JP6076925B2 - Noble metal recovery method and recovery system - Google Patents

Noble metal recovery method and recovery system Download PDF

Info

Publication number
JP6076925B2
JP6076925B2 JP2014033857A JP2014033857A JP6076925B2 JP 6076925 B2 JP6076925 B2 JP 6076925B2 JP 2014033857 A JP2014033857 A JP 2014033857A JP 2014033857 A JP2014033857 A JP 2014033857A JP 6076925 B2 JP6076925 B2 JP 6076925B2
Authority
JP
Japan
Prior art keywords
metal
noble metal
metal powder
sacrificial agent
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014033857A
Other languages
Japanese (ja)
Other versions
JP2015159064A (en
Inventor
孝次 根岸
孝次 根岸
雅人 岡村
雅人 岡村
基茂 柳生
基茂 柳生
祥平 金村
祥平 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014033857A priority Critical patent/JP6076925B2/en
Publication of JP2015159064A publication Critical patent/JP2015159064A/en
Application granted granted Critical
Publication of JP6076925B2 publication Critical patent/JP6076925B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inert Electrodes (AREA)

Description

本発明の実施形態は、貴金属の回収方法および回収システムに関する。   Embodiments described herein relate generally to a precious metal recovery method and a recovery system.

燃料電池は、従来の燃焼機関等と比較してエネルギー変換効率が高く、また二酸化炭素(CO)排出量が大幅に少なく、天然ガスや灯油、メタノール、バイオ燃料といった石油以外の燃料が使用可能であることから、次世代の発電システムでの利用が期待されている。燃料電池の主要部品である膜電極接合体(Membrane Electrode Assembly:MEA)には、白金(Pt)、ルテニウム(Ru)、コバルト(Co)等の貴金属が使用されている。これらの貴金属は埋蔵量に限りがあるため、燃料電池を廃棄する際にMEAからの回収・再利用が求められている。 Fuel cells have higher energy conversion efficiency compared to conventional combustion engines, etc., and carbon dioxide (CO 2 ) emissions are significantly less, and non-oil fuels such as natural gas, kerosene, methanol, and biofuel can be used. Therefore, it is expected to be used in the next generation power generation system. Noble metals such as platinum (Pt), ruthenium (Ru), and cobalt (Co) are used for membrane electrode assemblies (MEA), which are main components of fuel cells. Since these precious metals have limited reserves, recovery and reuse from the MEA is required when the fuel cell is discarded.

MEAからの貴金属の回収・再利用方法として、MEAの膜部分を溶解し、フッ素ポリマーを含む溶解液から不溶物成分を遠心分離やフィルターで分離して、不溶物成分に含まれる触媒又は触媒担持担体を回収する技術が知られている(例えば、特許文献1参照。)。しかし、この方法では、遠心分離等により溶解液から貴金属を含む不溶物成分を分離する工程において、分離精度を上げると費用が増大する。   As a method for recovering and reusing precious metals from MEA, the MEA membrane part is dissolved, the insoluble component is separated from the solution containing the fluoropolymer by centrifugation or a filter, and the catalyst or catalyst support contained in the insoluble component A technique for recovering a carrier is known (for example, see Patent Document 1). However, in this method, the cost increases when the separation accuracy is increased in the step of separating the insoluble component containing the noble metal from the solution by centrifugation or the like.

また、拡散層を剥離した電解質膜を所定濃度のエタノール水溶液中で撹拌・超音波洗浄することにより、貴金属を電極剤粒子として回収する方法が提案されている(例えば、特許文献2参照。)。しかし、この方法では、電解質膜と電極粒子を分離するものの、貴金属と炭素を分離することや、貴金属を元素ごとに分離することができない。   In addition, a method has been proposed in which the electrolyte membrane from which the diffusion layer has been peeled is stirred and ultrasonically washed in an aqueous ethanol solution having a predetermined concentration to recover the noble metal as electrode agent particles (see, for example, Patent Document 2). However, although this method separates the electrolyte membrane and the electrode particles, it cannot separate the noble metal and carbon, or the noble metal for each element.

また、湿式浸出処理により、貴金属を抽出して回収する方法(例えば、特許文献3参照。)が提案されているが、この方法でも、物性が類似するため、貴金属の種類ごとの分離は困難である。また、貴金属を含む固形部材を王水で溶解後、薬品を投入して回収する方法(例えば、特許文献4参照。)が知られているが、この方法では、多量の薬品と複雑な工程を要するためシステムが複雑化する。   In addition, a method for extracting and recovering noble metals by wet leaching treatment (see, for example, Patent Document 3) has been proposed, but even with this method, since the physical properties are similar, it is difficult to separate the types of noble metals. is there. In addition, a method is known in which a solid member containing a noble metal is dissolved in aqua regia and then charged and recovered (see, for example, Patent Document 4). However, in this method, a large amount of chemicals and complicated steps are required. This complicates the system.

ここで、特許文献5には、二酸化チタンの薄膜からなる光触媒による光触媒反応を利用した光触媒装置に関する発明が提案されている。そして、この光触媒装置を用い、紫外線と光触媒の作用を利用して、例えば、海上に流出した原油を分解することや、臭気化合物あるいは煙草のヤニ等の有機物を分解することが開示されている。しかしながらこの装置は、主に、脱臭、殺菌、防汚、飲料水等の、空気及び水の浄化を対象としている。   Here, Patent Document 5 proposes an invention relating to a photocatalyst device using a photocatalytic reaction by a photocatalyst formed of a thin film of titanium dioxide. And using this photocatalyst apparatus, utilizing the effect | action of an ultraviolet-ray and a photocatalyst, for example, decomposing | disassembling the crude oil which flowed out on the sea, or decomposing | disassembling organic substances, such as an odor compound or cigarette dust. However, this device is mainly intended for the purification of air and water, such as deodorization, sterilization, antifouling and drinking water.

特開2004−171921号公報JP 2004-171921 A 特開2010−114031号公報JP 2010-114031 A 特開2010−100908号公報JP 2010-100908 A 特開2009−197321号公報JP 2009-197321 A 特開平9−38503号公報Japanese Patent Laid-Open No. 9-38503

本発明は上記した課題を解決するためになされたものであって、簡単な装置構成で、MEAから貴金属を回収することのできる貴金属の回収方法および回収システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a noble metal recovery method and recovery system capable of recovering noble metal from an MEA with a simple apparatus configuration.

本発明の貴金属の回収方法の一態様は、燃料電池の膜電極接合体からの貴金属の回収方法であって、塩化物イオンを含む処理液中に前記膜電極接合体を浸漬して、前記貴金属を錯体として前記処理液に溶解させる溶解工程と、前記処理液に溶解した前記貴金属を、犠牲剤及び光触媒を用い、金属粉体として析出させる析出工程と、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に固液分離して、前記金属粉体を回収する回収工程とを備えることを特徴とする。   One aspect of the noble metal recovery method of the present invention is a method for recovering a noble metal from a membrane electrode assembly of a fuel cell, wherein the membrane electrode assembly is immersed in a treatment liquid containing chloride ions, and the noble metal is recovered. A dissolution step of dissolving the noble metal in the treatment liquid as a complex, a precipitation step of depositing the noble metal dissolved in the treatment liquid as a metal powder using a sacrificial agent and a photocatalyst, and the metal powder and the sacrificial agent. And a recovery step of recovering the metal powder by solid-liquid separation of the treatment liquid into the liquid phase from which the metal powder and the metal powder have been removed.

本発明の貴金属の回収システムの一態様は、燃料電池の膜電極接合体からの貴金属の回収システムであって、内部に処理液を収容し、前記膜電極接合体を前記処理液に浸漬して、前記貴金属を金属錯体として前記処理液に溶解させる溶解装置と、光触媒装置を備え、内部に犠牲剤及び前記貴金属の溶解した処理液を収容し、前記光触媒装置を用いて前記貴金属を金属粉体として析出させる反応槽と、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記反応槽から送り出し、再度前記反応槽に供給させる循環配管と、前記循環配管に介挿され、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に分離する固液分離装置とを備えることを特徴とする。   One aspect of the noble metal recovery system of the present invention is a system for recovering a noble metal from a membrane electrode assembly of a fuel cell, containing a treatment liquid therein, and immersing the membrane electrode assembly in the treatment liquid. A dissolving device for dissolving the noble metal in the treatment liquid as a metal complex, and a photocatalyst device, containing a treatment solution in which a sacrificial agent and the noble metal are dissolved, and using the photocatalyst device to convert the noble metal into a metal powder A reaction tank to be deposited as the above, the processing liquid containing the metal powder and the sacrificial agent is sent out from the reaction tank and supplied again to the reaction tank, and the metal powder is inserted into the circulation pipe. A solid-liquid separation device that separates the treatment liquid containing the body and the sacrificial agent into the metal powder and the liquid phase from which the metal powder has been removed.

本発明によれば、簡単な装置構成で、MEAから貴金属を回収することのできる貴金属の回収方法および回収システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the collection | recovery method and collection | recovery system of a noble metal which can collect | recover a noble metal from MEA with a simple apparatus structure can be provided.

第1の実施形態に係る貴金属の回収システムを概略的に表す図。1 is a diagram schematically illustrating a noble metal recovery system according to a first embodiment. FIG. 実施形態における光触媒の種類とPtの析出率の関係を示すグラフ。The graph which shows the relationship between the kind of photocatalyst in embodiment, and the precipitation rate of Pt. 実施形態における処理液中の金属粉体のX線回折スペクトル。The X-ray diffraction spectrum of the metal powder in the process liquid in embodiment. 実施形態におけるPtを除去した後の処理液中の金属粉体のX線回折スペクトル。The X-ray-diffraction spectrum of the metal powder in the process liquid after removing Pt in embodiment.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
図1は、本実施形態の貴金属の回収方法に用いられる貴金属の回収システム10を示す概略構成図である。回収システム10は、例えば燃料電池の膜電極接合体(MEA1)を構成する電解質膜中に含まれる、白金(Pt)、ルテニウム(Ru)、コバルト(Co)等の貴金属を回収するシステムである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a noble metal recovery system 10 used in the noble metal recovery method of this embodiment. The recovery system 10 is a system that recovers a noble metal such as platinum (Pt), ruthenium (Ru), cobalt (Co) and the like contained in an electrolyte membrane constituting a membrane electrode assembly (MEA1) of a fuel cell, for example.

本実施形態の貴金属の回収方法は、処理液L中にMEA1を浸漬して、MEA1に含まれる貴金属を金属錯体として処理液Lに溶解させる溶解工程と、処理液Lに溶解した貴金属を、犠牲剤2及び光触媒3を用いて金属粉体Mとして析出させる析出工程と、金属粉体M及び犠牲剤2を含む処理液Lを、金属粉体Mと金属粉体Mの除去された液相に固液分離して、金属粉体Mを回収する回収工程とを備えている。   The noble metal recovery method of the present embodiment includes a dissolution step of immersing MEA1 in the processing liquid L and dissolving the noble metal contained in MEA1 as a metal complex in the processing liquid L, and sacrificing the noble metal dissolved in the processing liquid L. The deposition step of depositing the metal powder M using the agent 2 and the photocatalyst 3 and the treatment liquid L containing the metal powder M and the sacrificial agent 2 into the liquid phase from which the metal powder M and the metal powder M have been removed. And a recovery step of recovering the metal powder M by solid-liquid separation.

回収システム10は、MEA1を処理液Lに浸漬して、MEA1に含まれる貴金属を処理液Lに溶解させる溶解装置4と、溶解装置4で貴金属を溶解した処理液Lと犠牲剤2を混合する反応槽5を備えている。溶解装置4は、配管6により処理液ポンプ7を介して反応槽5に接続されている。   The recovery system 10 immerses the MEA 1 in the processing liquid L and mixes the dissolution apparatus 4 that dissolves the noble metal contained in the MEA 1 in the processing liquid L, and the processing liquid L in which the noble metal is dissolved in the dissolution apparatus 4 and the sacrificial agent 2. A reaction vessel 5 is provided. The dissolution apparatus 4 is connected to the reaction tank 5 through a treatment liquid pump 7 by a pipe 6.

処理液Lとしては、塩化物イオンを含む水溶液、例えば、塩酸、塩化ナトリウム水溶液等が用いられる。MEA1に含まれる貴金属は、処理液L中の塩化物イオンと反応し、塩化物の錯体(金属錯体)として処理液Lに溶解する(溶解工程)。貴金属の溶解した処理液Lは、処理液ポンプ7によって反応槽5に送液される。   As the treatment liquid L, an aqueous solution containing chloride ions, for example, hydrochloric acid, an aqueous sodium chloride solution, or the like is used. The noble metal contained in the MEA 1 reacts with chloride ions in the treatment liquid L and dissolves in the treatment liquid L as a chloride complex (metal complex) (dissolution step). The processing liquid L in which the precious metal is dissolved is sent to the reaction tank 5 by the processing liquid pump 7.

反応槽5には、配管8により犠牲剤供給装置9が接続されている。配管8にはポンプ11が介装されている。犠牲剤供給装置9により、犠牲剤2が反応槽5内に供給されて貴金属の溶解した処理液Lと混合される(混合工程)。反応槽5内の処理液Lと犠牲剤2は、例えば撹拌機によって撹拌されてもよい。   A sacrificial agent supply device 9 is connected to the reaction tank 5 by a pipe 8. A pump 11 is interposed in the pipe 8. The sacrificial agent supply device 9 supplies the sacrificial agent 2 into the reaction vessel 5 and mixes it with the processing liquid L in which the precious metal is dissolved (mixing step). The treatment liquid L and the sacrificial agent 2 in the reaction tank 5 may be stirred by, for example, a stirrer.

また、反応槽5には、反応槽5内の犠牲剤2の濃度を測定するセンサー12と、センサー12の測定値に応じて、犠牲剤供給装置9から犠牲剤2を供給する制御装置13とを備えている。制御装置13は、例えばポンプ11の吐出量を制御することで、犠牲剤2の供給を制御する。   The reaction tank 5 includes a sensor 12 that measures the concentration of the sacrificial agent 2 in the reaction tank 5, and a control device 13 that supplies the sacrificial agent 2 from the sacrificial agent supply device 9 according to the measurement value of the sensor 12. It has. For example, the control device 13 controls the supply of the sacrificial agent 2 by controlling the discharge amount of the pump 11.

反応槽5には、反応槽5内の処理液Lを反応槽5から送り出し、再度反応槽5に供給する循環配管14が接続されている。循環配管14には、固液分離装置19が介挿されている。また、循環配管14には、反応槽5内の処理液Lを循環配管14に循環させるスラリーポンプ15が介装されている。   Connected to the reaction tank 5 is a circulation pipe 14 that feeds the processing liquid L in the reaction tank 5 from the reaction tank 5 and supplies it again to the reaction tank 5. A solid-liquid separator 19 is inserted in the circulation pipe 14. The circulation pipe 14 is provided with a slurry pump 15 that circulates the processing liquid L in the reaction tank 5 to the circulation pipe 14.

また、反応槽5には、光触媒装置16が備えられている。光触媒装置16は、光源17と、光源17を覆うケース18と、光触媒3とを備えている。光触媒3はケース18の外表面(処理液Lと接触する側)に付着されている。このとき、光触媒3は、薄膜状に付着されていることが好ましい。光源17は、放射線、X線、紫外線、可視光の中から光触媒3のバンドギャップ値により適宜選択して用いられる。   The reaction vessel 5 is provided with a photocatalytic device 16. The photocatalyst device 16 includes a light source 17, a case 18 that covers the light source 17, and the photocatalyst 3. The photocatalyst 3 is attached to the outer surface of the case 18 (the side in contact with the processing liquid L). At this time, the photocatalyst 3 is preferably attached in a thin film. The light source 17 is appropriately selected from radiation, X-rays, ultraviolet rays, and visible light according to the band gap value of the photocatalyst 3 and used.

ケース18は、光源17と反応槽内の処理液Lの接触を防止する役割をする。そのため、ケース18としては、光源17から発する光の透過度が高い材料であって、処理液Lに対して耐食性のある材料、例えば、石英ガラス等の透明ガラス、透明樹脂等が用いられる。また、ケース18は光源17から発せられる光の波長を区切るフィルターの機能を有してもよい。   The case 18 serves to prevent contact between the light source 17 and the processing liquid L in the reaction vessel. For this reason, the case 18 is made of a material having high transmittance of light emitted from the light source 17 and having corrosion resistance to the processing liquid L, for example, transparent glass such as quartz glass, transparent resin, and the like. In addition, the case 18 may have a function of a filter that partitions the wavelength of light emitted from the light source 17.

光触媒3は、光源17から照射される光により励起されて、電子を発生する(励起工程)。光触媒3としては、n型半導体の性質を持つものが用いられる。光触媒3としては例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化スズ(SnO)が用いられる。中でも、MEA1に含まれる貴金属の錯体(金属錯体)を効率よく還元できることから、酸化チタンが好ましい。なお、光触媒3は、光触媒作用を高めるために、その粒子径が十分に小さいことが好ましく、例えば微粒子状であることが好ましい。 The photocatalyst 3 is excited by light irradiated from the light source 17 to generate electrons (excitation process). As the photocatalyst 3, one having an n-type semiconductor property is used. As the photocatalyst 3, for example, titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), or tin oxide (SnO 2 ) is used. Among these, titanium oxide is preferable because a noble metal complex (metal complex) contained in MEA 1 can be efficiently reduced. In addition, it is preferable that the particle diameter of the photocatalyst 3 is sufficiently small in order to enhance the photocatalytic action, for example, it is preferably in the form of fine particles.

犠牲剤2は、光触媒3が励起することで生じた正孔に電子を供給して犠牲剤2由来のラジカルを発生する。犠牲剤2は、メタノール、エタノール等のアルコール類、エチレンジアミン、トリエタノールアミン等のアミン系化合物及びギ酸、酢酸等の有機酸のうち少なくとも1種以上の化合物を含むことが好ましい。これらのなかでも、回収システム10を構成する機器への影響が小さいことから、メタノール、エタノール等のアルコール類を用いることがより好ましい。   The sacrificial agent 2 generates electrons derived from the sacrificial agent 2 by supplying electrons to holes generated by the excitation of the photocatalyst 3. The sacrificial agent 2 preferably contains at least one compound among alcohols such as methanol and ethanol, amine compounds such as ethylenediamine and triethanolamine, and organic acids such as formic acid and acetic acid. Among these, it is more preferable to use alcohols such as methanol and ethanol because the influence on the equipment constituting the recovery system 10 is small.

処理液Lは、光源17から発する光により励起された光触媒3と接触することでヒドロキシラジカル(OHラジカル)及びハロゲン化物ラジカルを発生する。さらに、犠牲剤2は、反応槽5内で発生したOHラジカル及びハロゲン化物ラジカルと反応して、犠牲剤2由来のラジカルを発生する。また、犠牲剤2は、光触媒3が励起することで発生した正孔に電子を供給し、犠牲剤2由来のラジカルを発生する。これらのラジカル(OHラジカル、ハロゲン化物ラジカル、犠牲剤2由来のラジカル)と光触媒3の励起により発生した電子によって金属錯体が還元され、金属粉体Mを生成する(析出工程)。   The treatment liquid L generates hydroxy radicals (OH radicals) and halide radicals by coming into contact with the photocatalyst 3 excited by light emitted from the light source 17. Further, the sacrificial agent 2 reacts with OH radicals and halide radicals generated in the reaction vessel 5 to generate radicals derived from the sacrificial agent 2. The sacrificial agent 2 supplies electrons to the holes generated by the excitation of the photocatalyst 3 to generate radicals derived from the sacrificial agent 2. The metal complex is reduced by these radicals (OH radicals, halide radicals, radicals derived from the sacrificial agent 2) and electrons generated by the excitation of the photocatalyst 3 to form a metal powder M (precipitation step).

犠牲剤2の量は、反応槽5、循環配管14及び固液分離装置19内を循環する、犠牲剤2、金属粉体M及び処理液Lの全量に対して2〜6質量%であることが好ましい。犠牲剤2の量が2質量%未満では、金属粉体Mが十分に析出せず、貴金属の回収率が低下する。また、犠牲剤2の量の消費量を少なくするため、6質量%以下であることが好ましい。   The amount of the sacrificial agent 2 is 2 to 6% by mass with respect to the total amount of the sacrificial agent 2, the metal powder M, and the processing liquid L circulated in the reaction tank 5, the circulation pipe 14, and the solid-liquid separator 19. Is preferred. When the amount of the sacrificial agent 2 is less than 2% by mass, the metal powder M is not sufficiently precipitated and the recovery rate of the noble metal is lowered. Moreover, in order to reduce the consumption of the quantity of the sacrificial agent 2, it is preferable that it is 6 mass% or less.

金属粉体Mの生成反応により犠牲剤2が消費された場合には、制御装置13が、センサー12の測定値に基いて、犠牲剤供給装置9及びポンプ11を制御する。これにより、犠牲剤2が反応槽5内に再供給され、犠牲剤2の量が上記した範囲に維持される。このとき、センサー12の測定値が3%を下回ったときに、制御装置13は、犠牲剤2が反応槽5内に供給されるように犠牲剤供給装置9及びポンプ11を制御することが好ましい。   When the sacrificial agent 2 is consumed due to the formation reaction of the metal powder M, the control device 13 controls the sacrificial agent supply device 9 and the pump 11 based on the measured value of the sensor 12. Thereby, the sacrificial agent 2 is re-supplied into the reaction vessel 5 and the amount of the sacrificial agent 2 is maintained in the above-described range. At this time, when the measured value of the sensor 12 falls below 3%, the control device 13 preferably controls the sacrificial agent supply device 9 and the pump 11 so that the sacrificial agent 2 is supplied into the reaction tank 5. .

処理液L及び犠牲剤2は、循環配管14を循環する過程で、さらに十分に混合される。また、この過程で、処理液Lは、循環配管14に介挿された固液分離装置19により、固相である金属粉体Mと金属粉体Mの除去された液相に分離され、金属粉体Mが回収される(回収工程)。   The treatment liquid L and the sacrificial agent 2 are further sufficiently mixed in the process of circulating through the circulation pipe 14. Further, in this process, the treatment liquid L is separated into a solid phase metal powder M and a liquid phase from which the metal powder M has been removed by a solid-liquid separation device 19 inserted in the circulation pipe 14. The powder M is recovered (recovery process).

固液分離装置19は、第1の固液分離装置20及び第2の固液分離装置21を備えている。循環配管14は、固液分離装置19の上流側で2つの分岐配管に分岐しており、第1の固液分離装置20及び第2の固液分離装置21は、それぞれ電磁弁22及び電磁弁23を介して、当該分岐配管に介挿されている。循環配管14は、第1の固液分離装置20又は第2の固液分離装置21によって分離された液相を、反応槽5に循環させる。第1の固液分離装置20及び第2の固液分離装置21としては、特に限定されず、フィルター装置や遠心分離器等を用いることができる。   The solid-liquid separation device 19 includes a first solid-liquid separation device 20 and a second solid-liquid separation device 21. The circulation pipe 14 is branched into two branch pipes on the upstream side of the solid-liquid separator 19, and the first solid-liquid separator 20 and the second solid-liquid separator 21 are an electromagnetic valve 22 and an electromagnetic valve, respectively. 23, and is inserted into the branch pipe. The circulation pipe 14 circulates the liquid phase separated by the first solid-liquid separator 20 or the second solid-liquid separator 21 to the reaction vessel 5. It does not specifically limit as the 1st solid-liquid separator 20 and the 2nd solid-liquid separator 21, A filter apparatus, a centrifuge, etc. can be used.

循環配管14には、固液分離装置19に供給される処理液L中のPt錯体濃度を測定するPt錯体濃度測定装置24が介装されている。Pt錯体濃度測定装置24としては、例えば、誘導結合プラズマ質量分析計(ICP−MS)を利用したものを使用することができる。Pt錯体濃度測定装置24の測定値に応じて、電磁弁22、23の開閉が制御される。   The circulation pipe 14 is provided with a Pt complex concentration measuring device 24 that measures the Pt complex concentration in the treatment liquid L supplied to the solid-liquid separation device 19. As the Pt complex concentration measuring device 24, for example, a device using an inductively coupled plasma mass spectrometer (ICP-MS) can be used. According to the measured value of the Pt complex concentration measuring device 24, the opening and closing of the electromagnetic valves 22 and 23 are controlled.

ここで、図2に、光触媒3としてTiO、ZrO、SnOを、犠牲剤2としてエタノールを、光源17としてUVランプ(浜松ホトニクス社製 LC8-L9566-02A、200W Hg-Xe)を使用し、光触媒に紫外線を10mW/cmで3時間照射したときのPtの析出率を測定した結果を示す。図2に示すように、Ptの析出率は、光触媒3がTiO、ZrO、SnOの順に高くなっている。 Here, in FIG. 2, TiO 2 , ZrO 2 , SnO 2 are used as the photocatalyst 3, ethanol is used as the sacrificial agent 2, and a UV lamp (LC8-L9566-02A, 200 W Hg-Xe manufactured by Hamamatsu Photonics) is used as the light source 17. The results of measuring the deposition rate of Pt when the photocatalyst was irradiated with ultraviolet rays at 10 mW / cm 2 for 3 hours are shown. As shown in FIG. 2, the Pt deposition rate is higher for the photocatalyst 3 in the order of TiO 2 , ZrO 2 , and SnO 2 .

図3は、光触媒3としてTiOを、犠牲剤2としてエタノールを、光源17としてUVランプ(浜松ホトニクス社製 LC8-L9566-02A、200W Hg-Xe)を使用し、反応槽5において、Pt錯体とRu錯体が2:1の割合(質量比)で溶解した処理液Lを処理したときの金属粉体MのX線回折スペクトル(XRD)を示す。このとき、光触媒3には、紫外線を10mW/cmで3時間照射した。図3では、Ptのピークのみ検出された。 FIG. 3 shows a case where TiO 2 is used as the photocatalyst 3, ethanol is used as the sacrificial agent 2, and a UV lamp (LC8-L9566-02A, 200 W Hg-Xe manufactured by Hamamatsu Photonics) is used as the light source 17. 2 shows an X-ray diffraction spectrum (XRD) of the metal powder M when the treatment liquid L in which the Ru complex is dissolved at a ratio (mass ratio) of 2: 1 is treated. At this time, the photocatalyst 3 was irradiated with ultraviolet rays at 10 mW / cm 2 for 3 hours. In FIG. 3, only the peak of Pt was detected.

図4は、上記で処理した処理液Lから、固液分離装置によってPtを除去した後、さらに、光触媒3に紫外線を10mW/cmで3時間照射したときに得られた金属粉体MのXRDを示す。図4では、Ruのピークが検出された。 FIG. 4 shows the metal powder M obtained when the photocatalyst 3 was irradiated with ultraviolet rays at 10 mW / cm 2 for 3 hours after Pt was removed from the treatment liquid L treated above by a solid-liquid separator. XRD is shown. In FIG. 4, a Ru peak was detected.

図3、4より、PtとRuのイオン化傾向の違いによりPtとRuを分離回収できることが分かる。また、イオン化傾向の違いを利用して、例えば、励起波長の異なる光触媒3を複数付着させることにより、貴な金属(イオン化傾向の低い金属)から順に析出させていくことが可能となる。さらに、犠牲剤2の種類が異なると、犠牲剤2由来のラジカルの電位が異なるため、犠牲剤2の種類を変更することで上記と同様のことが可能である。   3 and 4, it can be seen that Pt and Ru can be separated and recovered by the difference in ionization tendency between Pt and Ru. Further, by utilizing the difference in ionization tendency, for example, by depositing a plurality of photocatalysts 3 having different excitation wavelengths, it becomes possible to deposit in order from a noble metal (a metal having a low ionization tendency). Further, since the potential of the radical derived from the sacrificial agent 2 differs when the type of the sacrificial agent 2 is different, the same as described above can be performed by changing the type of the sacrificial agent 2.

また、回収工程を次のように行うことで、PtとRuを分離回収することが可能である。Pt錯体濃度測定装置24が、循環配管14を循環する処理液L中のPt錯体濃度を測定する(金属錯体濃度測定工程)。Pt錯体濃度測定装置24の測定値に基いて、制御装置13は、電磁弁22、23の開閉を制御し、処理液Lを第1の固液分離装置20又は第2の固液分離装置21のいずれかに供給する。具体的には、Pt錯体濃度測定装置24の測定値があらかじめ決定した所定の値以上である場合には、電磁弁22を開、電磁弁23を閉に制御し、処理液Lを第1の固液分離装置20に供給する。これにより、処理液L中のPtを回収する(第1の固液分離工程)。また、測定値が上記所定の値未満となったときに、電磁弁22を閉、電磁弁23を開に制御し、処理液Lを第2の固液分離装置21に供給する。これにより、処理液L中のRuを回収する(第2の固液分離工程)。   Further, Pt and Ru can be separated and recovered by performing the recovery process as follows. The Pt complex concentration measuring device 24 measures the Pt complex concentration in the treatment liquid L circulating through the circulation pipe 14 (metal complex concentration measuring step). Based on the measured value of the Pt complex concentration measuring device 24, the control device 13 controls the opening and closing of the electromagnetic valves 22 and 23, and the processing liquid L is supplied to the first solid-liquid separation device 20 or the second solid-liquid separation device 21. Supply to either. Specifically, when the measured value of the Pt complex concentration measuring device 24 is equal to or larger than a predetermined value determined in advance, the electromagnetic valve 22 is controlled to be opened and the electromagnetic valve 23 is controlled to be closed, so that the treatment liquid L The solid-liquid separator 20 is supplied. Thereby, Pt in the processing liquid L is recovered (first solid-liquid separation step). Further, when the measured value becomes less than the predetermined value, the electromagnetic valve 22 is closed and the electromagnetic valve 23 is controlled to be opened, and the processing liquid L is supplied to the second solid-liquid separator 21. Thereby, Ru in the processing liquid L is recovered (second solid-liquid separation step).

このとき、Pt錯体濃度測定装置24の測定値が、初期値に対し2%以上のときに、電磁弁22を開、電磁弁23を閉に制御し、処理液Lを第1の固液分離装置20に通液させ、Ptを回収することが好ましい。また、測定値が2%未満となったときに、電磁弁22を閉、電磁弁23を開に制御して、処理液Lを第2の固液分離装置21に通液し、Ruを回収することが好ましい。   At this time, when the measured value of the Pt complex concentration measuring device 24 is 2% or more with respect to the initial value, the electromagnetic valve 22 is controlled to be opened and the electromagnetic valve 23 is controlled to be closed, and the treatment liquid L is separated into the first solid-liquid separation. It is preferable to pass the liquid through the apparatus 20 and collect Pt. Further, when the measured value becomes less than 2%, the electromagnetic valve 22 is closed and the electromagnetic valve 23 is controlled to open, and the processing liquid L is passed through the second solid-liquid separator 21 to recover Ru. It is preferable to do.

以上、本実施形態によれば、MEAに含まれる貴金属を、光触媒装置を用いた簡単な装置構成で回収することができる。また、貴金属が、少なくとも2種の異なる貴金属を含む場合に、これらを分離回収することが可能である。   As mentioned above, according to this embodiment, the noble metal contained in MEA can be collect | recovered with the simple apparatus structure using a photocatalyst apparatus. Further, when the noble metal contains at least two different kinds of noble metals, these can be separated and recovered.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…回収システム、1…MEA、2…犠牲剤、3…光触媒、4…溶解装置、5…反応槽、6,8…配管、7…処理液ポンプ、9…犠牲剤供給装置、11…ポンプ、12…センサー、13…制御装置、14…循環配管、15…スラリーポンプ、16…光触媒装置、17…光源、18…ケース、19…固液分離装置、20…第1の固液分離装置、21…第2の固液分離装置、22,23…電磁弁、24…Pt錯体濃度測定装置、L…処理液、M…金属粉体。   DESCRIPTION OF SYMBOLS 10 ... Recovery system, 1 ... MEA, 2 ... Sacrificial agent, 3 ... Photocatalyst, 4 ... Dissolution apparatus, 5 ... Reaction tank, 6, 8 ... Pipe, 7 ... Treatment liquid pump, 9 ... Sacrificial agent supply apparatus, 11 ... Pump DESCRIPTION OF SYMBOLS 12 ... Sensor, 13 ... Control apparatus, 14 ... Circulation piping, 15 ... Slurry pump, 16 ... Photocatalyst device, 17 ... Light source, 18 ... Case, 19 ... Solid-liquid separator, 20 ... First solid-liquid separator, 21 ... 2nd solid-liquid separator, 22, 23 ... Solenoid valve, 24 ... Pt complex density | concentration measuring device, L ... Treatment liquid, M ... Metal powder.

Claims (10)

燃料電池の膜電極接合体からの貴金属の回収方法であって、
塩化物イオンを含む処理液中に前記膜電極接合体を浸漬して、前記貴金属を錯体として前記処理液に溶解させる溶解工程と、
前記処理液に溶解した前記貴金属を、犠牲剤及び光触媒を用い、金属粉体として析出させる析出工程と、
前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に固液分離して、前記金属粉体を回収する回収工程と
を備えることを特徴とする貴金属の回収方法。
A method for recovering a noble metal from a membrane electrode assembly of a fuel cell,
Immersing the membrane electrode assembly in a treatment liquid containing chloride ions, and dissolving the noble metal in the treatment liquid as a complex;
A deposition step of depositing the noble metal dissolved in the treatment liquid as a metal powder using a sacrificial agent and a photocatalyst;
A recovery step of recovering the metal powder by solid-liquid separation of the treatment liquid containing the metal powder and the sacrificial agent into a liquid phase from which the metal powder and the metal powder have been removed. A precious metal recovery method characterized by
前記析出工程は、
前記貴金属の溶解した処理液と前記犠牲剤を混合する混合工程と、
光源から光を発して前記光触媒を励起させ、励起した前記光触媒と前記貴金属の溶解した処理液及び前記犠牲剤を接触させて前記貴金属を金属粉体として析出させる励起工程と、
を備えることを特徴とする請求項1記載の貴金属の回収方法。
The precipitation step
A mixing step of mixing the processing solution in which the noble metal is dissolved and the sacrificial agent;
Exciting the photocatalyst by emitting light from a light source, bringing the excited photocatalyst into contact with the precious metal-dissolved treatment liquid and the sacrificial agent, and precipitating the noble metal as a metal powder;
The method for recovering a noble metal according to claim 1, comprising:
さらに、前記金属粉体の除去された液相を前記析出工程に送る循環工程を備えることを特徴とする請求項1又は2記載の貴金属の回収方法。   The method for recovering a noble metal according to claim 1, further comprising a circulation step of sending the liquid phase from which the metal powder has been removed to the precipitation step. 前記貴金属は、少なくとも第1の貴金属及び第2の貴金属を含み、
前記回収工程は、前記金属粉体および前記犠牲剤を含む前記処理液中の前記第1の貴金属の錯体の濃度を測定する金属錯体濃度測定工程と、
前記金属錯体濃度測定工程における測定値が所定の値以上のときに、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に固液分離する第1の固液分離工程と、
前記金属錯体濃度測定工程における測定値が上記所定の値未満のときに、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に固液分離する第2の固液分離工程と
を備えることを特徴とする請求項1乃至3のいずれか1項記載の貴金属の回収方法。
The noble metal includes at least a first noble metal and a second noble metal,
The recovery step includes a metal complex concentration measurement step of measuring a concentration of the first noble metal complex in the treatment liquid containing the metal powder and the sacrificial agent,
When the measurement value in the metal complex concentration measurement step is a predetermined value or more, the treatment liquid containing the metal powder and the sacrificial agent is solidified in the liquid phase from which the metal powder and the metal powder have been removed. A first solid-liquid separation step for liquid separation;
When the measurement value in the metal complex concentration measurement step is less than the predetermined value, the treatment liquid containing the metal powder and the sacrificial agent is changed to a liquid phase from which the metal powder and the metal powder are removed. The method for recovering a noble metal according to any one of claims 1 to 3, further comprising a second solid-liquid separation step for solid-liquid separation.
前記第1の貴金属はPtであり、前記第2の貴金属はRuであることを特徴とする請求項4記載の貴金属の回収方法。   5. The method for recovering a noble metal according to claim 4, wherein the first noble metal is Pt, and the second noble metal is Ru. 前記犠牲剤は、アルコール類、アミン系化合物及び有機酸から選ばれる1種以上の化合物を含むことを特徴とする請求項1乃至5のいずれか1項記載の貴金属の回収方法。   The method for recovering a noble metal according to any one of claims 1 to 5, wherein the sacrificial agent includes one or more compounds selected from alcohols, amine compounds, and organic acids. 前記光触媒は、酸化チタン、酸化ジルコニウム及び酸化スズから選ばれる1種以上を含むことを特徴とする請求項1乃至6のいずれか1項記載の貴金属の回収方法。   The noble metal recovery method according to any one of claims 1 to 6, wherein the photocatalyst includes one or more selected from titanium oxide, zirconium oxide, and tin oxide. 燃料電池の膜電極接合体からの貴金属の回収システムであって、
内部に処理液を収容し、前記膜電極接合体を前記処理液に浸漬して、前記貴金属を金属錯体として前記処理液に溶解させる溶解装置と、
光触媒装置を備え、内部に犠牲剤及び前記貴金属の溶解した処理液を収容し、前記光触媒装置を用いて前記貴金属を金属粉体として析出させる反応槽と、
前記金属粉体及び前記犠牲剤を含む前記処理液を、前記反応槽から送り出し、再度前記反応槽に供給させる循環配管と、
前記循環配管に介挿され、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に分離する固液分離装置と
を備えることを特徴とする貴金属の回収システム。
A system for recovering noble metals from a membrane electrode assembly of a fuel cell,
A dissolution apparatus for containing a treatment liquid therein, immersing the membrane electrode assembly in the treatment liquid, and dissolving the noble metal in the treatment liquid as a metal complex;
A reaction tank comprising a photocatalyst device, containing therein a treatment liquid in which a sacrificial agent and the noble metal are dissolved, and depositing the noble metal as a metal powder using the photocatalyst device;
A circulation pipe for sending out the treatment liquid containing the metal powder and the sacrificial agent from the reaction tank and supplying the treatment liquid again to the reaction tank;
A solid-liquid separator that is inserted in the circulation pipe and separates the processing liquid containing the metal powder and the sacrificial agent into the liquid phase from which the metal powder and the metal powder have been removed. Characteristic precious metal recovery system.
前記光触媒装置は、
ケースと、
前記ケースの外表面に付着された光触媒と、
前記ケースに覆われるとともに、光を発して前記光により前記光触媒を励起する光源とを備え、
前記光により励起した前記光触媒と前記貴金属の溶解した処理液及び前記犠牲剤を接触させて、前記貴金属を金属粉体として析出させることを特徴とする請求項8記載の貴金属の回収システム。
The photocatalytic device comprises:
Case and
A photocatalyst attached to the outer surface of the case;
A light source that is covered with the case and emits light to excite the photocatalyst with the light;
9. The noble metal recovery system according to claim 8, wherein the photocatalyst excited by the light is brought into contact with the treatment solution in which the noble metal is dissolved and the sacrificial agent to deposit the noble metal as metal powder.
前記貴金属は、少なくとも第1の貴金属及び第2の貴金属を含み、
前記回収システムは、前記金属粉体および前記犠牲剤を含む前記処理液中の第1の貴金属の錯体の濃度を測定する金属錯体濃度測定装置を備え、
前記固液分離装置は、前記金属錯体濃度測定装置の測定値が所定の値以上のときに、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に固液分離する第1の固液分離装置と、
前記金属錯体濃度測定装置の測定値が前記所定の値未満のときに、前記金属粉体及び前記犠牲剤を含む前記処理液を、前記金属粉体と前記金属粉体の除去された液相に固液分離する第2の固液分離装置と
を備えることを特徴とする請求項8又は9記載の貴金属の回収システム。
The noble metal includes at least a first noble metal and a second noble metal,
The recovery system includes a metal complex concentration measurement device that measures the concentration of the first noble metal complex in the treatment liquid containing the metal powder and the sacrificial agent,
When the measured value of the metal complex concentration measuring device is equal to or greater than a predetermined value, the solid-liquid separator is configured to treat the processing liquid containing the metal powder and the sacrificial agent between the metal powder and the metal powder. A first solid-liquid separation device for solid-liquid separation into the removed liquid phase;
When the measurement value of the metal complex concentration measuring device is less than the predetermined value, the treatment liquid containing the metal powder and the sacrificial agent is changed to a liquid phase from which the metal powder and the metal powder are removed. A noble metal recovery system according to claim 8 or 9, further comprising: a second solid-liquid separation device for solid-liquid separation.
JP2014033857A 2014-02-25 2014-02-25 Noble metal recovery method and recovery system Expired - Fee Related JP6076925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033857A JP6076925B2 (en) 2014-02-25 2014-02-25 Noble metal recovery method and recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033857A JP6076925B2 (en) 2014-02-25 2014-02-25 Noble metal recovery method and recovery system

Publications (2)

Publication Number Publication Date
JP2015159064A JP2015159064A (en) 2015-09-03
JP6076925B2 true JP6076925B2 (en) 2017-02-08

Family

ID=54182914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033857A Expired - Fee Related JP6076925B2 (en) 2014-02-25 2014-02-25 Noble metal recovery method and recovery system

Country Status (1)

Country Link
JP (1) JP6076925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889903B2 (en) * 2017-03-16 2021-06-18 国立大学法人九州大学 Manufacturing method of electrode material
JP2019096624A (en) * 2019-03-08 2019-06-20 国立大学法人九州大学 Electrode material
CN111809063B (en) 2019-04-12 2021-10-22 上海师范大学 Photocatalytic metal dissolving method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102148B2 (en) * 1986-01-22 1994-12-14 株式会社日立製作所 Method and apparatus for oxidizing or reducing dissolved substances
JP2007266124A (en) * 2006-03-27 2007-10-11 Fujifilm Corp Wiring board manufacturing method and liquid discharge head manufactured thereby
JP5128238B2 (en) * 2007-10-30 2013-01-23 国立大学法人佐賀大学 Method for producing noble metal fine particles, photocatalyst used in the method, and method for recovering noble metal from waste
US7709135B2 (en) * 2008-06-06 2010-05-04 Basf Corporation Efficient process for previous metal recovery from cell membrane electrode assemblies
JP2010100908A (en) * 2008-10-24 2010-05-06 Sumitomo Metal Mining Co Ltd Method for treating electrode material

Also Published As

Publication number Publication date
JP2015159064A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
Dimitrijevic et al. Dynamics of interfacial charge transfer to formic acid, formaldehyde, and methanol on the surface of TiO2 nanoparticles and its role in methane production
Maeda et al. Direct Water Splitting into Hydrogen and Oxygen under Visible Light by using Modified TaON Photocatalysts with d 0 Electronic Configuration.
TWI473913B (en) Gas production device and gas production method
JP6076925B2 (en) Noble metal recovery method and recovery system
JP2009505815A (en) Method for oxidizing aqueous liquid
FR3065467B1 (en) SYSTEM FOR TREATING HYDROGEN AND / OR OXYGEN GAS PRODUCED BY WATER ELECTROLYSIS FOR FEEDING COMBUSTION
Spanu et al. Photocatalytic reduction and scavenging of Hg (II) over templated-dewetted Au on TiO 2 nanotubes
Oloye et al. Galvanic replacement of liquid metal Galinstan with copper for the formation of photocatalytically active nanomaterials
CN106663485A (en) Method for treating tritium-water-containing raw water
US8865004B2 (en) Device for purifying water
Yu et al. Improved Norfloxacin degradation by urea precipitation Ti/SnO2–Sb anode under photo-electro catalysis and kinetics investigation by BP-neural-network-physical modeling
CN106986482A (en) A kind of photoelectrochemical degradation waste plant
Litter et al. New advances in heterogeneous photocatalysis for treatment of toxic metals and arsenic
CN104326608B (en) A kind of multistage Electrochemical sewage disposal method and device
JP5512357B2 (en) Pure water production method and apparatus
Hu et al. The {0 1 0} and {1 1 0} facets of BiVO4 were selectively modified by Cu and g-C3N4 to enhance its visible light photocatalytic performance
Zhang et al. Nanostructured Gallium Nitride Membrane at Wafer Scale for Photo (Electro) catalytic Polluted Water Remediation
Orudzhev et al. Photoelectrocatalytic oxidation of phenol on platinum-modified TiO2 nanotubes
CN110194548A (en) Optical-electronic is catalyzed Sewage from Ships processing method
CN104445855A (en) System and method for treating breeding fecal sewage
Yu et al. Synthesis of Cu-WO3-CNT nanocomposite and its electrochemical and photocatalytic properties: Application for Cr (VI) removal from aqueous solution
Hu et al. Highly-efficient removal of Rhodamine B using a flow-through electrocatalytic filtration system: Characteristics, efficiency and mechanism
JP6193063B2 (en) Platinum fine particle manufacturing method and manufacturing apparatus thereof
Andrés-Mañas et al. Treatment of wastewater coming from culture of scallop Argopecten purpuratus using O3/photo-Fenton and membrane distillation processes
Guo et al. Innovations in chemical degradation technologies for the removal of micro/nano-plastics in water: A comprehensive review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R151 Written notification of patent or utility model registration

Ref document number: 6076925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees