JP6078021B2 - Gas meter device and gas supply control method - Google Patents

Gas meter device and gas supply control method Download PDF

Info

Publication number
JP6078021B2
JP6078021B2 JP2014088298A JP2014088298A JP6078021B2 JP 6078021 B2 JP6078021 B2 JP 6078021B2 JP 2014088298 A JP2014088298 A JP 2014088298A JP 2014088298 A JP2014088298 A JP 2014088298A JP 6078021 B2 JP6078021 B2 JP 6078021B2
Authority
JP
Japan
Prior art keywords
floor
gas meter
gas supply
meter device
deformation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088298A
Other languages
Japanese (ja)
Other versions
JP2015206724A (en
Inventor
文樹 伊藤
文樹 伊藤
佐久間 博久
博久 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2014088298A priority Critical patent/JP6078021B2/en
Publication of JP2015206724A publication Critical patent/JP2015206724A/en
Application granted granted Critical
Publication of JP6078021B2 publication Critical patent/JP6078021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、センサにより計測された建物の揺れに応じてガス供給の遮断を行うガスメータ装置等に関する。   The present invention relates to a gas meter device or the like that cuts off a gas supply in response to shaking of a building measured by a sensor.

災害の発生のおそれのある大きな地震動が発生した場合、ガスメータはガス供給を遮断する必要がある。そのため、近年では建物の揺れをセンサで検知してガス供給を遮断するガスメータ装置が開発されている。   When a large earthquake motion that may cause a disaster occurs, the gas meter needs to shut off the gas supply. Therefore, in recent years, gas meter devices have been developed that detect the shaking of a building with a sensor and shut off the gas supply.

例えば特許文献1には、3軸方向加速度センサを搭載したガスメータにより、地震によって発生した揺れから求めた震度や地震後のガスメータの傾きを計測し、計測値に応じてガス供給の遮断を行うことが記載されている。   For example, Patent Document 1 uses a gas meter equipped with a triaxial acceleration sensor to measure the seismic intensity obtained from the shaking generated by an earthquake and the inclination of the gas meter after the earthquake, and shut off the gas supply according to the measured value. Is described.

建物の揺れとしては建物の速度や変位を計測する場合もあり、例えば特許文献2には、加速度センサで観測された加速度や、加速度から演算処理にて算出した速度の指標値を用いることにより、地震動評価を行うことが記載されている。   As the shaking of the building, the speed and displacement of the building may be measured. For example, in Patent Document 2, the acceleration observed by the acceleration sensor and the index value of the speed calculated by the calculation process from the acceleration are used. It describes that earthquake motion evaluation is performed.

また特許文献3には、加速度センサで計測された加速度から変位を算出し、これを用いて建物の耐震性能を判定することが記載されている。特許文献4には、建物を強制加振し、特定の階に設けたセンサで検知した応答値で、建物の動特性を推定することが記載されている。   Patent Document 3 describes that a displacement is calculated from acceleration measured by an acceleration sensor, and the seismic performance of the building is determined using this. Patent Document 4 describes that a building is forcibly vibrated and a dynamic characteristic of the building is estimated using a response value detected by a sensor provided on a specific floor.

特開2013−164327号公報JP 2013-164327 A 特開2007−3289号公報JP 2007-3289 A 特開2003−344213号公報JP 2003-344213 A 特開2002−228540号公報JP 2002-228540 A

超高層建物などでは揺れに対する固有周期が一般に長く、長周期地震動に対して共振しやすい。長周期振動では、加速度が非常に大きい値を示さない場合でも建物に大きな変形が生じる可能性がある。   In high-rise buildings, etc., the natural period for shaking is generally long, and it tends to resonate with long-period ground motion. Long-period vibration can cause large deformation in the building even when the acceleration does not show a very large value.

地震時の建物の変形に関して、建築基準法では構造計算で層間変形角が制限数値以内であることを確かめることとなっており、超高層建物などでは、実際の地震時に各階の層間変形角が取得できれば、変形状態を直接測定することとなり影響を適切に判断することが可能となる。   Regarding the deformation of buildings during an earthquake, the Building Standards Act confirms that the interlaminar deformation angle is within the limit value in the structural calculation. For ultra-high-rise buildings, etc., the interlaminar deformation angle of each floor is acquired during an actual earthquake. If possible, the deformation state is directly measured, and the influence can be appropriately determined.

しかしながら、従来の建物の揺れを検知するセンサは、建物の変形を層間変形角によって直接検知するものではなかった。   However, the conventional sensor for detecting the shaking of the building does not directly detect the deformation of the building by the interlayer deformation angle.

例えば特許文献1の方法ではガス供給の遮断判定を震度や地震後のガスメータの傾きを用いて行っており、特許文献2では、加速度や、加速度から演算処理にて算出した速度の指標値を用いることにより建物の地震動評価を行っている。また特許文献3では加速度センサで計測された加速度から変位を算出し、性能曲線を求めて建物の残余耐震性能を判定することで耐震性能を評価しており、特許文献4では、建物を強制加振した際の応答値で建物の動特性を推定するが、これらは層間変形角のような変形状態を直接評価するものではない。   For example, in the method of Patent Document 1, the gas supply cutoff judgment is performed using the seismic intensity and the inclination of the gas meter after the earthquake. In Patent Document 2, the index value of acceleration or the speed calculated by the arithmetic processing from the acceleration is used. Therefore, the seismic motion of the building is evaluated. In Patent Document 3, the displacement is calculated from the acceleration measured by the acceleration sensor, and the seismic performance is evaluated by determining the remaining seismic performance of the building by obtaining a performance curve. In Patent Document 4, the building is compulsorily added. The dynamic characteristics of the building are estimated by the response value when shaken, but these do not directly evaluate the deformation state such as the interlayer deformation angle.

本発明の目的は、上記の問題を鑑みてなされたもので、建物の各階の変形状態を層間変形角を求めることで適切に評価し、ガス供給における保安機能が向上可能なガスメータ装置を提供することである。   An object of the present invention is made in view of the above problems, and provides a gas meter device capable of appropriately evaluating the deformation state of each floor of a building by obtaining an interlayer deformation angle and improving the security function in gas supply. That is.

前述した課題を解決するための第1の発明は、建物の所定階の振動情報の計測を行うセンサと、前記振動情報から得た前記所定階の水平変位と、前記所定階の地上からの高さを用いて前記所定階の層間変形角を算出し、前記層間変形角に応じてガスの供給を遮断する制御部と、を具備し、前記制御部は、前記所定階の水平変位を前記所定階の地上からの高さで割った値を前記所定階の層間変形角として算出することを特徴とするガスメータ装置である。 A first invention for solving the above-described problem is a sensor that measures vibration information of a predetermined floor of a building, a horizontal displacement of the predetermined floor obtained from the vibration information, and a height of the predetermined floor from the ground. A control unit that calculates an interlayer deformation angle of the predetermined floor using the height and shuts off a gas supply according to the interlayer deformation angle, and the control unit determines a horizontal displacement of the predetermined floor. The gas meter device is characterized in that a value obtained by dividing a floor from a height from the ground is calculated as an interlayer deformation angle of the predetermined floor .

これにより、建物の各階における変形状態を適切に評価し、ガス供給における保安機能を向上させることができる。すなわち、本発明ではガスメータ装置によって計測した振動情報から各階の層間変形角を算出できるので、長周期地震動に対する超高層建物の揺れのように、加速度が小さいにも関わらず建物に大きな変形が生じているケースでも、その変形状態を適切に評価できる。また単なる水平変位でなく、水平変位に高さの要因も踏まえて算出した層間変形角によって変形状態を評価することで、各階の変形状態の正確な評価が行える。ここで、振動情報とは物体の振動について示す情報をいい、例えば加速度や速度などである。   Thereby, the deformation | transformation state in each floor of a building can be evaluated appropriately, and the security function in gas supply can be improved. In other words, in the present invention, since the interlayer deformation angle of each floor can be calculated from the vibration information measured by the gas meter device, a large deformation occurs in the building even though the acceleration is small, such as shaking of a high-rise building due to long-period ground motion. Even in the case where it is, the deformation state can be appropriately evaluated. In addition, the deformation state of each floor can be accurately evaluated by evaluating the deformation state based on the interlayer deformation angle calculated based not only on the horizontal displacement but also on the height factor of the horizontal displacement. Here, the vibration information refers to information indicating the vibration of the object, such as acceleration or speed.

前記ガスメータ装置は、前記所定階の地上からの高さを計測する高度計を具備することが望ましい The gas meter device preferably includes an altimeter for measuring a height of the predetermined floor from the ground .

前記制御部は、前記層間変形角が第1の閾値を超えた場合に前記所定階のガス供給を遮断し、前記層間変形角が第1の閾値より高い第2の閾値を超えた場合に別の階のガスメータ装置にガス供給を遮断させることが望ましい The control unit shuts off the gas supply at the predetermined floor when the interlayer deformation angle exceeds a first threshold, and separates when the interlayer deformation angle exceeds a second threshold higher than the first threshold. It is desirable to shut off the gas supply to the gas meter device on the first floor .

前記振動情報が加速度であることが望ましい。
近年では高精度の3軸方向加速度センサなどが普及しているので、これを用いることにより正確な振動情報の計測が可能なガスメータ装置を簡易に構成できる。
The vibration information is preferably acceleration.
In recent years, high-accuracy triaxial acceleration sensors and the like have become widespread, and by using this, a gas meter device capable of accurately measuring vibration information can be easily configured.

第2の発明は、建物のガス供給を制御するガス供給制御方法であって、ガスメータ装置が、センサによって、建物の所定階の振動情報の計測を行うステップと、制御部によって、前記振動情報から得た前記所定階の水平変位と、前記所定階の地上からの高さを用いて前記所定階の層間変形角を算出し、前記層間変形角に応じてガスの供給を遮断するステップと、を実行し、前記制御部は、前記所定階の水平変位を前記所定階の地上からの高さで割った値を前記所定階の層間変形角として算出することを特徴とするガス供給制御方法である。 A second aspect of the invention is a gas supply control method for controlling gas supply of a building, wherein the gas meter device measures vibration information of a predetermined floor of the building with a sensor, and from the vibration information by a control unit. Calculating the interlayer deformation angle of the predetermined floor using the obtained horizontal displacement of the predetermined floor and the height of the predetermined floor from the ground, and shutting off the gas supply according to the interlayer deformation angle; And the control unit calculates a value obtained by dividing a horizontal displacement of the predetermined floor by a height from the ground of the predetermined floor as an interlayer deformation angle of the predetermined floor. .

前記ガスメータ装置が備える高度計によって計測された前記所定階の地上からの高さを前記層間変形角の算出に用いることが望ましい。
また、前記制御部は、前記層間変形角が第1の閾値を超えた場合に前記所定階のガス供給を遮断し、前記層間変形角が第1の閾値より高い第2の閾値を超えた場合に別の階のガスメータ装置にガス供給を遮断させることが望ましい。
さらに、前記振動情報が加速度であることが望ましい。
It is desirable to use the height of the predetermined floor from the ground measured by an altimeter included in the gas meter device for calculating the interlayer deformation angle .
Further, the control unit shuts off the gas supply at the predetermined floor when the interlayer deformation angle exceeds a first threshold value, and the interlayer deformation angle exceeds a second threshold value higher than the first threshold value. It is desirable to cut off the gas supply to a gas meter device on another floor .
Furthermore, it is desirable that the vibration information is acceleration.

本発明により、建物の各階の変形状態を層間変形角を求めることで適切に評価し、ガス供給における保安機能が向上可能なガスメータ装置を提供できる。   According to the present invention, it is possible to provide a gas meter device capable of appropriately evaluating the deformation state of each floor of a building by obtaining an interlayer deformation angle and improving the security function in gas supply.

ガスメータ装置1を設けた建物10を示す図The figure which shows the building 10 which provided the gas meter apparatus 1 ガスメータ装置1の構成を示す図The figure which shows the structure of the gas meter apparatus 1 ガス供給制御方法を示すフローチャートFlow chart showing gas supply control method 建物10の揺れと加速度および水平変位を示す図Diagram showing shaking, acceleration and horizontal displacement of building 10 層間変形角Rnを示す図It shows the story drift R n 層間変形角Rn’を示す図Diagram showing interlayer deformation angle R n

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.ガスメータ装置)
図1に、本発明の実施形態に係るガスメータ装置1を建物10に設けた状態を示す。建物10は例えば超高層建物である。
[First Embodiment]
(1. Gas meter device)
In FIG. 1, the state which provided the gas meter apparatus 1 which concerns on embodiment of this invention in the building 10 is shown. The building 10 is, for example, a super high-rise building.

建物10では、各階にガスが供給され、ガスメータ装置1が建物10の各階に設置される。ガスメータ装置1は、ガスメータ装置1の設置階におけるガス使用量を計測するとともに、地震等による揺れが発生した際には、設置階の層間変形角に応じてガス供給の遮断を行う。   In the building 10, gas is supplied to each floor, and the gas meter device 1 is installed on each floor of the building 10. The gas meter device 1 measures the amount of gas used on the installation floor of the gas meter device 1 and shuts off the gas supply according to the interlayer deformation angle on the installation floor when a shake due to an earthquake or the like occurs.

図2はガスメータ装置1の構成を示すブロック図である。図2に示すように、ガスメータ装置1は、制御部11、入力部12、表示部13、加速度センサ14、遮断弁15、圧力センサ16、流量センサ17、およびI/F(インタフェース)部18を備える。   FIG. 2 is a block diagram showing the configuration of the gas meter device 1. As shown in FIG. 2, the gas meter device 1 includes a control unit 11, an input unit 12, a display unit 13, an acceleration sensor 14, a shutoff valve 15, a pressure sensor 16, a flow sensor 17, and an I / F (interface) unit 18. Prepare.

制御部11は、ガスメータ装置1の各部と接続し、情報の授受を行って層間変形角の算出やガス供給の制御を行うものである。制御部11は、CPU、RAM、ROM、クロック回路、メモリなどを有するマイクロコンピューター等により実現できる。   The control unit 11 is connected to each unit of the gas meter device 1 and exchanges information to calculate an interlayer deformation angle and control gas supply. The control unit 11 can be realized by a microcomputer having a CPU, RAM, ROM, clock circuit, memory, and the like.

入力部12は、ガスメータ装置1に数値等を入力し、各種設定を行うためのものである。本実施形態では、ガスメータ装置1の設置階の階数、(地上からの)高さ等を入力部12を介して入力し制御部11のメモリ等に記憶させることで、設置階の階数、高さ等の設定が行われる。   The input unit 12 is for inputting numerical values and the like to the gas meter device 1 and performing various settings. In the present embodiment, the floor number and height of the installation floor of the gas meter device 1 are input by inputting the floor number, height (from the ground), etc. of the gas meter device 1 through the input unit 12 and stored in the memory or the like of the control unit 11. Etc. are set.

表示部13は液晶パネル等であり、ガス使用量やアラームの表示を行うために用いられる。   The display unit 13 is a liquid crystal panel or the like, and is used for displaying gas usage and alarms.

加速度センサ14は、ガスメータ装置1の設置階(所定階)の振動情報として、加速度を計測するセンサである。加速度センサ14としては、特許文献1記載のような互いに直交する3軸方向の加速度を計測する3軸方向加速度センサを用いることができる。ただし、加速度センサ14としては、少なくとも水平方向の加速度を計測できればよい。   The acceleration sensor 14 is a sensor that measures acceleration as vibration information of the installation floor (predetermined floor) of the gas meter device 1. As the acceleration sensor 14, a triaxial acceleration sensor that measures accelerations in triaxial directions orthogonal to each other as described in Patent Document 1 can be used. However, the acceleration sensor 14 only needs to measure at least the acceleration in the horizontal direction.

遮断弁15は、制御部11の制御によりガス流路20の開閉を行うものであり、これにより設置階のガス供給およびガス供給の遮断が行われる。   The shutoff valve 15 opens and closes the gas flow path 20 under the control of the control unit 11, thereby shutting off the gas supply and gas supply on the installation floor.

圧力センサ16、流量センサ17は、それぞれガス流路20内の圧力とガス流量を計測するセンサである。   The pressure sensor 16 and the flow rate sensor 17 are sensors for measuring the pressure in the gas flow path 20 and the gas flow rate, respectively.

I/F部18は、別機器との間でデータ通信を行うためのインタフェースである。本実施形態では、ガスメータ装置1が、I/F部18を介して上下階のガスメータ装置1と通信可能に接続される。接続形態は有線、無線を問わない。   The I / F unit 18 is an interface for performing data communication with another device. In the present embodiment, the gas meter device 1 is communicably connected to the gas meter devices 1 on the upper and lower floors via the I / F unit 18. The connection form may be wired or wireless.

本実施形態において、ガスメータ装置1の制御部11は、加速度センサ14によって計測した加速度から設置階の水平変位を求め、設置階の水平変位と階数、高さ等を用いて設置階の層間変形角を算出する演算機能を有する。また、算出した層間変形角に応じて遮断弁15を閉じ、ガス供給を遮断するガス供給制御機能を有する。   In the present embodiment, the control unit 11 of the gas meter device 1 obtains the horizontal displacement of the installation floor from the acceleration measured by the acceleration sensor 14, and uses the horizontal displacement of the installation floor, the number of floors, the height, etc., and the interlayer deformation angle of the installation floor. It has a calculation function to calculate. Moreover, it has a gas supply control function that closes the shutoff valve 15 according to the calculated interlayer deformation angle and shuts off the gas supply.

(2.ガスメータ装置1によるガス供給制御方法)
次に、ガスメータ装置1によるガス供給制御方法について図3を参照しながら説明する。図3はガス供給制御方法を示すフローチャートであり、各ステップはガスメータ装置1により実行される。なお、ガスメータ装置1は、後述する層間変形角の算出のため、設置階の上階のガスメータ装置1から予め上階の高さを受信し、制御部11のメモリ等に記憶しておくものとする。
(2. Gas supply control method by gas meter device 1)
Next, a gas supply control method by the gas meter device 1 will be described with reference to FIG. FIG. 3 is a flowchart showing the gas supply control method, and each step is executed by the gas meter device 1. The gas meter device 1 receives the height of the upper floor in advance from the gas meter device 1 on the upper floor of the installation floor and stores it in the memory or the like of the control unit 11 in order to calculate the interlayer deformation angle described later. To do.

本実施形態では、ガスメータ装置1の加速度センサ14により、所定間隔で設置階の加速度の計測を行う(S1)。地震等により図4(a)に示すような建物10の揺れが生じると、図4(b)に示すように加速度が計測される。図4(b)は横軸を時間、縦軸を加速度として加速度の時刻歴波形を示したものであり、図において「A」はS1で加速度の計測が行われた現在時刻を示す。   In this embodiment, the acceleration of the installation floor is measured at predetermined intervals by the acceleration sensor 14 of the gas meter device 1 (S1). When the building 10 shakes as shown in FIG. 4A due to an earthquake or the like, the acceleration is measured as shown in FIG. 4B. FIG. 4B shows a time history waveform of acceleration with time on the horizontal axis and acceleration on the vertical axis. In the figure, “A” indicates the current time when the acceleration was measured in S1.

続けてガスメータ装置1の制御部11は、加速度センサ14により計測された加速度の時刻歴波形を2階積分することにより、現在時刻Aにおける設置階の水平変位を算出する(S2)。図4(c)はこうして算出された水平変位の例であり、横軸を時間、縦軸を水平変位として変位応答波形を示したものである。   Subsequently, the control unit 11 of the gas meter device 1 calculates the horizontal displacement of the installation floor at the current time A by integrating the time history waveform of the acceleration measured by the acceleration sensor 14 on the second floor (S2). FIG. 4C is an example of the horizontal displacement calculated in this way, and shows a displacement response waveform with the horizontal axis representing time and the vertical axis representing horizontal displacement.

そして、ガスメータ装置1の制御部11は、現在時刻Aにおける設置階の層間変形角を算出する(S3)。   And the control part 11 of the gas meter apparatus 1 calculates the interlayer deformation angle of the installation floor in the present time A (S3).

S3において、ガスメータ装置1の制御部11は、上階のガスメータ装置1がS1、S2の手順で算出した現在時刻Aにおける上階の水平変位を、上階のガスメータ装置1から受信する。なお、各階のガスメータ装置1については同期がとられ、S1における加速度の計測が同時に行われるものとする。   In S <b> 3, the control unit 11 of the gas meter device 1 receives the horizontal displacement of the upper floor at the current time A calculated by the upper gas meter device 1 in the procedure of S <b> 1 and S <b> 2 from the upper gas meter device 1. In addition, about the gas meter apparatus 1 of each floor, it shall synchronize and the measurement of the acceleration in S1 shall be performed simultaneously.

そして、ガスメータ装置1の制御部11は、図5に示すガスメータ装置1の設置階nの層間変形角Rnを、上階n+1の水平変位dn+1と設置階nの水平変位dnの差、および上階n+1の高さHn+1と設置階nの高さHnの差(設置階nの階高)を用いて、下式(1)により算出する。
n=(dn+1−dn)/(Hn+1−Hn)…(1)
Then, the control unit 11 of the gas meter device 1 sets the interlayer deformation angle R n of the installation floor n of the gas meter device 1 shown in FIG. 5 between the horizontal displacement d n + 1 of the upper floor n + 1 and the horizontal displacement d n of the installation floor n . Using the difference and the difference between the height H n + 1 of the upper floor n + 1 and the height H n of the installation floor n (floor height of the installation floor n), the calculation is performed by the following equation (1).
R n = (d n + 1 −d n ) / (H n + 1 −H n ) (1)

ガスメータ装置1の制御部11は、S3で算出した層間変形角Rnが閾値以下の場合(S4;NO)はそのままガスの供給を続ける。一方、層間変形角Rnが閾値を超えると(S4;YES)、保安のため遮断弁15を閉じて設置階nのガス供給を遮断する(S5)。 When the interlayer deformation angle Rn calculated in S3 is equal to or smaller than the threshold (S4; NO), the control unit 11 of the gas meter device 1 continues to supply the gas as it is. On the other hand, when the story drift R n exceeds a threshold value (S4; YES), by closing the shutoff valve 15 for safety to block the gas supply installation floor n (S5).

本実施形態では、以上の手順で建物10の各階のガスメータ装置1により各階の層間変形角をリアルタイムで算出し、層間変形角に応じたガス供給の遮断ができる。なお、上記の閾値はガスメータ装置1で予め設定し、制御部11のメモリ等に記憶させておく。   In the present embodiment, the interlayer deformation angle of each floor is calculated in real time by the gas meter device 1 of each floor of the building 10 in the above procedure, and the gas supply can be shut off according to the interlayer deformation angle. The threshold value is set in advance by the gas meter device 1 and stored in the memory of the control unit 11 or the like.

以上説明した本実施形態によれば、建物10の各階における変形状態を適切に評価し、ガス供給における保安機能を向上させることができる。すなわち、本実施形態ではガスメータ装置1によって計測した加速度から設置階の層間変形角を算出できるので、長周期地震動に対する超高層建物の揺れのように、加速度が非常に大きい値を示さない場合で、建物10に大きな変形が生じる可能性がある場合でも、その変形状態を適切に評価できる。また単なる水平変位だけを用いる場合は変位の値が同じでも計測位置の高さにより建物の変形状態が異なるので評価が難しいが、水平変位に高さの要因も踏まえて算出した層間変形角によって変形状態を評価することで、各階の変形状態の正確な評価が行える。   According to this embodiment described above, the deformation state in each floor of the building 10 can be appropriately evaluated, and the security function in gas supply can be improved. That is, in this embodiment, since the interlayer deformation angle of the installation floor can be calculated from the acceleration measured by the gas meter device 1, when the acceleration does not show a very large value, such as the shaking of a high-rise building against long-period ground motion, Even when there is a possibility that a large deformation occurs in the building 10, the deformation state can be appropriately evaluated. In addition, if only horizontal displacement is used, it is difficult to evaluate because the deformation state of the building differs depending on the height of the measurement position even if the displacement value is the same, but deformation is caused by the interlayer deformation angle calculated based on the factor of horizontal displacement. By evaluating the state, the deformation state of each floor can be accurately evaluated.

また、本実施形態では、ガスメータ装置1が、設置階の水平変位と同時刻の水平変位を上階のガスメータ装置1から受信し、設置階の層間変形角を、これらの水平変位の差、および設置階と上階の高さの差を用いて算出する。従って、ガスメータ装置1を複数用いて各階の層間変形角をリアルタイムで正確に算出でき、ガス供給の制御の即時性を高めることができる。   In the present embodiment, the gas meter device 1 receives the horizontal displacement at the same time as the horizontal displacement of the installation floor from the gas meter device 1 of the upper floor, and determines the interlayer deformation angle of the installation floor as the difference between these horizontal displacements, and Calculate using the difference in height between the installation floor and the upper floor. Therefore, it is possible to accurately calculate the interlayer deformation angle of each floor in real time by using a plurality of gas meter devices 1, and to improve the immediacy of gas supply control.

しかしながら、本発明は上記の実施形態で説明したものに限らない。例えば上記の実施形態では設置階の振動情報として加速度を計測したが、振動情報として速度や水平変位をセンサにより直接計測することも可能である。速度を計測する場合にはこれを積分して水平変位が算出でき、前記と同様に層間変形角が算出できる。ただし、加速度を計測する場合には、高精度の3軸方向加速度センサなどを用い、正確な計測が可能なガスメータ装置1を簡易に構成できる利点がある。   However, the present invention is not limited to that described in the above embodiment. For example, in the above embodiment, the acceleration is measured as vibration information on the installation floor, but it is also possible to directly measure the speed and the horizontal displacement as vibration information using a sensor. When measuring the velocity, the horizontal displacement can be calculated by integrating this, and the interlayer deformation angle can be calculated in the same manner as described above. However, when measuring acceleration, there is an advantage that the gas meter device 1 capable of accurate measurement can be simply configured by using a highly accurate triaxial acceleration sensor or the like.

また、本実施形態ではガスメータ装置1の制御部11によって層間変形角の算出を行ったが、この演算機能は外部に設けた演算装置で実現することも可能である。この場合には当該演算装置も本発明におけるガスメータ装置1の構成要素に含まれる。   Further, in the present embodiment, the interlayer deformation angle is calculated by the control unit 11 of the gas meter device 1, but this calculation function can also be realized by a calculation device provided outside. In this case, the said arithmetic unit is also contained in the component of the gas meter apparatus 1 in this invention.

さらに、本実施形態ではリアルタイムで層間変形角を算出し、ガス供給の遮断判定を行ったが、振動収束後に、振動時の層間変形角の最大値を用いてガス供給の遮断判定を行うことも可能である。   Further, in the present embodiment, the interlayer deformation angle is calculated in real time and the gas supply cutoff determination is performed. However, after the vibration is converged, the gas supply cutoff determination may be performed using the maximum value of the interlayer deformation angle during vibration. Is possible.

例えば振動収束に伴い加速度センサ14で計測した加速度が略ゼロに戻った後、設置階と上階の振動時の変位応答波形から求まる(dn+1−dn)の最大値を前記の式(1)の分子として、式(1)から層間変形角の最大値を算出できる。また、層間変形角の最大値および各階の水平変位の最大値がほぼ同時に生じると仮定できるケースでは、設置階と上階の水平変位について振動時の最大値dn,max、dn+1,maxを算出し、その差(dn+1,max−dn,max)を用いて上記と同様に層間変形角の最大値を算出することもできる。この場合、ガスメータ装置1の厳密な同期を省略することも可能である。 For example, after the acceleration measured by the acceleration sensor 14 returns to substantially zero as the vibration converges, the maximum value of (d n + 1 −d n ) obtained from the displacement response waveforms at the time of vibration on the installation floor and the upper floor is calculated. As the numerator of (1), the maximum value of the interlayer deformation angle can be calculated from the equation (1). Further, in the case where it can be assumed that the maximum value of the interlayer deformation angle and the maximum value of the horizontal displacement of each floor occur at the same time, the maximum values d n, max , d n + 1, during vibration of the horizontal displacement of the installation floor and the upper floor are assumed . The maximum value of the interlayer deformation angle can be calculated in the same manner as described above by calculating max and using the difference (dn + 1, max- dn, max ). In this case, strict synchronization of the gas meter device 1 can be omitted.

さらに、本実施形態では、ガスメータ装置1によってガスメータ装置1の設置階のガス供給の制御を行ったが、これに限らず、S4の判定結果に応じて全ての階のガス供給を同時に遮断することも可能である。例えばS4の判定がYESとなった場合に、ガスメータ装置1が設置階のガス供給を遮断するほか、別の階のガスメータ装置1に制御信号を送信してガス供給を遮断させ、全ての階のガス供給を遮断する。   Furthermore, in the present embodiment, the gas meter device 1 controls the gas supply on the floor where the gas meter device 1 is installed. However, the present invention is not limited to this, and the gas supply on all floors is simultaneously shut off according to the determination result of S4. Is also possible. For example, when the determination in S4 is YES, the gas meter device 1 cuts off the gas supply on the installation floor, and also transmits a control signal to the gas meter device 1 on another floor to cut off the gas supply, Shut off gas supply.

また、層間変形角の評価に用いる前記の閾値も、ガス供給の遮断方法やガス供給の保安を考慮して様々に定めることができる。例えば高低2つの閾値を設定しておき、低い方の閾値を層間変形角が超えたときには上記の実施形態のように設置階のガス供給を遮断し、高い方の閾値を超えた場合には危険性が高いとして全ての階のガス供給を遮断するような制御を行ってもよい。   Further, the threshold value used for the evaluation of the interlayer deformation angle can be variously determined in consideration of the gas supply shutoff method and the gas supply security. For example, two threshold values are set, and when the interlayer deformation angle exceeds the lower threshold value, the gas supply on the installation floor is shut off as in the above embodiment, and when the higher threshold value is exceeded, it is dangerous. It is also possible to perform control so as to shut off the gas supply on all floors due to high performance.

また、本実施形態ではガスメータ装置1の設置階の高さを入力部12からガスメータ装置1に入力したが、ガスメータ装置1に高度計などを設けておき、高度計で計測した高さをガスメータ装置1の設置階の高さとして層間変形角の算出に用いるようにしてもよい。これにより設置階の高さを入力する手間を省くことができ、高さを間違って入力するなどのミスも無くなる。   In the present embodiment, the height of the installation floor of the gas meter device 1 is input from the input unit 12 to the gas meter device 1. However, the gas meter device 1 is provided with an altimeter or the like, and the height measured by the altimeter is You may make it use for calculation of an interlayer deformation angle as the height of an installation floor. As a result, it is possible to save the trouble of inputting the height of the installation floor, and it is possible to eliminate mistakes such as erroneously inputting the height.

さらに、本実施形態ではガスメータ装置1の設置階と上階の水平変位や高さを比較して設置階の層間変形角を求めたが、上階の代わりに設置階の下階の水平変位や高さを用いてもよい。この場合も、設置階と下階の水平変位や高さの差から前記と同様にして層間変形角を求めることができ、これを設置階の層間変形角とできる。また本実施形態では、設置階の上階が、設置階の1階上すなわち直上階である例を説明したが、これに限らず、設置階の上階は、設置階より2階以上高い階であってもよい。この場合も上記と同様に水平変位や高さの差から層間変形角を求めることができる。設置階の下階についても同様である。   Furthermore, in the present embodiment, the horizontal displacement and height of the installation floor and the upper floor of the gas meter device 1 are compared to determine the interlayer deformation angle of the installation floor, but instead of the upper floor, the horizontal displacement of the lower floor of the installation floor Height may be used. Also in this case, the interlayer deformation angle can be obtained in the same manner as described above from the horizontal displacement and height difference between the installation floor and the lower floor, and this can be used as the interlayer deformation angle of the installation floor. Further, in this embodiment, the example in which the upper floor of the installation floor is the first floor of the installation floor, that is, the directly upper floor is described, but the upper floor of the installation floor is not less than two floors higher than the installation floor. It may be. Also in this case, the interlayer deformation angle can be obtained from the horizontal displacement and the height difference in the same manner as described above. The same applies to the lower floor of the installation floor.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。第2の実施形態は層間変形角の算出において第1の実施形態と異なる例であり、その他の点については第1の実施形態と同様であるので説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. The second embodiment is an example different from the first embodiment in the calculation of the interlayer deformation angle, and the other points are the same as those of the first embodiment, and thus the description thereof is omitted.

第2の実施形態では、図6に示すように近似的な層間変形角の算出を行う。すなわち、前記のS3において、ガスメータ装置1の制御部11は、設置階nの層間変形角Rn’を、設置階nの水平変位dnと高さHnを用いて下式(1’)により近似的に算出する。
n’=dn/Hn…(1’)
In the second embodiment, an approximate interlayer deformation angle is calculated as shown in FIG. That is, in S3 described above, the control unit 11 of the gas meter device 1 uses the following equation (1 ′) for the interlayer deformation angle R n ′ of the installation floor n using the horizontal displacement d n and the height H n of the installation floor n. To calculate approximately.
R n ′ = d n / H n (1 ′)

この層間変形角Rn’を前記のS4以降の処理に用いることで、第1の実施形態と同様の効果が得られる。また、上階や下階のガスメータ装置1との連携が必要でなく演算等が簡単に済む利点もある。一方、第1の実施形態では層間変形角がより正確に求まり、精度が高い利点がある。 By using this interlayer deformation angle R n ′ for the processing after S4, the same effect as in the first embodiment can be obtained. In addition, there is an advantage that it is not necessary to cooperate with the gas meter device 1 on the upper floor or the lower floor, and calculation and the like can be simplified. On the other hand, the first embodiment has an advantage that the interlayer deformation angle can be obtained more accurately and the accuracy is high.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

1;ガスメータ装置
10;建物
11;制御部
12;入力部
13;表示部
14;加速度センサ
15;遮断弁
16;圧力センサ
17;流量センサ
18;I/F部
20;ガス流路
DESCRIPTION OF SYMBOLS 1; Gas meter apparatus 10; Building 11; Control part 12; Input part 13; Display part 14; Acceleration sensor 15; Shut-off valve 16; Pressure sensor 17;

Claims (8)

建物の所定階の振動情報の計測を行うセンサと、
前記振動情報から得た前記所定階の水平変位と、前記所定階の地上からの高さを用いて前記所定階の層間変形角を算出し、前記層間変形角に応じてガスの供給を遮断する制御部と、
を具備し、
前記制御部は、前記所定階の水平変位を前記所定階の地上からの高さで割った値を前記所定階の層間変形角として算出することを特徴とするガスメータ装置。
A sensor for measuring vibration information of a predetermined floor of the building;
The interlayer deformation angle of the predetermined floor is calculated using the horizontal displacement of the predetermined floor obtained from the vibration information and the height of the predetermined floor from the ground, and the gas supply is shut off according to the interlayer deformation angle. A control unit;
Equipped with,
The said control part calculates the value which divided the horizontal displacement of the said predetermined floor by the height from the ground of the said predetermined floor as an interlayer deformation angle of the said predetermined floor, The gas meter apparatus characterized by the above-mentioned .
前記所定階の地上からの高さを計測する高度計を具備することを特徴とする請求項1に記載のガスメータ装置。 The gas meter device according to claim 1, further comprising an altimeter that measures a height of the predetermined floor from the ground . 前記制御部は、前記層間変形角が第1の閾値を超えた場合に前記所定階のガス供給を遮断し、前記層間変形角が第1の閾値より高い第2の閾値を超えた場合に別の階のガスメータ装置にガス供給を遮断させることを特徴とする請求項1または請求項2記載のガスメータ装置。 The control unit shuts off the gas supply at the predetermined floor when the interlayer deformation angle exceeds a first threshold, and separates when the interlayer deformation angle exceeds a second threshold higher than the first threshold. The gas meter device according to claim 1 or 2 , wherein the gas meter device on the floor of the floor is configured to cut off the gas supply . 前記振動情報が加速度であることを特徴とする請求項1乃至請求項3のいずれかに記載のガスメータ装置。   The gas meter device according to any one of claims 1 to 3, wherein the vibration information is acceleration. 建物のガス供給を制御するガス供給制御方法であって、
ガスメータ装置が、
センサによって、建物の所定階の振動情報の計測を行うステップと、
制御部によって、前記振動情報から得た前記所定階の水平変位と、前記所定階の地上からの高さを用いて前記所定階の層間変形角を算出し、前記層間変形角に応じてガスの供給を遮断するステップと、
を実行し、
前記制御部は、前記所定階の水平変位を前記所定階の地上からの高さで割った値を前記所定階の層間変形角として算出することを特徴とするガス供給制御方法。
A gas supply control method for controlling gas supply in a building,
Gas meter device
A step of measuring vibration information of a predetermined floor of the building by a sensor;
The controller calculates the interlayer deformation angle of the predetermined floor using the horizontal displacement of the predetermined floor obtained from the vibration information and the height of the predetermined floor from the ground, and the gas deformation according to the interlayer deformation angle is calculated. Shutting off the supply;
The execution,
The said control part calculates the value which divided the horizontal displacement of the said predetermined floor by the height from the ground of the said predetermined floor as an interlayer deformation angle of the said predetermined floor, The gas supply control method characterized by the above-mentioned .
前記ガスメータ装置が備える高度計によって計測された前記所定階の地上からの高さを前記層間変形角の算出に用いることを特徴とする請求項5に記載のガス供給制御方法。 The gas supply control method according to claim 5, wherein a height from the ground of the predetermined floor measured by an altimeter provided in the gas meter device is used for calculation of the interlayer deformation angle . 前記制御部は、前記層間変形角が第1の閾値を超えた場合に前記所定階のガス供給を遮断し、前記層間変形角が第1の閾値より高い第2の閾値を超えた場合に別の階のガスメータ装置にガス供給を遮断させることを特徴とする請求項5または請求項6記載のガス供給制御方法。 The control unit shuts off the gas supply at the predetermined floor when the interlayer deformation angle exceeds a first threshold, and separates when the interlayer deformation angle exceeds a second threshold higher than the first threshold. The gas supply control method according to claim 5 or 6 , wherein the gas meter device on the floor of the floor is configured to cut off the gas supply. 前記振動情報が加速度であることを特徴とする請求項5乃至請求項7のいずれかに記載のガス供給制御方法。   The gas supply control method according to any one of claims 5 to 7, wherein the vibration information is acceleration.
JP2014088298A 2014-04-22 2014-04-22 Gas meter device and gas supply control method Active JP6078021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088298A JP6078021B2 (en) 2014-04-22 2014-04-22 Gas meter device and gas supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088298A JP6078021B2 (en) 2014-04-22 2014-04-22 Gas meter device and gas supply control method

Publications (2)

Publication Number Publication Date
JP2015206724A JP2015206724A (en) 2015-11-19
JP6078021B2 true JP6078021B2 (en) 2017-02-08

Family

ID=54603608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088298A Active JP6078021B2 (en) 2014-04-22 2014-04-22 Gas meter device and gas supply control method

Country Status (1)

Country Link
JP (1) JP6078021B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145646B2 (en) * 2018-05-21 2022-10-03 清水建設株式会社 Building damage determination method and building damage determination system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460520B2 (en) * 2005-06-22 2010-05-12 大阪瓦斯株式会社 Earthquake evaluation method and earthquake evaluation apparatus
JP5108287B2 (en) * 2006-12-05 2012-12-26 東光東芝メーターシステムズ株式会社 Gas flow seismic device and seismic method
JP5197992B2 (en) * 2007-05-10 2013-05-15 株式会社東芝 Earthquake damage measurement system and earthquake damage measurement method

Also Published As

Publication number Publication date
JP2015206724A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
TWI507670B (en) Building safety verification system, building safety verification method and computer-readable recording medium
RU2015141956A (en) SYSTEMS AND METHODS FOR DETECTING FAILURES IN DETERMINING A SPATIAL POSITION BASED ON AIR SIGNALS AND AIRCRAFT CONTROL SETTINGS
US20140010263A1 (en) Temperature distribution detecting device and method
JP6549877B2 (en) Building disaster estimation system and method
JP2015512825A5 (en)
JP2016065743A (en) Structure safety diagnostic system
US20160370188A1 (en) Inertial device, control method and program
JP2016197014A (en) Building damage intensity estimating system, and method
JP6768369B2 (en) Building soundness evaluation system and building soundness evaluation method
US20190178814A1 (en) State assessing device, state assessing method, and storage medium for storing program
JP6963275B2 (en) Building damage estimation system and method
JP6295118B2 (en) Structural material damage detection system, structural material damage detection method, and program
JP6078021B2 (en) Gas meter device and gas supply control method
JP5799183B2 (en) Building safety verification system, building safety verification method and program
JP6609403B2 (en) Structure verification system, structure verification device, structure verification program
JP6340592B2 (en) Gas shut-off device
JP7145646B2 (en) Building damage determination method and building damage determination system
JP2016017848A (en) Structure verification system, structure verification device, and structure verification program
US10156493B2 (en) Position determination device, position determination system, position determination method, and computer-readable recording medium
JP2016017849A (en) Structure verification system, structure verification device, and structure verification program
JP2010127764A (en) Method and apparatus for evaluating seismic capacity of building
JP2013242173A (en) Earthquake vibration convergence determination system
JP6746348B2 (en) Method and device for identifying building stiffness of a building
JP6229164B2 (en) Meter controller
JP2007064854A (en) Attitude angle detector, and program for detecting attitude angle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170113

R150 Certificate of patent or registration of utility model

Ref document number: 6078021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250