JP6072652B2 - Railway vehicle air conditioner and wireless communication device - Google Patents

Railway vehicle air conditioner and wireless communication device Download PDF

Info

Publication number
JP6072652B2
JP6072652B2 JP2013179763A JP2013179763A JP6072652B2 JP 6072652 B2 JP6072652 B2 JP 6072652B2 JP 2013179763 A JP2013179763 A JP 2013179763A JP 2013179763 A JP2013179763 A JP 2013179763A JP 6072652 B2 JP6072652 B2 JP 6072652B2
Authority
JP
Japan
Prior art keywords
air conditioner
wireless
communication quality
railway vehicle
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013179763A
Other languages
Japanese (ja)
Other versions
JP2015047916A (en
Inventor
秀徳 石田
秀徳 石田
秀斗 相川
秀斗 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013179763A priority Critical patent/JP6072652B2/en
Publication of JP2015047916A publication Critical patent/JP2015047916A/en
Application granted granted Critical
Publication of JP6072652B2 publication Critical patent/JP6072652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、鉄道車両に搭載された鉄道車両用空調装置、および鉄道車両用空調装置において使用する無線通信装置に関する。   The present invention relates to a railway vehicle air conditioner mounted on a railway vehicle, and a wireless communication device used in the railway vehicle air conditioner.

鉄道車両の客室内の温度を調整する空調装置として、従来は列車の運転台や車掌室などの特定の場所でしか行うことができなかった空調装置の操作を、無線通信機能を有する携帯端末で行えるようにしたものが存在する(特許文献1参照)。特許文献1に記載の空調装置を適用することにより、車掌は、空調装置の設定変更などを携帯端末で行うことが可能となり、空調に関する乗客からのクレームやリクエストに対して早急に対処することができる。   As an air conditioner that adjusts the temperature in the passenger compartment of a railway vehicle, the operation of the air conditioner that could only be performed in a specific place such as a train cab or a conductor's cabin is performed with a mobile terminal that has a wireless communication function. There is something that can be done (see Patent Document 1). By applying the air conditioner described in Patent Document 1, the conductor can change the settings of the air conditioner on a portable terminal, and can quickly deal with complaints and requests from passengers regarding air conditioning. it can.

特開2005−112225号公報JP 2005-112225 A

特許文献1に記載の空調装置は、空調装置の設定を行う操作盤(携帯端末)と空調装置本体との間で無線通信を利用するようにしたものであるが、空調装置を構成している各種機器間の通信を無線で行うようにして機器間の配線を不要とする構成も考えられる。その場合、機器の動作が無線通信に悪影響を与える可能性があるため、機器間での無線通信を実現する無線装置は、無線通信品質の劣化を回避できるように構成することが望ましい。   The air conditioner described in Patent Document 1 uses wireless communication between an operation panel (portable terminal) for setting the air conditioner and the air conditioner main body, and constitutes the air conditioner. A configuration is also possible in which communication between various devices is performed wirelessly and wiring between the devices is not required. In that case, since the operation of the device may adversely affect the wireless communication, it is desirable that the wireless device that realizes wireless communication between the devices be configured so as to avoid deterioration of the wireless communication quality.

本発明は、上記に鑑みてなされたものであって、無線通信機能を有する複数の機器により形成され、複数の機器の中に無線通信に影響を与える機器が含まれている場合にも良好な機器間無線通信を実現可能な鉄道車両用空調装置を得ることを目的とする。   The present invention has been made in view of the above, and is formed by a plurality of devices having a wireless communication function, and is good even when a plurality of devices include devices that affect wireless communication. It aims at obtaining the rail vehicle air conditioner which can implement | achieve radio | wireless communication between apparatuses.

上述した課題を解決し、目的を達成するために、本発明は、無線装置を搭載した複数種類の機器により形成された鉄道車両用空調装置であって、前記無線装置は、対向装置との間の通信品質測定結果に基づいて、将来の通信品質を予測する通信品質予測手段と、良好な通信品質が予測されるタイミングで前記対向装置へ信号を送信する送信手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is an air conditioner for a railway vehicle formed by a plurality of types of devices equipped with a wireless device, and the wireless device is connected to an opposing device. A communication quality prediction means for predicting the future communication quality based on the communication quality measurement result of the communication means, and a transmission means for transmitting a signal to the opposite device at a timing at which a good communication quality is predicted. To do.

本発明によれば、無線装置を搭載した複数種類の機器により形成された鉄道車両用空調装置において、機器間で行う無線通信の品質を向上させることができる、という効果を奏する。   Advantageous Effects of Invention According to the present invention, there is an effect that the quality of wireless communication performed between devices can be improved in a railway vehicle air conditioner formed by a plurality of types of devices equipped with wireless devices.

図1は、鉄道車両用空調装置の配置例を示す図である。FIG. 1 is a diagram illustrating an arrangement example of an air conditioner for a railway vehicle. 図2は、実施の形態1の鉄道車両用空調装置の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the railway vehicle air conditioner according to the first embodiment. 図3は、鉄道車両用空調装置を構成している無線装置の配置例を示す図である。FIG. 3 is a diagram illustrating an arrangement example of the wireless devices constituting the railway vehicle air conditioner. 図4は、鉄道車両用空調装置を上から見た場合の外観図である。FIG. 4 is an external view of the railway vehicle air conditioner as viewed from above. 図5は、鉄道車両用空調装置内における、無線装置の設置場所を示す図である。FIG. 5 is a diagram showing the installation location of the wireless device in the railway vehicle air conditioner. 図6は、屋外ファンを回転させた状態で受信電力を測定した結果を示す図である。FIG. 6 is a diagram illustrating a result of measuring the received power with the outdoor fan rotated. 図7は、屋外ファン付近の無線スペクトルを観測した結果を示す図である。FIG. 7 is a diagram showing a result of observing a radio spectrum in the vicinity of an outdoor fan. 図8は、無線通信の概略を示す図である。FIG. 8 is a diagram showing an outline of wireless communication. 図9は、実施の形態1の無線装置の構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of the radio apparatus according to the first embodiment. 図10は、無線装置の送信タイミング制御部の動作を説明するための図である。FIG. 10 is a diagram for explaining the operation of the transmission timing control unit of the wireless device. 図11は、実施の形態1の無線装置の動作例を示すフローチャートである。FIG. 11 is a flowchart illustrating an operation example of the radio apparatus according to the first embodiment. 図12は、実施の形態2の無線装置の構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of a radio apparatus according to the second embodiment. 図13は、実施の形態2の無線装置の動作例を示すフローチャートである。FIG. 13 is a flowchart illustrating an operation example of the radio apparatus according to the second embodiment. 図14は、受信電力変動周期と受信電力予測パラメータテーブルを説明する図である。FIG. 14 is a diagram illustrating the received power fluctuation period and the received power prediction parameter table. 図15は、受信電力の予測方法を説明する図である。FIG. 15 is a diagram for explaining a received power prediction method. 図16は、実施の形態3の無線通信の概略を示す図である。FIG. 16 is a diagram illustrating an outline of wireless communication according to the third embodiment.

以下に、本発明にかかる鉄道車両用空調装置および無線通信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a railway vehicle air conditioner and a wireless communication device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、鉄道車両用空調装置の配置例を示す図である。鉄道車両用空調装置は、一般的に、図1の(a)または(b)に示した配置となっている。図1の(a)に示した配置は、鉄道車両1の屋根上に鉄道車両用空調装置2を設置した一体型である。鉄道車両用空調装置2は、例えば、圧縮機、屋内送風機、屋外送風機、熱交換器、空調制御装置などを主要機器として内蔵している。また、図1の(b)に示した配置は、屋根上に重量物を設置できない場合に採用されることが多い。この配置は、鉄道車両用空調装置を分離し、主要機器の一部(機器ブロック4)を鉄道車両の床下に設置し、主要機器の残り(機器ブロック3)を鉄道車両の屋根あるいは車内に設置する分離型である。(a)および(b)のいずれの配置を採用した場合にも、鉄道車両用空調装置を構成している機器の種類および機器同士の接続関係は同じである。そのため、以下、(a)に示した一体型の鉄道車両用空調装置を例にとって説明を行う。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating an arrangement example of an air conditioner for a railway vehicle. Rail vehicle air conditioners are generally arranged as shown in FIG. 1 (a) or (b). The arrangement shown in FIG. 1A is an integrated type in which a railcar air conditioner 2 is installed on the roof of the railcar 1. The railway vehicle air conditioner 2 includes, for example, a compressor, an indoor blower, an outdoor blower, a heat exchanger, an air conditioning control device, and the like as main devices. Moreover, the arrangement shown in FIG. 1B is often employed when a heavy object cannot be installed on the roof. This arrangement separates the railcar air conditioner, installs some of the main equipment (equipment block 4) under the railcar floor, and installs the rest of the main equipment (equipment block 3) on the railcar roof or in the car. It is a separated type. Even when any of the arrangements (a) and (b) is adopted, the types of devices constituting the railway vehicle air conditioner and the connection relationship between the devices are the same. Therefore, in the following, description will be given by taking the integrated railway vehicle air conditioner shown in (a) as an example.

図2は、実施の形態1の鉄道車両用空調装置の構成例を示す図である。図2で示しているように、鉄道車両用空調装置2は、無線操作端末10、無線温度センサ11、無線湿度センサ12、無線ドア開閉センサ13、無線荷重センサ14、空調制御装置15、屋内送風機17、屋外送風機18および圧縮機19を含んで構成されている。なお、他のセンサなどを含んでいても構わない。気温や湿度など、客室内の環境調整に直接必要のないセンサ(例えば、無線ドア開閉センサなど)は省略しても構わない。空調制御装置15は、無線回線20または21を介して他の機器と通信する。   FIG. 2 is a diagram illustrating a configuration example of the railway vehicle air conditioner according to the first embodiment. As shown in FIG. 2, the railway vehicle air conditioner 2 includes a radio operation terminal 10, a radio temperature sensor 11, a radio humidity sensor 12, a radio door open / close sensor 13, a radio load sensor 14, an air conditioning control device 15, an indoor blower. 17, an outdoor blower 18 and a compressor 19 are included. Other sensors may be included. Sensors (such as a wireless door open / close sensor) that are not directly required for environmental adjustment in the cabin, such as temperature and humidity, may be omitted. The air conditioning control device 15 communicates with other devices via the wireless line 20 or 21.

無線操作端末10は、車掌などから、空調のオン/オフや温度設定の操作を受け付け、受け付けた操作内容を空調制御装置15へ通知する。無線温度センサ11は、屋内や屋外の温度を計測し、計測結果を空調制御装置15へ通知する。無線湿度センサ12は、屋内の湿度を計測し、計測結果を空調制御装置15へ通知する。無線ドア開閉センサ13は、ドアの開閉を計測し、計測結果を空調制御装置15へ通知する。無線荷重センサ14は、鉄道車両1の荷重を計測し、計測結果を空調制御装置15へ通知する。図示は省略しているが、無線操作端末10や各センサは、無線通信機能(無線装置)を有している。   The wireless operation terminal 10 receives an air conditioning on / off or temperature setting operation from a conductor or the like, and notifies the air conditioning control device 15 of the received operation content. The wireless temperature sensor 11 measures the indoor or outdoor temperature and notifies the air conditioning control device 15 of the measurement result. The wireless humidity sensor 12 measures indoor humidity and notifies the air conditioning controller 15 of the measurement result. The wireless door opening / closing sensor 13 measures the opening / closing of the door and notifies the air conditioning control device 15 of the measurement result. The wireless load sensor 14 measures the load of the railway vehicle 1 and notifies the air conditioning control device 15 of the measurement result. Although not shown, the wireless operation terminal 10 and each sensor have a wireless communication function (wireless device).

空調制御装置15は、無線装置16を備えており、無線回線20を介して、無線操作端末10や各センサから情報を受信する。また、無線回線21を介して、屋内送風機17、屋外送風機18および圧縮機19に対する制御信号を送信する。例えば、客室内の温度や湿度が所望の値となるように、屋内送風機17などを制御する。屋内送風機17、屋外送風機18および圧縮機19は、空調制御装置15から受信した制御信号に従った動作を実行して客室内の温度等を調整する。   The air conditioning control device 15 includes a wireless device 16 and receives information from the wireless operation terminal 10 and each sensor via the wireless line 20. Moreover, the control signal with respect to the indoor air blower 17, the outdoor air blower 18, and the compressor 19 is transmitted via the radio | wireless line 21. FIG. For example, the indoor blower 17 and the like are controlled so that the temperature and humidity in the passenger room have desired values. The indoor blower 17, the outdoor blower 18, and the compressor 19 perform an operation according to the control signal received from the air conditioning control device 15 to adjust the temperature in the cabin.

図3は、鉄道車両用空調装置2を構成している無線装置(無線温度センサ11、屋内送風機17などが備えている無線装置)の配置例を示す図である。無線操作端末10、無線温度センサ11、無線湿度センサ12、無線ドア開閉センサ13および無線荷重センサ14の無線装置、あるいは、屋内送風機17、屋外送風機18および圧縮機19の無線装置は、鉄道車両1の屋内(無線装置5)、鉄道車両用空調装置2内(無線装置6)あるいは屋外(無線装置7)に設置する。   FIG. 3 is a diagram illustrating an arrangement example of wireless devices (wireless devices provided in the wireless temperature sensor 11, the indoor blower 17, and the like) constituting the railway vehicle air conditioner 2. The radio device of the radio operation terminal 10, the radio temperature sensor 11, the radio humidity sensor 12, the radio door open / close sensor 13 and the radio load sensor 14, or the radio device of the indoor blower 17, the outdoor blower 18 and the compressor 19 is the railway vehicle 1. Indoors (wireless device 5), in railway vehicle air conditioner 2 (wireless device 6) or outdoors (wireless device 7).

図4は、鉄道車両用空調装置2を上から見た場合の外観図である。鉄道車両用空調装置2は、屋内側装置35と屋外側装置41により構成されている。屋内側装置35は、空気を冷やす屋内熱交換器30および34と、屋内に冷えた空気を送る屋内ファン31および33(図2に示した屋内送風機17に相当)と、屋内ファン31および33を回転させる屋内ファン用モータ32とで構成されている。また、屋外側装置41は、冷媒を圧縮する圧縮機36および39(図2に示した圧縮機19に相当)と、冷媒を冷やす屋外熱交換器38および40と、屋外熱交換器38および40に風を送る屋外ファン37(図2に示した屋外送風機18に相当)とで構成されている。   FIG. 4 is an external view when the railway vehicle air conditioner 2 is viewed from above. The railway vehicle air conditioner 2 includes an indoor device 35 and an outdoor device 41. The indoor side device 35 includes indoor heat exchangers 30 and 34 for cooling the air, indoor fans 31 and 33 (corresponding to the indoor blower 17 shown in FIG. 2) for sending the cooled air indoors, and the indoor fans 31 and 33. It is comprised with the motor 32 for an indoor fan to rotate. The outdoor-side device 41 includes compressors 36 and 39 (which correspond to the compressor 19 shown in FIG. 2) that compress the refrigerant, outdoor heat exchangers 38 and 40 that cool the refrigerant, and outdoor heat exchangers 38 and 40. It is comprised with the outdoor fan 37 (equivalent to the outdoor air blower 18 shown in FIG. 2) which sends a wind to.

図5は、鉄道車両用空調装置2内における、無線装置の設置場所を示す図である。図3に示した無線装置6の様に、鉄道車両用空調装置2内に無線装置を搭載する場合、屋外側装置41には、排気ダクトや、冷媒管が複雑に入り組んでいるため、無線伝搬経路が複雑になり、特性が劣化する。また、屋外ファン37の回転により、周期的な変動が発生し、さらに特性が劣化する。一方、屋内側装置35には多くの隙間が存在し、屋外ファン37の影響も受けにくく、良好な受信電力が得られ、低い誤り率で通信が可能である。   FIG. 5 is a diagram showing the installation location of the wireless device in the railway vehicle air conditioner 2. When the wireless device is mounted in the railway vehicle air conditioner 2 like the wireless device 6 shown in FIG. 3, the outdoor side device 41 has complicated exhaust ducts and refrigerant pipes. The route becomes complicated and the characteristics deteriorate. Further, rotation of the outdoor fan 37 causes periodic fluctuations and further deteriorates the characteristics. On the other hand, the indoor device 35 has many gaps, is not easily affected by the outdoor fan 37, can obtain good received power, and can communicate with a low error rate.

上記検証のために、図5に示した位置<1>〜位置<3>に無線装置を設置して、鉄道車両用空調装置直下における受信電力を測定した結果、位置<1>が、最も特性が良く、最も特性が悪い位置<3>に対して16dBの差があり、位置<1>に設置する事の妥当性を確認している。また、図6は、無線装置を図5の位置<3>に設置し、屋外ファン37を回転させた状態で、鉄道車両用空調装置2の横1mにおける受信電力(位置<3>に設置した無線装置が送信した信号の受信電力)を測定した結果を示している。図6は、横軸が時間、縦軸が受信電力であり、無線装置が一定間隔で送信している時の受信電力の波形である。受信電力は、屋外ファン37の回転により、周期的に変動する。さらに、図7は、無線装置を図5の位置<3>に設置し、屋外ファン37付近の無線スペクトルを観測した結果を示している。屋外ファン37の付近では、図7に示したように、無線スペクトルの形状が変化する。   For the above verification, as a result of measuring the received power directly under the railroad vehicle air conditioner with the wireless device installed at the positions <1> to <3> shown in FIG. 5, the position <1> is the most characteristic. There is a difference of 16 dB from the position <3> with the best characteristics, and the validity of the installation at the position <1> has been confirmed. 6 shows that the wireless device is installed at the position <3> in FIG. 5 and the outdoor fan 37 is rotated, and the received power (position <3>) is 1 m lateral to the railcar air conditioner 2. The result of measuring the received power of the signal transmitted by the wireless device is shown. FIG. 6 is a waveform of received power when the horizontal axis is time, the vertical axis is received power, and the wireless device is transmitting at regular intervals. The received power fluctuates periodically as the outdoor fan 37 rotates. Further, FIG. 7 shows a result of observing a wireless spectrum in the vicinity of the outdoor fan 37 with the wireless device installed at the position <3> in FIG. In the vicinity of the outdoor fan 37, the shape of the radio spectrum changes as shown in FIG.

以上のように、鉄道車両用空調装置2内に設置する無線装置6は、屋外側装置41に設置すると、排気ダクトや、冷媒管、屋外ファン37の影響を受けるため、通信が遅延し、最悪の場合、通信できなくなる。一方、無線装置を屋外ファン37から離れた屋内側装置35に設置することにより、屋外ファン37等の影響を受けずに、良好に通信することが出来る。従って、本実施の形態の鉄道車両用空調装置2においては、屋外に設置されている機器(屋外側装置41)の圧縮機36および39や屋外ファン37など、空調制御装置15と通信する必要がある機器の無線装置を屋内側に設置する。   As described above, when the wireless device 6 installed in the railway vehicle air conditioner 2 is installed in the outdoor device 41, the wireless device 6 is affected by the exhaust duct, the refrigerant pipe, and the outdoor fan 37. In this case, communication is not possible. On the other hand, by installing the wireless device in the indoor device 35 away from the outdoor fan 37, it is possible to communicate well without being affected by the outdoor fan 37 or the like. Therefore, in the railway vehicle air conditioner 2 of the present embodiment, it is necessary to communicate with the air conditioning control device 15 such as the compressors 36 and 39 of the equipment (outdoor device 41) installed outdoors and the outdoor fan 37. A wireless device of a device is installed indoors.

このように、本実施の形態の鉄道車両用空調装置は、装置を形成している機器のうち、情報を送受信する機器同士を無線回線経由で通信するように構成し、かつ、各機器において無線通信を実現する無線装置を屋内側に設置することとしたので、装置内の無線通信品質が屋外ファンなどの影響を受けて劣化するのを防止できる。   As described above, the railway vehicle air conditioner according to the present embodiment is configured so that devices that transmit and receive information communicate with each other via a wireless line among the devices forming the device, and each device is wireless. Since the wireless device that realizes communication is installed indoors, it is possible to prevent the wireless communication quality in the device from being deteriorated by the influence of an outdoor fan or the like.

ただし、装置の構成や制約などの理由から、無線装置を屋内側に設置することが難しいことも考えられる。そのため、無線装置を屋外に設置する場合に通信品質の劣化を回避する手段について、以下に説明する。   However, it may be difficult to install the wireless device indoors for reasons such as device configuration and restrictions. Therefore, means for avoiding deterioration of communication quality when the wireless device is installed outdoors will be described below.

図8は、無線通信の概略を示す図である。以下、鉄道車両用空調装置2内の屋外側装置41(図4参照)に無線装置を設置する場合において、屋外ファン37の影響を回避可能な通信方法を説明する。図8に記載した無線装置52は、屋外側装置41に設置されている無線装置である。無線装置16と無線装置52は、無線回線51経由で通信する。   FIG. 8 is a diagram showing an outline of wireless communication. Hereinafter, a communication method capable of avoiding the influence of the outdoor fan 37 when a wireless device is installed in the outdoor side device 41 (see FIG. 4) in the railway vehicle air conditioner 2 will be described. The wireless device 52 illustrated in FIG. 8 is a wireless device installed in the outdoor device 41. The wireless device 16 and the wireless device 52 communicate via the wireless line 51.

屋外ファン37の回転による無線通信への影響は、周期的に変動するため(図6参照)、無線装置16や無線装置52は、受信電力が高くなるタイミングを予測可能である。すなわち、各無線装置は、対向装置(通信相手の無線装置)からの受信電力を一定期間にわたって監視することにより、受信電力の変動周期を把握することができ、受信電力が高くなるタイミングを予測できる。対向装置からの受信電力が高くなるタイミングでは、無線装置から送信する場合でも、安定した通信が可能である。そのため、例えば、鉄道車両用空調装置2の外に設置した無線装置52が受信電力測定用の信号を定期的に送信し、無線装置16は、一定期間にわたって受信電力を測定し、測定結果(例えば、受信電力と測定実施時刻)を記憶する。無線装置16は、屋外ファン37の回転の影響による受信電力の周期的変動を記憶しているため、前回検出した受信電力から、現在の受信電力を予測することが可能である。無線装置16は、受信電力予測値がしきい値を超えるまでの期間、送信を遅延させることにより、屋外ファン回転の影響を回避して通信する。すなわち、受信電力予測値がしきい値を超えている期間において、送信を行う。無線装置16が受信電力を予測する場合を説明したが、無線装置52も同様に、受信電力を予測することができる。   Since the influence on the wireless communication due to the rotation of the outdoor fan 37 periodically varies (see FIG. 6), the wireless device 16 and the wireless device 52 can predict the timing at which the reception power increases. That is, each wireless device can grasp the fluctuation cycle of the received power by monitoring the received power from the opposite device (radio device of the communication partner) over a certain period, and can predict the timing when the received power becomes high. . At the timing when the reception power from the opposite device becomes high, stable communication is possible even when transmitting from the wireless device. Therefore, for example, the wireless device 52 installed outside the railway vehicle air conditioner 2 periodically transmits a received power measurement signal, and the wireless device 16 measures the received power over a certain period of time, and the measurement result (for example, , Received power and measurement execution time). Since the wireless device 16 stores the periodic fluctuation of the received power due to the influence of the rotation of the outdoor fan 37, the current received power can be predicted from the previously detected received power. The wireless device 16 communicates while avoiding the influence of outdoor fan rotation by delaying transmission for a period until the predicted received power exceeds the threshold value. That is, transmission is performed in a period in which the predicted received power value exceeds the threshold value. Although the case where the wireless device 16 predicts the received power has been described, the wireless device 52 can similarly predict the received power.

図9は、本実施の形態の無線装置(無線通信装置)の構成例を示す図であり、一例として、無線装置16の構成例を示している。他の無線装置の構成も同様である。無線装置16は、主要な構成要素として、無線信号を受け取り、復調する受信部60と、信号を変調して、送信する送信部61と、送信タイミング制御部65と、を備えている。また、送信タイミング制御部65は、受信部60が受信した無線信号の電力を算出する受信電力測定部62と、過去の受信電力測定結果に基づいて送信時の受信電力(通信品質)を予測する受信電力予測部63と、送信を遅らせる送信タイミング遅延制御部64と、を備えている。   FIG. 9 is a diagram illustrating a configuration example of the wireless device (wireless communication device) of the present embodiment, and illustrates a configuration example of the wireless device 16 as an example. The configuration of other wireless devices is the same. The wireless device 16 includes, as main components, a reception unit 60 that receives and demodulates a radio signal, a transmission unit 61 that modulates and transmits the signal, and a transmission timing control unit 65. Further, the transmission timing control unit 65 predicts the reception power (communication quality) at the time of transmission based on the reception power measurement unit 62 that calculates the power of the radio signal received by the reception unit 60 and the past reception power measurement result. A reception power prediction unit 63 and a transmission timing delay control unit 64 that delays transmission are provided.

次に、本実施の形態の無線装置の動作について説明する。一例として、無線装置16が無線装置52と通信する(無線装置52へ信号を送信する)場合の動作を説明する。   Next, the operation of the radio apparatus according to this embodiment will be described. As an example, an operation when the wireless device 16 communicates with the wireless device 52 (transmits a signal to the wireless device 52) will be described.

図10は、無線装置16の送信タイミング制御部65の動作を説明するための図であり、横軸に時刻、縦軸に受信電力値を示している。無線装置52が送信した無線信号は、受信部60で復調された後、送信タイミング制御部65へ入力される。送信タイミング制御部65においては、受信電力測定部62が受信電力を算出する。算出した受信電力は、例えば、図10に示した黒丸の様になる(受信電力測定値80)。屋外ファン37の回転による変動は周期的であるため、受信電力予測部63は、過去の受信電力測定結果に基づいて、検出した受信電力から実線のような受信電力の変動を予測する(受信電力予測値81)。なお、受信電力予測部63は、屋外ファン37を動作させた状態で無線装置52が定期的に送信した信号(受信電力測定用の信号)の受信結果を、過去の受信電力測定結果として保持しているものとする。送信タイミング遅延制御部64は、受信電力予測部63による予測結果(受信電力予測値81)を受け取り、受信電力予測値81がしきい値82を超えている期間では送信部61に対して送信許可を通知し、そうでなければ送信部61に対して送信禁止を通知する。例えば、現在時刻が図10に示したAの場合、受信電力予測値81がしきい値以下なので、時間tだけ経過するのを待ち、受信電力予測値81がしきい値に達する時刻Bとなった時点で、送信部61に対して送信許可を通知する(送信許可期間となったことを通知する)。送信部61は、送信タイミング遅延制御部64から送信許可の通知がされている状態(送信許可期間)において、図示を省略した送信信号生成部で生成された信号を送信する。   FIG. 10 is a diagram for explaining the operation of the transmission timing control unit 65 of the wireless device 16, in which the horizontal axis represents time and the vertical axis represents the received power value. The radio signal transmitted by the radio device 52 is demodulated by the receiving unit 60 and then input to the transmission timing control unit 65. In the transmission timing control unit 65, the reception power measurement unit 62 calculates reception power. The calculated received power is, for example, like a black circle shown in FIG. 10 (received power measurement value 80). Since the fluctuation due to the rotation of the outdoor fan 37 is periodic, the received power prediction unit 63 predicts the fluctuation of the received power as indicated by a solid line from the detected received power based on the past received power measurement results (received power). Predicted value 81). The reception power predicting unit 63 holds the reception result of the signal (reception power measurement signal) periodically transmitted by the wireless device 52 while the outdoor fan 37 is operated as the past reception power measurement result. It shall be. The transmission timing delay control unit 64 receives the prediction result (reception power prediction value 81) from the reception power prediction unit 63, and permits transmission to the transmission unit 61 during the period when the reception power prediction value 81 exceeds the threshold value 82. Otherwise, the transmission unit 61 is notified of the transmission prohibition. For example, when the current time is A shown in FIG. 10, the predicted received power value 81 is equal to or less than the threshold value, so that it waits for the elapse of time t and becomes the time B when the predicted received power value 81 reaches the threshold value. At this point, the transmission unit 61 is notified of transmission permission (notifies that the transmission permission period has been reached). The transmission unit 61 transmits a signal generated by a transmission signal generation unit (not shown) in a state where transmission permission is notified from the transmission timing delay control unit 64 (transmission permission period).

図11は、無線装置の動作例を示すフローチャートである。図9、図10および図11を参照しながら、無線装置の詳細動作を説明する。   FIG. 11 is a flowchart illustrating an operation example of the wireless device. The detailed operation of the wireless device will be described with reference to FIG. 9, FIG. 10, and FIG.

図9に示した無線装置16においては、まず、受信電力測定部62が、対向装置である無線装置52が送信した信号(受信電力測定用の信号)の受信電力を測定する(ステップS11)。次に、送信するデータの有無を確認する(ステップS12)。例えば、受信電力測定部62が、図示を省略した送信信号生成部に対して、送信データの有無を問い合わせる。送信するデータがない場合(ステップS12:No)、ステップS11に戻って再度受信電力を測定する。これに対して、送信するデータがある場合(ステップS12:Yes)、受信電力予測部63が、ステップS11での測定結果(受信電力測定値)と過去の受信電力測定結果とに基づいて、受信電力予測値(図10に示した受信電力予測値81)を算出する(ステップS13)。次に、送信タイミング遅延制御部64が、受信電力予測部63で算出された受信電力予測値をしきい値と比較し(ステップS14)、しきい値より小さい場合(ステップS14:No)、送信待ち時間、すなわち、受信電力予測値がしきい値よりも大きくなるまでの所要時間、を算出する(ステップS15)。そして、送信待ち時間が経過するまで送信を待つように送信部61へ通知し、送信部61は、送信待ち時間が経過するまで待ってからデータを送信する(ステップS16,S17)。一方、上記のステップS14において、受信電力予測値がしきい値より大きいと判断した場合(ステップS14:Yes)、送信タイミング遅延制御部64は、送信部61に対して送信許可を通知し、送信部61はデータを送信する(ステップS17)。   In the wireless device 16 illustrated in FIG. 9, first, the received power measurement unit 62 measures the received power of a signal (received power measurement signal) transmitted by the wireless device 52 that is the opposite device (step S11). Next, the presence / absence of data to be transmitted is confirmed (step S12). For example, the reception power measurement unit 62 inquires of the transmission signal generation unit (not shown) whether there is transmission data. When there is no data to transmit (step S12: No), it returns to step S11 and measures received power again. On the other hand, when there is data to be transmitted (step S12: Yes), the reception power prediction unit 63 receives the data based on the measurement result (reception power measurement value) in step S11 and the past reception power measurement result. A predicted power value (received power predicted value 81 shown in FIG. 10) is calculated (step S13). Next, the transmission timing delay control unit 64 compares the received power predicted value calculated by the received power prediction unit 63 with a threshold value (step S14), and if smaller than the threshold value (step S14: No), transmission is performed. The waiting time, that is, the time required until the predicted received power value becomes larger than the threshold value is calculated (step S15). Then, the transmission unit 61 is notified to wait for the transmission until the transmission waiting time elapses, and the transmission unit 61 transmits the data after waiting for the transmission waiting time to elapse (steps S16 and S17). On the other hand, when it is determined in step S14 that the predicted received power value is larger than the threshold value (step S14: Yes), the transmission timing delay control unit 64 notifies the transmission unit 61 of transmission permission and performs transmission. The unit 61 transmits data (step S17).

ステップS13で受信電力予測値を算出するのは、ステップS11で測定した受信電力がしきい値よりも低い場合、すなわち、通信品質が良好となるまで送信を待つ必要がある場合に限定してもよい(現在の受信電力がしきい値よりも大きい場合には受信電力予測値を算出しない)。この場合、受信電力予測値を算出するための演算量を削減できる。   The predicted received power value in step S13 may be calculated only when the received power measured in step S11 is lower than the threshold value, that is, when it is necessary to wait for transmission until the communication quality is good. Good (when the current received power is larger than the threshold value, the predicted received power is not calculated). In this case, the amount of calculation for calculating the received power prediction value can be reduced.

なお、本実施の形態では、空調制御装置15の無線装置16が、鉄道車両用空調装置2の外に設置されている無線装置52に対して信号を送信する場合の動作について説明したが、無線装置52から無線装置16に対して信号を送信する場合の動作も同様である。   In the present embodiment, the operation when the wireless device 16 of the air conditioning control device 15 transmits a signal to the wireless device 52 installed outside the railway vehicle air conditioner 2 has been described. The operation when transmitting a signal from the device 52 to the wireless device 16 is the same.

また、本実施の形態では、屋外ファン37の影響を回避する場合について説明したが、その他の金属回転物の影響(周期的に変動する影響)を回避する場合にも利用できることはいうまでもない。   Moreover, although the case where the influence of the outdoor fan 37 is avoided has been described in the present embodiment, it goes without saying that the present invention can also be used to avoid the influence (periodically varying influence) of other metal rotating objects. .

このように、本実施の形態の鉄道車両用空調装置において、機器間の無線通信を実現する無線装置は、対向装置が送信した信号の受信電力の測定結果(現在および過去の測定結果)に基づいて将来の受信電力を推定し、現時点で良好な通信が不可能な場合には、将来の受信電力の推定結果に基づいて、良好な通信が可能となるまでの待ち時間を算出し、良好な通信が可能と推定されるタイミングまで待ってから通信を行うこととした。これにより、屋外ファン回転の影響を受けるなど、通信環境が周期的に変動する状況下において、通信条件が良好なタイミングで通信を行うことができる。   As described above, in the railway vehicle air conditioner of the present embodiment, the wireless device that realizes wireless communication between devices is based on the measurement result (current and past measurement results) of the received power of the signal transmitted by the opposite device. If the future received power is estimated and good communication is not possible at this time, the waiting time until the good communication is possible is calculated based on the estimated result of the future received power. Communication was made after waiting until communication was estimated to be possible. Thereby, it is possible to perform communication at a timing when the communication condition is favorable under a situation in which the communication environment fluctuates periodically, such as being affected by the rotation of the outdoor fan.

なお、本実施の形態では受信電力の測定結果を用いて良好な通信が可能か否かを推定することとしたが、エラー率などで示される通信品質(過去の通信品質)を用いて推定するようにしてもよい。   In this embodiment, whether or not good communication is possible is estimated using the measurement result of received power, but is estimated using communication quality (past communication quality) indicated by an error rate or the like. You may do it.

また、本実施の形態では、屋外側装置に設置されている無線装置が、送信データが発生した時点で良好な通信が不可能な場合に、良好な通信が可能となるまでの待ち時間を算出して良好な通信が可能と推定されるタイミングまで待つようにしたが、屋内側装置に設置されている無線装置が同様の動作を行っても構わない。   Also, in this embodiment, when the wireless device installed in the outdoor side device cannot perform good communication when transmission data occurs, it calculates the waiting time until good communication is possible. Thus, the wireless device installed in the indoor device may perform the same operation, although it waits until it is estimated that good communication is possible.

実施の形態2.
上述した実施の形態1は、鉄道車両用空調装置2内に無線装置を搭載する場合、屋外ファン37等の影響を避けるために、受信電力予測値81を算出し、送信を遅延させて送信するようにしたものであるが、本実施の形態では、さらに、屋外ファン37の回転数(動作状態)を考慮して受信電力の変動を予測する。屋外ファン37の動作状態を考慮して受信電力予測値81を算出することにより、受信電力のみから予測する場合より、さらに精度の良い予測結果を得ることができる。なお、装置の全体構成については実施の形態1と同様とする(図2など参照)。
Embodiment 2. FIG.
In the first embodiment described above, when a radio apparatus is mounted in the railway vehicle air conditioner 2, in order to avoid the influence of the outdoor fan 37 and the like, the predicted received power value 81 is calculated, and the transmission is delayed and transmitted. Although this is the case, in the present embodiment, the fluctuation of the received power is further predicted in consideration of the rotation speed (operation state) of the outdoor fan 37. By calculating the received power prediction value 81 in consideration of the operation state of the outdoor fan 37, a more accurate prediction result can be obtained than when prediction is made from received power alone. The overall configuration of the apparatus is the same as that of the first embodiment (see FIG. 2 and the like).

図12は、実施の形態2の無線装置の構成例を示す図である。一例として、空調制御装置15の無線装置を示している。本実施の形態の無線装置16aは、実施の形態1の無線装置16(図9参照)の送信タイミング制御部65を送信タイミング制御部65aに置き換えたものである。また、送信タイミング制御部65aは、実施の形態1で説明した送信タイミング制御部65の受信電力予測部63を受信電力予測部63aに置き換え、さらに、受信電力変動周期算出部67を追加したものである。その他の構成要素は実施の形態1の無線装置16と同様であるため、同じ符号を付して説明を省略する。   FIG. 12 is a diagram illustrating a configuration example of a radio apparatus according to the second embodiment. As an example, a wireless device of the air conditioning control device 15 is shown. The radio apparatus 16a of the present embodiment is obtained by replacing the transmission timing control unit 65 of the radio apparatus 16 (see FIG. 9) of the first embodiment with a transmission timing control unit 65a. The transmission timing control unit 65a replaces the reception power prediction unit 63 of the transmission timing control unit 65 described in Embodiment 1 with a reception power prediction unit 63a, and further includes a reception power fluctuation period calculation unit 67. is there. Since other components are the same as those of the wireless device 16 of the first embodiment, the same reference numerals are given and description thereof is omitted.

無線装置16aの受信電力変動周期算出部67は、有線または無線通信で屋外送風機18から回転数の情報(屋外ファン回転数情報68)を取得し、取得した屋外ファン回転数情報68に基づいて、受信電力変動の周期を算出する。受信電力予測部63aは、受信電力変動周期算出部67で算出された受信電力変動の周期と、過去の受信電力測定結果とに基づいて、図10に示した受信電力予測値81を算出する。   The reception power fluctuation period calculation unit 67 of the wireless device 16a acquires the rotational speed information (outdoor fan rotational speed information 68) from the outdoor blower 18 by wired or wireless communication, and based on the acquired outdoor fan rotational speed information 68, Calculate the period of received power fluctuation. The reception power prediction unit 63a calculates the reception power prediction value 81 shown in FIG. 10 based on the reception power fluctuation period calculated by the reception power fluctuation period calculation unit 67 and the past reception power measurement results.

図13は、実施の形態2の無線装置の動作例を示すフローチャートである。図13に示したフローチャートは、実施の形態1にかかる無線装置の動作例を示したフローチャート(図11)のステップS13をステップS13aに置き換え、さらに、ステップS21およびS22を追加したものである。図11と同じステップ番号を付した処理は実施の形態1と同様であるため、説明を省略する。   FIG. 13 is a flowchart illustrating an operation example of the radio apparatus according to the second embodiment. The flowchart shown in FIG. 13 is obtained by replacing step S13 in the flowchart (FIG. 11) showing the operation example of the wireless apparatus according to the first embodiment with step S13a, and further adding steps S21 and S22. Since the processes with the same step numbers as in FIG. 11 are the same as those in the first embodiment, description thereof is omitted.

図12に示した構成の無線装置においては、ステップS11が完了すると、受信電力変動周期算出部67が、屋外ファン37から、回転数情報である屋外ファン回転数情報68を取得する(ステップS21)。そして、送信するデータがある場合(ステップS12:Yes)、受信電力変動周期算出部67は、ステップS21で取得した屋外ファン37の回転数から受信電力変動の周期を算出する(ステップS22)。次に、受信電力予測部63aが、ステップS11での測定結果(受信電力測定値)と、過去の受信電力測定結果と、ステップS22での算出結果(受信電力変動の周期)に基づいて、受信電力予測値81を算出する(ステップS13a)。   In the wireless apparatus having the configuration shown in FIG. 12, when step S11 is completed, the received power fluctuation period calculation unit 67 acquires outdoor fan rotation speed information 68, which is rotation speed information, from the outdoor fan 37 (step S21). . If there is data to be transmitted (step S12: Yes), the received power fluctuation period calculating unit 67 calculates the period of the received power fluctuation from the rotational speed of the outdoor fan 37 acquired in step S21 (step S22). Next, the reception power predicting unit 63a receives the reception result based on the measurement result (reception power measurement value) in step S11, the past reception power measurement result, and the calculation result (reception power fluctuation period) in step S22. The predicted power value 81 is calculated (step S13a).

ここで、上記のステップS22で屋外ファン37の回転数から受信電力変動の周期を算出する方法について説明する。屋外ファン37の回転数と受信電力変動の周期の関係は、例えば、鉄道車両用空調装置2の製造時に予め測定し、測定結果から、それぞれの回転数ごとの、受信電力予測パラメータを、テーブルとして受信電力変動周期算出部67または図示を省略した記憶部等で保持しておく(図14参照)。受信電力予測パラメータとは、例えば、線形予測法で算出したパラメータである。屋外ファンの回転数は時間とともに変化するため、送信直前の短時間、屋外ファンの回転数を監視し、回転数に該当する受信電力予測パラメータをテーブルから選択する。そして、選択した受信電力予測パラメータから受信電力変動の周期を算出する。   Here, a method of calculating the period of the received power fluctuation from the rotational speed of the outdoor fan 37 in step S22 will be described. The relationship between the rotation speed of the outdoor fan 37 and the period of fluctuation in received power is measured in advance, for example, when manufacturing the railway vehicle air conditioner 2, and the received power prediction parameter for each rotation speed is obtained as a table from the measurement result. The received power fluctuation period calculation unit 67 or the storage unit (not shown) holds the data (see FIG. 14). The received power prediction parameter is, for example, a parameter calculated by a linear prediction method. Since the rotation speed of the outdoor fan changes with time, the rotation speed of the outdoor fan is monitored for a short time immediately before transmission, and the received power prediction parameter corresponding to the rotation speed is selected from the table. Then, the received power fluctuation period is calculated from the selected received power prediction parameter.

また、上記のステップS13aでは、例えば、以下の方法で受信電力を予測する。受信電力変動の周期から算出した受信電力の系列を時系列X、実際に測定した受信電力の系列を時系列Yとし、時系列Yの測定時刻が新しいほど、重みを付けて、時系列Xと時系列Yの距離を求める。時系列Yを時間方向にシフトして、距離の計算を、複数回繰り返す。それぞれのシフト時間における距離を比較し、距離が最小になる所を見つけ、距離が最小になった時のシフト値と受信電力変動の周期から、送信時刻Aにおける受信電力値予測値を算出する(図15参照)。   Moreover, in said step S13a, received power is estimated with the following method, for example. The received power sequence calculated from the period of the received power fluctuation is time series X, the actually measured received power sequence is time series Y, and the newer the measurement time of time series Y, the more weighted, the time series X and The distance of time series Y is obtained. The time series Y is shifted in the time direction, and the distance calculation is repeated a plurality of times. The distance at each shift time is compared, the place where the distance is minimized is found, and the predicted received power value at the transmission time A is calculated from the shift value when the distance is minimized and the cycle of the received power fluctuation ( FIG. 15).

このように、本実施の形態の無線装置においては、対向装置が送信した信号の受信電力の測定結果に加え、屋外ファン37の回転数情報から算出した受信電力の変動周期に基づいて受信電力予測値を算出することとしたので、さらに精度の良い受信電力予測値を得ることができる。   As described above, in the wireless device according to the present embodiment, the received power prediction is performed based on the received power fluctuation period calculated from the rotation speed information of the outdoor fan 37 in addition to the measurement result of the received power of the signal transmitted by the opposite device. Since the value is calculated, a more accurate received power predicted value can be obtained.

実施の形態3.
上述した実施の形態1,2は、鉄道車両用空調装置2内に無線装置を搭載する場合、屋外ファン37等の影響を避けるために、送信を遅延させて送信するようにしたものであるが、次に、屋外ファン37の影響を避けるために、マルチホップにより、屋外ファン37の影響が無い別の無線装置を経由する実施形態を説明する。なお、装置の全体構成については実施の形態1,2と同様とする(図2など参照)。無線装置の構成は、実施の形態1または2と同様とする(図9、図12参照)。
Embodiment 3 FIG.
In the first and second embodiments described above, when a wireless device is mounted in the railway vehicle air conditioner 2, the transmission is delayed to avoid the influence of the outdoor fan 37 and the like. Next, in order to avoid the influence of the outdoor fan 37, a description will be given of an embodiment through another wireless device that is not affected by the outdoor fan 37 by multi-hop. The overall configuration of the apparatus is the same as in the first and second embodiments (see FIG. 2 and the like). The configuration of the wireless device is the same as in Embodiment 1 or 2 (see FIGS. 9 and 12).

図16は、実施の形態3の無線通信の概略を示す図である。実施の形態1,2の様に屋外ファン37の回転により無線回線51が安定して通信できないと判定した期間が一定時間以上ある場合、送信を遅延させるのではなく、マルチホップにより、屋外ファン37の影響のない無線回線53にて無線装置54と通信し、無線装置54は、無線装置16の通信を、無線回線55にて無線装置52に中継する。すなわち、送信タイミング遅延制御部64が算出した送信待ち時間(受信電力予測値がしきい値よりも大きくなるまでの所要時間)が一定時間よりも長い場合、通信品質が良好な経路(マルチホップ経路)が存在していれば、マルチホップ通信を行う。無線装置の位置が固定されているので、屋外ファン37の影響を受ない経路(マルチホップ経路)は予め選択しておくことが可能である。   FIG. 16 is a diagram illustrating an outline of wireless communication according to the third embodiment. As in the first and second embodiments, when the period when it is determined that the wireless line 51 cannot communicate stably due to the rotation of the outdoor fan 37 is longer than a certain time, the outdoor fan 37 is not delayed but transmitted by multi-hop. The wireless device 54 relays the communication of the wireless device 16 to the wireless device 52 through the wireless line 55. That is, when the transmission waiting time calculated by the transmission timing delay control unit 64 (required time until the predicted received power value becomes larger than the threshold value) is longer than a certain time, a route with good communication quality (multi-hop route) ) Is present, multi-hop communication is performed. Since the position of the wireless device is fixed, a route (multi-hop route) that is not affected by the outdoor fan 37 can be selected in advance.

送信待ち時間が短く、問題とならない場合には、実施の形態1,2と同様の動作で送信を行う。   When the transmission waiting time is short and does not cause a problem, transmission is performed in the same manner as in the first and second embodiments.

無線装置52から送信する場合も、同様に、安定して通信できないと判定した期間(安定した通信ができるようになるまでの期間)が一定時間以上の場合、マルチホップにより、無線回線55にて無線装置54にて通信し、無線装置54は、無線装置52からの通信を、無線回線53にて無線装置16に中継する。   Similarly, in the case of transmission from the wireless device 52, when the period (period until stable communication can be performed) determined that communication cannot be performed stably is equal to or longer than a certain time, the wireless circuit 55 performs multihop transmission. The wireless device 54 communicates, and the wireless device 54 relays communication from the wireless device 52 to the wireless device 16 via the wireless line 53.

このように、本実施の形態の無線装置においては、伝送遅延(送信待ち時間)が一定値よりも大きくなる場合、マルチホップ通信を行って経路迂回を行うこととしたので、伝送遅延が大きくなるのを回避しつつ屋外ファン37等の影響を受けない良好な通信を実現できる。   As described above, in the wireless device according to the present embodiment, when the transmission delay (transmission waiting time) becomes larger than a certain value, the route is detoured by performing multi-hop communication, so that the transmission delay increases. Thus, it is possible to realize good communication that is not affected by the outdoor fan 37 and the like.

以上のように、本発明にかかる鉄道車両用空調装置および無線通信装置は、装置を形成している機器同士が無線通信を行う鉄道車両用空調装置に適している。   As described above, the railway vehicle air conditioner and the wireless communication apparatus according to the present invention are suitable for a railway vehicle air conditioner in which devices forming the apparatus perform wireless communication.

1 鉄道車両、2 鉄道車両用空調装置、3,4 機器ブロック、5,6,7,16,16a,52,54 無線装置、10 無線操作端末、11 無線温度センサ、12 無線湿度センサ、13 無線ドア開閉センサ、14 無線荷重センサ、15 空調制御装置、17 屋内送風機、18 屋外送風機、19,36,39 圧縮機、20,21,51,53,55 無線回線、30,34 屋内熱交換器、31,33 屋内ファン、32 屋内ファン用モータ、35 屋内側装置、37 屋外ファン、38,40 屋外熱交換器、41 屋外側装置、60 受信部、61 送信部、62 受信電力測定部、63,63a 受信電力予測部、64 送信タイミング遅延制御部、65,65a 送信タイミング制御部、67 受信電力変動周期算出部、68 屋外ファン回転数情報、80 受信電力測定値、81 受信電力予測値。   DESCRIPTION OF SYMBOLS 1 Railway vehicle, 2 Railway vehicle air conditioner, 3, 4 Equipment block, 5, 6, 7, 16, 16a, 52, 54 Wireless device, 10 Wireless operation terminal, 11 Wireless temperature sensor, 12 Wireless humidity sensor, 13 Wireless Door open / close sensor, 14 wireless load sensor, 15 air conditioning control device, 17 indoor blower, 18 outdoor blower, 19, 36, 39 compressor, 20, 21, 51, 53, 55 wireless line, 30, 34 indoor heat exchanger, 31, 33 Indoor fan, 32 Indoor fan motor, 35 Indoor side device, 37 Outdoor fan, 38, 40 Outdoor heat exchanger, 41 Outdoor side device, 60 Receiver, 61 Transmitter, 62 Received power measurement unit, 63, 63a reception power prediction unit, 64 transmission timing delay control unit, 65, 65a transmission timing control unit, 67 reception power fluctuation period calculation unit, 68 outdoor Fan speed information, 80 received power measurement value, 81 received power predicted value.

Claims (9)

無線装置を搭載した複数種類の機器により形成された鉄道車両用空調装置であって、
前記無線装置は、
対向装置との間の通信品質測定結果に基づいて、将来の通信品質を予測する通信品質予測手段と、
良好な通信品質が予測されるタイミングで前記対向装置へ信号を送信する送信手段と、
を備えることを特徴とする鉄道車両用空調装置。
A railway vehicle air conditioner formed by a plurality of types of devices equipped with wireless devices,
The wireless device includes:
A communication quality prediction means for predicting a future communication quality based on a communication quality measurement result between the opposite device;
Transmitting means for transmitting a signal to the opposite device at a timing when good communication quality is predicted;
An air conditioner for railway vehicles, comprising:
前記通信品質予測手段は、複数の通信品質測定結果に基づいて、前記対向装置との通信が他の機器の動作から受ける影響量の変動周期を予測し、
前記送信手段は、前記影響量が大きいタイミングで送信データが発生した場合、前記影響量が小さくなるまで待ってから信号を送信する、
ことを特徴とする請求項1に記載の鉄道車両用空調装置。
The communication quality prediction means predicts the fluctuation period of the influence amount that the communication with the opposite device receives from the operation of another device based on a plurality of communication quality measurement results,
The transmission means, when transmission data is generated at a timing when the influence amount is large, waits until the influence amount becomes small, and then transmits a signal.
The air conditioner for a railway vehicle according to claim 1.
前記送信手段は、前記影響量が大きいタイミングで送信データが発生してから前記影響量が小さくなるまでの時間が一定値以上の場合、前記対向装置とは異なる他の無線装置のうち、前記他の機器の動作から受ける影響量が小さい通信が可能な無線装置を経由して前記対向装置へ信号を送信する、
ことを特徴とする請求項2に記載の鉄道車両用空調装置。
When the time from when transmission data is generated at a timing when the influence amount is large until the influence amount becomes small is equal to or greater than a certain value, the transmission means Transmitting a signal to the opposite device via a wireless device capable of communication with a small amount of influence from the operation of the device,
The railway vehicle air conditioner according to claim 2.
前記他の機器を屋外ファンとすることを特徴とする請求項2または3に記載の鉄道車両用空調装置。 The air conditioner for a railway vehicle according to claim 2 or 3, wherein the other device is an outdoor fan. 無線装置を搭載した複数種類の機器により形成された鉄道車両用空調装置であって、
前記無線装置は、
前記複数種類の機器の一つである屋外ファンの回転数の情報に基づいて、対向装置との将来の通信品質を予測する通信品質予測手段と、
良好な通信品質が予測されるタイミングで前記対向装置へ信号を送信する送信手段と、
を備えることを特徴とする鉄道車両用空調装置。
A railway vehicle air conditioner formed by a plurality of types of devices equipped with wireless devices,
The wireless device includes:
Communication quality prediction means for predicting future communication quality with the opposite device based on information on the rotational speed of an outdoor fan that is one of the plurality of types of devices,
Transmitting means for transmitting a signal to the opposite device at a timing when good communication quality is predicted;
An air conditioner for railway vehicles, comprising:
前記通信品質予測手段は、対向装置との通信が前記屋外ファンの動作から受ける影響量の変動周期を予測し、
前記送信手段は、前記影響量が大きいタイミングで送信データが発生した場合、前記影響量が小さくなるまで待ってから信号を送信する、
ことを特徴とする請求項5に記載の鉄道車両用空調装置。
The communication quality prediction means predicts the fluctuation period of the influence amount that the communication with the opposing device receives from the operation of the outdoor fan,
The transmission means, when transmission data is generated at a timing when the influence amount is large, waits until the influence amount becomes small, and then transmits a signal.
The railway vehicle air conditioner according to claim 5.
前記送信手段は、前記影響量が大きいタイミングで送信データが発生してから前記影響量が小さくなるまでの時間が一定値以上の場合、前記対向装置とは異なる他の無線装置のうち、前記屋外ファンの動作から受ける影響量が小さい通信が可能な無線装置を経由して前記対向装置へ信号を送信する、
ことを特徴とする請求項6に記載の鉄道車両用空調装置。
When the time from when transmission data is generated at a timing when the influence amount is large to when the influence amount becomes small is equal to or greater than a certain value, the transmission unit, among other wireless devices different from the opposing device, Transmitting a signal to the opposite device via a wireless device capable of communication with a small influence amount from the operation of the fan,
The railway vehicle air conditioner according to claim 6.
無線通信機能を有する複数種類の機器により形成された鉄道車両用空調装置において、各器機にそれぞれ搭載されて前記無線通信機能を実現する無線通信装置であって、
対向装置との間の通信品質測定結果に基づいて、将来の通信品質を予測する通信品質予測手段と、
良好な通信品質が予測されるタイミングで前記対向装置へ信号を送信する送信手段と、
を備えることを特徴とする無線通信装置。
In a railway vehicle air conditioner formed by a plurality of types of devices having a wireless communication function, each of the devices is a wireless communication device that implements the wireless communication function by being mounted on each device,
A communication quality prediction means for predicting a future communication quality based on a communication quality measurement result between the opposite device;
Transmitting means for transmitting a signal to the opposite device at a timing when good communication quality is predicted;
A wireless communication apparatus comprising:
無線通信機能を有する複数種類の機器により形成された鉄道車両用空調装置において、各器機にそれぞれ搭載されて前記無線通信機能を実現する無線通信装置であって、
前記複数種類の機器の一つである屋外ファンの回転数の情報に基づいて、対向装置との将来の通信品質を予測する通信品質予測手段と、
良好な通信品質が予測されるタイミングで前記対向装置へ信号を送信する送信手段と、
を備えることを特徴とする無線通信装置。
In a railway vehicle air conditioner formed by a plurality of types of devices having a wireless communication function, each of the devices is a wireless communication device that implements the wireless communication function by being mounted on each device,
Communication quality prediction means for predicting future communication quality with the opposite device based on information on the rotational speed of an outdoor fan that is one of the plurality of types of devices,
Transmitting means for transmitting a signal to the opposite device at a timing when good communication quality is predicted;
A wireless communication apparatus comprising:
JP2013179763A 2013-08-30 2013-08-30 Railway vehicle air conditioner and wireless communication device Expired - Fee Related JP6072652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179763A JP6072652B2 (en) 2013-08-30 2013-08-30 Railway vehicle air conditioner and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179763A JP6072652B2 (en) 2013-08-30 2013-08-30 Railway vehicle air conditioner and wireless communication device

Publications (2)

Publication Number Publication Date
JP2015047916A JP2015047916A (en) 2015-03-16
JP6072652B2 true JP6072652B2 (en) 2017-02-01

Family

ID=52698307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179763A Expired - Fee Related JP6072652B2 (en) 2013-08-30 2013-08-30 Railway vehicle air conditioner and wireless communication device

Country Status (1)

Country Link
JP (1) JP6072652B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111469873A (en) * 2020-05-09 2020-07-31 重庆中车四方所科技有限公司 Air conditioner electrical cabinet of rail transit vehicle
CN114363215B (en) * 2021-12-27 2024-05-28 北京特种机械研究所 Train communication network time delay analysis method based on supply and demand balance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104037A (en) * 1990-10-26 1992-04-14 Aeg Westinghouse Transportation Systems, Inc. Microprocessor controlled climate control device for a plurality of mass transit vehicles
JPH05666A (en) * 1991-06-26 1993-01-08 Toshiba Toransupooto Eng Kk Vehicle control device
JP2001091026A (en) * 1999-09-27 2001-04-06 Matsushita Electric Ind Co Ltd Air conditioner
JP2005112225A (en) * 2003-10-09 2005-04-28 Hitachi Ltd Control system for air conditioner of rolling stock
JP4678777B2 (en) * 2006-01-17 2011-04-27 Necトーキン株式会社 Environmental control system
ES2550603T3 (en) * 2008-06-11 2015-11-11 Mitsubishi Electric Corporation Air conditioner for vehicle use, vehicle air conditioning management system, and vehicle air conditioning management method
JP5627431B2 (en) * 2010-12-09 2014-11-19 三菱電機株式会社 Vehicle air conditioning system and railway vehicle air conditioning system
CN103843424B (en) * 2011-09-29 2017-09-19 日本电气株式会社 Radio parameter control device, radio base station, radio parameter control method and non-emporary computer-readable medium
JP2013098776A (en) * 2011-11-01 2013-05-20 Ntt Docomo Inc Mobile terminal and radio quality reporting method

Also Published As

Publication number Publication date
JP2015047916A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5100891B2 (en) Vehicle air conditioning control method
JP5274555B2 (en) Vehicle air conditioner, vehicle air conditioning management system, and vehicle air conditioning management method
US10675941B2 (en) Air-conditioner control
EP2445751B2 (en) Performance and position monitoring of a mobile hvac&amp;r unit
US9765979B2 (en) Heat-pump system with refrigerant charge diagnostics
JP7008476B2 (en) Indoor environment adjustment system, server, indoor environment adjustment method and program
US20180320916A1 (en) Hvac management system and method
JP2013210137A5 (en)
JP6639666B2 (en) Vehicle air conditioner and clogging detection system for vehicle air conditioner
JP5679715B2 (en) Air conditioner for vehicles
KR101922954B1 (en) Control method of air-conditioner system
JP6072652B2 (en) Railway vehicle air conditioner and wireless communication device
US20230056522A1 (en) Hvac system with wireless waveguide system
CN108006890B (en) Air conditioner heat dissipation control method, air conditioner heat dissipation control device and air conditioner
CN110296497B (en) System and method for linking home HVAC health monitoring
WO2022157832A1 (en) Air-conditioning device
CN109405182A (en) A kind of anti-condensation mode control method and device
JP6567184B2 (en) Vehicle air conditioner and vehicle air conditioner abnormality detection system
JP2007147167A (en) Wind direction control system, and wind direction control method
JP4396403B2 (en) Environment providing control system and environment providing control method
JP2012122629A (en) Air conditioner
KR102085501B1 (en) System for remote controlling air conditioner using smart terminal
US20230358424A1 (en) Operation of environmental control system during thermostat failure
JP2011257294A (en) Wireless control system
WO2016194115A1 (en) Air-conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6072652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees