnet 210. Further, the contact portion of the conductive portion 340 is pressed in the radial direction against the magnet 210 by the radial magnetic force acting on the magnetic fluid 130 held by the holding member 320.

以上のような構成を有する導電構造300によれば、ハウジング10と軸20の相対的な回転時において、上述の実施例4に係る導電構造200と同様の効果が発揮される。つ
まり、導電部340の接触部分が磁石210に対して回転摺動しているときであっても、導電部340と磁石210との接触は安定して維持される。また、両部材に偏心が発生しても、両部材間の隙間の変化に応じて、柔軟性を有する保持部材320が、導電部340と磁石210との面接触を保ちながら変形するため、導電部340と磁石210の接触が維持される。なお、この場合において、ハウジング10と軸20との間の隙間は環状隙間であるから、環状隙間の一部分において間隔が広がっても、他の部分においては間隔が小さくなる。そのため、導電部340は、少なくとも環状隙間が小さくなっている部分において、磁石210との接触を保つことができる。なお、保持部材320の外径を、ハウジング10の軸孔の内径より十分に大きくすれば、ハウジング10と軸20との間の隙間が変化しても、保持部材320が変形することによって導電部340と磁石210との接触が維持される。
According to the conductive structure 300 having the above-described configuration, the same effects as those of the conductive structure 200 according to the fourth embodiment described above are exhibited during relative rotation of the housing 10 and the shaft 20. That is, even when the contact portion of the conductive portion 340 is rotationally slid with respect to the magnet 210, the contact between the conductive portion 340 and the magnet 210 is stably maintained. Even if eccentricity occurs in both members, the flexible holding member 320 deforms while maintaining the surface contact between the conductive portion 340 and the magnet 210 in accordance with the change in the gap between the two members. Contact between the part 340 and the magnet 210 is maintained. In this case, since the gap between the housing 10 and the shaft 20 is an annular gap, even if the gap increases in a part of the annular gap, the gap decreases in other parts. Therefore, the conductive portion 340 can maintain contact with the magnet 210 at least in a portion where the annular gap is small. If the outer diameter of the holding member 320 is sufficiently larger than the inner diameter of the shaft hole of the housing 10, the conductive member is deformed by the deformation of the holding member 320 even if the gap between the housing 10 and the shaft 20 changes. Contact between 340 and magnet 210 is maintained.

また、ハウジング10と軸20に軸方向の相対的な往復運動が発生しても、両部材の位置関係の変化に応じて、保持部材320が、導電部340と磁石210との面接触を保ちながら変形するため、導電部340と磁石210の接触が維持される。以上より、相対的に回転するハウジング10と軸20の電気的接続を安定して確保することができる。   Further, even if relative reciprocal movement in the axial direction occurs between the housing 10 and the shaft 20, the holding member 320 maintains the surface contact between the conductive portion 340 and the magnet 210 in accordance with the change in the positional relationship between the two members. However, since it deform | transforms, the contact of the electroconductive part 340 and the magnet 210 is maintained. As described above, the electrical connection between the relatively rotating housing 10 and the shaft 20 can be stably secured.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例8]
次に、図8を用いて、本発明の実施例8に係る導電構造について説明する。上述の実施例7とは異なり、本実施例においては、軸側に磁場形成部材が設けられており、ハウジング側に保持部材が設けられている。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。なお、図8は、本実施例に係る導電構造301の構成を示す模式的断面図である。
[Example 8]
Next, a conductive structure according to Example 8 of the present invention will be described with reference to FIG. Unlike Example 7 described above, in this example, a magnetic field forming member is provided on the shaft side, and a holding member is provided on the housing side. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 8 is a schematic cross-sectional view showing the configuration of the conductive structure 301 according to this example.

環状の保持部材321は、その一端としての内周面が軸20側に位置する自由端となるように、その他端としての外周面がハウジング10の内周面に固定される。ここで、保持部材321の自由端側は固定端側に比してより肉厚に形成されている。導電部341は、ハウジング10に電気的に接続された状態で、保持部材321の表面全体(ハウジング10に固定された外周面は除く)に設けられる。なお、保持部材321と導電部341の性質や材料等は、上述の実施例における保持部材や導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材321と導電部341が全体として本発明に係る保持部材を構成し、保持部材321と導電部341が、それぞれ本発明に係る保持部と導電部に相当する。   The annular holding member 321 has an outer peripheral surface as the other end fixed to the inner peripheral surface of the housing 10 so that the inner peripheral surface as one end is a free end located on the shaft 20 side. Here, the free end side of the holding member 321 is formed thicker than the fixed end side. The conductive portion 341 is provided on the entire surface of the holding member 321 (excluding the outer peripheral surface fixed to the housing 10) while being electrically connected to the housing 10. The properties and materials of the holding member 321 and the conductive portion 341 are the same as those of the holding member and the conductive portion in the above-described embodiment. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 321 and the conductive portion 341 constitute the holding member according to the present invention as a whole, and the holding member 321 and the conductive portion 341 are respectively related to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造301においては、図8に示されるように、保持部材321が保持した磁性流体130に作用する磁力によって、保持部材321が磁性流体130と共に磁石211に引き寄せられる。これにより、保持部材321の自由端側の端面が変形して、導電部341の自由端側の端面が磁石211に接触する。その結果、ハウジング10と軸20が、磁石211と導電部341を介して電気的に接続される。なお、導電部341の接触部分は、保持部材321に保持されている磁性流体130に作用する径方向の磁力によって、磁石211に対して径方向に押圧される。   In the conductive structure 301 having the above configuration, the holding member 321 is attracted to the magnet 211 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 321 as shown in FIG. Thereby, the end surface on the free end side of the holding member 321 is deformed, and the end surface on the free end side of the conductive portion 341 contacts the magnet 211. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 211 and the conductive portion 341. The contact portion of the conductive portion 341 is pressed against the magnet 211 in the radial direction by the radial magnetic force acting on the magnetic fluid 130 held by the holding member 321.

ここで、本実施例と実施例7との関係は、ハウジング10に設けられている構成と、軸20に設けられている構成とが入れ替わっているという点において、上述の実施例2と実施例1や、実施例5と実施例4との関係と同様である。そのため、本実施例においても、上述した実施例と同様に、ハウジング10と軸20の相対的な回転時において、導電部341と磁石211との接触が安定して維持される。その結果、本実施例によれば、相対的
に回転するハウジング10と軸20の電気的接続を安定して確保することができる。
Here, the relationship between the present embodiment and the seventh embodiment is that the configuration provided in the housing 10 and the configuration provided in the shaft 20 are interchanged with each other in the above-described second and second embodiments. 1 and the relationship between the fifth embodiment and the fourth embodiment. Therefore, also in the present embodiment, the contact between the conductive portion 341 and the magnet 211 is stably maintained during relative rotation of the housing 10 and the shaft 20 as in the above-described embodiment. As a result, according to the present embodiment, the electrical connection between the relatively rotating housing 10 and the shaft 20 can be stably secured.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例9]
次に、図9を用いて、本発明の実施例9に係る導電構造について説明する。本実施例に係る導電構造は、上述の実施例6と同様に、対向した状態で相対的に平行移動する2つの部材に適用される。ただし、本実施例においては、実施例6とは異なり、保持部材に設けられた導電部の自由端側の端面が、磁場形成部材に対して対向した2つの部材の対向方向に平行な方向に押圧されるように構成される。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。また、図9は、本実施例に係る導電構造302の構成を示す模式的断面図である。
[Example 9]
Next, a conductive structure according to Example 9 of the present invention will be described with reference to FIG. The conductive structure according to the present embodiment is applied to two members that relatively move in parallel with each other in the same manner as in the sixth embodiment. However, in this example, unlike Example 6, the end surface on the free end side of the conductive portion provided in the holding member is in a direction parallel to the opposing direction of the two members facing the magnetic field forming member. Configured to be pressed. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 9 is a schematic cross-sectional view showing the configuration of the conductive structure 302 according to this example.

導電構造302は、磁石212と、第2部材21に固定された板状の保持部材322と、保持部材322に吸い込まれて保持された磁性流体130と、第2部材21に電気的に接続された状態で保持部材322の表面全体(第2部材21に固定された端面は除く)に設けられた導電部342とから構成される。なお、保持部材322は、その一端が第1部材11側に位置する自由端となるように、その他端が第2部材21の側面に固定される。ここで、保持部材322の自由端側は固定端側に比してより肉厚に形成されている。また、保持部材322、導電部342の位置、材料や性質等は、上述の実施例における保持部材や導電部と同様である。ゆえに、上述の実施例と同様に、本実施例においても、保持部材322と導電部342が全体として本発明に係る保持部材を構成し、保持部材322と導電部342が、それぞれ本発明に係る保持部と導電部に相当する。   The conductive structure 302 is electrically connected to the magnet 212, the plate-like holding member 322 fixed to the second member 21, the magnetic fluid 130 sucked and held by the holding member 322, and the second member 21. And a conductive portion 342 provided on the entire surface of the holding member 322 (excluding the end surface fixed to the second member 21). Note that the other end of the holding member 322 is fixed to the side surface of the second member 21 so that one end thereof is a free end located on the first member 11 side. Here, the free end side of the holding member 322 is formed thicker than the fixed end side. The positions, materials, properties, and the like of the holding member 322 and the conductive portion 342 are the same as those of the holding member and the conductive portion in the above-described embodiment. Therefore, similarly to the above-described embodiment, also in this embodiment, the holding member 322 and the conductive portion 342 constitute the holding member according to the present invention as a whole, and the holding member 322 and the conductive portion 342 respectively relate to the present invention. It corresponds to a holding part and a conductive part.

以上のような構成を備える導電構造302においては、図9に示されるように、保持部材322が保持した磁性流体130に作用する磁力によって、保持部材322が磁性流体130と共に磁石212に引き寄せられる。これにより、保持部材322の自由端側の端面が変形して、導電部342の自由端側の端面が磁石212に面接触する。その結果、第1部材11と第2部材21が、磁石212と導電部342を介して電気的に接続される。   In the conductive structure 302 having the above configuration, as shown in FIG. 9, the holding member 322 is attracted to the magnet 212 together with the magnetic fluid 130 by the magnetic force acting on the magnetic fluid 130 held by the holding member 322. Thereby, the end surface on the free end side of the holding member 322 is deformed, and the end surface on the free end side of the conductive portion 342 is in surface contact with the magnet 212. As a result, the first member 11 and the second member 21 are electrically connected via the magnet 212 and the conductive portion 342.

また、柔軟性を有する保持部材322は、導電部342と磁石212との接触面積が広くなるように変形しながら磁石212に引き寄せられる。そのため、導電部342は、磁石212に対して面接触する。また、導電部342の接触部分は、保持部材322に保持されている磁性流体130に作用する図9におけるX軸方向の磁力によって、磁石212に対してX軸方向に押圧される。なお、この方向は、第1部材11と第2部材21の対向方向(X軸方向)に平行な方向である。   Further, the flexible holding member 322 is attracted to the magnet 212 while being deformed so that the contact area between the conductive portion 342 and the magnet 212 is widened. Therefore, the conductive portion 342 is in surface contact with the magnet 212. Further, the contact portion of the conductive portion 342 is pressed against the magnet 212 in the X-axis direction by the magnetic force in the X-axis direction in FIG. 9 acting on the magnetic fluid 130 held by the holding member 322. This direction is a direction parallel to the facing direction (X-axis direction) of the first member 11 and the second member 21.

以上のような構成を有する導電構造302によれば、第1部材11と第2部材21のY軸方向とZ軸方向の相対的な平行移動時において、上述の導電構造202と同様に、導電部342と磁石212との接触が安定して維持される。これにより、相対的に平行移動する第1部材11と第2部材21の電気的接続を安定して確保することができる。   According to the conductive structure 302 having the above configuration, when the first member 11 and the second member 21 are relatively translated in the Y-axis direction and the Z-axis direction, the conductive structure 302 is the same as the conductive structure 202 described above. The contact between the portion 342 and the magnet 212 is stably maintained. Thereby, the electrical connection of the 1st member 11 and the 2nd member 21 which translate relatively can be ensured stably.

また、本実施例によれば、上述の実施例において説明した、各構成部品の材料や性質等に由来する他の作用効果と同様の作用効果が発揮される。   Further, according to the present embodiment, the same effects as the other functions and effects derived from the materials and properties of the respective components described in the above-described embodiments are exhibited.

[実施例10]
次に、図10を用いて、本発明の実施例10に係る導電構造について説明する。本実施例に係る導電構造は、上述の実施例において説明した導電構造を2つ備え、更にこれら2つの導電構造に挟まれる空間内に導電性の液体や粉体が封入される。なお、上述の実施例
と同一の構成部分については同一の符号を付して、その説明は適宜省略する。また、図10は、本実施例に係る導電構造500の構成を示す模式的断面図である。なお、図10における矢印Gが鉛直方向を示している。
[Example 10]
Next, a conductive structure according to Example 10 of the present invention will be described with reference to FIG. The conductive structure according to the present embodiment includes two conductive structures described in the above-described embodiments, and a conductive liquid or powder is sealed in a space between the two conductive structures. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably. FIG. 10 is a schematic cross-sectional view showing the configuration of the conductive structure 500 according to this example. Note that the arrow G in FIG. 10 indicates the vertical direction.

導電構造500は、実施例2に係る導電構造101の各構成に加えて、磁石115、磁性流体130を吸い込んで保持した保持部材125、保持部材125に設けられた導電部145、及び導電性流体510を備えている。なお、磁石115、保持部材125及び導電部145は、それぞれ磁石111、保持部材121及び導電部141と同一の構成を、図13における上下を逆にして配置したものである。なお、磁石115、磁性流体130を保持した保持部材125及び導電部145が導電構造105を構成している。   In addition to the components of the conductive structure 101 according to the second embodiment, the conductive structure 500 includes a magnet 115, a holding member 125 that sucks and holds the magnetic fluid 130, a conductive portion 145 provided in the holding member 125, and a conductive fluid. 510. The magnet 115, the holding member 125, and the conductive portion 145 are the same as the magnet 111, the holding member 121, and the conductive portion 141, but are arranged upside down in FIG. The magnet 115, the holding member 125 holding the magnetic fluid 130, and the conductive portion 145 constitute the conductive structure 105.

導電性流体510は、導電構造500における導電構造101と導電構造105の間の空間に充填されている。つまり、導電性流体510は、磁石115と保持部材125の鉛直方向上方に充填されている。ここで、導電性流体510は、低融点合金や金属から構成される。また、導電性流体510は、導電性グリスやカーボン粉末等の、導電性と流動性を有する他の材料(粉体を含む)でもよい。ここで、導電構造105においては、磁石115に引き寄せられる保持部材125によって、導電部145が磁石115に対して押圧されている。そのため、導電部145と磁石115との接触部分においてシール性が発揮されるため、導電性流体510を封入することが可能になる。また、このシール性は、ハウジング10と軸20との相対的な回転時においても、十分に発揮される。   The conductive fluid 510 is filled in a space between the conductive structure 101 and the conductive structure 105 in the conductive structure 500. That is, the conductive fluid 510 is filled above the magnet 115 and the holding member 125 in the vertical direction. Here, the conductive fluid 510 is composed of a low melting point alloy or a metal. The conductive fluid 510 may be another material (including powder) having conductivity and fluidity, such as conductive grease or carbon powder. Here, in the conductive structure 105, the conductive portion 145 is pressed against the magnet 115 by the holding member 125 attracted to the magnet 115. Therefore, the sealing performance is exhibited at the contact portion between the conductive portion 145 and the magnet 115, so that the conductive fluid 510 can be sealed. Further, this sealing performance is sufficiently exhibited even when the housing 10 and the shaft 20 are rotated relative to each other.

本実施例によれば、ハウジング10と軸20が、導電構造101及び105を介して電気的に接続されると共に、更に導電性流体510を介して電気的に接続されるため、両部材間を流れる電流の電流密度が低下する。その結果、ハウジング10と軸20の間を流れる電流による発熱が低減されるため、大きい電流を安定して流すことができる。   According to the present embodiment, the housing 10 and the shaft 20 are electrically connected via the conductive structures 101 and 105 and further electrically connected via the conductive fluid 510. The current density of the flowing current is reduced. As a result, since heat generation due to the current flowing between the housing 10 and the shaft 20 is reduced, a large current can be stably supplied.

[保持部材の他の例]
次に、本発明に適用可能な保持部材の他の例を図11から図19を用いて説明する。なお、図11から図19に示される保持部材は、自由端側の端部に形成された一部分のみが、磁性流体を吸い込んで保持可能な、柔軟性を有する材料で構成される。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。
[Other examples of holding members]
Next, another example of the holding member applicable to the present invention will be described with reference to FIGS. In addition, the holding member shown by FIGS. 11-19 is comprised only by the part which was formed in the edge part by the side of a free end by the material which has a softness | flexibility which can inhale and hold | maintain a magnetic fluid. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably.

図11に示される導電構造は、上述の実施例1に係る導電構造100の保持部材120が、保持部材120aに置き換えられたものである。保持部材120aは、全体的な形状や固定位置等は保持部材120と同様である。保持部材120aは、自由端側の端部に形成された保持部120cのみが、磁性流体を吸い込んで保持可能な、柔軟性を有する材料で構成される。この材料は保持部材120の材料と同様である。そして、保持部材120aの固定端側の固定部120bは、硬質な材料から構成される。   The conductive structure shown in FIG. 11 is obtained by replacing the holding member 120 of the conductive structure 100 according to Example 1 described above with a holding member 120a. The holding member 120a is the same as the holding member 120 in overall shape, fixed position, and the like. The holding member 120a is made of a flexible material that allows only the holding portion 120c formed at the end on the free end side to suck and hold the magnetic fluid. This material is the same as the material of the holding member 120. And the fixing | fixed part 120b of the fixed end side of the holding member 120a is comprised from a hard material.

このような構成においても、保持部120cが保持した磁性流体130に作用する磁力によって、保持部120cが磁石110に引き寄せられる。これにより、柔軟性を有する保持部120cが変形することにより、導電部140の自由端側が磁石110に接触する。その結果、ハウジング10と軸20が、磁石110と導電部140を介して電気的に接続される。また、導電部140の接触部分は、保持部120cに保持されている磁性流体130に作用する軸方向の磁力によって、磁石110に対して軸方向に押圧される。   Even in such a configuration, the holding portion 120c is attracted to the magnet 110 by the magnetic force acting on the magnetic fluid 130 held by the holding portion 120c. Thereby, the holding | maintenance part 120c which has flexibility deform | transforms, and the free end side of the electroconductive part 140 contacts the magnet 110. FIG. As a result, the housing 10 and the shaft 20 are electrically connected via the magnet 110 and the conductive portion 140. Further, the contact portion of the conductive portion 140 is pressed in the axial direction against the magnet 110 by the axial magnetic force acting on the magnetic fluid 130 held in the holding portion 120c.

以上より、保持部材120aが用いられる場合であっても、導電構造100と同様に、ハウジング10と軸20の電気的接続が安定して確保される。   As described above, even when the holding member 120 a is used, the electrical connection between the housing 10 and the shaft 20 is stably ensured similarly to the conductive structure 100.

以下同様に、図12に示される導電構造は、上述の実施例2に係る導電構造101にお
ける保持部材121が、固定端側に設けられた固定部121bと、自由端側の端部に形成された保持部121cとを備える保持部材121aに置き換えられたものである。図13に示される導電構造は、上述の実施例3に係る導電構造102における保持部材122が、固定端側に設けられた固定部122bと、自由端側の端部に形成された保持部122cとを備える保持部材122aに置き換えられたものである。図14に示される導電構造は、上述の実施例4に係る導電構造200における保持部材220が、固定端側に設けられた固定部220bと、自由端側の端部に形成された保持部220cとを備える保持部材220aに置き換えられたものである。図15に示される導電構造は、上述の実施例5に係る導電構造201における保持部材221が、固定端側に設けられた固定部221bと、自由端側の端部に形成された保持部221cとを備える保持部材221aに置き換えられたものである。図16に示される導電構造は、上述の実施例6に係る導電構造202における保持部材222が、固定端側に設けられた固定部222bと、自由端側の端部に形成された保持部222cとを備える保持部材222aに置き換えられたものである。図17に示される導電構造は、上述の実施例7に係る導電構造300における保持部材320が、固定端側に設けられた固定部320bと、自由端側の端部に形成された保持部320cとを備える保持部材320aに置き換えられたものである。図18に示される導電構造は、上述の実施例8に係る導電構造301における保持部材321が、固定端側に設けられた固定部321bと、自由端側の端部に形成された保持部321cとを備える保持部材321aに置き換えられたものである。図19に示される導電構造は、上述の実施例9に係る導電構造302における保持部材322が、固定端側に設けられた固定部322bと、自由端側の端部に形成された保持部322cとを備える保持部材322aに置き換えられたものである。
Similarly, in the conductive structure shown in FIG. 12, the holding member 121 in the conductive structure 101 according to the second embodiment is formed at the fixed portion 121b provided on the fixed end side and the end portion on the free end side. The holding member 121a provided with the holding portion 121c is replaced. In the conductive structure shown in FIG. 13, the holding member 122 in the conductive structure 102 according to Example 3 described above includes a fixed portion 122 b provided on the fixed end side and a holding portion 122 c formed on the end portion on the free end side. Are replaced with a holding member 122a. In the conductive structure shown in FIG. 14, the holding member 220 in the conductive structure 200 according to Example 4 described above includes a fixed portion 220 b provided on the fixed end side and a holding portion 220 c formed on the end portion on the free end side. Are replaced with a holding member 220a. In the conductive structure shown in FIG. 15, the holding member 221 in the conductive structure 201 according to Example 5 described above includes a fixed portion 221 b provided on the fixed end side, and a holding portion 221 c formed on the end portion on the free end side. Are replaced with a holding member 221a. In the conductive structure shown in FIG. 16, the holding member 222 in the conductive structure 202 according to Example 6 described above includes a fixing portion 222 b provided on the fixed end side and a holding portion 222 c formed on the end portion on the free end side. Is replaced with a holding member 222a. In the conductive structure shown in FIG. 17, the holding member 320 in the conductive structure 300 according to Example 7 described above includes a fixed portion 320b provided on the fixed end side, and a holding portion 320c formed on the end portion on the free end side. Are replaced with a holding member 320a. In the conductive structure shown in FIG. 18, the holding member 321 in the conductive structure 301 according to Example 8 described above includes a fixing portion 321 b provided on the fixed end side and a holding portion 321 c formed on the end portion on the free end side. Are replaced with a holding member 321a. In the conductive structure shown in FIG. 19, the holding member 322 in the conductive structure 302 according to Example 9 described above includes a fixed portion 322b provided on the fixed end side and a holding portion 322c formed on the end portion on the free end side. Are replaced with a holding member 322a.

図12から図19に示される各導電構造においては、保持部材の自由端側に設けられた、磁性流体を吸い込んで保持可能な、柔軟性を有する保持部が磁性流体を保持している。これにより、図12から図19に示される各導電構造によれば、元の導電構造と同様に、2つの相対的に移動する部材間の電気的接続が安定して確保される。   In each of the conductive structures shown in FIGS. 12 to 19, a flexible holding portion provided on the free end side of the holding member and capable of sucking and holding the magnetic fluid holds the magnetic fluid. Thereby, according to each conductive structure shown by FIGS. 12-19, the electrical connection between the two relatively moving members is stably ensured similarly to the original conductive structure.

[磁性流体の他の例]
次に、本発明に適用可能な磁性流体の他の例として、導電性磁性流体が採用されるときの構成を図20から図28を用いて説明する。なお、図20から図28に示される保持部材は、その全体に導電性磁性流体を吸い込んで保持している。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。
[Other examples of magnetic fluid]
Next, as another example of a magnetic fluid applicable to the present invention, a configuration when a conductive magnetic fluid is employed will be described with reference to FIGS. Note that the holding member shown in FIGS. 20 to 28 sucks and holds the conductive magnetic fluid in its entirety. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably.

図20に示される導電構造は、上述の実施例1に係る導電構造100の保持部材120が保持している磁性流体130が、導電性磁性流体131に置き換えられたものである。この導電構造においては、保持部材120の全体が導電性磁性流体131を吸い込んで保持しているため、保持部材120が導電性を有する。そのため、保持部材120には導電部140が設けられていない。   The conductive structure shown in FIG. 20 is obtained by replacing the magnetic fluid 130 held by the holding member 120 of the conductive structure 100 according to Example 1 described above with the conductive magnetic fluid 131. In this conductive structure, since the entire holding member 120 sucks and holds the conductive magnetic fluid 131, the holding member 120 has conductivity. For this reason, the holding member 120 is not provided with the conductive portion 140.

この構成においても、保持部材120が保持する導電性磁性流体131に作用する磁力によって、保持部材121が磁石110に引き寄せられる。これにより、保持部材120が変形して、保持部材120が直接的に磁石110に接触する。その結果、ハウジング10と軸20が、磁石110と導電性磁性流体131を保持する保持部材120を介して電気的に接続される。なお、保持部材120における磁石110との接触部分は、導電性磁性流体131に作用する軸方向の磁力によって、磁石110に対して軸方向に押圧される。   Also in this configuration, the holding member 121 is attracted to the magnet 110 by the magnetic force acting on the conductive magnetic fluid 131 held by the holding member 120. Thereby, the holding member 120 is deformed, and the holding member 120 directly contacts the magnet 110. As a result, the housing 10 and the shaft 20 are electrically connected via the holding member 120 that holds the magnet 110 and the conductive magnetic fluid 131. The contact portion of the holding member 120 with the magnet 110 is pressed in the axial direction against the magnet 110 by the axial magnetic force acting on the conductive magnetic fluid 131.

以上より、保持部材120が導電性磁性流体131を保持している場合であっても、導電構造100と同様に、ハウジング10と軸20の電気的接続が安定して確保される。な
お、この場合においては、保持部材120における磁石110との接触面に吸い込まれている導電性磁性流体131が、当該接触面における潤滑剤として機能する。そのため、当該接触面における保持部材120と磁石110との摺動抵抗が低減される。
As described above, even when the holding member 120 holds the conductive magnetic fluid 131, the electrical connection between the housing 10 and the shaft 20 is stably ensured similarly to the conductive structure 100. In this case, the conductive magnetic fluid 131 sucked into the contact surface of the holding member 120 with the magnet 110 functions as a lubricant on the contact surface. Therefore, the sliding resistance between the holding member 120 and the magnet 110 on the contact surface is reduced.

以下同様に、図21に示される導電構造は、上述の実施例2に係る導電構造101における保持部材121が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部141が設けられていないものである。図22に示される導電構造は、上述の実施例3に係る導電構造102における保持部材122が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部142が設けられていないものである。図23に示される導電構造は、上述の実施例4に係る導電構造200における保持部材220が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部240が設けられていないものである。図24に示される導電構造は、上述の実施例5に係る導電構造201における保持部材221が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部241が設けられていないものである。図25に示される導電構造は、上述の実施例6に係る導電構造202における保持部材222が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部242が設けられていないものである。図26に示される導電構造は、上述の実施例7に係る導電構造300における保持部材320が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部340が設けられていないものである。図27に示される導電構造は、上述の実施例8に係る導電構造301における保持部材321が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部341が設けられていないものである。図28に示される導電構造は、上述の実施例9に係る導電構造302における保持部材322が、磁性流体130に換えて導電性磁性流体131を保持しており、且つ、導電部342が設けられていないものである。   Similarly, in the conductive structure shown in FIG. 21, the holding member 121 in the conductive structure 101 according to the second embodiment described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 141 is not provided. In the conductive structure shown in FIG. 22, the holding member 122 in the conductive structure 102 according to Example 3 described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 142 is provided. It is not. In the conductive structure shown in FIG. 23, the holding member 220 in the conductive structure 200 according to Example 4 described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 240 is provided. It is not. In the conductive structure shown in FIG. 24, the holding member 221 in the conductive structure 201 according to Example 5 described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 241 is provided. It is not. In the conductive structure shown in FIG. 25, the holding member 222 in the conductive structure 202 according to Example 6 described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 242 is provided. It is not. In the conductive structure shown in FIG. 26, the holding member 320 in the conductive structure 300 according to Example 7 described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 340 is provided. It is not. In the conductive structure shown in FIG. 27, the holding member 321 in the conductive structure 301 according to Example 8 described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 341 is provided. It is not. In the conductive structure shown in FIG. 28, the holding member 322 in the conductive structure 302 according to the ninth embodiment described above holds the conductive magnetic fluid 131 instead of the magnetic fluid 130, and the conductive portion 342 is provided. It is not.

図21から図28に示される各導電構造においては、保持部材の全体が導電性磁性流体131を吸い込んで保持しており、また、保持部材には導電部が設けられていない。そのため、保持部材が直接的に磁石に接触することによって、元の導電構造と同様に、2つの相対的に移動する部材間の電気的接続が安定して確保される。   In each conductive structure shown in FIGS. 21 to 28, the entire holding member sucks and holds the conductive magnetic fluid 131, and the holding member is not provided with a conductive portion. Therefore, when the holding member directly contacts the magnet, the electrical connection between the two relatively moving members is stably secured as in the original conductive structure.

[磁場形成部材の他の例]
次に、本発明に適用可能な磁場形成部材の他の例を図29から図37を用いて説明する。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。
[Other examples of magnetic field forming members]
Next, another example of the magnetic field forming member applicable to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably.

図29から図31は、上述の実施例1に用いられる磁場形成部材としての磁石110の構成を示す正面図である。図29に示す磁石110は、一方の面がN極で他方の面がS極で構成された環状の永久磁石を、同心状に、且つ一方の面側においてN極とS極が交互に並ぶように、複数個(図29では3個)組み合わせたものである。このような構成とすることにより、磁石110は、導電構造100に適用された際に、保持部材120が磁石100に対して面接触するような磁場を形成することができる。   FIGS. 29 to 31 are front views showing the configuration of the magnet 110 as the magnetic field forming member used in the first embodiment. A magnet 110 shown in FIG. 29 is a concentric annular permanent magnet composed of one surface with N poles and the other surface with S poles, and N poles and S poles are alternately arranged on one surface side. In this way, a plurality (three in FIG. 29) are combined. With such a configuration, the magnet 110 can form a magnetic field such that the holding member 120 is in surface contact with the magnet 100 when applied to the conductive structure 100.

なお、磁石110の他に、図30及び図31に示される磁石を採用してもよい。図30に示される磁石110aは、一方の面がN極で他方の面がS極で構成された細長い永久磁石を、一方の面側においてN極とS極が交互に並ぶように、複数個(図30では6個)組み合わせたものであり、全体として環状になっている。また、図31に示される磁石110bは、一方の面がN極で他方の面がS極で構成された扇形の永久磁石を、一方の面側においてN極とS極が交互に並ぶように、複数個(図31では8個)組み合わせたものである。何れの磁石も、導電構造100に適用された際に、保持部材120が面接触するような磁場を形成することができる。   In addition to the magnet 110, the magnet shown in FIGS. 30 and 31 may be adopted. A magnet 110a shown in FIG. 30 includes a plurality of elongated permanent magnets each having one surface having N poles and the other surface having S poles so that N poles and S poles are alternately arranged on one surface side. (6 in FIG. 30) are combined, and as a whole have a ring shape. In addition, the magnet 110b shown in FIG. 31 is a fan-shaped permanent magnet in which one surface is composed of N poles and the other surface is composed of S poles, so that N poles and S poles are alternately arranged on one surface side. , A plurality (8 in FIG. 31) are combined. Any magnet can form a magnetic field such that the holding member 120 is in surface contact when applied to the conductive structure 100.

なお、上述の実施例2及び実施例10に用いられる磁石111や磁石115も、図29から図31に示されるような構成と同様の構成とすることができる。   The magnet 111 and the magnet 115 used in the above-described second and tenth embodiments can also have the same configuration as that shown in FIGS.

[変形例]
図32から図37を用いて説明する変形例は、上記の実施例において、第1部材が、磁場形成部材と保持部材との間に配置される導電部材を更に備える構成を示している。なお、図32から図37は、このような構成を示す模式的断面図である。なお、上述の実施例と同一の構成部分については同一の符号を付して、その説明は適宜省略する。
[Modification]
The modification described with reference to FIGS. 32 to 37 shows a configuration in which the first member further includes a conductive member disposed between the magnetic field forming member and the holding member in the above embodiment. 32 to 37 are schematic cross-sectional views showing such a configuration. In addition, the same code | symbol is attached | subjected about the component same as the above-mentioned Example, and the description is abbreviate | omitted suitably.

図32に示される導電構造は、上述の実施例1に係る導電構造100におけるハウジング10が、磁石110と保持部材120との間に配置された導電部材110dを更に備えるものである。円筒形状の導電部材110dは、金属やカーボン材料等の導電性を有する材料から構成されており、ハウジング10の軸孔の内周面に電気的に接続された状態で固定されている。この導電構造においては、保持部材120が磁石110に引き寄せられると、保持部材120に設けられた導電部140が導電部材110dに接触する。その結果、ハウジング10と軸20が、導電部材110dと導電部140を介して電気的に接続される。なお、導電部140における導電部材110dとの接触部分は、保持部材120に保持されている磁性流体130に作用する軸方向の磁力によって導電部材110dに対して軸方向に押圧される。   In the conductive structure shown in FIG. 32, the housing 10 in the conductive structure 100 according to the first embodiment described above further includes a conductive member 110 d disposed between the magnet 110 and the holding member 120. The cylindrical conductive member 110 d is made of a conductive material such as metal or carbon material, and is fixed in a state of being electrically connected to the inner peripheral surface of the shaft hole of the housing 10. In this conductive structure, when the holding member 120 is attracted to the magnet 110, the conductive portion 140 provided on the holding member 120 contacts the conductive member 110d. As a result, the housing 10 and the shaft 20 are electrically connected via the conductive member 110d and the conductive portion 140. The contact portion of the conductive portion 140 with the conductive member 110d is pressed in the axial direction against the conductive member 110d by the axial magnetic force acting on the magnetic fluid 130 held by the holding member 120.

以上より、ハウジング10が、磁石110と保持部材120との間に配置された導電部材110dを備える場合であっても、導電構造100と同様に、ハウジング10と軸20の電気的接続が安定して確保される。なお、この場合においては、ハウジング10と軸20が、磁石110を介さずに電気的に接続されるため、磁石110が導電性である必要がなくなる。そのため、磁石110の材料の選択肢を増やすことができる。   As described above, even when the housing 10 includes the conductive member 110 d disposed between the magnet 110 and the holding member 120, the electrical connection between the housing 10 and the shaft 20 is stable as in the conductive structure 100. Secured. In this case, since the housing 10 and the shaft 20 are electrically connected without passing through the magnet 110, the magnet 110 does not need to be conductive. Therefore, the choice of the material of the magnet 110 can be increased.

以下同様に、図33に示される導電構造は、上述の実施例2に係る導電構造101において、軸20が、磁石111と保持部材121との間に配置された円筒形状の導電部材111dを備えるものである。図34に示される導電構造は、上述の実施例3に係る導電構造102において、第1部材11が、磁石112と保持部材122との間に配置された板状の導電部材112dを備えるものである。図35に示される導電構造は、上述の実施例4に係る導電構造200において、ハウジング10が、磁石210と保持部材220との間に配置された円筒形状の導電部材210dを備えるものである。なお、この導電部材210dは、実施例7に係る導電構造300にも同様に適用することができる。図36に示される導電構造は、上述の実施例5に係る導電構造201において、軸20が、磁石211と保持部材221との間に配置された円筒形状の導電部材211dを備えるものである。なお、この導電部材211dは、実施例8に係る導電構造301にも同様に適用することができる。図37に示される導電構造は、上述の実施例6に係る導電構造202において、第1部材11が、磁石212と保持部材222との間に配置された板状の導電部材212dを備えるものである。なお、この導電部材212dは、実施例9に係る導電構造302にも同様に適用することができる。   Similarly, the conductive structure shown in FIG. 33 includes a cylindrical conductive member 111d in which the shaft 20 is disposed between the magnet 111 and the holding member 121 in the conductive structure 101 according to the second embodiment described above. Is. The conductive structure shown in FIG. 34 is a structure in which the first member 11 includes a plate-shaped conductive member 112d disposed between the magnet 112 and the holding member 122 in the conductive structure 102 according to Example 3 described above. is there. The conductive structure shown in FIG. 35 is the same as the conductive structure 200 according to Example 4 described above, but the housing 10 includes a cylindrical conductive member 210d disposed between the magnet 210 and the holding member 220. The conductive member 210d can be similarly applied to the conductive structure 300 according to the seventh embodiment. The conductive structure shown in FIG. 36 is the conductive structure 201 according to the fifth embodiment described above, in which the shaft 20 includes a cylindrical conductive member 211d disposed between the magnet 211 and the holding member 221. The conductive member 211d can be similarly applied to the conductive structure 301 according to the eighth embodiment. The conductive structure shown in FIG. 37 is a structure in which the first member 11 includes a plate-like conductive member 212d disposed between the magnet 212 and the holding member 222 in the conductive structure 202 according to Example 6 described above. is there. The conductive member 212d can be similarly applied to the conductive structure 302 according to the ninth embodiment.

図33から図37に示される各導電構造においては、保持部材の導電部が導電部材に接触することによって、元の導電構造と同様に、2つの相対的に移動する部材間の電気的接続が安定して確保される。また、磁場形成部材が導電性である必要がなくなるため、磁場形成部材の材料の選択肢を増やすことができる。   In each of the conductive structures shown in FIGS. 33 to 37, the conductive portion of the holding member contacts the conductive member, so that the electrical connection between the two relatively moving members is similar to the original conductive structure. Secured stably. In addition, since the magnetic field forming member does not need to be conductive, options for the material of the magnetic field forming member can be increased.

なお、図20から図28を用いて説明した、実施例1から9に係る導電構造において磁性流体130を導電性磁性流体131に置き換えると共に導電部を省いた構成のそれぞれ
に対しても、対応する導電部材を同様に適用することができる。このようにして構成された導電構造においては、磁石に引き寄せられた保持部材が、導電部材と接触することによって第1部材と第2部材が電気的に接続される。
In addition, it respond | corresponds also to each of the structure which replaced the magnetic fluid 130 with the conductive magnetic fluid 131 in the electrically-conductive structure which concerns on Examples 1-9 demonstrated using FIGS. 20-28, and omitted the electroconductive part. Conductive members can be applied as well. In the conductive structure configured as described above, the first member and the second member are electrically connected when the holding member attracted to the magnet comes into contact with the conductive member.

なお、図32から図37に示される各導電構造においては、導電部材が磁石に接触しているが、導電部材の設置態様はこれに限定されず、例えば磁場形成部材との間に隙間を設けて設置してもよい。つまり、導電部材は、第1部材に設けられ、且つ磁場形成部材と保持部材との間に配置される限りにおいて、任意の態様で設置することができる。   In each of the conductive structures shown in FIGS. 32 to 37, the conductive member is in contact with the magnet, but the installation mode of the conductive member is not limited to this. For example, a gap is provided between the conductive member and the magnetic field forming member. May be installed. That is, the conductive member can be installed in an arbitrary manner as long as it is provided on the first member and disposed between the magnetic field forming member and the holding member.

また、上述の実施例においては、磁場形成部材として磁石を採用しているが、例えば電磁石等の他の磁場形成部材を用いてもよい。また、上述の実施例1、2、4、5、7及び8に係る導電構造においては、磁石と保持部材の両方が環状(円筒形状含む)に形成されているが、磁石と保持部材の一方が環状であれば、他方は矩形状などの他の形状であってもよい。このような構成であっても、相対的に回転する2部材間の電気的接続は維持される。   Moreover, in the above-mentioned Example, although the magnet is employ | adopted as a magnetic field formation member, you may use other magnetic field formation members, such as an electromagnet, for example. In the conductive structures according to Examples 1, 2, 4, 5, 7, and 8 described above, both the magnet and the holding member are formed in an annular shape (including a cylindrical shape). As long as is an annular shape, the other may have another shape such as a rectangular shape. Even with such a configuration, the electrical connection between the two relatively rotating members is maintained.

10 ハウジング
11 第1部材
20 軸
21 第2部材
100、101、102、200、201、202、300、301、302 導電構造
110、111、112、210、211、212 磁石
120、121、122、220、221、222、320、321、322 保持部材
130 磁性流体
131 導電性磁性流体
140、141、142、240、241、242、340、341、342 導電部
110d、111d、112d、210d、211d、212d 導電部材
10 Housing 11 First member 20 Axis 21 Second member 100, 101, 102, 200, 201, 202, 300, 301, 302 Conductive structure 110, 111, 112, 210, 211, 212 Magnet 120, 121, 122, 220 , 221, 222, 320, 321, 322 Holding member 130 Magnetic fluid 131 Conductive magnetic fluid 140, 141, 142, 240, 241, 242, 340, 341, 342 Conductive part 110d, 111d, 112d, 210d, 211d, 212d Conductive member

Claims (18)

相対的に移動する第1部材と第2部材を電気的に接続する導電構造であって、
前記第1部材に設けられた、磁場を形成する磁場形成部材と、
前記第2部材に設けられた、磁性流体を吸い込んで保持可能な、柔軟性を有する保持部材と、
前記保持部材に保持された磁性流体と、
を備え、
前記磁性流体を保持した前記保持部材が、前記磁場形成部材に引き寄せられることによって前記第1部材と前記第2部材が電気的に接続されることを特徴とする導電構造。
A conductive structure that electrically connects the first member and the second member that move relatively,
A magnetic field forming member for forming a magnetic field provided in the first member;
A flexible holding member provided on the second member, capable of sucking and holding magnetic fluid; and
A magnetic fluid held by the holding member;
With
The conductive structure is characterized in that the first member and the second member are electrically connected by the holding member holding the magnetic fluid being attracted to the magnetic field forming member.
前記磁場形成部材は導電性を有し、
前記保持部材は、前記磁性流体を保持する保持部と、前記第2部材に電気的に接続された導電部を備え、
前記磁場形成部材に引き寄せられた前記保持部材の前記導電部が、該磁場形成部材と接触することによって前記第1部材と前記第2部材が電気的に接続されることを特徴とする請求項1に記載の導電構造。
The magnetic field forming member has conductivity,
The holding member includes a holding portion that holds the magnetic fluid, and a conductive portion that is electrically connected to the second member,
2. The first member and the second member are electrically connected to each other when the conductive portion of the holding member that is attracted to the magnetic field forming member comes into contact with the magnetic field forming member. The conductive structure described in 1.
前記磁場形成部材と前記磁性流体は導電性を有し、
前記磁場形成部材に引き寄せられた前記保持部材が、該磁場形成部材と接触することによって前記第1部材と前記第2部材が電気的に接続されることを特徴とする請求項1に記載の導電構造。
The magnetic field forming member and the magnetic fluid have conductivity,
2. The conductive member according to claim 1, wherein the first member and the second member are electrically connected when the holding member attracted to the magnetic field forming member comes into contact with the magnetic field forming member. Construction.
前記第1部材は、前記磁場形成部材と前記保持部材との間に配置された導電部材を備え、
前記保持部材は、前記磁性流体を保持する保持部と、前記第2部材に電気的に接続された導電部を備え、
前記磁場形成部材に引き寄せられた前記保持部材の前記導電部が、前記導電部材と接触することによって前記第1部材と前記第2部材が電気的に接続されることを特徴とする請求項1に記載の導電構造。
The first member includes a conductive member disposed between the magnetic field forming member and the holding member,
The holding member includes a holding portion that holds the magnetic fluid, and a conductive portion that is electrically connected to the second member,
The first member and the second member are electrically connected to each other when the conductive portion of the holding member attracted to the magnetic field forming member comes into contact with the conductive member. The conductive structure described.
前記第1部材は、前記磁場形成部材と前記保持部材との間に配置された導電部材を備え、
前記磁性流体は導電性を有し、
前記磁場形成部材に引き寄せられた前記保持部材が、前記導電部材と接触することによって前記第1部材と前記第2部材が電気的に接続されることを特徴とする請求項1に記載の導電構造。
The first member includes a conductive member disposed between the magnetic field forming member and the holding member,
The magnetic fluid has conductivity,
2. The conductive structure according to claim 1, wherein the first member and the second member are electrically connected by bringing the holding member attracted to the magnetic field forming member into contact with the conductive member. .
前記磁場形成部材は、その一端が前記第2部材側に位置する自由端となるように、その他端が前記第1部材に固定されて設けられ、
前記保持部材は、その一端が前記第1部材側に位置する自由端となるように、その他端が前記第2部材に固定されて設けられたことを特徴とする請求項2から5の何れか1項に記載の導電構造。
The magnetic field forming member is provided with the other end fixed to the first member so that one end thereof is a free end located on the second member side,
6. The holding member according to claim 2, wherein the other end of the holding member is fixed to the second member so that one end of the holding member is a free end located on the first member side. 2. The conductive structure according to item 1.
前記磁場形成部材は、前記第1部材に埋め込まれて設けられ、
前記保持部材は、その一端が前記第1部材側に位置する自由端となるように、その他端が前記第2部材に固定されて設けられたことを特徴とする請求項2から5の何れか1項に記載の導電構造。
The magnetic field forming member is embedded in the first member;
6. The holding member according to claim 2, wherein the other end of the holding member is fixed to the second member so that one end of the holding member is a free end located on the first member side. 2. The conductive structure according to item 1.
前記第1部材と前記第2部材は、何れか一方が有する軸孔内に他方が配置された状態で
相対的に回転する2部材であって、
前記第1部材と前記第2部材が電気的に接続されたときの接触部において、前記磁性流体に回転軸線方向の磁力が作用することを特徴とする請求項2から5の何れか1項に記載の導電構造。
The first member and the second member are two members that rotate relative to each other in a state in which the other is disposed in the shaft hole of either one,
6. The magnetic force according to claim 2, wherein a magnetic force in a rotation axis direction acts on the magnetic fluid at a contact portion when the first member and the second member are electrically connected. The conductive structure described.
前記第1部材と前記第2部材は、何れか一方が有する軸孔内に他方が配置された状態で相対的に回転する2部材であって、
前記第1部材と前記第2部材が電気的に接続されたときの接触部において、前記磁性流体に径方向の磁力が作用することを特徴とする請求項2から5の何れか1項に記載の導電構造。
The first member and the second member are two members that rotate relative to each other in a state in which the other is disposed in the shaft hole of either one,
6. The magnetic force according to claim 2, wherein a radial magnetic force acts on the magnetic fluid at a contact portion when the first member and the second member are electrically connected. Conductive structure.
前記第1部材と前記第2部材は、対向した状態で相対的に平行移動する2部材であって、
前記第1部材と前記第2部材が電気的に接続されたときの接触部において、前記磁性流体に前記第1部材と前記第2部材の対向方向に垂直な方向の磁力が作用することを特徴とする請求項2から5の何れか1項に記載の導電構造。
The first member and the second member are two members that relatively move in parallel with each other,
A magnetic force in a direction perpendicular to the opposing direction of the first member and the second member acts on the magnetic fluid at the contact portion when the first member and the second member are electrically connected. The conductive structure according to any one of claims 2 to 5.
前記第1部材と前記第2部材は、対向した状態で相対的に平行移動する2部材であって、
前記第1部材と前記第2部材が電気的に接続されたときの接触部において、前記磁性流体に前記第1部材と前記第2部材の対向方向に平行な方向の磁力が作用することを特徴とする請求項2から5の何れか1項に記載の導電構造。
The first member and the second member are two members that relatively move in parallel with each other,
A magnetic force in a direction parallel to the opposing direction of the first member and the second member acts on the magnetic fluid at the contact portion when the first member and the second member are electrically connected. The conductive structure according to any one of claims 2 to 5.
前記保持部材は、その一端が前記第1部材側に位置する自由端となるように、その他端が前記第2部材に固定されて設けられ、該保持部材の自由端側が前記回転軸線方向に湾曲していることを特徴とする請求項9に記載の導電構造。   The holding member is provided with the other end fixed to the second member so that one end thereof is a free end located on the first member side, and the free end side of the holding member is curved in the rotation axis direction. The conductive structure according to claim 9, wherein the conductive structure is formed. 前記保持部材は、その一端が前記第1部材側に位置する自由端となるように、その他端が前記第2部材に固定されて設けられ、該保持部材の自由端側が前記対向方向に垂直な方向に湾曲していることを特徴とする請求項11に記載の導電構造。   The holding member is provided with the other end fixed to the second member so that one end thereof is a free end located on the first member side, and the free end side of the holding member is perpendicular to the facing direction. The conductive structure according to claim 11, wherein the conductive structure is curved in a direction. 前記保持部材は、その一端が前記第1部材側に位置する自由端となるように、その他端が前記第2部材に固定されて設けられ、該保持部材の自由端側が固定端側に比してより肉厚に形成されていることを特徴とする請求項9または11に記載の導電構造。   The holding member is provided with the other end fixed to the second member so that one end thereof is a free end located on the first member side, and the free end side of the holding member is compared to the fixed end side. The conductive structure according to claim 9 or 11, wherein the conductive structure is formed thicker. 前記磁場形成部材または前記保持部材の何れか一方が環状に形成されていることを特徴とする請求項1に記載の導電構造。   The conductive structure according to claim 1, wherein either the magnetic field forming member or the holding member is formed in an annular shape. 前記磁場形成部材と前記保持部材の両方が環状に形成されていることを特徴とする請求項1に記載の導電構造。   The conductive structure according to claim 1, wherein both the magnetic field forming member and the holding member are formed in an annular shape. 前記磁場形成部材と前記保持部材の鉛直方向上方に導電性流体が充填されることを特徴とする請求項16に記載の導電構造。   The conductive structure according to claim 16, wherein a conductive fluid is filled vertically above the magnetic field forming member and the holding member. 前記保持部材は、その一端が前記第1部材側に位置する自由端となるように、その他端が前記第2部材に固定されて設けられ、前記保持部が、前記保持部材の自由端側の端部に形成されていることを特徴とする請求項2または4に記載の導電構造。   The holding member is provided with the other end fixed to the second member so that one end thereof is a free end located on the first member side, and the holding portion is provided on the free end side of the holding member. The conductive structure according to claim 2, wherein the conductive structure is formed at an end portion.
JP2013085225A 2013-04-15 2013-04-15 Conductive structure Active JP6081279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085225A JP6081279B2 (en) 2013-04-15 2013-04-15 Conductive structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085225A JP6081279B2 (en) 2013-04-15 2013-04-15 Conductive structure

Publications (2)

Publication Number Publication Date
JP2014207822A JP2014207822A (en) 2014-10-30
JP6081279B2 true JP6081279B2 (en) 2017-02-15

Family

ID=52120958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085225A Active JP6081279B2 (en) 2013-04-15 2013-04-15 Conductive structure

Country Status (1)

Country Link
JP (1) JP6081279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105376B4 (en) 2018-03-08 2021-09-09 Carl Freudenberg Kg Upstream seal
DE102018105375A1 (en) * 2018-03-08 2019-09-12 Carl Freudenberg Kg poetry

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483976A (en) * 1987-09-25 1989-03-29 Fujitsu Ltd Magnetic fluid seal device
JPH01146781U (en) * 1988-03-15 1989-10-11
JPH01170310U (en) * 1988-05-18 1989-12-01
JP2958148B2 (en) * 1991-03-27 1999-10-06 日本電産株式会社 Spindle motor
JP2743757B2 (en) * 1993-02-12 1998-04-22 日本ビクター株式会社 Rotary drum braking device
US6029978A (en) * 1996-09-17 2000-02-29 Seagate Technology, Inc. Grounding and conductivity improvement for ferrofluid seals
JP2002044900A (en) * 2000-07-24 2002-02-08 Nippon Densan Corp Motor for magnet disk drive and magnet disk device equipped with it
JP2002191152A (en) * 2000-12-21 2002-07-05 Nippon Densan Corp Spindle motor and recording medium drive having the spindle motor
JP5806241B2 (en) * 2011-02-03 2015-11-10 イーグル工業株式会社 Magnetic fluid seal

Also Published As

Publication number Publication date
JP2014207822A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US7315100B2 (en) Motor and magnetic bearing assembly thereof
US9360118B2 (en) Magnetic fluid seal
JP6372306B2 (en) Rolling bearing device
CN102792039B (en) Magnetic bearing and turbo machine
JPWO2011036920A1 (en) Sealing device
TW201216598A (en) Electric power generator with ferrofluid bearings
JP4178956B2 (en) Magnetic fluid seal device
CN105276007B (en) Conductive bearing system and the method for forming conductive bearing
JP6081279B2 (en) Conductive structure
JPWO2019181671A1 (en) mechanical seal
CN109281938B (en) Permanent magnet suspension bearing with magnet protection structure
JP2018179228A (en) Damper with power generating function
CN102089627A (en) Position sensor
CN112648380A (en) Magnetic liquid sealing device
US20040227421A1 (en) Magnetic suspension bearing
CN112728109B (en) Magnetic liquid sealing device with embedded permanent magnet
JP2009079643A (en) Current-carrying rolling bearing
WO2011158382A1 (en) Magnetic shaft bearing assembly and system incorporating same
CN112648383B (en) Magnetic liquid sealing device
CN111779838B (en) Magnetic powder sealing device capable of recovering magnetic powder
CN103883622A (en) Magnetic liquid cylindrical roller bearing
JP2022139964A (en) Conductive particle detecting device and mechanical operation device
JP2015146282A (en) rotary connector
JPWO2015068733A1 (en) Filter device
CN113847435B (en) Magnetic liquid seal and dynamic pressure bearing combined sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250