JP6081207B2 - Contactless power supply system, power receiving device, power supply stand, contactless power supply method - Google Patents

Contactless power supply system, power receiving device, power supply stand, contactless power supply method Download PDF

Info

Publication number
JP6081207B2
JP6081207B2 JP2013014116A JP2013014116A JP6081207B2 JP 6081207 B2 JP6081207 B2 JP 6081207B2 JP 2013014116 A JP2013014116 A JP 2013014116A JP 2013014116 A JP2013014116 A JP 2013014116A JP 6081207 B2 JP6081207 B2 JP 6081207B2
Authority
JP
Japan
Prior art keywords
power
power supply
request signal
receiving device
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013014116A
Other languages
Japanese (ja)
Other versions
JP2014147208A (en
Inventor
靖博 飯島
靖博 飯島
正博 冨來
正博 冨來
洋由 山本
洋由 山本
良二 渡邊
良二 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013014116A priority Critical patent/JP6081207B2/en
Publication of JP2014147208A publication Critical patent/JP2014147208A/en
Application granted granted Critical
Publication of JP6081207B2 publication Critical patent/JP6081207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、送電コイルと受電コイルとを電磁結合するように互いに接近して配置し、送電コイルから受電コイルに電磁誘導作用で送電する無接点給電システム、受電機器、給電台、無接点給電方法に関する。   The present invention relates to a non-contact power feeding system, a power receiving device, a power feeding base, and a non-contact power feeding method in which a power transmission coil and a power receiving coil are arranged close to each other so as to be electromagnetically coupled, About.

送電コイルを内蔵する給電台に、受電コイルを内蔵する受電機器をセットして、送電コイルから受電コイルに電力搬送する無接点給電方法は開発されている(特許文献1参照)。この無接点給電方法は、例えば図12に示すように、携帯電話等の受電機器260を、無接点の給電台220の充電面221に載置し、給電台220から受電機器260に電力を搬送して、受電機器260に内蔵される二次電池を充電する。このような無接点送電を実現するために、給電台220の送電コイル251に、携帯電話の受電コイル261を接近させて、送電コイル251から受電コイル261に送電する。これにより、受電コイル261に誘導される電力でもって内蔵電池が充電される。この送電方法は、コネクタを介して携帯電話を給電台に接続する必要がなく、無接点方式で携帯電話に電力搬送できる利点が得られる。   A contactless power feeding method has been developed in which a power receiving device with a built-in power receiving coil is set on a power feeding base with a built-in power transmitting coil, and power is transferred from the power transmitting coil to the power receiving coil (see Patent Document 1). In this non-contact power supply method, for example, as shown in FIG. 12, a power receiving device 260 such as a mobile phone is placed on a charging surface 221 of a non-contact power supply base 220, and power is transferred from the power supply base 220 to the power receiving device 260. Then, the secondary battery built in the power receiving device 260 is charged. In order to realize such non-contact power transmission, the power receiving coil 261 of the mobile phone is brought close to the power transmitting coil 251 of the power supply stand 220 and power is transmitted from the power transmitting coil 251 to the power receiving coil 261. As a result, the internal battery is charged with the electric power induced in the power receiving coil 261. This power transmission method does not require the mobile phone to be connected to the power supply base via the connector, and has the advantage that power can be transferred to the mobile phone in a contactless manner.

ところで近年の受電機器は、大画面化や電池駆動時間の長期化等の要求によって、一層の高出力化が求められており、内蔵される二次電池の容量は大型化される傾向にある。この結果、充電に要する電力も大きくなり、従来と同じ送電電力であれば充電時間が長くなる傾向にある。また一方で、充電時間をできるだけ短くしたいという要求も強く、給電台の高出力化も求められているところである。   By the way, power receiving devices in recent years are required to have higher output due to demands such as a larger screen and longer battery driving time, and the capacity of built-in secondary batteries tends to be increased. As a result, the power required for charging also increases, and the charging time tends to be longer if the transmission power is the same as in the past. On the other hand, there is a strong demand for shortening the charging time as much as possible, and there is a demand for higher output of the power supply stand.

その一方で、異なる機種や製造元の受電機器でも、共通の充電台でもって充電できるように、無接点給電の方式の規格化が進められている。例えば標準化団体の一であるWPC(Wireless Power Consortium)では、図13に示すように受電機器1350から給電台1310に対して単方向の通信を行いながら、給電台1310が受電機器1350に電力を供給するための仕様が策定されている。   On the other hand, standardization of the contactless power feeding method is being promoted so that different models and manufacturers of power receiving devices can be charged with a common charging stand. For example, in the WPC (Wireless Power Consortium), which is one of standardization organizations, the power supply base 1310 supplies power to the power reception apparatus 1350 while performing unidirectional communication from the power reception apparatus 1350 to the power supply base 1310 as shown in FIG. A specification has been established for this purpose.

高出力の受電機器を短時間で充電するには、上述の通り給電台を高出力化することが考えられる。そこで、規格に対応させた充電を可能としつつも、規格外の高出力での充電に対応させた受電機器と給電台の組み合わせにおいては、高出力での充電を可能とすることが考えられる。   In order to charge a high-output power receiving device in a short time, it is conceivable to increase the power supply stand as described above. Accordingly, it is conceivable that charging with high output is possible in a combination of a power receiving device and a power supply base that is compatible with charging with high output outside the standard while enabling charging according to the standard.

しかしながら、規格外の高出力での給電に対応した電気機器を用意すると、規格外の高出力給電に対応していない給電台に載置した場合には、電気機器から規格値以上の高出力で給電を求められる結果、給電台の電流値が上昇して発熱したり、あるいは該電流値や温度の上昇によって、給電台と受電機器との間に異物が介在していると誤検出されて、給電が停止されてしまうといった問題もあった。   However, if you prepare an electrical device that can supply power at a non-standard high output, if you place it on a power supply stand that does not support non-standard high-output power supply, As a result of seeking power supply, the current value of the power supply base rises and generates heat, or the current value and temperature increase, and it is erroneously detected that a foreign object exists between the power supply base and the power receiving device. There was also a problem that power supply was stopped.

特開2008−17562号公報JP 2008-17562 A

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の一の目的は、新たな通信のためのハードウェアを追加すること無く、大電流での充電を可能とした無接点給電システム、受電機器、給電台、無接点給電方法を提供することにある。   The present invention has been made in view of such conventional problems. An object of the present invention is to provide a non-contact power supply system, a power receiving device, a power supply stand, and a non-contact power supply method capable of charging with a large current without adding hardware for new communication. It is in.

一方、従来の有線接続による充電方式においては、機種や製造元毎に専用の充電器が用意されることが多く、特定の組み合わせでしか利用できないことが一般的である。これに対して、無接点方式の送電においては、端子やコネクタを機械的に接続する必要が無いことから、受電機器と給電台の組み合わせが、特定の機種同士、製造元同士でなくとも利用可能とすることが望まれる。そこで、上述の通り無接点送電に用いる受電機器や給電台の規格化が進められている。例えばWPCでは、図13に示すように受電機器1350から給電台1310に対して単方向の通信を行いながら、給電台1310が受電機器1350に電力を供給するための仕様が策定されている。   On the other hand, in the conventional charging method using a wired connection, a dedicated charger is often prepared for each model or manufacturer, and it is generally possible to use only a specific combination. On the other hand, in contactless power transmission, since there is no need to mechanically connect terminals and connectors, the combination of the power receiving device and the power supply stand can be used without being between specific models or manufacturers. It is desirable to do. Therefore, as described above, standardization of power receiving devices and power supply bases used for contactless power transmission is underway. For example, in WPC, as shown in FIG. 13, specifications for the power supply base 1310 to supply power to the power receiving device 1350 are established while performing unidirectional communication from the power receiving device 1350 to the power supply base 1310.

一方、無接点給電台と受電機器との間に異物が存在すると、異物が発熱することがある。例えば図14の模式図に示すように、クリップなどの金属製の異物FO(Foreign Object)が送電コイル4103と受電コイル4104の間に挿入されると、金属異物に誘導電流が流れてジュール熱で発熱する。そこで、無接点給電台と受電機器との間に異物が載置されていることを検出する異物検出機能を、受電機器に持たせることが考えられる。異物検出機能は、例えば充電効率に基づいて、異物が存在するかどうかを判定する。具体的には、充電に必要な電流の目標値を受電機器から給電台に送信し、給電台から送電され、受電機器で受けた実際の電力と比較することで、充電効率を演算し、これを所定の閾値(異物閾値)と比較し、充電効率が異物閾値よりも低い場合に、異物が存在していると判定する。異物が存在していると受電機器側で判定されると、異物検出信号を送電機器側に送出して、必要な対策を送電機器側で講じる。例えば、送電を中止したり、送電電流を減少させて充電を継続する等の対策が挙げられる。このように、異物検出機能を実現するには、受電機器側のみならず、給電台側でも異物検出機能に対応させておく必要がある。   On the other hand, if a foreign object exists between the contactless power supply base and the power receiving device, the foreign object may generate heat. For example, as shown in the schematic diagram of FIG. 14, when a metal foreign object FO (Foreign Object) such as a clip is inserted between the power transmission coil 4103 and the power receiving coil 4104, an induced current flows through the metal foreign object, resulting in Joule heat. Fever. Therefore, it is conceivable that the power receiving device has a foreign object detection function for detecting that a foreign material is placed between the contactless power supply base and the power receiving device. The foreign object detection function determines whether a foreign object exists based on, for example, charging efficiency. Specifically, the target value of the current required for charging is transmitted from the power receiving device to the power supply base, and the charging efficiency is calculated by comparing with the actual power transmitted from the power supply base and received by the power receiving device. Is compared with a predetermined threshold value (foreign substance threshold value), and when the charging efficiency is lower than the foreign substance threshold value, it is determined that a foreign object exists. When the power receiving device determines that there is a foreign object, it sends a foreign object detection signal to the power transmission device and takes necessary measures on the power transmission device side. For example, measures such as stopping power transmission or reducing the power transmission current to continue charging can be cited. As described above, in order to realize the foreign object detection function, it is necessary to support the foreign object detection function not only on the power receiving device side but also on the power supply stand side.

この場合において、例えば異物検出機能を持つ受電機器を、異物検出機能に非対応の給電台にセットして送電しようとした場合は、受電機器側で異物を検出して異物検出信号を給電台に送出しても、給電台側でこの信号を適切に処理できず、結果として異物が存在しても適切な対策が実行されずに、例えば金属製の異物が発熱して高温となることが考えられる。   In this case, for example, when a power receiving device having a foreign object detection function is set on a power supply stand that does not support the foreign object detection function and power transmission is attempted, the power reception device detects the foreign material and sends the foreign object detection signal to the power supply base. Even if it is sent out, this signal cannot be properly processed on the power supply stand side, and as a result, even if a foreign object is present, an appropriate measure is not executed, for example, a metal foreign object generates heat and becomes high temperature. It is done.

このような場合、給電台側から受電機器に対して送電する送電電流を制限した状態で送電することができれば、異物による発熱を低減できる。しかしながら、上述の通りWPC規格のような単方向通信では、受電機器側が給電台の種別、すなわち異物検出機能に対応した給電台かどうかを判別できないため、異物検出機能に対応した特定の給電台に対してのみ、送電電流を制限するような制御ができない。   In such a case, if power can be transmitted in a state in which the transmission current transmitted from the power supply side to the power receiving device is limited, heat generation due to foreign matter can be reduced. However, as described above, in the unidirectional communication such as the WPC standard, it is impossible to determine whether the power receiving device side is the type of the power supply stand, that is, the power supply stand corresponding to the foreign object detection function. Only on the other hand, it is impossible to control to limit the transmission current.

このため、すべての給電台に対して一律の制御しかできなくなり、例えば送電電流を高い電流値で制御すると、異物検出機能のない給電台では異物が存在する場合に高温となる可能性があった。また逆に、すべての給電台に対して低い送電電流となるように制御すると、異物が存在した場合でも温度を低く抑制できるために、満充電となるまでの充電時間が長くなるという問題があった。   For this reason, only uniform control can be performed for all the power supply bases. For example, when the transmission current is controlled at a high current value, there is a possibility that the power supply base without the foreign object detection function may become hot when foreign objects exist. . Conversely, if the control is performed so that the power transmission current is low for all the power supply bases, the temperature can be kept low even when foreign objects are present, so that there is a problem that the charging time until the battery is fully charged becomes long. It was.

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の他の目的は、異物が存在する場合に送電電流を抑制しつつも、異物が存在しない場合には送電電流の抑制を行わずに送電可能とした無接点給電システム、受電機器、給電台、無接点給電方法を提供することにある。   The present invention has been made in view of such conventional problems. Another object of the present invention is to provide a non-contact power supply system, a power receiving device, a power supply that can transmit power without suppressing power transmission current while suppressing power transmission current when foreign material is present. It is to provide a power stand and a contactless power supply method.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の無接点給電システムによれば、電気負荷を有する受電機器と、前記受電機器に送電する給電台とを備え、前記受電機器に対して、前記給電台から無接点で電力を送電して送電可能な無接点給電システムであって、前記受電機器は、前記電気負荷と、前記給電台からの送電を受けるための受電コイルと、前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、前記受電機器側で実際に得られた受電量を取得する受電量取得手段と、前記給電台から受電機器に送電される送電量に関して指示する送電要求信号を生成するための要求信号生成手段とを備え、前記給電台は、前記受電コイルと電磁結合して送電するための送電コイルと、前記要求信号生成手段で生成された送電要求信号を受信するための要求信号受信手段と、前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する送電量を制御するための電力制御手段とを備え、前記給電台は、第一目標電流値を定格電流として送電可能な第一電流モードと、前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードとを、前記電力制御手段で切り替え可能としており、前記要求信号生成手段は、送電要求信号として、前記第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、前記第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号とを送信可能とできる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現できる。   In order to solve the above-described problem, according to the contactless power feeding system of the present invention, the power receiving device includes an electric load, and a power feeding base that transmits power to the power receiving device. A contactless power supply system capable of transmitting power by transmitting power without contact, wherein the power receiving device receives the electric load, a power receiving coil for receiving power transmitted from the power supply base, and power received by the power receiving coil Power receiving side control means for controlling driving of the electric load with power, power receiving amount acquiring means for acquiring the amount of power actually obtained on the power receiving apparatus side, and power transmission transmitted from the power supply base to the power receiving apparatus Request signal generating means for generating a power transmission request signal for instructing the quantity, and the power supply base is generated by the power transmission coil for electromagnetically coupling with the power receiving coil and transmitting power, and the request signal generating means A request signal receiving means for receiving a power transmission request signal, and a power control means for controlling the amount of power transmitted from the power transmission coil based on the power transmission request signal received by the request signal receiving means, The power supply base has a first current mode in which power can be transmitted with a first target current value as a rated current, and a second current mode in which power can be transmitted with a second target current value larger than the first target current value as a rated current. The power control means can be switched, and the request signal generating means, as a power transmission request signal, a first power transmission request signal for requesting a first transmission power necessary for power transmission in the first current mode, It is possible to transmit a second transmission request signal for requesting second transmission power required for power transmission in the two-current mode. With the above configuration, it is possible to increase the power transmission energy and to perform charging in a short time.

また本発明の受電機器によれば、給電台に内蔵される送電コイルを介して送電される電力でもって、無接点で駆動可能な受電機器であって、電気負荷と、前記電気負荷に送電する電力を受けるため、送電コイルと電磁結合可能な受電コイルと、前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、前記受電機器側で実際に得られた受電値を取得する受電量取得手段と、前記給電台から受電機器に送電される送電量に関して指示する送電要求信号を生成するための要求信号生成手段とを備え、前記要求信号生成手段は、送電要求信号として、第一目標電流値を定格電流として送電可能な第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号とを送信可能とできる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現できる。   Moreover, according to the power receiving device of the present invention, the power receiving device can be driven in a contactless manner with the power transmitted through the power transmission coil built in the power supply stand, and transmits the electric load and the electric load. In order to receive power, a power receiving coil that can be electromagnetically coupled to a power transmitting coil, power receiving side control means for controlling the driving of the electric load with power received by the power receiving coil, and actually obtained on the power receiving device side A received power amount acquisition means for acquiring the received power value, and a request signal generating means for generating a power transmission request signal for instructing a power transmission amount transmitted from the power supply base to the power receiving device, the request signal generating means, As a power transmission request signal, a first power transmission request signal for requesting a first transmission power required for power transmission in a first current mode capable of power transmission with a first target current value as a rated current, and larger than the first target current value Two target current value may enable transmitting a second transmission request signal requesting the second transmission power required for transmission of the second current mode can be transmitting a rated current. With the above configuration, it is possible to increase the power transmission energy and to perform charging in a short time.

さらに本発明の給電台によれば、電気負荷を有する受電機器に対し、無接点で電力を送電して駆動可能な給電台であって、受電機器に内蔵された受電コイルと電磁結合して、該受電機器に送電するための送電コイルと、受電機器から送信される、前記給電台から受電機器に送電される送電量に関して指示する送電要求信号を受信するための要求信号受信手段と、前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する電力量を制御するための電力制御手段とを備え、前記電力制御手段は、第一目標電流値を定格電流として送電可能な第一電流モードと、前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードとを、切り替え可能とできる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現できる。   Furthermore, according to the power supply stand of the present invention, it is a power supply stand that can be driven by transmitting power without contact to a power receiving device having an electrical load, and electromagnetically coupled to a power receiving coil built in the power receiving device, A power transmission coil for transmitting power to the power receiving device; a request signal receiving means for receiving a power transmission request signal transmitted from the power receiving device and instructing the amount of power transmitted from the power supply to the power receiving device; and the request Power control means for controlling the amount of power transmitted from the power transmission coil based on the power transmission request signal received by the signal receiving means, wherein the power control means transmits the first target current value as a rated current. It is possible to switch between a possible first current mode and a second current mode in which power can be transmitted with a second target current value larger than the first target current value as a rated current. With the above configuration, it is possible to increase the power transmission energy and to perform charging in a short time.

さらにまた本発明の無接点給電方法によれば、電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して駆動する無接点給電方法であって、前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への送電を開始すると共に、受電値を検出する工程と、検出された受電値に基づいて、前記給電台から前記受電機器に送電される送電量の増減を指示する送電要求信号を前記給電台に送信する工程と、前記送電要求信号に従って、電力制御手段が前記送電コイルから前記受電コイルに送電する送電量を調整する工程とを含み、前記受電機器は、送電要求信号として、第一目標電流値を定格電流として送電可能な第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号とを併せて前記給電台に送信することができる。これにより、送電エネルギーを大きくして短時間での充電などを実現できる。
Furthermore, according to the non-contact power feeding method of the present invention, a non-contact power feeding method for driving a power receiving device having an electric load by transmitting power from a power feeding base in a non-contact manner, the power receiving coil of the power receiving device In a state in which power is transmitted from the power transmission coil to the power receiving coil in an electromagnetically coupled state to the power transmission coil of the power supply stand, and the power receiving device receives the electric power by the power received by the power receiving coil. Starting the power transmission to the load and detecting the power reception value, and based on the detected power reception value, the power transmission request signal instructing the increase or decrease in the amount of power transmitted from the power supply base to the power receiving device. wherein the step of transmitting the electric board, according to the power transmission request signal, and a step in which the power control means for adjusting the transmission amount of power to the power receiving coil from the transmitting coil, the power receiving device, the power transmission request signal A first transmission request signal for requesting a first transmission power required for power transmission in a first current mode in which transmission can be performed with the first target current value as a rated current, and a second target current larger than the first target current value The second transmission request signal for requesting the second transmission power required for power transmission in the second current mode in which the value can be transmitted as the rated current can be transmitted to the power supply stand together. As a result, it is possible to increase the power transmission energy and realize charging in a short time.

実施の形態1に係る無接点充電システムを示すブロック図である。1 is a block diagram showing a contactless charging system according to Embodiment 1. FIG. 実施の形態2に係る無接点充電システムを示すブロック図である。It is a block diagram which shows the non-contact charge system which concerns on Embodiment 2. FIG. 実施の形態3に係る無接点充電システムを示すブロック図である。FIG. 6 is a block diagram showing a contactless charging system according to a third embodiment. 異物検出機能を備える給電台で、給電台判別機能を備える受電機器を送電する様子を示す模式図である。It is a schematic diagram which shows a mode that electric power receiving equipment provided with a feed stand discrimination | determination function is transmitted with a feed stand provided with a foreign material detection function. 異物検出機能を備える給電台で、給電台判別機能の無い受電機器を送電する様子を示す模式図である。It is a schematic diagram which shows a mode that it is a power supply stand provided with a foreign material detection function, and is transmitting power receiving apparatus without a power supply stand discrimination | determination function. 異物検出機能の無い給電台で、給電台判別機能を備える受電機器を送電する様子を示す模式図である。It is a schematic diagram which shows a mode that electric power receiving equipment provided with a feed stand discrimination | determination function is transmitted with a feed stand without a foreign material detection function. 独自制御に対応した給電台で、給電台判別機能を備える受電機器を送電する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which transmits the power receiving apparatus provided with a feed stand discrimination | determination function with the feed stand corresponding to an original control. 独自制御に対応した受電機器の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the power receiving apparatus corresponding to an original control. 独自制御に対応した給電台の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the electric power feeding stand corresponding to an original control. 標準規格に対応した給電台の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the feed stand corresponding to a standard. 受電機器が給電台に2種類の送電要求信号を送信するタイミングを示すタイミングチャートである。It is a timing chart which shows the timing which a power receiving apparatus transmits two types of power transmission request signals to a feed stand. 従来の無接点充電台と携帯電話を示す斜視図である。It is a perspective view which shows the conventional non-contact charging stand and a mobile phone. 無接点充電を行う規格に従った充電台で電池内蔵機器を充電する様子を示す模式図である。It is a schematic diagram which shows a mode that a battery built-in apparatus is charged with the charging stand according to the standard which performs non-contact charge. 送電コイルと受電コイルの間に異物が存在する場合を示す模式図である。It is a schematic diagram which shows the case where a foreign material exists between a power transmission coil and a receiving coil.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための無接点給電システム、受電機器、給電台、無接点給電方法を例示するものであって、本発明は無接点給電システム、受電機器、給電台、無接点給電方法を以下のものに特定しない。特に本明細書は、特許請求の範囲を理解し易いように、実施の形態に示される部材に対応する番号を、「特許請求の範囲の欄」、及び「課題を解決するための手段の欄」に示される部材に付記しているが、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below exemplify a non-contact power supply system, a power receiving device, a power supply stand, and a non-contact power supply method for embodying the technical idea of the present invention. The system, power receiving device, power supply stand, and contactless power supply method are not specified as follows. In particular, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the embodiments are referred to as “claims” and “means for solving the problems”. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

本発明の一実施の形態に係る無接点給電システムによれば、前記給電台はさらに、前記送電コイルと受電コイルとの間に異物が存在することを検出する異物検出手段を備えており、前記給電台は、前記異物検出手段により異物の存在が検出されると、前記第二送電要求信号を受信した場合でも、前記第二電流モードに移行しないよう制御することができる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現しつつも、異物検出時には第二電流モードに移行しないことで、安全性を高めることができる。
According to the non-contact power feeding system according to an embodiment of the present invention, the power feeding base further includes foreign matter detection means for detecting the presence of foreign matter between the power transmission coil and the power receiving coil, When the presence of a foreign object is detected by the foreign object detection means, the power supply stand can be controlled not to shift to the second current mode even when the second power transmission request signal is received. With the configuration described above, it is possible to increase safety by increasing the power transmission energy and realizing charging in a short time, but not shifting to the second current mode when detecting a foreign object.

本発明の一実施の形態に係る無接点給電システムによれば、前記給電台は、前記異物検出手段により異物の存在が検出されると、前記第二送電要求信号を受信した場合でも、前記第一電流モードで送電を行うよう制御することができる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現しつつも、異物検出時には送電量を低減することで、安全性を高めることができる。   According to the non-contact power feeding system according to an embodiment of the present invention, the power feeding base may be configured to receive the second power transmission request signal when the foreign matter detecting unit detects the presence of the foreign matter. It can be controlled to transmit power in one current mode. With the above configuration, it is possible to increase safety by increasing the power transmission energy and realizing charging in a short time and reducing the amount of power transmission when detecting a foreign object.

また本発明の他の実施の形態に係る無接点給電システムによれば、前記受電を、電流値とすることができる。
Moreover, according to the non-contact power feeding system according to another embodiment of the present invention, the amount of power received can be a current value.

さらに本発明の他の実施の形態に係る無接点給電システムによれば、前記受電を、電力値とすることができる。
Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, the amount of received power can be set to a power value.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記第一電流モードが、標準化された規格に対応した給電であり、前記第二電流モードが、充電台判別機能に対応した給電であり、前記受電側制御手段は、前記給電台が、前記第二送電要求信号に反応したことを判定して、充電台判別機能対応型と判別し、前記第二送電要求信号に反応せず、前記第一送電要求信号に反応したことを判定して、標準規格対応型と判別するよう構成できる。   Furthermore, according to the contactless power supply system according to another embodiment of the present invention, the first current mode is a power supply corresponding to a standardized standard, and the second current mode is a charging stand discrimination function. The power receiving side control means determines that the power supply base has responded to the second power transmission request signal, determines that the power supply base responds to the charging base determination function compatible type, and outputs the second power transmission request signal. It can be configured to determine that it has responded to the first power transmission request signal and not to respond to the standard specification type.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記受電側制御手段は、前記給電台から前記第二送電要求信号に応じた第二送電電力を受けたことを検出して、充電台判別機能対応型と判別し、前記第二送電要求信号に反応せず、前記第一送電要求信号に応じた第一送電電力を受けたことを検出して、標準規格対応型と判別するよう構成できる。   Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, the power receiving side control means detects that the second transmission power corresponding to the second power transmission request signal is received from the power feeding stand. Then, it is determined that the charging base discriminating function is compatible, detects that the first transmission power corresponding to the first transmission request signal has been received without reacting to the second transmission request signal, Can be configured to discriminate.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記要求信号受信手段で、前記受電機器から前記第二送電要求信号と第一送電要求信号とを受信すると、第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成できる。   Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, when the request signal receiving unit receives the second power transmission request signal and the first power transmission request signal from the power receiving device, According to the power transmission request signal, the second power transmission is transmitted by the power control means, while the first power transmission request signal is ignored.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記標準化された規格が、WPC規格であり、前記第一送電要求信号を、コントロールエラー信号とできる。   Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, the standardized standard is a WPC standard, and the first power transmission request signal can be a control error signal.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記第二送電要求信号を、WPC規格のプロプライエタリパケット信号に含まれるヘッダに充電台判別機能の情報を格納したものとできる。   Furthermore, according to the non-contact power feeding system according to another embodiment of the present invention, the second power transmission request signal is stored in the header included in the WPC standard proprietary packet signal with information on the charging stand determination function. it can.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記異物検出手段が、前記受電機器において受電電流値を検出し、該受電電流値に基づいて伝送効率を演算し、該伝送効率を所定の効率閾値と比較して、伝送効率が効率閾値よりも小さいときに異物が存在すると判定し、伝送効率が効率閾値よりも大きいときに異物が存在しないと判定することができる。   Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, the foreign object detection means detects a received current value in the power receiving device, calculates a transmission efficiency based on the received current value, By comparing the transmission efficiency with a predetermined efficiency threshold value, it can be determined that foreign matter exists when the transmission efficiency is smaller than the efficiency threshold value, and it can be determined that no foreign matter exists when the transmission efficiency is larger than the efficiency threshold value. .

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記電気負荷が、二次電池であり、前記給電台が、前記二次電池を充電する充電台であり、前記受電機器に対して、前記給電台から無接点で電力を送電して、前記受電側制御手段が、前記受電コイルで受電した受電電力でもって、前記二次電池の充電電流を制御して、該二次電池を充電可能とできる。   Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, the electrical load is a secondary battery, the power feeding base is a charging base for charging the secondary battery, and the power receiving Electric power is transmitted to the device without contact from the power supply base, and the power receiving side control means controls the charging current of the secondary battery with the received power received by the power receiving coil. The secondary battery can be charged.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、第一目標電流値を、規格化された無接点充電方式に従った電流値とできる。   Furthermore, according to the contactless power supply system according to another embodiment of the present invention, the first target current value can be a current value according to a standardized contactless charging method.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、第一目標電流値を700mAに、第二目標電流値を900mAに設定できる。   Furthermore, according to the contactless power feeding system according to another embodiment of the present invention, the first target current value can be set to 700 mA and the second target current value can be set to 900 mA.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記要求信号生成手段は、前記第一送電要求信号と、第二送電要求信号とを時分d割で送信可能とできる。   Furthermore, according to the non-contact power feeding system according to another embodiment of the present invention, the request signal generating means can transmit the first power transmission request signal and the second power transmission request signal at a rate of d / minute. it can.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記給電台がさらに、前記送電コイルを、前記受電機器を載置する載置面内で移動させるための移動機構を備えることができる。   Furthermore, according to the contactless power supply system according to another embodiment of the present invention, the power supply base further includes a moving mechanism for moving the power transmission coil within a mounting surface on which the power receiving device is mounted. Can be provided.

さらにまた本発明の他の実施の形態に係る無接点給電システムによれば、前記給電台の前記送電コイルを固定式とすることもできる。   Furthermore, according to the non-contact power feeding system according to another embodiment of the present invention, the power transmission coil of the power feeding base can be fixed.

さらにまた本発明の他の実施の形態に係る受電機器によれば、前記給電台で、前記送電コイルと受電コイルとの間に異物が存在することを検出すると、前記第二電流モードに移行しないようにすることができる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現しつつも、異物検出時にはこれを移行しないようにすることで、安全性を高めることができる。
Furthermore, according to the power receiving device according to another embodiment of the present invention, when the power feeding stand detects that a foreign object exists between the power transmitting coil and the power receiving coil, the power receiving device does not shift to the second current mode. it can be so. With the above-described configuration, it is possible to increase safety by increasing the power transmission energy to achieve charging in a short time and the like so as not to shift when detecting a foreign object.

さらにまた、本発明の実施の形態に係る給電台によれば、さらに前記送電コイルと受電コイルとの間に異物が存在することを検出する異物検出手段を備えており、前記異物検出手段により異物の存在が検出されると、前記電力制御手段は、前記第二電流モードでの送電を要求する前記送電要求信号を受信した場合でも、前記第二電流モードに移行しないよう制御することができる。上記構成により、送電エネルギーを大きくして短時間での充電などを実現しつつも、異物検出時にはこれを移行しないようにすることで、安全性を高めることができる。
Furthermore, according to the power supply stand according to the embodiment of the present invention, the power supply stand further includes foreign matter detection means for detecting the presence of foreign matter between the power transmission coil and the power receiving coil. When the presence of the power is detected, the power control means can perform control so as not to shift to the second current mode even when the power transmission request signal requesting power transmission in the second current mode is received. With the above-described configuration, it is possible to increase safety by increasing the power transmission energy to achieve charging in a short time and the like so as not to shift when detecting a foreign object.

さらにまた、本発明の実施の形態に係る無接点給電方法によれば、異物の存在が検出されると、前記給電台が前記第二送電要求信号を受信した場合でも、前記第二電流モードに行こうしないよう制御することができる。これにより、送電エネルギーを大きくして短時間での充電などを実現しつつも、異物検出時にはこれを移行しないようにすることで、安全性を高めることができる。
(実施の形態1)
Furthermore, according to the non-contact power feeding method according to the embodiment of the present invention, when the presence of a foreign object is detected, even when the power feeding base receives the second power transmission request signal, the second current mode is set. You can control not to go . Accordingly, it is possible to increase safety by increasing the power transmission energy to realize charging in a short time and the like so as not to shift the foreign object detection.
(Embodiment 1)

図1は、本発明の実施の形態1に係る無接点給電システム100を示すブロック図である。この図に示す給電台10は、無接点給電方法で受電機器50に電力搬送する。図では、給電台10の上に受電機器50を載せて、給電台10から受電機器50に送電する状態を示している。この実施の形態では、給電台10を充電台とし、受電機器50を電池内蔵機器として、充電台から電池内蔵機器に送電して、電池内蔵機器の二次電池52を充電する状態を示している。   FIG. 1 is a block diagram showing a non-contact power feeding system 100 according to Embodiment 1 of the present invention. The power supply stand 10 shown in this figure conveys power to the power receiving device 50 by a non-contact power supply method. In the figure, a state is shown in which the power receiving device 50 is placed on the power supply stand 10 and power is transmitted from the power supply stand 10 to the power receiving device 50. In this embodiment, the power supply base 10 is a charging base, the power receiving device 50 is a battery built-in device, and power is transmitted from the charging stand to the battery built-in device to charge the secondary battery 52 of the battery built-in device. .

なお本発明は、給電台を充電台に、あるいは受電機器を電池内蔵機器に、それぞれ特定するものではない。受電機器は例えば、照明器具や充電アダプタ等とすることもでき、給電台から受電機器に送電して、受電機器を電力駆動することができる。例えば受電機器が照明機器の場合は、給電台から送電される電力で光源を点灯し、また受電機器が充電アダプタの場合は、給電台から送電される電力でもって、充電アダプタに接続される電池内蔵機器に電池の充電電力を供給して、電池内蔵機器の電池を充電する。また、受電機器は、パック電池であっても良い。   The present invention does not specify the power supply stand as a charging stand or the power receiving device as a battery built-in device. The power receiving device can be, for example, a lighting fixture, a charging adapter, or the like, and can transmit power from the power supply stand to the power receiving device to drive the power receiving device. For example, when the power receiving device is a lighting device, the light source is turned on with power transmitted from the power supply base. When the power receiving device is a charging adapter, the battery connected to the charge adapter with power transmitted from the power supply base. Supply the battery charging power to the internal device to charge the battery of the internal battery device. The power receiving device may be a battery pack.

給電台10は、ケース20の上面に、受電機器50を一定の位置にセットして載せる上面プレート21を設けて、この上面プレート21の内側に送電コイル11を配置している。送電コイル11は、交流電源12を接続して、交流電源12を電力制御手段13で制御している。   In the power supply stand 10, an upper surface plate 21 on which the power receiving device 50 is set and placed at a fixed position is provided on the upper surface of the case 20, and the power transmission coil 11 is disposed inside the upper surface plate 21. The power transmission coil 11 is connected to an AC power source 12 and controls the AC power source 12 by a power control means 13.

電力制御手段13は、受電機器50から伝送される送電要求信号で交流電源12を制御して、送電コイル11に供給する電力を調整する。電力制御手段13は、要求信号受信手段14から入力される増加要求信号で交流電源12から送電コイル11への出力電力を大きくし、減少要求信号で送電コイル11への出力を小さくして、受電機器50から要求された要求電力を送電する。電力制御手段13は、交流電源12の出力を最大出力に以下に調整し、あるいはあらかじめ設定している設定電力以下に調整する。電力制御手段13は、増加要求信号によって交流電源12の出力を増加させるが、交流電源12の出力が最大電力に、あるいは設定電力まで増加される状態においては、増加要求信号を検出しても、交流電源12の出力を増加させない。   The power control unit 13 controls the AC power supply 12 with a power transmission request signal transmitted from the power receiving device 50 to adjust the power supplied to the power transmission coil 11. The power control means 13 increases the output power from the AC power supply 12 to the power transmission coil 11 with the increase request signal input from the request signal reception means 14, and decreases the output to the power transmission coil 11 with the decrease request signal. The requested power requested from the device 50 is transmitted. The power control means 13 adjusts the output of the AC power supply 12 to the maximum output as follows, or adjusts it below the preset set power. The power control means 13 increases the output of the AC power supply 12 by the increase request signal. In the state where the output of the AC power supply 12 is increased to the maximum power or the set power, even if the increase request signal is detected, The output of the AC power supply 12 is not increased.

給電台10は、送電コイル11を受電コイル51に電磁結合して、送電コイル11から受電コイル51に電力搬送、すなわち送電する。受電機器50を上面プレート21の自由な位置にセットして、二次電池52を充電する給電台10は、送電コイル11を受電コイル51に接近するように移動させる移動機構16を内蔵している。この給電台10は、送電コイル11をケース20の上面プレート21の下に配設して、上面プレート21に沿って移動機構16で移動させて、受電コイル51に接近させる。移動機構16は、送電コイル11を上面プレート21のXY平面内で移動させる。このような移動機構16には、送電コイル11をXY方向に移動させるモータ等が利用できる。   The power supply base 10 electromagnetically couples the power transmission coil 11 to the power reception coil 51, and carries power from the power transmission coil 11 to the power reception coil 51, that is, transmits power. The power supply base 10 that charges the secondary battery 52 by setting the power receiving device 50 at a free position on the top plate 21 incorporates a moving mechanism 16 that moves the power transmission coil 11 so as to approach the power reception coil 51. . In the power supply base 10, the power transmission coil 11 is disposed below the upper surface plate 21 of the case 20, and is moved along the upper surface plate 21 by the moving mechanism 16 to be brought closer to the power receiving coil 51. The moving mechanism 16 moves the power transmission coil 11 within the XY plane of the top plate 21. As such a moving mechanism 16, a motor or the like that moves the power transmission coil 11 in the XY directions can be used.

給電台10と受電機器50は、受電機器50を給電台10の定位置にセットする位置決め部機構を設けて、受電機器50を給電台10の定位置にセットすることができる。位置決め部機構は、受電コイル51を送電コイル11に接近させるように、受電機器50を給電台10の定位置にセットする。送電コイル11に接近する受電コイル51は、電磁誘導作用で送電コイル11から受電コイル51に電力搬送して送電する。
(実施の形態2)
The power supply base 10 and the power receiving device 50 can be provided with a positioning unit mechanism that sets the power receiving device 50 at a fixed position of the power supply stand 10, and the power receiving device 50 can be set at a fixed position of the power supply stand 10. The positioning unit mechanism sets the power receiving device 50 at a fixed position of the power supply base 10 so that the power receiving coil 51 approaches the power transmitting coil 11. The power receiving coil 51 approaching the power transmitting coil 11 carries power from the power transmitting coil 11 to the power receiving coil 51 for electromagnetic transmission by electromagnetic induction.
(Embodiment 2)

以上の例では、送電コイル11を上面プレート21内面において、移動機構16で水平面内に移動させる構成を説明した。ただ、送電コイルを固定式とした給電台を利用することもできる。このような例を実施の形態2として、図2に示す。この図に示す無接点給電システム200は、給電台10’と受電機器50で構成される。給電台10’は、送電コイル11を受電コイル51と電磁結合させるための位置決め部機構22として、給電台10’の定位置に受電機器50をセットする嵌合構造を利用している。図2の嵌合構造は、給電台10’上面に受電機器50を嵌入する嵌入凹部23を設けて、嵌入凹部23に受電機器50を入れて定位置にセットしている。なお図示しないが、位置決め部機構は、給電台と受電機器との対向面に嵌合構造の凹凸を設けて、受電機器を給電台の定位置にセットすることもできる。嵌合構造は、受電機器の位置ずれを防止できる。   In the above example, the configuration in which the power transmission coil 11 is moved in the horizontal plane by the moving mechanism 16 on the inner surface of the upper surface plate 21 has been described. However, it is also possible to use a power supply stand with a fixed power transmission coil. Such an example is shown in FIG. The non-contact power feeding system 200 shown in this figure includes a power feeding base 10 ′ and a power receiving device 50. The power supply base 10 ′ uses a fitting structure in which the power receiving device 50 is set at a fixed position of the power supply base 10 ′ as the positioning unit mechanism 22 for electromagnetically coupling the power transmission coil 11 to the power reception coil 51. The fitting structure of FIG. 2 is provided with a fitting recess 23 into which the power receiving device 50 is fitted on the upper surface of the power supply base 10 ′, and the power receiving device 50 is put in the fitting recess 23 and set at a fixed position. Although not shown, the positioning unit mechanism can also set the power receiving device at a fixed position of the power supply base by providing concavity and convexity of the fitting structure on the opposing surface of the power supply base and the power receiving device. The fitting structure can prevent displacement of the power receiving device.

送電コイル11は、上面プレート21と平行な面で渦巻き状に巻いてなる平面コイルで、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。送電コイル11は、磁性材からなるコア(図示せず)に線材を巻いてインダクタンスを大きくできる。コアのある送電コイルは、磁束を特定部分に集束して、効率よく電力を受電コイルに伝送できる。ただ、送電コイルは、必ずしもコアを設ける必要はなく、空芯コイルとすることもできる。空芯コイルは軽いので、送電コイルを上面プレートの内面で移動させる構造にあっては、移動機構を簡単にできる。送電コイル11は、受電コイル51の外径にほぼ等しくして、受電コイル51に効率よく電力搬送する。   The power transmission coil 11 is a planar coil wound in a spiral shape on a surface parallel to the upper surface plate 21, and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21. The power transmission coil 11 can increase the inductance by winding a wire around a core (not shown) made of a magnetic material. The power transmission coil with the core can concentrate the magnetic flux to a specific part and efficiently transmit power to the power reception coil. However, the power transmission coil does not necessarily need to be provided with a core, and may be an air-core coil. Since the air-core coil is light, the moving mechanism can be simplified in the structure in which the power transmission coil is moved on the inner surface of the top plate. The power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51.

交流電源12は、電力制御手段13でもって送電コイル11に供給する電力が調整されて、たとえば、20kHz〜1MHzの高周波電力を送電コイル11に供給する。送電コイル11を受電コイル51に接近するように移動させる給電台10は、交流電源12を、可撓性のリード線を介して送電コイル11に接続している。交流電源12は、発振回路と、この発振回路から出力される交流を電力増幅するパワーアンプとを備える。   The AC power supply 12 adjusts the power supplied to the power transmission coil 11 by the power control means 13 and supplies, for example, high frequency power of 20 kHz to 1 MHz to the power transmission coil 11. The power supply stand 10 that moves the power transmission coil 11 so as to approach the power reception coil 51 connects the AC power supply 12 to the power transmission coil 11 via a flexible lead wire. The AC power supply 12 includes an oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit.

給電台10は、送電コイル11を受電コイル51に接近させた状態で、交流電源12で送電コイル11に交流電力を供給する。送電コイル11の交流電力は、受電コイル51に送電されて、二次電池52を充電する。給電台10は、二次電池52が満充電され、あるいは異物検出し、あるいはまた異常判定する状態で、受電機器50から伝送される信号で送電コイル11への電力供給を停止して、二次電池52の充電を停止する。   The power supply base 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the power transmission coil 11 is brought close to the power reception coil 51. The AC power of the power transmission coil 11 is transmitted to the power reception coil 51 to charge the secondary battery 52. The power supply base 10 stops the power supply to the power transmission coil 11 by a signal transmitted from the power receiving device 50 in a state in which the secondary battery 52 is fully charged, foreign matter is detected, or abnormality is determined. The charging of the battery 52 is stopped.

図1と図2の受電機器50は電池内蔵機器5で、給電台10の送電コイル11に電磁結合される受電コイル51を内蔵している。受電コイル51に誘導される受電電力で二次電池52を充電する。したがって、図1の受電機器50は、二次電池52と、受電コイル51と、この受電コイル51に誘導される交流を直流に変換する整流回路56と、整流回路56から出力される直流で二次電池52を充電する充電電流や電圧を調整する受電側制御手段53と、受電機器50の情報信号を給電台10に伝送する伝送回路54と、整流回路56の出力から受電電力の受電量を検出する受電量取得手段58と、この受電量取得手段58で検出された受電量を、二次電池52を充電するために必要な電力である要求電力に比較して送電要求信号を生成する要求信号生成手段57を備える。   The power receiving device 50 in FIGS. 1 and 2 is a battery built-in device 5 and includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11 of the power supply base 10. The secondary battery 52 is charged with the received power induced by the power receiving coil 51. Accordingly, the power receiving device 50 in FIG. 1 includes a secondary battery 52, a power receiving coil 51, a rectifier circuit 56 that converts alternating current induced in the power receiving coil 51 into direct current, and a direct current that is output from the rectifier circuit 56. The power receiving side control means 53 for adjusting the charging current and voltage for charging the secondary battery 52, the transmission circuit 54 for transmitting the information signal of the power receiving device 50 to the power supply base 10, and the amount of received power received from the output of the rectifier circuit 56. A request for generating a power transmission request signal by comparing the power reception amount detected by the power reception amount acquisition unit 58 to be detected and the power reception amount detected by the power reception amount acquisition unit 58 with power required for charging the secondary battery 52. A signal generating means 57 is provided.

二次電池52は、リチウムイオン電池又はリチウムポリマー電池である。ただし、電池は、ニッケル水素電池やニッケルカドミウム電池などの充電できる全ての電池とすることができる。受電機器50は、1個ないし複数の二次電池52を内蔵している。複数の二次電池52は、直列又は並列に接続され、あるいは直列と並列に接続される。   The secondary battery 52 is a lithium ion battery or a lithium polymer battery. However, the battery can be any rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery. The power receiving device 50 includes one or a plurality of secondary batteries 52. The plurality of secondary batteries 52 are connected in series or in parallel, or connected in series and in parallel.

整流回路56は、受電コイル51に誘導される交流をダイオードブリッジで全波整流して脈流を平滑コンデンサで平滑化する。整流回路は、ダイオードブリッジで交流を整流するが、整流回路には、FETをブリッジに接続して、交流に同期してFETをオンオフに切り換えて整流する同期整流回路も使用できる。FETの同期整流回路はオン抵抗が小さく、整流回路の発熱を少なくして、受電機器50のケース内温度の上昇を少なくできる。また、平滑コンデンサは必ずしも必要でなく、ダイオードブリッジや同期整流回路の出力で電池を充電することもできる。   The rectifier circuit 56 full-wave rectifies the alternating current induced in the power receiving coil 51 with a diode bridge, and smoothes the pulsating current with a smoothing capacitor. The rectifier circuit rectifies alternating current with a diode bridge, but a synchronous rectifier circuit can be used for the rectifier circuit in which an FET is connected to the bridge and the FET is switched on and off in synchronization with the alternating current. The synchronous rectification circuit of the FET has a small on-resistance, reduces the heat generation of the rectification circuit, and can reduce the increase in the temperature inside the case of the power receiving device 50. Further, the smoothing capacitor is not always necessary, and the battery can be charged by the output of the diode bridge or the synchronous rectifier circuit.

受電側制御手段53は、リチウムイオン電池やリチウムポリマー電池等を定電圧・定電流充電し、またニッケル水素電池やニッケルカドミウム電池を定電流充電する。さらに、受電側制御手段53は、二次電池52の満充電を検出して、満充電信号を伝送回路54を介して給電台10に伝送する。給電台10は、伝送回路54から伝送される満充電信号や受電機器50の情報信号を要求信号受信手段14で検出する。給電台10は、受電機器50からの情報信号を検出し、電力制御手段13で交流電源12を制御する。給電台10は、満充電信号を検出すると、送電コイル11への電力供給を停止させる。
(実施の形態3)
The power receiving side control means 53 charges a lithium ion battery, a lithium polymer battery or the like at a constant voltage / constant current, and charges a nickel metal hydride battery or a nickel cadmium battery at a constant current. Further, the power receiving side control means 53 detects the full charge of the secondary battery 52 and transmits a full charge signal to the power supply base 10 via the transmission circuit 54. The power supply stand 10 detects the full charge signal transmitted from the transmission circuit 54 and the information signal of the power receiving device 50 by the request signal receiving unit 14. The power supply stand 10 detects an information signal from the power receiving device 50 and controls the AC power supply 12 by the power control means 13. When the power supply stand 10 detects the full charge signal, the power supply stand 10 stops the power supply to the power transmission coil 11.
(Embodiment 3)

なお、図1や図2の例では受電側制御手段として充電制御手段を用いて、二次電池52を充電させる例を説明した。ただ本発明は、受電した電力を二次電池の充電に利用する例に限られず、受電機器の電気負荷を駆動させる電力として利用することもできる。このような無接点給電システムの例を、実施の形態3として図3に示す。この図に示す無接点給電システム300では、受電機器50が、受電側制御手段として充電制御手段に代えて電気負荷を駆動する電力を供給する負荷駆動制御手段53Bを備えている。他の部材は、上述した実施の形態1や2と同様の構成が利用できる。負荷駆動制御手段53Bは、受電機器50の電気負荷LDを駆動する電力に変換する。受電機器50の電気負荷には、例えば携帯電話やキッチン用品、照明装置等が利用できる。このようにして、受電した電力を二次電池の充電以外に、電気負荷の駆動電力に直接利用することもできる。なお、電気負荷として二次電池を利用すれば上述した実施の形態1や2の構成となる。また、受電した電力を電気負荷の駆動と二次電池の充電の両方に利用する構成も採用できる。
(伝送回路54)
In the example of FIGS. 1 and 2, the example in which the secondary battery 52 is charged using the charge control unit as the power receiving side control unit has been described. However, the present invention is not limited to the example in which the received power is used for charging the secondary battery, and can also be used as power for driving the electric load of the power receiving device. An example of such a non-contact power feeding system is shown in FIG. In the non-contact power feeding system 300 shown in this figure, the power receiving device 50 includes load drive control means 53B that supplies power for driving an electric load instead of the charge control means as the power receiving side control means. Other members can use the same configuration as in the first and second embodiments described above. The load drive control unit 53B converts the electric power to drive the electric load LD of the power receiving device 50. For example, a mobile phone, kitchenware, or a lighting device can be used as the electrical load of the power receiving device 50. In this way, the received power can be directly used for driving power of the electric load in addition to charging the secondary battery. If a secondary battery is used as the electrical load, the configuration of the first or second embodiment described above is obtained. Moreover, the structure which utilizes the received electric power for both driving of the electric load and charging of the secondary battery can also be adopted.
(Transmission circuit 54)

伝送回路54は、受電機器50から給電台10に、給電台10の出力を増加又は減少するための増加要求信号と減少要求信号からなる送電要求信号、二次電池52の満充電信号、充電している二次電池52の電圧、充電電流、電池温度、電池のシリアル番号、電池の充電電流を特定する許容充電電流、電池の充電をコントロールする許容温度等の電池情報などの種々の情報信号を給電台10に伝送する。伝送回路54は、受電コイル51の負荷インピーダンスを変化させて、送電コイル11に種々の情報信号を伝送する。この伝送回路54は、図示しないが、受電コイル51に変調回路を接続している。変調回路は、コンデンサや抵抗等の負荷とスイッチング素子とを直列に接続して、スイッチング素子のオンオフを制御して種々の情報信号を給電台10に伝送する。   The transmission circuit 54 sends a power transmission request signal including an increase request signal and a decrease request signal for increasing or decreasing the output of the power supply base 10 from the power receiving device 50 to the power supply base 10, a full charge signal of the secondary battery 52, and charging. Various information signals such as the voltage of the secondary battery 52, the charging current, the battery temperature, the battery serial number, the allowable charging current for specifying the charging current of the battery, the battery information such as the allowable temperature for controlling the charging of the battery, etc. It is transmitted to the power supply stand 10. The transmission circuit 54 changes various load impedances of the power reception coil 51 and transmits various information signals to the power transmission coil 11. Although not shown, the transmission circuit 54 has a modulation circuit connected to the power receiving coil 51. The modulation circuit connects a load such as a capacitor or a resistor and a switching element in series, controls on / off of the switching element, and transmits various information signals to the power supply base 10.

給電台10の要求信号受信手段14は、送電コイル11のインピーダンス変化、電圧変化、電流変化等を検出して、伝送回路54から伝送される情報信号を検出する。受電コイル51の負荷インピーダンスが変化すると、これに電磁結合している送電コイル11のインピーダンスや電圧や電流が変化するので、要求信号受信手段14は、これ等の変化を検出して、受電機器50の情報信号を検出することができる。   The request signal receiving means 14 of the power supply stand 10 detects an information signal transmitted from the transmission circuit 54 by detecting an impedance change, a voltage change, a current change and the like of the power transmission coil 11. When the load impedance of the power receiving coil 51 changes, the impedance, voltage, and current of the power transmitting coil 11 that is electromagnetically coupled to the power receiving coil 51 change. Therefore, the request signal receiving unit 14 detects these changes and receives the power receiving device 50. It is possible to detect the information signal.

ただし、伝送回路は、搬送波を変調して伝送する回路、すなわち送信機とすることもできる。この伝送回路から伝送される情報信号の要求信号受信手段は、搬送波を受信して、情報信号を検出する受信器である。伝送回路と要求信号受信手段とは、受電機器から給電台に情報信号を伝送できる全ての回路構成とすることができる。
(受電量取得手段58)
However, the transmission circuit may be a circuit that modulates and transmits a carrier wave, that is, a transmitter. The request signal receiving means for the information signal transmitted from the transmission circuit is a receiver that receives the carrier wave and detects the information signal. The transmission circuit and the request signal receiving means can have all circuit configurations capable of transmitting an information signal from the power receiving device to the power supply base.
(Received power acquisition means 58)

受電量取得手段58は、所定の周期で、整流回路56から出力される受電電力の受電量を取得する。また要求信号生成手段57は、受電量を要求電力と比較して送電要求信号を生成する。さらに受電機器は、送電要求信号に基づいて異物検出を判定する判定機能を備えることもできる。また異物検出の判定は受電機器側でなく、給電台側で行うこともできる。この場合は、例えば受電機器側から給電台に二次電池の電圧と充電電流を通知し、給電台側で送電電力と比較して、伝送効率が基準値よりも低い場合は異物が存在すると判断し、送電を停止する。
(要求信号生成手段57)
The received power acquisition means 58 acquires the received power of the received power output from the rectifier circuit 56 at a predetermined cycle. Further, the request signal generation means 57 generates a power transmission request signal by comparing the received power amount with the required power. Furthermore, the power receiving device can also include a determination function for determining foreign object detection based on a power transmission request signal. Further, the foreign object detection determination can be performed not on the power receiving device side but on the power supply stand side. In this case, for example, the voltage and charging current of the secondary battery are notified from the power receiving device side to the power supply stand, and when the transmission efficiency is lower than the reference value compared to the transmission power on the power supply stand side, it is determined that there is a foreign object. Then stop power transmission.
(Request signal generation means 57)

要求信号生成手段57は、整流回路56の出力電圧と電流の積から受電電力の受電量を受電量取得手段58でもって検出し、検出された受電電力の受電量を要求電力に比較して送電要求信号を生成し、出力する。受電量取得手段58は、二次電池52を充電するために必要な電力を要求電力として検出する。この受電量取得手段58は、二次電池52の種類、電池電圧、充電する電流等を検出して、二次電池52を充電するために必要な電力、すなわち要求電力を検出する。リチウムイオン電池やリチウムポリマー電池は、定電圧・定電流特性で充電されるので、二次電池52が満充電に近づくに従って充電電流は減少する。したがって、二次電池52が満充電に近づくにしたがって要求電力を小さくする。図1と図2の例では、受電機器50を電池内蔵機器として、消費電力で二次電池52を充電する。この受電機器50は、要求電力を二次電池52の充電電力とするが、受電機器は必ずしも電池内蔵機器には限定しない。電池内蔵機器でない受電機器は、要求電力を負荷の消費電力や定格電力として検出する。   The request signal generation unit 57 detects the amount of received power by the received amount acquisition unit 58 from the product of the output voltage and current of the rectifier circuit 56 and compares the detected amount of received power with the required power for power transmission. Generate and output a request signal. The received power acquisition means 58 detects the power required for charging the secondary battery 52 as the required power. The power reception amount acquisition unit 58 detects the power necessary for charging the secondary battery 52, that is, the required power, by detecting the type of the secondary battery 52, the battery voltage, the current to be charged, and the like. Since the lithium ion battery and the lithium polymer battery are charged with constant voltage / constant current characteristics, the charging current decreases as the secondary battery 52 approaches full charge. Therefore, the required power is reduced as the secondary battery 52 approaches full charge. In the example of FIGS. 1 and 2, the power receiving device 50 is used as a battery built-in device, and the secondary battery 52 is charged with power consumption. The power receiving device 50 uses the required power as charging power for the secondary battery 52, but the power receiving device is not necessarily limited to a battery built-in device. A power receiving device that is not a battery built-in device detects the required power as load power consumption or rated power.

送電要求信号は、給電台10の出力を増加させる増加要求信号と、出力を小さくする減少要求信号である。要求信号生成手段57は、受電量が要求電力よりも小さいことを検出して増加要求信号を出力し、受電量が要求電力よりも大きいことを検出して減少要求信号を出力する。また要求信号生成手段57は、電気負荷に最適な電力を供給できるように、受電量を要求電力に比較して、増加要求信号又は減少要求信号からなる送電要求信号を出力する。   The power transmission request signal is an increase request signal for increasing the output of the power supply base 10 and a decrease request signal for decreasing the output. The request signal generation unit 57 detects that the received power amount is smaller than the required power and outputs an increase request signal, detects that the received power amount is larger than the required power, and outputs a decrease request signal. Further, the request signal generating unit 57 compares the received power amount with the required power so as to supply the optimum power to the electric load, and outputs a power transmission request signal composed of an increase request signal or a decrease request signal.

ここで、給電台10が受電機器50に電力伝送制御を行う様子を、図4のブロック図に基づいて説明する。この図に示す給電台10は、受電コイル51と電磁結合して送電するための送電コイル11と、要求信号生成手段57から送信される送電要求信号を受信するための要求信号受信手段14と、要求信号受信手段14で受信された送電要求信号に基づいて、送電コイル11から送電する送電量を制御するための電力制御手段13とを備える。
(受電機器50)
Here, how the power supply base 10 performs power transmission control on the power receiving device 50 will be described with reference to the block diagram of FIG. 4. The power supply stand 10 shown in this figure includes a power transmission coil 11 for electromagnetically coupling with the power reception coil 51 to transmit power, a request signal receiving means 14 for receiving a power transmission request signal transmitted from the request signal generating means 57, and Power control means 13 for controlling the amount of power transmitted from the power transmission coil 11 based on the power transmission request signal received by the request signal receiving means 14 is provided.
(Power receiving device 50)

一方、受電機器50は、受電コイル51と、電気負荷LDと、受電量取得手段58と、要求信号生成手段57とを備える。電気負荷LDは、例えば二次電池52と、これを充電する充電電流を制御する受電側制御手段53とで構成される。受電量取得手段58は、受電機器50側で実際に得られた受電値を検出する。要求信号生成手段57は、受電量取得手段58で検出された受電値に基づいて、給電台10から受電機器50に送電される送電量に関して指示する送電要求信号を、給電台10側に送信する。この要求信号生成手段57は、図1、図2で示した伝送回路54が利用できる。また図4の例では、受電量取得手段58と要求信号生成手段57とを別部材としているが、これらを一のICなどで構成することもできる。なお送電要求信号は、要求信号生成手段57の指示により受電コイル51を介して給電台10側に送信される。
(受電側制御手段53)
On the other hand, the power receiving device 50 includes a power receiving coil 51, an electric load LD, a power reception amount acquiring unit 58, and a request signal generating unit 57. The electric load LD includes, for example, a secondary battery 52 and a power receiving side control unit 53 that controls a charging current for charging the secondary battery 52. The power reception amount acquisition unit 58 detects a power reception value actually obtained on the power receiving device 50 side. The request signal generation unit 57 transmits a power transmission request signal instructing the power transmission amount transmitted from the power supply base 10 to the power receiving device 50 to the power supply base 10 side based on the power reception value detected by the power reception amount acquisition means 58. . The request signal generation means 57 can use the transmission circuit 54 shown in FIGS. In the example of FIG. 4, the received power acquisition means 58 and the request signal generation means 57 are separate members, but they can also be configured with a single IC or the like. The power transmission request signal is transmitted to the power supply base 10 via the power receiving coil 51 in accordance with an instruction from the request signal generation unit 57.
(Power receiving side control means 53)

図4に示す受電機器50の受電側制御手段53は、電気負荷LDに対して、第一電流値を定格電流として送電可能な第一電流モードと、第一電流値よりも大きい第二電流値を定格電流として送電可能な第二電流モードを切り替え可能としている。
(要求信号生成手段57)
The power receiving side control means 53 of the power receiving device 50 shown in FIG. 4 has a first current mode in which the first current value can be transmitted to the electric load LD as a rated current, and a second current value larger than the first current value. It is possible to switch the second current mode in which power can be transmitted with the rated current as.
(Request signal generation means 57)

要求信号生成手段57は、受電量取得手段58で検出された受電値値を所定値と比較し、この所定値よりも低い場合は、送電電力を増加するように指示する電力増加要求信号を、送電要求信号として給電台10に送信する。一方、この所定値よりも高い場合は、送電電力を低減するように指示する電力減少要求信号を、送電要求信号として給電台10に送信する。これによって実際に送電される送電電力に応じた適切な充電が可能となる。このような送電要求信号は、規格化された信号が好適に利用でき、例えばQi規格の場合は、5W用の制御誤差(Control Error:CE)信号を利用できる。これにより、Qi規格に従った二次電池の充電が可能となる。   The request signal generation unit 57 compares the power reception value detected by the power reception amount acquisition unit 58 with a predetermined value. If the power reception value value is lower than the predetermined value, the request signal generation unit 57 outputs a power increase request signal instructing to increase the transmission power. It transmits to the power supply stand 10 as a power transmission request signal. On the other hand, if it is higher than this predetermined value, a power reduction request signal instructing to reduce the transmission power is transmitted to the power supply base 10 as a power transmission request signal. This makes it possible to charge appropriately according to the transmitted power that is actually transmitted. As such a power transmission request signal, a standardized signal can be preferably used. For example, in the case of the Qi standard, a control error (CE) signal for 5 W can be used. Thereby, the secondary battery according to the Qi standard can be charged.

また要求信号生成手段57は、第一電流モードと第二電流モードに応じて、送電要求信号として、第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号とを送信可能としている。例えば電気負荷LDへの送電として、二次電池への充電をQi規格、及びこれよりも高出力で充電可能な独自制御で行う場合を考える。第一電流モードでの充電時は、第一電流値を700mAとして、この電流以下で充電する。また、二次電池が所定電圧となるよう充電することもできる。所定電圧は、例えばQi規格の低電力仕様(Volume I: Low Power)に従えば、5Wが定格のため、約7Vとなる。また第二電流モードの場合は、第二電流値を900mAとして二次電池が所定電圧となるように充電する。   Further, the request signal generation means 57, according to the first current mode and the second current mode, as a power transmission request signal, a first power transmission request signal for requesting the first transmission power required for power transmission in the first current mode, A second transmission request signal for requesting second transmission power required for power transmission in the second current mode can be transmitted. For example, let us consider a case where charging to the secondary battery is performed by the Qi standard and original control capable of charging at a higher output than that for power transmission to the electric load LD. At the time of charging in the first current mode, the first current value is set to 700 mA and charging is performed below this current. Further, the secondary battery can be charged to a predetermined voltage. The predetermined voltage is about 7V because 5 W is rated according to the low power specification (Volume I: Low Power) of the Qi standard, for example. In the second current mode, the secondary battery is charged to a predetermined voltage with the second current value set to 900 mA.

要求信号生成手段57は、給電台10に対して第一送電要求信号と第二送電要求信号とを同時に送出する。好ましくは、図11に示すように第一送電要求信号と第二送電要求信号とを時分割で送信する。これにより、一の要求信号生成手段57でもって二種類の送電要求信号を送信できるので、それぞれの送電要求信号を送出する送信機を個別に用意すること無く、送信機構を共通化して構成の簡素化を図ることができる。第一送電要求信号と第二送電要求信号とは、例えば250ms毎に更新される。
(電力制御手段13)
The request signal generation unit 57 simultaneously sends the first power transmission request signal and the second power transmission request signal to the power supply base 10. Preferably, as shown in FIG. 11, the first power transmission request signal and the second power transmission request signal are transmitted in a time division manner. Thereby, since one request signal generation means 57 can transmit two types of power transmission request signals, the transmission mechanism is shared and the configuration is simplified without separately preparing transmitters for transmitting the respective power transmission request signals. Can be achieved. The first power transmission request signal and the second power transmission request signal are updated every 250 ms, for example.
(Power control means 13)

一方、給電台10は、要求信号受信手段14で第一送電要求信号を受けた場合には、第一送電電力で受電機器50に送電する。また第二送電要求信号を受けた場合には、第二送電電力を送電する。これら送電電力の切り替えは、電力制御手段13で行われる。ここで第一送電電力をQi規格に対応させた5Wとする。   On the other hand, when the request signal receiving unit 14 receives the first power transmission request signal, the power supply base 10 transmits power to the power receiving device 50 with the first transmitted power. When receiving the second transmission request signal, the second transmission power is transmitted. Switching between these transmission powers is performed by the power control means 13. Here, the first transmission power is 5 W corresponding to the Qi standard.

上述の通り、受電機器50の要求信号生成手段57は、図11に示すように常時、第二送電要求信号と第一送電要求信号とを併せて送出している。そして給電台10が、第二送電電力に対応している場合は、要求信号受信手段14が第二送電要求信号と第一送電要求信号とを受信すると、第二送電要求信号に従い第二送電電力を電力制御手段13で送電する一方、第一送電要求信号を無視する。このようにすることで、より高出力の第二電流モードでの送電が可能となる。   As described above, the request signal generation means 57 of the power receiving device 50 always sends the second power transmission request signal and the first power transmission request signal together as shown in FIG. And when the power supply stand 10 respond | corresponds to 2nd transmitted power, if the request signal receiving means 14 receives a 2nd power transmission request signal and a 1st power transmission request signal, according to a 2nd power transmission request signal, 2nd transmitted power Is transmitted by the power control means 13, while the first transmission request signal is ignored. In this way, power transmission in the second current mode with higher output becomes possible.

一方、給電台10又は受電機器50の一方又は両方が、このような第二電流モードでの送電に対応していない場合でも、第一電流モードでの送電を可能として、安全に利用することが可能となる。またこの方式であれば、既存の無接点充電に容易に適用できるため、新たな部材を追加すること無く安価に実装できる利点も得られる。
(第一送電要求信号)
On the other hand, even when one or both of the power supply base 10 and the power receiving device 50 does not support such power transmission in the second current mode, power transmission in the first current mode can be performed and used safely. It becomes possible. In addition, this method can be easily applied to existing non-contact charging, so that an advantage that it can be mounted at low cost without adding a new member can be obtained.
(First transmission request signal)

第一送電要求信号は、規格化された送電要求信号とできる。このような送電要求信号は、目標とする値と差がある場合に、この差を低減するように、給電台からの出力を増加、減少させるための信号である。例えばQi規格の場合は、5W用の制御誤差(コントロールエラー)信号を利用できる。これにより、Qi規格に従った二次電池の充電が可能となる。
(給電台判別手段59)
The first power transmission request signal can be a standardized power transmission request signal. Such a power transmission request signal is a signal for increasing or decreasing the output from the power supply base so as to reduce the difference when there is a difference from the target value. For example, in the case of the Qi standard, a 5 W control error (control error) signal can be used. Thereby, the secondary battery according to the Qi standard can be charged.
(Power supply discriminating means 59)

さらに図4に示す受電機器50は、給電台10の種別を判定する給電台判別手段59を備えている。もし受電機器と給電台との通信を双方向で行う機能を備えておれば、通信によって互いの種別を判定することが可能となる。一方、給電台から受電機器に対して通信が無い場合は、受電機器側で給電台の種別を認識することはできない。例えば無接点充電の規格として普及している、WPC(Wireless Power Consortium)により策定されたQi規格の低電力仕様の規格書(Volume I: Low Power)によれば、受電機器から給電台への通信を行うことは規定されているものの、給電台から受電機器側への通信は規定されていない。この結果、WPC規格に準拠した受電機器側では、どのような給電台でもって送電されているのかを知ることができなかった。特に、WPC1.0のような標準規格でない、独自の規格に基づいた機能、例えば異物検出機能や大電流による充電などに対応させた受電機器を、このような充電台判別機能に非対応の給電台と混在させる場合は、給電台が充電台判別機能に対応しているか否かを受電機器側で把握しておく必要がある。   Further, the power receiving device 50 illustrated in FIG. 4 includes a power supply table discriminating unit 59 that determines the type of the power supply table 10. If a function for bidirectionally communicating between the power receiving device and the power supply base is provided, it is possible to determine the type of each other through communication. On the other hand, when there is no communication from the power supply stand to the power receiving device, the type of the power supply stand cannot be recognized on the power receiving device side. For example, according to the Qi standard low power specification (Volume I: Low Power) established by WPC (Wireless Power Consortium), which is widely used as a standard for contactless charging, communication from the power receiving device to the power supply stand However, communication from the power supply stand to the power receiving device is not specified. As a result, the power receiving device compliant with the WPC standard cannot know what power supply is used for power transmission. In particular, a power receiving device that is not compatible with WPC 1.0 and that is based on an original standard, such as a foreign object detection function or charging with a large current, is not compatible with such a charging stand discrimination function. When mixing with a power base, it is necessary for the power receiving device to know whether or not the power supply base supports the charging base discrimination function.

そこで、受電機器50から給電台10に対して送電要求信号を送信し、これに対して充電機器から送出される電力でもって、給電台10が充電台判別機能に対応したものか否かを受電機器50側で判別する給電台判別機能を、受電機器50側に持たせている。図4の例では、受電機器50の給電台判別手段59が、給電台10に対して標準規格と充電台判別機能に対応したの二種類の送電要求信号を送出して、いずれの信号に反応するかを判別することで持って給電台10の機能を判別している。具体的には受電機器50から給電台10に対し、電流の目標値が異なる2種類の送電要求信号を送信して、給電台10がいずれの送電要求信号に反応するかを判別することで、給電台10を判別する。ここでは、標準規格に準拠した第一目標電流値を定格電流として送電を行う第一電流モードでの送電に必要な電流を、給電台10側に要求する第一送電要求信号と、充電台判別機能に対応して、第一目標電流値よりも大きい第二目標電流値を定格電流として送電を行う第二電流モードでの送電に必要な電流を給電台10側に要求する第二送電要求信号とを生成して送信する。そして給電台10が、これら第一送電要求信号、第二送電要求信号のいずれに反応するかを、受電機器50側で判別することで、第一目標電流値又は第二電流目標値のいずれかを決定する。   Therefore, a power transmission request signal is transmitted from the power receiving device 50 to the power supply base 10, and whether or not the power supply base 10 corresponds to the charging base discrimination function with the power transmitted from the charging device is received. A power supply stand discriminating function for discriminating on the device 50 side is provided on the power receiving device 50 side. In the example of FIG. 4, the power supply base discriminating means 59 of the power receiving device 50 sends two types of power transmission request signals corresponding to the standard and the charging base discriminating function to the power supply base 10 and reacts to any of the signals. The function of the power supply base 10 is determined by determining whether or not to perform. Specifically, by transmitting two types of power transmission request signals with different target values of current from the power receiving device 50 to the power supply base 10, and determining which power transmission request signal the power supply base 10 reacts to, The power supply stand 10 is determined. Here, the first power transmission request signal for requesting the current required for power transmission in the first current mode in which power transmission is performed using the first target current value compliant with the standard as the rated current, and the charging base determination Corresponding to the function, a second power transmission request signal for requesting the power supply base 10 side for a current necessary for power transmission in the second current mode in which power transmission is performed using a second target current value larger than the first target current value as a rated current. And generate and send. Then, by determining whether the power supply base 10 responds to the first power transmission request signal or the second power transmission request signal on the power receiving device 50 side, either the first target current value or the second current target value is determined. To decide.

このように受電機器50側から、標準規格に従った第一送電要求信号に加えて、充電台判別機能に対応した第二送電要求信号も送出する場合、給電台10側では、第二送電要求信号を受信できる場合は、第一送電要求信号を無視する、あるいは該信号で規定された処理を行わないようにする。この結果、充電台判別機能に対応した受電機器と給電台の組み合わせにおいては、給電台が第二送電要求信号が受け取ると、標準規格に対応した第一送電要求信号を実行しないので、充電台判別機能に従った高出力対応の送電のみが実行される。一方で、標準規格のみに対応した給電台の場合は、第一送電要求信号を解釈でき、これに応じた送電を行う一方、充電台判別機能に非対応のため第二送電要求信号を処理できず、結果として標準規格の送電のみが実行される。   As described above, in the case where the second power transmission request signal corresponding to the charging stand discriminating function is also transmitted from the power receiving device 50 side in addition to the first power transmission request signal according to the standard, the second power transmission request is transmitted on the power feeding base 10 side. If the signal can be received, the first power transmission request signal is ignored or the processing defined by the signal is not performed. As a result, in a combination of a power receiving device and a power supply stand that supports the charging stand determination function, when the power supply stand receives the second transmission request signal, the first transmission request signal corresponding to the standard is not executed. Only high-power compatible power transmission according to the function is executed. On the other hand, in the case of a power supply stand that supports only the standard, the first power transmission request signal can be interpreted, and power transmission is performed accordingly, while the second power transmission request signal can be processed because it does not support the charging stand discrimination function. As a result, only standard transmission is performed.

この方式であれば、給電台が標準規格のみに対応した場合、標準規格と充電台判別機能の両方に対応した場合のいずれであっても、それぞれの送電方法で適切に送電できる。しかも、給電台側から受電機器側への通信のための設備といった、新たな部材を追加する必要が無く、既存の受電機器側から給電台側への通信のみを行えば足りるので、既存の設備への適用も容易となり、安価に実装できる利点が得られる。   With this method, power can be appropriately transmitted by each power transmission method, regardless of whether the power supply table is compatible only with the standard or both the standard and the charging table discrimination function. In addition, there is no need to add a new member such as a facility for communication from the power supply stand side to the power receiving device side, and it is only necessary to perform communication from the existing power receiving device side to the power supply stand side. Therefore, it can be easily applied to the device, and the advantage that it can be mounted at low cost is obtained.

なお、この例では標準規格として、異物検出機能を備えないWPC1.0を採用し、一方独自制御として、異物検出機能と、大電流での充電機能を実装した無接点充電方式について説明する。ただ本発明は、独自制御として、異物検出機能又は大電流充電機能のいずれか一方のみを実装させることもできる。またはこれらに代わって、あるいはこれらに加えて、例えば5W以上の高出力での充電など、他の機能を持たせることもできる。
(異物検出手段15B)
In this example, a WPC 1.0 that does not have a foreign object detection function is adopted as a standard, while a non-contact charging method in which a foreign object detection function and a charging function with a large current are implemented as independent control will be described. However, according to the present invention, only one of the foreign object detection function and the large current charging function can be implemented as the unique control. Alternatively, or in addition to these, other functions such as charging at a high output of 5 W or more can be provided.
(Foreign matter detection means 15B)

一方給電台10は、給電台10と受電機器50との間に金属製の異物が介在していないかどうかを判定するための異物検出手段15Bを備えている。具体的には、給電台10は送電効率を演算すると共に、この送電効率を、予め設置された所定の閾値と比較する。そして演算された送電効率と所定の閾値との差が小さいときには、いいかえると送電効率が低いときには、異物が挿入されている可能性が高いと異物検出手段15Bで判定する。この場合は、目標電流を第一目標電流に切り替えて、送電電流を制限するような制御を行う。これにより、送電電流を抑えて異物の発熱を低減できる。またこの給電台10Bは、図5に示すように、独自制御に非対応の受電機器50Aをセットしても、適切な送電を行うことができる。   On the other hand, the power supply stand 10 includes foreign matter detection means 15B for determining whether or not a metal foreign matter is interposed between the power supply stand 10 and the power receiving device 50. Specifically, the power supply base 10 calculates the power transmission efficiency and compares this power transmission efficiency with a predetermined threshold set in advance. When the difference between the calculated power transmission efficiency and the predetermined threshold is small, in other words, when the power transmission efficiency is low, the foreign object detection means 15B determines that there is a high possibility that a foreign object has been inserted. In this case, control is performed such that the target current is switched to the first target current to limit the transmission current. Thereby, the power transmission current can be suppressed and the heat generation of the foreign matter can be reduced. Further, as shown in FIG. 5, the power supply stand 10 </ b> B can perform appropriate power transmission even when a power receiving device 50 </ b> A that does not support unique control is set.

一方で、給電台10Aが充電台判別機能に非対応で、例えばWPC1.0に準拠したものであるなど、異物検出手段を備えない場合は、図6に示すように、充電台判別機能に対応した受電機器50Bをセットしても、この受電機器50Bから送信される第二送電要求信号を解釈できないため、第二目標電流に電流を増して送電されることはなく、常時第一目標電流で送電されることとなる。よって、当初から電流値を抑えた第一目標電流で送電される結果、仮に異物が存在しても、発熱量が抑えられることとなる。このように、この受電機器を、異物検出機能を備える給電台10Bに載置した場合、又は異物検出機能を備えない給電台10Aに載置した場合のいずれでも、異物による発熱を抑制できる利点が得られる。   On the other hand, when the power supply base 10A is not compatible with the charging base discrimination function and does not have foreign matter detection means, for example, is compliant with WPC 1.0, as shown in FIG. 6, it corresponds to the charging base discrimination function. Even if the power receiving device 50B is set, the second power transmission request signal transmitted from the power receiving device 50B cannot be interpreted. Therefore, the second target current is not increased and the power is not transmitted. Power will be transmitted. Therefore, as a result of power transmission with the first target current with the current value suppressed from the beginning, even if there is a foreign object, the amount of heat generation can be suppressed. As described above, there is an advantage that heat generation due to foreign matter can be suppressed regardless of whether the power receiving device is placed on the power supply base 10B having a foreign matter detection function or placed on the power supply base 10A not having the foreign matter detection function. can get.

なおWPCにおいても、WPC1.1では異物検出(Foreign Object Detection:FOD)機能が採用されている。ただ、WPC1.0ではFOD機能は採用されておらず、現状ではWPC1.0仕様に準拠した製品が多数であり、FOD機能を備えるWPC1.1仕様に準拠した製品は殆ど存在していない。このような実情に鑑み、多く普及しているFOD機能を備えていないWPC1.0仕様の給電台と受電機器を組み合わせる場合に、本発明は有益となる。   Also in WPC, WPC1.1 employs a foreign object detection (FOD) function. However, the FOD function is not employed in WPC 1.0, and there are many products that conform to the WPC 1.0 specification at present, and there are almost no products that conform to the WPC 1.1 specification having the FOD function. In view of such a situation, the present invention is useful when combining a power supply base of WPC 1.0 specifications and a power receiving device which are not provided with a widely used FOD function.

このように本実施の形態によれば、大電流での送電を可能として、急速充電等を可能とする一方で、異物が存在する場合には送電電流値を制限して、異物による温度上昇を抑え、安全性を高めることも可能となる。以下、このような動作を図7〜図10のフローチャートに基づいて説明する。
(独自制御に対応した給電台と受電機器による送電)
As described above, according to the present embodiment, it is possible to transmit power with a large current and enable quick charging, etc. It is possible to suppress and increase safety. Hereinafter, such an operation will be described with reference to the flowcharts of FIGS.
(Power transmission using a power supply stand and power receiving equipment that supports unique control)

図7のフローチャートは、いずれも充電台判別機能に対応した給電台10と受電機器50の無接点送電における動作を示している。また図8のフローチャートは充電台判別機能に対応した給電台10の動作を、図9は充電台判別機能に対応した受電機器の動作を、図10は充電台判別機能に非対応の、標準規格にのみ準拠した受電機器の動作を、それぞれ示している。まず、図7のフローチャートに従い、全体の動作の流れを説明する。ここでは、給電台10として充電台を、受電機器50としてスマートフォンを使用し、スマートフォンに装着された電池パックを充電台で無接点充電する場合について説明する。   The flowchart of FIG. 7 shows the operation in the non-contact power transmission between the power supply base 10 and the power receiving device 50 corresponding to the charging base discrimination function. The flowchart of FIG. 8 shows the operation of the power supply base 10 corresponding to the charging base discrimination function, FIG. 9 shows the operation of the power receiving device corresponding to the charging base discrimination function, and FIG. The operation of the power receiving device that only complies with is shown. First, the overall operation flow will be described with reference to the flowchart of FIG. Here, a case will be described in which a charging stand is used as the power supply stand 10 and a smartphone is used as the power receiving device 50, and a battery pack attached to the smartphone is contactlessly charged with the charging stand.

まずステップS701において、受電機器50を給電台10にセットして、給電台10の送電コイルと受電機器50の受電コイルとを電磁結合させた状態で、第一目標電流での送電を開始する。ここでは、受電機器50側から給電台10に対して充電開始のための第一送電要求信号を送出する。第一目標電流としては、例えばWPC規格に従った700mAに設定される。   First, in step S701, the power receiving device 50 is set on the power feeding base 10, and power transmission with the first target current is started in a state where the power transmission coil of the power feeding base 10 and the power receiving coil of the power receiving device 50 are electromagnetically coupled. Here, a first power transmission request signal for starting charging is sent from the power receiving device 50 side to the power supply base 10. For example, the first target current is set to 700 mA in accordance with the WPC standard.

次にステップS702において、受電機器50が送電開始から予め設定された一定時間を経過したかどうかを判定し、未だの場合はステップS702を繰り返し、経過した場合はステップS703に進む。なお、このステップは省略することもできる。   Next, in step S702, it is determined whether the power receiving device 50 has passed a predetermined time from the start of power transmission. If not, step S702 is repeated, and if it has elapsed, the process proceeds to step S703. This step can be omitted.

次にステップS703において、受電機器50側から給電台10に対し、複数の送電要求信号の送信を開始する。ここでは、第一送電要求信号と第二送電要求信号の2種類の送電要求信号を、受電機器50の要求信号生成手段57で生成して、給電台10に送信する。このような送信は、上述の通り送電コイルと電磁結合された受電コイルの負荷インピーダンスを変化させる等の変調によって、別途通信手段を設けることなく給電台側に送出できる。給電台側では、要求信号受信手段でもって送電要求信号を解析する。   Next, in step S703, transmission of a plurality of power transmission request signals is started from the power receiving device 50 side to the power supply base 10. Here, two types of power transmission request signals, the first power transmission request signal and the second power transmission request signal, are generated by the request signal generation means 57 of the power receiving device 50 and transmitted to the power supply base 10. Such transmission can be sent to the power supply stand side without providing a separate communication means by modulation such as changing the load impedance of the power receiving coil electromagnetically coupled to the power transmitting coil as described above. On the power supply stand side, the power transmission request signal is analyzed by the request signal receiving means.

第一送電要求信号は、標準規格に準拠した送電要求信号とする。ここでは標準規格としてWPCで規格化されたQi規格に準拠した制御誤差(コントロールエラー値(Control Error:CE))を送信する。コントロールエラー値とは、給電台10の出力制御のため、受電機器50側から給電台10側に送信される出力増加要求又は出力減少要求信号である。また第二送電要求信号は、メーカが独自に規定することのできる、制御信号や情報信号等の信号を利用できる。例えば第二送電要求信号を、WPC規格に準拠したプロプライエタリパケット(Proprietary Packet)信号を利用した充電台判別機能のコントロールエラー値とする。この場合は、WPC規格での通信に使用するパケットのヘッダにプロプライエタリパケット(Proprietary Packet)として、任意に規定可能な情報を付加できるため、これを利用して給電台10を判別することにより、給電台に応じた電流値にて送電制御が実現できる。   The first power transmission request signal is a power transmission request signal compliant with the standard. Here, a control error (control error value (CE)) based on the Qi standard standardized by WPC is transmitted as a standard. The control error value is an output increase request signal or an output decrease request signal transmitted from the power receiving device 50 side to the power supply base 10 side for output control of the power supply base 10. The second power transmission request signal can be a signal such as a control signal or an information signal that can be uniquely defined by the manufacturer. For example, the second power transmission request signal is set as a control error value of the charging stand discriminating function using a proprietary packet signal compliant with the WPC standard. In this case, information that can be arbitrarily specified can be added as a proprietary packet to the header of a packet used for communication in the WPC standard. Power transmission control can be realized with a current value corresponding to the power base.

さらに、これら2種類の送電要求信号は、時分割で送信する。例えば図11のタイミングチャートに示すように、所定の時間毎に交互にWPC_CEと独自CEとを送信する。ここでは、独自制御のCEとWPCのCEとを同時に送る期間と、WPCのCEのみを送る期間とを交互に繰り返している。これにより、WPCのCEは常時送出されることとなり、WPC準拠の給電台はWPCのCEを受信して、WPC規格に沿った制御を行う。一方、充電台判別機能に対応した給電台は、独自制御CEを受信すると、充電台判別機能の動作モード(第二電流モード)に切り替えられ、以降はWPCのCEを受信しても、これを無視し、独自制御のCEのみを受信する。ただし、所定時間内にWPCのCEを2回以上受信しないと、第二電流モードを解除して第一電流モード、すなわちWPCに準拠した動作モードに移行する。なおこの例では、WPCにおけるCE値に従って250ms毎に送電要求信号を切り替えているが、切り替えタイミングは任意のタイミングとできる。   Further, these two types of power transmission request signals are transmitted in a time division manner. For example, as shown in the timing chart of FIG. 11, WPC_CE and unique CE are alternately transmitted at predetermined time intervals. Here, the period for simultaneously sending the CE for the unique control and the CE for the WPC and the period for sending only the CE for the WPC are alternately repeated. As a result, the WPC CE is always sent, and the WPC-compliant power supply base receives the WPC CE and performs control in accordance with the WPC standard. On the other hand, when the power supply stand corresponding to the charging stand discriminating function receives the original control CE, it is switched to the operation mode (second current mode) of the charging stand discriminating function. Ignore and receive only CE with unique control. However, if the WPC CE is not received twice or more within a predetermined time, the second current mode is canceled and the operation mode is shifted to the first current mode, that is, the operation mode based on WPC. In this example, the power transmission request signal is switched every 250 ms according to the CE value in the WPC, but the switching timing can be any timing.

次に図7のステップS704において、複数の送電要求信号の送信時間が、予め設定された所定の時間だけ経過したかどうかを判定し、未だの場合はステップS703に戻って送信を継続し、経過した場合はステップS705に進む。ここでは、10秒間に設定しているが、任意の時間に設定できることはいうまでもない。   Next, in step S704 in FIG. 7, it is determined whether or not the transmission times of the plurality of power transmission request signals have passed a predetermined time set in advance. If not, the process returns to step S703 to continue transmission. If so, the process proceeds to step S705. Here, although it is set to 10 seconds, it is needless to say that it can be set to an arbitrary time.

次にステップS705において、独自制御対応の受電機器と給電台の組み合わせかどうかを判定する。ここでは、セットされた受電機器50の種別を、給電台10側で判定している。つまり給電台10は、標準規格に準拠した受電機器か、充電台判別機能の受電機器かを、受電機器から送られるCEに基づいて判別している。すなわち、充電台判別機能のCEを給電台10が受信すれば、充電台判別機能対応の受電機器であると判別する一方で、充電台判別機能のCEを給電台10が受信せず、代わりに標準規格のCEのみを受信すれば、標準規格に準拠した受電機器であると、給電側検出回路15でもって判定する。また給電側検出回路15は、一度でも充電台判別機能のCEを受信すれば直ちに独自制御対応の受電機器と判定する構成に限られず、上述の通り所定時間内に独自制御のCEを所定回数以上受信した場合に、充電台判別機能対応の受電機器と判定し、そうでない場合は充電台判別機能非対応、すなわち標準規格準拠の受電機器と判定することが好ましい。これによってノイズなどに起因する誤検出を回避できる。例えば給電側検出回路15は、10秒間に充電台判別機能のCEを2回以上受信すれば充電台判別機能対応の受電機器と判定し、そうでなければ標準規格準拠の受電機器と判定する。このように給電側検出回路15は、受電機器判別手段15Aとして機能する。なおステップS704とステップS705とを同時に行うこともできる。   Next, in step S705, it is determined whether or not it is a combination of a power receiving device compatible with unique control and a power supply stand. Here, the type of the set power receiving device 50 is determined on the power supply stand 10 side. In other words, the power supply base 10 determines whether the power receiving device conforms to the standard or the power receiving device having the charging stand determination function based on the CE sent from the power receiving device. That is, if the power supply stand 10 receives the charging stand determination function CE, the power supply stand 10 determines that the power receiving device is compatible with the charging stand determination function, while the power supply stand 10 does not receive the charging stand determination function CE. If only the CE of the standard is received, the power supply side detection circuit 15 determines that the power receiving device is compliant with the standard. Further, the power supply side detection circuit 15 is not limited to the configuration in which the power receiving device CE is determined to be a power receiving device that supports unique control as soon as it receives the charging stand discrimination function CE. When it is received, it is determined that the power receiving device is compatible with the charging stand determination function. Otherwise, it is preferable to determine that the power receiving device is not compatible with the charging stand determination function, that is, a standard-compliant power receiving device. As a result, erroneous detection caused by noise or the like can be avoided. For example, the power supply side detection circuit 15 determines that the power receiving device is compatible with the charging base determination function if it receives the CE of the charging base determination function twice or more in 10 seconds, and determines that the power receiving device conforms to the standard otherwise. In this way, the power supply side detection circuit 15 functions as the power receiving device determination unit 15A. Note that step S704 and step S705 can be performed simultaneously.

このようにして充電台判別機能対応の受電機器と給電台の組み合わせであることが確認されると、ステップS706に進み、そうでない場合はステップS713に進む。また、給電台が充電台判別機能非対応の、標準規格準拠である場合は、そもそも受電機器の判別機能を備えていないため、このような処理は存在せず、受電機器の種別に拘わらずステップS713に進む。ステップS713においては、WPCに準拠した無接点充電の制御が実行される。すなわち、WPC_CEに従って給電台側で出力制御を行い、ステップS715に進んで第一送電電流(ここでは700mA)に設定して、通常の無接点送電制御を行う。   In this way, when it is confirmed that the combination of the power receiving device and the power supply stand corresponding to the charging stand discriminating function is reached, the process proceeds to step S706, and if not, the process proceeds to step S713. In addition, if the power supply stand is not compatible with the charging stand discriminating function and conforms to the standard, since there is no power receiving device discriminating function in the first place, such a process does not exist and the step is performed regardless of the type of the power receiving device. The process proceeds to S713. In step S713, contactless charging control based on WPC is executed. That is, output control is performed on the power supply stand side according to WPC_CE, and the process proceeds to step S715 to set the first transmission current (700 mA in this case) to perform normal contactless power transmission control.

一方で、充電台判別機能の給電台と受電機器の組み合わせであることが確認された場合は、次に異物判定を行う。具体的には、まずステップS706において、効率と異物閾値の差が所定値以上かどうかを給電台10側で判定する。所定値以下の場合は、効率が悪い、すなわち異物が存在すると判定してステップS713に進み、目標電流を第一送電電流に設定した無接点充電を維持する。ここでは、効率を62%に設定し、さらに所定値を5%に設定している。   On the other hand, if it is confirmed that the combination of the power supply stand and the power receiving device of the charging stand discrimination function, foreign matter determination is performed next. Specifically, first, in step S706, whether or not the difference between the efficiency and the foreign substance threshold is equal to or larger than a predetermined value is determined on the power supply base 10 side. If it is equal to or less than the predetermined value, it is determined that the efficiency is low, that is, there is a foreign object, and the process proceeds to step S713 to maintain contactless charging with the target current set to the first transmission current. Here, the efficiency is set to 62%, and the predetermined value is set to 5%.

一方、差が所定値以上の場合は、ステップS707に進み、給電台10側で充電台判別機能のCEに従った出力制御を行う。ここでは、WPC_CEに900mA制御のコントロールエラー値を出力することで、目標電流値を切り替える。次に、ステップS708に進み、充電台判別機能に対応していれば、充電電流が安定するであろう状態まで待機する。具体的には、まずステップS708において、所定の時間経過したか否かを判定し、未だの場合はステップS708の処理を繰り返す。そして所定時間(例えば10s)を経過すると、ステップS709に進み、送電電流が予め設定された所定値よりも大きく変化しているか否かを受電機器50の給電台判別手段59で判定する。変化している場合は、ステップS711に進み、電流値の変化に給電台10側が追随している、すなわち給電台10が独自制御に対応していると受電機器50側で判定して、さらにステップS712に進み、受電機器50は目標電流を第一目標送電電流よりも大きい第二目標送電電流(例えば900mA)に設定して、大電流での無接点送電制御を行う。   On the other hand, if the difference is equal to or larger than the predetermined value, the process proceeds to step S707, and output control is performed on the power supply base 10 side according to the CE of the charging base determination function. Here, the target current value is switched by outputting a control error value of 900 mA control to WPC_CE. Next, it progresses to step S708, and if it corresponds to a charging stand discrimination | determination function, it will wait until the charging current will be stabilized. Specifically, first, in step S708, it is determined whether or not a predetermined time has elapsed. If not, the process in step S708 is repeated. When a predetermined time (for example, 10 s) elapses, the process proceeds to step S709, and the power supply stand discriminating unit 59 of the power receiving device 50 determines whether or not the power transmission current has changed more than a predetermined value set in advance. When it has changed, it progresses to step S711, it determines with the electric power receiving apparatus 50 side that the electric power feeding base 10 is following the change of an electric current value, ie, the electric power feeding base 10 respond | corresponds to an independent control, and further step In S712, the power receiving device 50 sets the target current to a second target transmission current (for example, 900 mA) larger than the first target transmission current, and performs contactless power transmission control with a large current.

一方、ステップS709において送電電流の変化が所定値に満たないと判定されると、ステップS710に進み、さらに所定の時間経過するまで判定を継続する。すなわち、所定の時間(例えば15s)経過していなければステップS709に戻って送電電流の変化量を判定する処理を繰り返す。そして所定の時間経過後も送電電流の変化量が所定値に満たない場合は、ステップS714に進み、給電台10が独自制御に非対応の給電台であると受電機器50側で判定する。そしてステップS715において、受電機器50は第一目標送電電流(この例では700mA)に設定して、送電制御を行う。   On the other hand, if it is determined in step S709 that the change in the transmission current does not reach the predetermined value, the process proceeds to step S710 and the determination is continued until a predetermined time elapses. That is, if a predetermined time (for example, 15 seconds) has not elapsed, the process returns to step S709 to repeat the process of determining the amount of change in the transmission current. If the amount of change in the transmission current does not reach the predetermined value even after the predetermined time has elapsed, the process proceeds to step S714, and the power receiving device 50 determines that the power supply base 10 is a power supply base that does not support independent control. In step S715, the power receiving device 50 sets the first target transmission current (700 mA in this example) and performs power transmission control.

以上のようにして、共に充電台判別機能に対応した給電台と受電機器とを組み合わせた無接点給電システムにおいて、大電流での送電を実現しつつも、異物検出機能も付加して、異物が存在する場合には送電電流を減少させてより安全に送電を行うことが可能となる。   As described above, in a contactless power supply system that combines a power supply base and a power receiving device that both support the charging base discrimination function, while achieving power transmission at a large current, a foreign object detection function is also added, If it exists, it is possible to reduce power transmission current and perform power transmission more safely.

なお、この例では大電流で送電を行う第二電流モードとして、通常の定格充電電流である700mAを900mAに増やす例を説明した。この900mAでの充電は、WPCに準じた充電方式である。ただ、本発明はこのような、第二充電電流をWPC規格等の標準規格に準じた充電に限られず、規格外の充電電流とすることもできる。
(受電機器側の送電動作)
In this example, the example in which 700 mA, which is a normal rated charging current, is increased to 900 mA as the second current mode in which power transmission is performed with a large current has been described. The charging at 900 mA is a charging method according to WPC. However, in the present invention, the second charging current is not limited to charging in accordance with a standard such as the WPC standard, and can be a non-standard charging current.
(Power transmission operation on the power receiving device side)

この受電機器は、大電流送電機能を備えた給電台と組み合わせることで、例えばパック電池の充電時間の短縮を図るなど、独自制御に対応させている。またこの受電機器50Bは、図6に示すように、独自制御に基づいた大電流送電機能を備えない、いいかえると独自制御に非対応で標準規格のみに対応した給電台10Aにセットしても、正しく送電を受けることが可能となる。以下、受電機器50B側の送電動作を、図8のフローチャートに基づいて説明する。各ステップの番号は、図7のフローチャートで対応するステップの番号と一致させており、詳細説明は適宜省略する。   This power receiving device is combined with a power supply stand having a large-current power transmission function so as to correspond to unique control such as shortening the charging time of the battery pack. Further, as shown in FIG. 6, the power receiving device 50B does not have a large-current power transmission function based on unique control. In other words, even if the power receiving device 50B is set on the power supply base 10A that does not support unique control and only supports the standard, It becomes possible to receive power transmission correctly. Hereinafter, the power transmission operation on the power receiving device 50B side will be described based on the flowchart of FIG. The number of each step is the same as the number of the corresponding step in the flowchart of FIG. 7, and detailed description will be omitted as appropriate.

まずステップS801において、受電機器50側から給電台10に対して充電開始を要求する。これは上述したステップS701と同じであり、ここでは第一送電要求信号を送出し、第一目標電流として700mAに設定している。   First, in step S <b> 801, the power receiving device 50 requests the power supply base 10 to start charging. This is the same as step S701 described above, and here, the first power transmission request signal is transmitted, and the first target current is set to 700 mA.

次にステップS802において、ステップS702と同様、送電開始から一定時間を経過したかどうかを判定し、未だの場合はステップS802を繰り返し、経過した場合はステップS803に進む。   Next, in step S802, similarly to step S702, it is determined whether or not a predetermined time has elapsed since the start of power transmission. If not, step S802 is repeated, and if it has elapsed, the process proceeds to step S803.

次にステップS803において、受電機器50側から給電台10に対し、第一送電要求信号と第二送電要求信号を一定時間(例えば10s)送信する。このステップも、上述したステップS703と同じである。   Next, in step S803, the first power transmission request signal and the second power transmission request signal are transmitted from the power receiving device 50 side to the power supply base 10 for a predetermined time (for example, 10 s). This step is also the same as step S703 described above.

続くステップでは、まずステップS804において、所定時間(例えば10s)経過したかどうかを判定し、未だの場合はステップS804の処理を繰り返す。   In the subsequent step, first, in step S804, it is determined whether or not a predetermined time (for example, 10 s) has elapsed. If not, the process in step S804 is repeated.

そして所定時間を経過すると、ステップS809において、電流値の変化に給電台10側が追随しているか否かに基づいて、給電台10が充電台判別機能に対応しているか否かを給電台判別手段59で判定する。ここでは、送電電流が予め設定された所定値よりも大きく変化しているか否かを調べ、変化している場合は、給電台が送電電流を変化させている、すなわち充電台判別機能に対応していると判定して(ステップS811)、目標電流を第二目標送電電流(例えば900mA)に設定して、大電流での無接点送電制御を行う(ステップS812)。   When a predetermined time has elapsed, in step S809, based on whether or not the power supply base 10 follows the change in the current value, whether or not the power supply base 10 corresponds to the charging base determination function is determined. The determination is made at 59. Here, it is checked whether or not the transmission current has changed more than a predetermined value set in advance, and if it has changed, the feeding base changes the transmission current, that is, corresponds to the charging stand discrimination function. (Step S811), the target current is set to the second target transmission current (for example, 900 mA), and contactless power transmission control with a large current is performed (step S812).

一方、送電電流の変化が所定値に満たないと判定されると、ステップS810に進み、さらに所定の時間(例えば15s)経過するまでステップS809の判定を繰り返し、該所定の時間経過後も送電電流の変化量が所定値に満たない場合は、給電台が充電台判別機能に非対応の給電台であると判定し(ステップS814)、第一目標送電電流に設定して、送電制御を行う(ステップS815)。   On the other hand, if it is determined that the change in the transmission current does not reach the predetermined value, the process proceeds to step S810, and the determination in step S809 is repeated until a predetermined time (for example, 15 s) elapses. If the change amount of the power supply is less than the predetermined value, it is determined that the power supply stand is a power supply stand that does not support the charging stand discrimination function (step S814), and the first target transmission current is set to perform power transmission control ( Step S815).

以上のようにして、受電機器は、充電台判別機能に対応した給電台に対しては大きな送電電流を要求でき、非対応の場合は標準規格に準じた送電電流を要求して、いずれの場合も適切な送電を行うことが可能となる。
(給電台側の送電動作)
As described above, the power receiving device can request a large transmission current to the power supply base that supports the charging base discrimination function, and can request a transmission current that conforms to the standard if it is not compatible. It is also possible to carry out appropriate power transmission.
(Power transmission operation on the power supply stand side)

一方で、この給電台10Bは、受電機器が充電台判別機能に対応している場合に限られず、図5に示すように、受電機器50Aが充電台判別機能に非対応の場合でも、充電台判別機能対応の給電台10B側で受電機器の種別に応じて適切な送電を行うことができる。以下、給電台10側の動作を、図9に基づいて説明する。ここでも、各ステップの番号は、図7のフローチャートで対応するステップの番号と一致させており、詳細説明は適宜省略する。また、図9の例では受電機器50が充電台判別機能に対応している場合を説明している。   On the other hand, the power supply base 10B is not limited to the case where the power receiving device is compatible with the charging stand determination function, and as shown in FIG. Appropriate power transmission can be performed according to the type of the power receiving device on the power supply stand 10B side corresponding to the discrimination function. Hereinafter, the operation on the power supply stand 10 side will be described with reference to FIG. Here, the number of each step is made to correspond to the number of the corresponding step in the flowchart of FIG. 7, and detailed description will be omitted as appropriate. In the example of FIG. 9, the case where the power receiving device 50 is compatible with the charging stand determination function is described.

まずステップS901において、受電機器50側から給電台10に対して第一目標電流での送電を開始するよう要求したことを受けて、給電台10側から受電機器50側への送電を開始する。これは上述したステップS701と同じであり、ここでは受電機器50から、第一目標電流として700mAに設定した第一送電要求信号、すなわちWPCのCEを受けて、送電コイルから、これと電磁結合された受電コイルに対して送電を開始する。   First, in step S <b> 901, in response to a request from the power receiving device 50 side to start power transmission at the first target current to the power supply base 10, power transmission from the power supply base 10 side to the power receiving device 50 side is started. This is the same as step S701 described above. Here, the first power transmission request signal set to 700 mA as the first target current from the power receiving device 50, that is, the CE of the WPC, is received and electromagnetically coupled from the power transmission coil. Power transmission to the receiving coil.

次にステップS905において、充電台判別機能対応の受電機器と給電台の組み合わせかどうかを判定する。ここでは、受電機器が独自制御対応かどうかを給電台側で判定している。具体的には、充電台判別機能に対応した受電機器側から送信される2種類の送電要求信号を、給電台10で受ける。図4に示す例では、給電台10も充電台判別機能に対応しているため、充電台判別機能に従った第二送電要求信号を正しく受信処理することができる。すなわち受電機器50が独自制御対応であることを給電台10側で把握すると共に、例えば第二送電要求信号を受信している間は第一送電要求信号を無視する等、充電台判別機能に従った処理が可能となる。   Next, in step S905, it is determined whether the combination of the power receiving device corresponding to the charging stand determination function and the power supply stand. Here, it is determined on the power supply stand side whether or not the power receiving device is compatible with the original control. Specifically, the power supply base 10 receives two types of power transmission request signals transmitted from the power receiving device side corresponding to the charging base discrimination function. In the example shown in FIG. 4, since the power supply base 10 also supports the charging base determination function, the second power transmission request signal according to the charging base determination function can be correctly received. That is, the power supply base 50 recognizes that the power receiving device 50 is compatible with the original control, and, for example, ignores the first power transmission request signal while receiving the second power transmission request signal. Can be processed.

一方、給電台10Aが図6に示すように充電台判別機能に対応していない場合は、第二送電要求信号を受信しても解釈できないので、第一送電要求信号であるWPCのCEのみを受信し、ステップS913において、該WPCのCEに従った出力制御を行う。なお、受電機器側が充電台判別機能非対応の場合は、ステップS905自体が存在しないことになる。   On the other hand, if the power supply base 10A does not support the charging base discriminating function as shown in FIG. 6, since it cannot be interpreted even if the second power transmission request signal is received, only the CE of the WPC that is the first power transmission request signal is obtained. In step S913, output control is performed in accordance with the CE of the WPC. Note that if the power receiving device side does not support the charging stand determination function, step S905 itself does not exist.

このようにして充電台判別機能対応の受電機器と給電台の組み合わせであることが確認されると、ステップS906に進み、異物判定を行う。ここでは、効率と異物閾値の差が所定値以上かどうかを給電台10側で判定する。所定値以下の場合は、効率が悪い、すなわち異物が存在すると判定してステップS913に進む。ここでは、効率を62%に設定し、さらに所定値を5%に設定している。   In this way, when it is confirmed that the combination of the power receiving device and the power supply stand compatible with the charging stand discrimination function, the process proceeds to step S906, and foreign matter determination is performed. Here, whether or not the difference between the efficiency and the foreign substance threshold is equal to or greater than a predetermined value is determined on the power supply stand 10 side. If it is less than or equal to the predetermined value, it is determined that the efficiency is poor, that is, there is a foreign substance, and the process proceeds to step S913. Here, the efficiency is set to 62%, and the predetermined value is set to 5%.

一方、差が所定値以上の場合は、ステップS907に進み、給電台10側で充電台判別機能のCEに従った出力制御を行う。さらにステップS908に進み、所定の時間経過したか否かを判定し、未だの場合はステップS908の処理を繰り返す。そして所定時間(例えば10s)を経過すると、ステップS913に進み、WPCのCEに従った出力制御を行う。   On the other hand, if the difference is equal to or larger than the predetermined value, the process proceeds to step S907, and output control is performed on the power supply base 10 side according to the CE of the charging base discrimination function. Further, the process proceeds to step S908, where it is determined whether or not a predetermined time has elapsed. If not, the process of step S908 is repeated. When a predetermined time (for example, 10 s) elapses, the process proceeds to step S913 to perform output control according to the WPC CE.

以上のようにして、充電台判別機能に対応した給電台はセットされた受電機器が充電台判別機能対応型かどうかを判別し、また異物検出を行うことができる。   As described above, the power supply stand corresponding to the charging stand discriminating function can discriminate whether or not the set power receiving device is compatible with the charging stand discriminating function, and can detect foreign matter.

なお受電機器を、このような充電台判別機能に対応した給電台のみならず、図6に示すように充電台判別機能非対応の給電台10Aにセットした場合でも送電できる。この場合の給電台の動作を、図10のフローチャートに示す。この給電台10Aは充電台判別機能非対応の、標準規格に準拠した給電台であり、まずステップS1001において、受電機器50Bから送出される送電要求信号であるWPCのCEに従い、送電を開始する。給電台10AはこのWPC_CE信号を受信して(ステップS1005)、これに従って出力制御を行う(ステップS1013)。なお、受電機器10Bが充電台判別機能対応型の場合は、ステップS1005において給電台10Aに対し、WPC_CEのみならず充電台判別機能CEも送信されるが、給電台10Aは充電台判別機能非対応のため、充電台判別機能CEを解釈できず、WPC_CEのみを受信処理して出力制御する。一方で受電機器50Aが充電台判別機能非対応の場合は、単に第一送電要求信号であるWPC_CEのみを送信するため、上述の通り給電台は該WPC_CEを受信処理することとなる。このように標準規格に準拠した給電台10Aは、セットされる受電機器が充電台判別機能対応型、非対応型のいずれの場合でも、標準規格に従った送電を実施できる。   Note that power can be transmitted not only when the power receiving device is set to the power supply stand corresponding to the charging stand determination function but also to the power supply stand 10A not compatible with the charging stand determination function as shown in FIG. The operation of the power supply stand in this case is shown in the flowchart of FIG. This power supply base 10A is a power supply base that does not support the charging base determination function and conforms to the standard. First, in step S1001, power transmission is started in accordance with the CE of the WPC that is the power transmission request signal transmitted from the power receiving device 50B. The power supply base 10A receives this WPC_CE signal (step S1005), and performs output control according to this (step S1013). If the power receiving device 10B is of a type that supports the charging base determination function, in step S1005, not only the WPC_CE but also the charging base determination function CE is transmitted to the power supply base 10A, but the power supply base 10A does not support the charging base determination function. Therefore, the charging stand discriminating function CE cannot be interpreted, and only WPC_CE is received and processed for output control. On the other hand, when the power receiving device 50A does not support the charging stand discrimination function, only the WPC_CE that is the first power transmission request signal is transmitted, so that the power feeding stand receives the WPC_CE as described above. As described above, the power supply base 10A compliant with the standard can perform power transmission according to the standard regardless of whether the power receiving device to be set is the charging base discrimination function compatible type or the non-compatible type.

このように給電側検出回路15は、異物検出手段15Bとしても機能する。なおWPCでは、上述の通りWPC1.1仕様において異物検出機能が規定されているものの、WPC1.0では異物検出機能が規定されておらず、また現在市販されているWPC対応の充電機器においても、殆どは異物検出機能を実装していない。このため、上述したような異物検出機能を備える受電機器や給電台を混在させる場面が多々生じ得る。また本実施例において採用している異物検出機能は独自の制御に基づくものであるが、WPC1.1のような標準化された規格に基づく異物検出機能に対しても本発明を適用できることはいうまでもない。   As described above, the power supply side detection circuit 15 also functions as the foreign matter detection means 15B. In WPC, the foreign object detection function is defined in the WPC 1.1 specification as described above, but in WPC 1.0, the foreign object detection function is not defined. Most do not implement the foreign object detection function. For this reason, there may be many scenes where power receiving devices and power supply stands having the foreign object detection function as described above are mixed. The foreign object detection function employed in this embodiment is based on unique control, but it goes without saying that the present invention can also be applied to a foreign object detection function based on a standardized standard such as WPC 1.1. Nor.

また、以上の例では規格による通信をWPCで規格化されたQi規格とした例を説明したが、本発明はこれに限定されるものでなく、その他の無接点充電方式に関して規格化された通信方式、あるいは規格化されていなくとも、広く採用されている事実上標準の通信方式などが適宜採用できる。   In the above example, communication according to the standard has been described as the Qi standard standardized by WPC. However, the present invention is not limited to this, and communication standardized with respect to other contactless charging methods. Even if the system is not standardized, a practically standard communication system that is widely adopted can be appropriately employed.

さらに以上の例では、説明を簡素化するため、送電電力をWPC規格の低電力仕様の規格書(Volume I: Low Power)に従い最大5Wとした。ただ、ただ、本発明において電力値は5Wに限定するものでなく、例えば10W、15Wや20W以上の高電力で送電可能な給電台や受電機器としてもよい。また、無接点充電の規格もQi規格に限られるものでなく、他の無接点充電規格に対応した充電台や電池内蔵機器に対しても、本願発明を適用できる。さらに無接点(ワイヤレス)充電方式としては、可動コイル型の他、マグネット吸引型、コイルアレイ型などが適宜利用できる。   Furthermore, in the above example, in order to simplify the explanation, the transmission power is set to 5 W at the maximum according to the WPC standard low power specification standard (Volume I: Low Power). However, in the present invention, the power value is not limited to 5 W, and may be a power supply stand or a power receiving device that can transmit power with high power of 10 W, 15 W, 20 W or more, for example. In addition, the standard for contactless charging is not limited to the Qi standard, and the present invention can be applied to a charging stand and a battery built-in device corresponding to other contactless charging standards. Furthermore, as a contactless (wireless) charging method, a magnet attraction type, a coil array type, and the like can be used as appropriate in addition to a movable coil type.

本発明に係る無接点給電システム、受電機器、給電台、無接点給電方法は、充電台等の給電台から電池内蔵機器等の受電機器に電磁結合作用で電力搬送して電池を充電する方法に最適に利用できる。また、充電器に限らず、受電機器の電気負荷に電力を供給して駆動させるシステム、例えば照明器具やミキサーのようなキッチン製品、あるいは充電アダプターに無接点で送電する方法にも利用できる。   The contactless power supply system, the power receiving device, the power supply stand, and the contactless power supply method according to the present invention are a method for charging a battery by transferring power from a power supply stand such as a charging stand to a power receiving device such as a battery built-in device by electromagnetic coupling action. It can be used optimally. Further, the present invention can be used not only for a charger but also for a system for supplying electric power to an electric load of a power receiving device and driving it, for example, a kitchen product such as a lighting fixture or a mixer, or a method for transmitting power to a charging adapter without contact.

100、200、300…無接点給電システム
10、10’…給電台;10A…標準規格対応の充電台;10B…独自制御対応の充電台
11…送電コイル
12…交流電源
13…電力制御手段
14…要求信号受信手段
15…給電側検出回路;15A…受電機器判別手段;15B…異物検出手段
16…移動機構
20…ケース
21…上面プレート
22…位置決め部機構
23…嵌入凹部
50…受電機器;50A…標準規格対応の受電機器;50B…独自制御対応の受電機器
51…受電コイル
52…二次電池
53…受電側制御手段;53B…負荷駆動制御手段
54…伝送回路
56…整流回路
57…要求信号生成手段
58…受電量取得手段
59…給電台判別手段
220…給電台
221…充電面
251…送電コイル
260…受電機器
261…受電コイル
1310…充電台
1350…受電機器
4103…送電コイル
4104…受電コイル
LD…電気負荷
DESCRIPTION OF SYMBOLS 100, 200, 300 ... Non-contact electric power feeding system 10, 10 '... Feeding stand; 10A ... Standard-compatible charging stand; 10B ... Original control-compatible charging stand 11 ... Power transmission coil 12 ... AC power supply 13 ... Power control means 14 ... Request signal receiving means 15 ... power feeding side detection circuit; 15A ... power receiving device discriminating means; 15B ... foreign matter detection means 16 ... moving mechanism 20 ... case 21 ... top plate 22 ... positioning portion mechanism 23 ... insertion recess 50 ... power receiving device; Power receiving device compliant with standard specification; 50B ... Power receiving device 51 corresponding to original control ... Power receiving coil 52 ... Secondary battery 53 ... Power receiving side control means; 53B ... Load drive control means 54 ... Transmission circuit 56 ... Rectifier circuit 57 ... Request signal generation Means 58... Received power acquisition means 59... Power feeding base discriminating means 220... Power feeding base 221... Charging surface 251. 0 ... charging stand 1350 ... power receiving device 4103 ... power transmission coil 4104 ... power receiving coil LD ... electric load

Claims (18)

電気負荷を有する受電機器と、
前記受電機器に送電する給電台とを備え、
前記受電機器に対して、前記給電台から無接点で電力を送電して送電可能な無接点給電システムであって、
前記受電機器は、
前記電気負荷と、
前記給電台からの送電を受けるための受電コイルと、
前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、
前記受電機器側で実際に得られた受電量を取得する受電量取得手段と、
前記給電台から受電機器に送電される送電量に関して指示する送電要求信号を生成するための要求信号生成手段と
を備え、
前記給電台は、
前記受電コイルと電磁結合して送電するための送電コイルと、
前記要求信号生成手段で生成された送電要求信号を受信するための要求信号受信手段と、
前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する送電量を制御するための電力制御手段と、
を備え、
前記給電台は、
第一目標電流値を定格電流として送電可能な第一電流モードと、
前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードとを、前記電力制御手段で切り替え可能としており、
前記要求信号生成手段は、送電要求信号として、
前記第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、
前記第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号とを送信可能としてなることを特徴とする無接点給電システム。
A power receiving device having an electrical load;
A power supply base for transmitting power to the power receiving device,
A non-contact power supply system capable of transmitting power by transmitting power from the power supply base without contact to the power receiving device,
The power receiving device is:
The electrical load;
A power receiving coil for receiving power from the power supply base;
Power receiving side control means for controlling driving of the electric load with the received power received by the power receiving coil;
A power receiving amount acquisition means for acquiring a power receiving amount actually obtained on the power receiving device side;
Request signal generating means for generating a power transmission request signal for instructing the amount of power transmitted from the power supply to the power receiving device,
The power supply stand is
A power transmission coil for electromagnetically coupling with the power receiving coil to transmit power;
Request signal receiving means for receiving the power transmission request signal generated by the request signal generating means;
Based on the power transmission request signal received by the request signal receiving means, power control means for controlling the amount of power transmitted from the power transmission coil,
With
The power supply stand is
A first current mode capable of transmitting power with the first target current value as a rated current;
The power control means can switch between a second current mode in which a second target current value larger than the first target current value can be transmitted as a rated current,
The request signal generation means, as a power transmission request signal,
A first transmission request signal for requesting first transmission power required for power transmission in the first current mode;
A contactless power feeding system capable of transmitting a second transmission request signal for requesting second transmission power required for power transmission in the second current mode.
請求項1に記載の無接点給電システムであって、前記給電台はさらに、
前記送電コイルと受電コイルとの間に異物が存在することを検出する異物検出手段を備え、
前記給電台は、前記異物検出手段により異物の存在が検出されると、前記第二送電要求信号を受信した場合でも、前記第二電流モードに移行しないよう制御してなることを特徴とする無接点給電システム。
The contactless power supply system according to claim 1, wherein the power supply base further includes:
Foreign matter detecting means for detecting the presence of foreign matter between the power transmission coil and the power receiving coil,
The power feeding base is controlled so as not to shift to the second current mode even when the second power transmission request signal is received when the presence of the foreign matter is detected by the foreign matter detecting means. Contact power supply system.
請求項2に記載の無接点給電システムであって、
前記給電台は、前記異物検出手段により異物の存在が検出されると、前記第二送電要求信号を受信した場合でも、前記第一電流モードで送電を行うよう制御してなることを特徴とする無接点給電システム。
The contactless power supply system according to claim 2,
The power supply base is configured to control power transmission in the first current mode even when the second power transmission request signal is received when the foreign object detection means detects the presence of the foreign object. Contactless power supply system.
請求項1〜3のいずれか一に記載の無接点給電システムであって、
前記受電量が、電流値であることを特徴とする無接点給電システム。
The contactless power supply system according to any one of claims 1 to 3,
The non-contact power supply system, wherein the amount of power received is a current value.
請求項1〜3に記載の無接点給電システムであって、
前記受電量が、電力値であることを特徴とする無接点給電システム。
The contactless power supply system according to claim 1,
The contactless power supply system, wherein the amount of received power is a power value.
請求項2に記載の無接点給電システムであって、
前記異物検出手段が、前記受電機器において受電電流値を検出し、該受電電流値に基づいて伝送効率を演算し、該伝送効率を所定の効率閾値と比較して、
伝送効率が効率閾値よりも小さいときに異物が存在すると判定し、
伝送効率が効率閾値よりも大きいときに異物が存在しないと判定することを特徴とする無接点給電システム。
The contactless power supply system according to claim 2,
The foreign object detection means detects a received current value in the power receiving device, calculates a transmission efficiency based on the received current value, compares the transmission efficiency with a predetermined efficiency threshold,
When the transmission efficiency is smaller than the efficiency threshold, it is determined that there is a foreign object,
A non-contact power feeding system that determines that there is no foreign object when transmission efficiency is greater than an efficiency threshold.
請求項1〜6のいずれか一に記載の無接点給電システムであって、
前記電気負荷が、二次電池であり、
前記給電台が、前記二次電池を充電する充電台であり、
前記受電機器に対して、前記給電台から無接点で電力を送電して、前記受電側制御手段が、前記受電コイルで受電した受電電力でもって、前記二次電池の充電電流を制御して、該二次電池を充電可能としてなることを特徴とする無接点給電システム。
It is a non-contact electric power feeding system as described in any one of Claims 1-6,
The electrical load is a secondary battery;
The power supply base is a charging base for charging the secondary battery;
For the power receiving device, power is transmitted from the power supply without contact, and the power receiving side control means controls the charging current of the secondary battery with the received power received by the power receiving coil, A non-contact power supply system capable of charging the secondary battery.
請求項1〜7のいずれか一に記載の無接点給電システムであって、
第一目標電流値が、規格化された無接点充電方式に従った電流値であることを特徴とする無接点給電システム。
It is a non-contact electric power feeding system as described in any one of Claims 1-7,
A contactless power supply system, wherein the first target current value is a current value according to a standardized contactless charging method.
請求項8に記載の無接点給電システムであって、
第一目標電流値が、700mAであり、
第二目標電流値が、900mAであることを特徴とする無接点給電システム。
It is a non-contact electric power feeding system according to claim 8,
The first target current value is 700 mA,
A non-contact power feeding system, wherein the second target current value is 900 mA.
請求項1から9のいずれか一に記載の無接点給電システムであって、
前記要求信号生成手段は、前記第一送電要求信号と、第二送電要求信号とを時分割で送信可能としてなることを特徴とする無接点給電システム。
A contactless power feeding system according to any one of claims 1 to 9,
The non-contact power feeding system according to claim 1, wherein the request signal generating unit is capable of transmitting the first power transmission request signal and the second power transmission request signal in a time division manner.
請求項1から10のいずれか一に記載の無接点給電システムであって、前記給電台がさらに、
前記送電コイルを、前記受電機器を載置する載置面内で移動させるための移動機構を備えることを特徴とする無接点給電システム。
The contactless power supply system according to any one of claims 1 to 10, wherein the power supply base further includes:
A contactless power feeding system comprising: a moving mechanism for moving the power transmission coil within a mounting surface on which the power receiving device is mounted.
請求項1から10のいずれか一に記載の無接点給電システムであって、
前記給電台が、前記送電コイルを固定式としてなることを特徴とする無接点給電システム。
It is a non-contact electric power feeding system according to any one of claims 1 to 10,
The non-contact power feeding system according to claim 1, wherein the power feeding stand has a fixed power transmission coil.
給電台に内蔵される送電コイルを介して送電される電力でもって、無接点で駆動可能な受電機器であって、
電気負荷と、
前記電気負荷に送電する電力を受けるため、送電コイルと電磁結合可能な受電コイルと、
前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、
前記受電機器側で実際に得られた受電値を取得する受電量取得手段と、
前記給電台から受電機器に送電される送電量に関して指示する送電要求信号を生成するための要求信号生成手段と
を備え、
前記要求信号生成手段は、送電要求信号として、
第一目標電流値を定格電流として送電可能な第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、
前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号とを送信可能であることを特徴とする受電機器。
A power receiving device that can be driven in a contactless manner with electric power transmitted through a power transmission coil built in the power supply stand,
Electrical load,
In order to receive the power transmitted to the electrical load, a power receiving coil that can be electromagnetically coupled to the power transmitting coil,
Power receiving side control means for controlling driving of the electric load with the received power received by the power receiving coil;
A power receiving amount acquisition means for acquiring a power receiving value actually obtained on the power receiving device side;
Request signal generating means for generating a power transmission request signal for instructing the amount of power transmitted from the power supply to the power receiving device,
The request signal generation means, as a power transmission request signal,
A first transmission request signal for requesting a first transmission power necessary for power transmission in a first current mode in which transmission can be performed with a first target current value as a rated current;
A second transmission request signal for requesting a second transmission power required for power transmission in a second current mode in which a second target current value larger than the first target current value can be transmitted as a rated current can be transmitted. Power receiving equipment characterized by
請求項13に記載の受電機器であって、
前記給電台で、前記送電コイルと受電コイルとの間に異物が存在することを検出すると、前記第二電流モードに移行しないことを特徴とする受電機器。
The power receiving device according to claim 13,
The power receiving device according to claim 1, wherein when the power supply base detects that a foreign object exists between the power transmission coil and the power reception coil, the power supply device does not shift to the second current mode.
電気負荷を有する受電機器に対し、無接点で電力を送電して駆動可能な給電台であって、
受電機器に内蔵された受電コイルと電磁結合して、該受電機器に送電するための送電コイルと、
受電機器から送信される、前記給電台から受電機器に送電される送電量に関して指示する送電要求信号を受信するための要求信号受信手段と、
前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する電力量を制御するための電力制御手段と、
を備え、
前記電力制御手段は、
第一目標電流値を定格電流として送電可能な第一電流モードと、
前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードとを、切り替え可能としてなることを特徴とする給電台。
A power supply stand that can be driven by transmitting electric power to a power receiving device having an electric load without contact,
A power transmission coil for electromagnetically coupling with a power receiving coil incorporated in the power receiving device to transmit power to the power receiving device;
A request signal receiving means for receiving a power transmission request signal for instructing a power transmission amount transmitted from the power supply device to the power receiving device, transmitted from the power receiving device;
Based on the power transmission request signal received by the request signal receiving means, power control means for controlling the amount of power transmitted from the power transmission coil,
With
The power control means includes
A first current mode capable of transmitting power with the first target current value as a rated current;
A power supply stand that is switchable between a second current mode in which power can be transmitted with a second target current value larger than the first target current value as a rated current.
請求項15に記載の給電台であって、さらに、
前記送電コイルと受電コイルとの間に異物が存在することを検出する異物検出手段を備えており、
前記異物検出手段により異物の存在が検出されると、前記電力制御手段は、前記第二電流モードでの送電を要求する前記送電要求信号を受信した場合でも、前記第二電流モードに移行しないよう制御してなることを特徴とする給電台。
The power supply stand according to claim 15, further comprising:
A foreign object detection means for detecting the presence of a foreign object between the power transmission coil and the power receiving coil;
When the presence of a foreign object is detected by the foreign object detection unit, the power control unit does not shift to the second current mode even when receiving the power transmission request signal requesting power transmission in the second current mode. A power supply stand that is controlled.
電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して駆動する無接点給電方法であって、
前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、
前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への送電を開始すると共に、受電値を検出する工程と、
検出された受電値に基づいて、前記給電台から前記受電機器に送電される送電量の増減を指示する送電要求信号を前記給電台に送信する工程と、
前記送電要求信号に従って、電力制御手段が前記送電コイルから前記受電コイルに送電する送電量を調整する工程と
を含み、
前記受電機器は、送電要求信号として、
第一目標電流値を定格電流として送電可能な第一電流モードでの送電に必要な第一送電電力を要求する第一送電要求信号と、
前記第一目標電流値よりも大きい第二目標電流値を定格電流として送電可能な第二電流モードでの送電に必要な第二送電電力を要求する第二送電要求信号と
を併せて前記給電台に送信してなることを特徴とする無接点給電方法。
A non-contact power supply method for driving by transmitting power from a power supply stand without contact to a power receiving device having an electrical load,
A step of transmitting power from the power transmission coil to the power reception coil in a state where the power reception coil of the power reception device is electromagnetically coupled to the power transmission coil of the power supply base;
The power receiving device starts power transmission to the electric load with the received power received by the power receiving coil, and detects a power reception value;
A step of transmitting a power transmission request signal instructing increase / decrease in the amount of power transmitted from the power supply base to the power receiving device based on the detected power reception value;
Wherein in accordance with transmission request signal, and a step in which the power control means for adjusting the transmission amount of power to the power receiving coil from the transmitting coil,
The power receiving device, as a power transmission request signal,
A first transmission request signal for requesting a first transmission power necessary for power transmission in a first current mode in which transmission can be performed with a first target current value as a rated current;
Combined with the second power transmission request signal for requesting the second transmission power required for power transmission in the second current mode in which the second target current value larger than the first target current value can be transmitted as the rated current. A non-contact power feeding method characterized by comprising:
請求項17に記載の無接点給電方法であって、
異物の存在が検出されると、前記給電台が前記第二送電要求信号を受信した場合でも、前記第二電流モードに移行しないよう制御してなることを特徴とする無接点給電方法
The contactless power supply method according to claim 17,
A contactless power feeding method, wherein, when the presence of a foreign object is detected, control is performed so as not to shift to the second current mode even when the power feeding base receives the second power transmission request signal.
JP2013014116A 2013-01-29 2013-01-29 Contactless power supply system, power receiving device, power supply stand, contactless power supply method Expired - Fee Related JP6081207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014116A JP6081207B2 (en) 2013-01-29 2013-01-29 Contactless power supply system, power receiving device, power supply stand, contactless power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014116A JP6081207B2 (en) 2013-01-29 2013-01-29 Contactless power supply system, power receiving device, power supply stand, contactless power supply method

Publications (2)

Publication Number Publication Date
JP2014147208A JP2014147208A (en) 2014-08-14
JP6081207B2 true JP6081207B2 (en) 2017-02-15

Family

ID=51427042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014116A Expired - Fee Related JP6081207B2 (en) 2013-01-29 2013-01-29 Contactless power supply system, power receiving device, power supply stand, contactless power supply method

Country Status (1)

Country Link
JP (1) JP6081207B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133392A1 (en) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 Terminal charging system, charging method, and power adapter
KR20170094879A (en) * 2016-02-12 2017-08-22 엘지이노텍 주식회사 Wireless Charging Method and Apparatus and System therefor
KR20170099082A (en) * 2016-02-23 2017-08-31 엘지이노텍 주식회사 Wireless Charging Method and Apparatus and System therefor
CN107659002A (en) * 2017-09-29 2018-02-02 郑州携能通信技术有限公司 A kind of wireless charging emitter, reception device and wireless charging system
JP7321850B2 (en) * 2019-09-09 2023-08-07 株式会社マキタ Charger and charging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005185A (en) * 2010-06-14 2012-01-05 Nec Tokin Corp Non-contact power transmission and communication system
KR101760817B1 (en) * 2012-08-06 2017-08-04 주식회사 한림포스텍 Apparatus and method for providing compatibility in wireless power transmission system
JP2014075927A (en) * 2012-10-04 2014-04-24 Sanyo Electric Co Ltd Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method
BR112015012074B1 (en) * 2012-11-29 2022-10-11 Koninklijke Philips N.V POWER TRANSMITTER, POWER RECEIVER, POWER TRANSFER SYSTEM, METHOD OF OPERATION FOR A POWER TRANSMITTER AND METHOD OF OPERATION FOR A POWER RECEIVER

Also Published As

Publication number Publication date
JP2014147208A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP2014075927A (en) Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method
US12021397B2 (en) Apparatus and method for performing power calibration in wireless power transmission system
KR102042094B1 (en) Wireless power transmitter for excluding cross connected wireless power receiver and method for controlling thereof
KR101253670B1 (en) Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
KR102051682B1 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
CN107431366B (en) Cooling system and non-contact power supply system
US10263470B2 (en) Wireless inductive power transfer
KR101243587B1 (en) Non-contract charging device, non-contact charghing system and non-contact charging method
US20140191568A1 (en) System and method for powering or charging multiple receivers wirelessly with a power transmitter
US20180212470A1 (en) Wirelessly charging battery and wireless charging control method
KR20190000363A (en) Wireless power transmission method and apparatus therefor
KR20130084619A (en) Wireless power transmitter and wireless power receiver and method for controlling each thereof
EP3457517A2 (en) Wireless charging method, and apparatus and system therefor
JP6081207B2 (en) Contactless power supply system, power receiving device, power supply stand, contactless power supply method
JP2006519580A5 (en)
US11411442B2 (en) Method and apparatus for performing communication in wireless power transmission system
CN104584448A (en) Wireless inductive power transfer
US11728694B2 (en) Wireless power receiving device, wireless power transmitting device, and method for calibrating power using the same
JP2016092986A (en) Non-contact power transmission device and power reception equipment
JP2015231329A (en) Wireless power transmission device
JP5905357B2 (en) Contactless power supply system, power receiving device, power supply stand, contactless power supply method
JP2015006068A (en) Noncontact power supply method
CN115362617A (en) Wireless power transmission apparatus and wireless power transmission method
US20230318363A1 (en) Wireless power transmitting device and method of detecting foreign substances by wireless power transmitting device
US12081046B2 (en) Apparatus for dynamic control of wireless power transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees