JP6070614B2 - Pneumatic slag production apparatus, production method of crushed slag - Google Patents

Pneumatic slag production apparatus, production method of crushed slag Download PDF

Info

Publication number
JP6070614B2
JP6070614B2 JP2014066429A JP2014066429A JP6070614B2 JP 6070614 B2 JP6070614 B2 JP 6070614B2 JP 2014066429 A JP2014066429 A JP 2014066429A JP 2014066429 A JP2014066429 A JP 2014066429A JP 6070614 B2 JP6070614 B2 JP 6070614B2
Authority
JP
Japan
Prior art keywords
slag
crushed
crushed slag
molten
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014066429A
Other languages
Japanese (ja)
Other versions
JP2015189600A (en
Inventor
加藤 裕介
裕介 加藤
博幸 當房
博幸 當房
久宏 松永
久宏 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014066429A priority Critical patent/JP6070614B2/en
Publication of JP2015189600A publication Critical patent/JP2015189600A/en
Application granted granted Critical
Publication of JP6070614B2 publication Critical patent/JP6070614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、製鋼スラグを風砕して製造される風砕スラグの製造装置、風砕スラグの製造方法および風砕スラグに関する。   TECHNICAL FIELD The present invention relates to an apparatus for producing a crushed slag produced by pulverizing steelmaking slag, a method for producing the crushed slag, and an crushed slag.

鉄鋼業で副生されるスラグには、高炉、予備処理プロセス、転炉、電気炉等からのスラグがある。これらの内、高炉から副生されるスラグを高炉スラグといい、予備処理プロセス、転炉、電気炉から副生されるスラグを製鋼スラグという。   Slag produced as a by-product in the steel industry includes slag from blast furnaces, pretreatment processes, converters, electric furnaces, and the like. Of these, slag by-produced from the blast furnace is called blast furnace slag, and slag by-produced from the pretreatment process, converter, and electric furnace is called steelmaking slag.

製鋼スラグには、製鋼工程で副原料として投入される石灰が多く含まれており、その石灰の一部が完全には溶解せず製鋼スラグ中に遊離石灰(以下、フリーCaO)として残留している。製鋼スラグ中にフリーCaOが存在すると、製鋼スラグが水と接触した際、フリーCaOが水和膨張したりアルカリを溶出したりする。   Steelmaking slag contains a lot of lime that is added as an auxiliary material in the steelmaking process, and a part of the lime is not completely dissolved and remains as free lime (hereinafter, free CaO) in the steelmaking slag. Yes. If free CaO is present in the steelmaking slag, when the steelmaking slag comes into contact with water, the free CaO hydrates and expands or elutes alkali.

そのため、一般に、製鋼スラグを利用する場合には、エージングを行って事前にフリーCaOを水分と反応させて消石灰に変えて体積を安定させている。エージングには、ヤードで大気により行う大気エージングと、蒸気による蒸気エージングとがある(非特許文献1参照)。   Therefore, in general, when steelmaking slag is used, the volume is stabilized by performing aging and reacting free CaO with moisture in advance to change to slaked lime. Aging includes atmospheric aging performed by the atmosphere in a yard and steam aging using steam (see Non-Patent Document 1).

しかし、大気エージングは、製鋼スラグ中のフリーCaOが安定化するまでに長期間を要する。また、蒸気エージングは、大量の蒸気を使用するため処理コストが増加する。   However, atmospheric aging requires a long period of time until the free CaO in the steelmaking slag is stabilized. Steam aging uses a large amount of steam and increases processing costs.

そこで、フリーCaOの水和膨張やアルカリ溶出のリスクを低減させるエージング以外の方法として、例えば特許文献1には、溶融状態のスラグに高圧空気流を噴き付けて急冷する風砕によって、スラグの水和膨張やアルカリ溶出のリスクを低減させる技術が記載されている。   Therefore, as a method other than aging for reducing the risk of hydration expansion of free CaO and alkali elution, for example, Patent Document 1 discloses that slag water is sprayed by spraying a high-pressure air flow onto a molten slag and rapidly cooling it. Techniques for reducing the risk of Japanese expansion and alkali elution are described.

特開2004−238234号公報JP 2004-238234 A

鐵鋼スラグ協会 「環境資材 鉄鋼スラグ」2010年8月Steel Slag Association "Environmental Materials Steel Slag" August 2010

しかしながら、風砕により粒状に製造された風砕スラグは、球状であるため安息角が小さく、ハンドリングや保管が困難である。   However, the crushed slag produced in a granular form by pulverization has a spherical shape and therefore has a small angle of repose and is difficult to handle and store.

本発明は、上記に鑑みてなされたものであって、水和膨張やアルカリ溶出のリスクが低減され、かつ、ハンドリングや保管が容易な風砕スラグの製造装置、風砕スラグの製造方法および風砕スラグを提供することを目的とする。   The present invention has been made in view of the above, and has reduced the risk of hydration expansion and alkali elution, and is easy to handle and store. The purpose is to provide crushed slag.

上述した課題を解決し、目的を達成するために、本発明に係る風砕スラグの製造装置は、1550℃以上で溶融して液相が70%以上である溶融スラグに空気流を噴きつけて粒子化する手段と、粒子化され、半溶融状態の飛散中の風砕スラグを壁面に衝突させることによって平均扁平率が0.6以上である扁平形状の風砕スラグを製造する手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the apparatus for producing pulverized slag according to the present invention blows an air flow to a molten slag that melts at 1550 ° C. or higher and has a liquid phase of 70% or higher. Means for producing particles, and means for producing flat-shaped crushed slag having an average flatness ratio of 0.6 or more by colliding the crushed crushed slag in a semi-molten state with a wall surface. It is characterized by providing.

また、本発明に係る風砕スラグの製造方法は、1550℃以上で溶融して液相が70%以上である溶融スラグに空気流を噴きつけて粒子化するステップと、粒子化され、半溶融状態の飛散中の風砕スラグを壁面に衝突させることにより平均扁平率が0.6以上である扁平形状の風砕スラグを製造するステップと、を含むことを特徴とする。 In addition, the method for producing the pulverized slag according to the present invention includes a step of spraying an air stream onto molten slag having a liquid phase of 70% or more by melting at 1550 ° C. or more, and granulating and semi-molten. Producing a flat-shaped crushed slag having an average flatness ratio of 0.6 or more by colliding the crushed slag in a scattered state with a wall surface.

また、本発明に係る風砕スラグは、平均粒径が0.5〜5mmの扁平形状の風砕スラグであって、平均扁平率が0.6以上であることを特徴とする。 Moreover, the crushed slag according to the present invention is a flat crushed slag having an average particle size of 0.5 to 5 mm , and an average flatness ratio is 0.6 or more.

本発明によれば、水和膨張やアルカリ溶出のリスクが低減され、かつ、ハンドリングや保管が容易な風砕スラグの製造装置、風砕スラグの製造方法および風砕スラグを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the risk of hydration expansion | swelling and alkali elution is reduced, and the manufacturing apparatus of the pulverized slag, the manufacturing method of pulverized slag, and the pulverized slag which can be handled and stored easily can be provided.

図1は、本発明の一実施形態に係る風砕スラグ製造システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a milled slag production system according to an embodiment of the present invention.

以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.

本発明者らは、以下に説明する実験に基づいて、1550℃以上で溶融して液相が70%以上である溶融状態のスラグに空気流を噴きつけ風砕する際に、空気流により飛散したスラグを壁面に衝突させることにより、扁平形状の風砕スラグを製造できること、および、この風砕スラグの平均扁平率を0.6以上とすることで、安息角が30度以上となり、実使用におけるハンドリング性の向上が期待できることを見出した。   Based on the experiment described below, the inventors of the present invention scatters airflow when blowing airflow onto a molten slag that melts at 1550 ° C. or higher and has a liquid phase of 70% or higher. By making the slag collide with the wall surface, it is possible to produce flat-shaped crushed slag, and by making the average flatness of this crushed slag 0.6 or more, the angle of repose becomes 30 degrees or more, and it is actually used. It was found that the handling property can be improved.

まず、図1を参照して本実施の形態の風砕スラグの製造装置である風砕スラグ製造システムの概略構成について説明する。   First, with reference to FIG. 1, a schematic configuration of a milled slag production system that is a milled slag production apparatus of the present embodiment will be described.

本実施の形態では、製鋼スラグとして、転炉での脱炭スラグ(転炉脱炭スラグ)を対象としている。図1に示すように、風砕スラグ製造システム10は、溶解炉1と、桶2と、配管4と、エアーノズル5と、壁面6とを備え、溶解炉1で溶解された溶融状態のスラグ(溶融スラグ)3から扁平形状の風砕スラグ(扁平形状風砕スラグ)8を製造する。風砕スラグ製造システム10では、転炉脱炭スラグの排出温度が1550℃以上となるよう溶解炉1で転炉脱炭スラグが溶解される。溶解炉1の前方には樋2が設置され、そこに溶解した溶融スラグ3が流し込まれる。樋2は溶解炉1から排出された溶融スラグ3を受け、その先端部から溶融スラグ3が鉛直落下するような構造になっている。樋2の先端部から落下する溶融スラグ3に対して、配管4の先端に取り付けられた断面積が3mm×40mmのエアーノズル5を使用して高速空気流を噴きつけて、溶解炉1とは反対方向に溶解スラグ3を飛散させて粒状(風砕スラグ)化した。高速空気流は、250または350m/秒の速度、0.25m/kg−スラグの比率とした。また、樋2の前方2〜4mの位置に設置された壁面6に、飛散した半溶融状態の風砕スラグ(飛散中風砕スラグ)7を衝突させ扁平形状の扁平形状風砕スラグ8を製造した。 In this Embodiment, the decarburization slag (converter decarburization slag) in a converter is made into object as steelmaking slag. As shown in FIG. 1, the pulverized slag manufacturing system 10 includes a melting furnace 1, a firewood 2, a pipe 4, an air nozzle 5, and a wall surface 6, and a molten slag melted in the melting furnace 1. A flat shaped crushed slag (flat shaped crushed slag) 8 is produced from (molten slag) 3. In the air-pulverized slag manufacturing system 10, the converter decarburization slag is melted in the melting furnace 1 so that the discharge temperature of the converter decarburization slag becomes 1550 ° C. or higher. A trough 2 is installed in front of the melting furnace 1, and the molten slag 3 melted therein is poured. The trough 2 receives the molten slag 3 discharged from the melting furnace 1 and has a structure in which the molten slag 3 falls vertically from the tip. What is the melting furnace 1 by blowing a high-speed air flow to the molten slag 3 falling from the tip of the tub 2 using an air nozzle 5 having a cross-sectional area of 3 mm × 40 mm attached to the tip of the pipe 4? Dissolved slag 3 was scattered in the opposite direction to form a granular form (winded slag). The high velocity air flow was at a speed of 250 or 350 m / sec and a ratio of 0.25 m 3 / kg-slag. Moreover, the flat-shaped flat-shaped crushed slag 8 was manufactured by colliding the crushed crushed slag (spattered crushed slag) 7 with the wall surface 6 installed at a position 2 to 4 m ahead of the ridge 2. .

複数の条件下で扁平形状風砕スラグ8を製造した結果、風砕スラグの平均粒径は0.5〜5mmの範囲内にあった。また、平均扁平率0.6において安息角が30度程度となることから、平均扁平率を0.6以上とすることで実使用におけるハンドリング性の向上が期待できる。   As a result of producing the flat shaped crushed slag 8 under a plurality of conditions, the average particle size of the crushed slag was in the range of 0.5 to 5 mm. In addition, since the angle of repose is about 30 degrees at an average flatness ratio of 0.6, an improvement in handling properties in actual use can be expected by setting the average flatness ratio to 0.6 or more.

ここで、扁平率は、以下の式(1)により定義する。   Here, the flatness is defined by the following formula (1).

Figure 0006070614
Figure 0006070614

以上により、風砕によりスラグ中の鉄分をFeまで酸化させフリーCaOを固定化して水和膨張やアルカリ溶出のリスクを低減させ、かつ、ハンドリングや保管が容易な扁平形状の風砕スラグを製造できる。 As described above, flat-shaped crushed slag that oxidizes iron in the slag to Fe 2 O 3 by air crushing and immobilizes free CaO to reduce the risk of hydration expansion and alkali elution, and is easy to handle and store. Can be manufactured.

なお、スラグの溶融温度は1550℃以上であるとしたが、壁面からの落下、回収の容易さから1600℃以下であることが好ましい。また、溶融スラグを衝突させる壁面6の材料としては、1500℃以上の高温物質の衝突に耐えうる物であることが必要である。また、スラグのはく離性という観点で壁面6は金属板であることが好ましい。壁面6の設置位置は桶2の先端から10m程度の位置であることが好ましい。   In addition, although the melting temperature of slag was 1550 degreeC or more, it is preferable that it is 1600 degrees C or less from the ease of fall from a wall surface and collection | recovery. In addition, the material of the wall surface 6 on which the molten slag collides needs to be a material that can withstand the collision of a high-temperature substance of 1500 ° C. or higher. Moreover, it is preferable that the wall surface 6 is a metal plate from a viewpoint of the peelability of slag. The installation position of the wall surface 6 is preferably about 10 m from the tip of the heel 2.

上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様などに応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these embodiments. Various modifications according to specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the above.

[実施例]
本実施例では、転炉脱炭スラグを使用した。転炉脱炭スラグは製造している鋼板成分によって若干ばらつきがあるが、使用した転炉脱炭スラグの組成の例(2例記載)を表1に示す。なお、表1において、T.Feは、スラグ中の全Fe濃度を示す。また、M.Feは、スラグ中の金属Fe濃度を示す。また、T−CaOは、スラグ中の全CaO濃度を示す。また、f−CaOは、スラグ中のフリーCaOの濃度を示す。
[Example]
In this example, converter decarburization slag was used. Although converter decarburization slag varies slightly depending on the steel plate components being produced, Table 1 shows examples of the composition of the converter decarburization slag used (described in two examples). In Table 1, T.W. Fe indicates the total Fe concentration in the slag. In addition, M.M. Fe indicates the metal Fe concentration in the slag. Moreover, T-CaO shows the total CaO density | concentration in slag. Moreover, f-CaO shows the density | concentration of the free CaO in slag.

転炉脱炭スラグの溶解炉1からの排出温度(スラグ温度)を変化させ、樋2の先端部から落下する溶融スラグ3に対して、エアーノズル5を使用して80または120m/秒の速度、0.40m/kg−スラグの比率で高速空気流を噴きつけ、溶融スラグ3を溶解炉1とは反対方向に飛散させた。また、桶2の前方8〜12mの位置に壁面6を設置し、飛散中風砕スラグ7を衝突させ、風砕スラグを得た。 The discharge temperature (slag temperature) of the converter decarburization slag from the melting furnace 1 is changed, and the velocity of 80 or 120 m / sec is used for the molten slag 3 falling from the tip of the tub 2 using the air nozzle 5. The high-speed air flow was sprayed at a ratio of 0.40 m 3 / kg-slag, and the molten slag 3 was scattered in the direction opposite to the melting furnace 1. Moreover, the wall surface 6 was installed in the position of 8-12m ahead of the eaves 2, and the crushed slag 7 was made to collide during scattering, and the crushed slag was obtained.

Figure 0006070614
Figure 0006070614

これらの結果を表2に示す。実施例1〜5に示すように、炉からの溶融スラグ3排出時の温度が1560℃以上では、高速空気流の流速や樋2から壁面6までの距離に関わらず風砕スラグの扁平率が0.6以上となっており、溶融スラグ3の温度が風砕スラグの扁平率に与える影響が大きいことがわかった。また、溶融スラグ3排出時の温度が1520℃以下の比較例では、いずれも風砕スラグの扁平率が0.4以下であった。   These results are shown in Table 2. As shown in Examples 1 to 5, when the temperature at the time of discharging the molten slag 3 from the furnace is 1560 ° C. or higher, the flatness of the crushed slag is high regardless of the flow rate of the high-speed air flow and the distance from the ridge 2 to the wall surface 6. It was 0.6 or more, and it was found that the temperature of the molten slag 3 has a great influence on the flatness of the crushed slag. Moreover, in the comparative example whose temperature at the time of discharge | emission of the molten slag 3 is 1520 degrees C or less, the flatness ratio of the crushed slag was 0.4 or less in all.

製造された風砕スラグの組成の一例としては、FeOが1.7質量%、Feが31.2質量%、SiOが10.9質量%、CaOが45.2質量%、Alが1.1質量%、MgOが7.1質量%であった。FeOは風砕前の6.95質量%から減少しており、Feは風砕前の20.3質量%から増加しており、風砕によりスラグ中の鉄分が酸化されていることが確認できた。風砕スラグの直径は5mm以下のものが95%以上であった。 As an example of the composition of the manufactured crushed slag, FeO is 1.7% by mass, Fe 2 O 3 is 31.2% by mass, SiO 2 is 10.9% by mass, CaO is 45.2% by mass, Al 2 O 3 was 1.1% by mass and MgO was 7.1% by mass. FeO has decreased from 6.95% by mass before wind-pulverization, Fe 2 O 3 has increased from 20.3% by mass before air-crushing, and iron in the slag is oxidized by air-crushing Was confirmed. The diameter of the blown slag was 95% or more when it was 5 mm or less.

また、比較例1〜5に示すように、溶解炉1からの排出温度(スラグ温度)を1520℃以下とした場合、排出温度が低かったため壁面6への衝突前に凝固しており平均扁平率は0.1以下となった。風砕スラグの直径は3mm以下のものが95%以上となっていた。比較例の一例のスラグ組成は、FeOが2.7質量%、Feが33.3質量%、SiOが10.6質量%、CaOが44.2質量%、Alが1.7質量%、MgOが5.6質量%であった。FeOは風砕前の6.95質量%から減少しており、Feは風砕前の20.3質量%から増加しており、上記実施例の風砕スラグと同様に、風砕によりスラグ中の鉄分が酸化されていることが確認できた。 In addition, as shown in Comparative Examples 1 to 5, when the discharge temperature (slag temperature) from the melting furnace 1 is set to 1520 ° C. or less, the discharge temperature was low, so that the solidified before the collision with the wall surface 6 and the average flatness Became 0.1 or less. The diameter of the blown slag was 95% or more when the diameter was 3 mm or less. The slag composition of an example of the comparative example is as follows: FeO is 2.7 mass%, Fe 2 O 3 is 33.3 mass%, SiO 2 is 10.6 mass%, CaO is 44.2 mass%, and Al 2 O 3 is The content was 1.7% by mass and MgO was 5.6% by mass. FeO is decreased from 6.95% by mass before air-crushing, and Fe 2 O 3 is increased from 20.3% by mass before air-crushing. This confirmed that the iron in the slag was oxidized.

Figure 0006070614
Figure 0006070614

1 溶解炉
2 桶
3 溶融スラグ
4 配管
5 エアーノズル
6 壁面
7 飛散中風砕スラグ
8 扁平形状風砕スラグ
10 風砕スラグ製造システム
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 桶 3 Molten slag 4 Piping 5 Air nozzle 6 Wall surface 7 Spattered crushed slag 8 Flat-shaped crushed slag 10 Pneumatic slag production system

Claims (3)

1550℃以上で溶融して液相が70%以上である溶融スラグに空気流を噴きつけて粒子化する手段と、
粒子化され、半溶融状態の飛散中の風砕スラグを壁面に衝突させることによって平均扁平率が0.6以上である扁平形状の風砕スラグを製造する手段と、
を備えることを特徴とする風砕スラグの製造装置。
Means for injecting an air stream into molten slag having a liquid phase of 70% or higher by melting at 1550 ° C. or higher,
Means for producing a flat-shaped crushed slag having an average flatness ratio of 0.6 or more by colliding with a wall surface the crushed slag that is in the form of particles and is in a semi-molten state ,
An apparatus for producing crushed slag, comprising:
1550℃以上で溶融して液相が70%以上である溶融スラグに空気流を噴きつけて粒子化するステップと、
粒子化され、半溶融状態の飛散中の風砕スラグを壁面に衝突させることにより平均扁平率が0.6以上である扁平形状の風砕スラグを製造するステップと、
を含むことを特徴とする風砕スラグの製造方法。
A step of spraying an air stream onto molten slag that is melted at 1550 ° C. or higher and has a liquid phase of 70% or more to form particles;
A step of producing a flat-shaped crushed slag having an average flatness ratio of 0.6 or more by colliding with a wall surface of the crushed slag in a semi-molten state, which is granulated, and
The manufacturing method of the crushed slag characterized by including.
平均粒径が0.5〜5mmの扁平形状の風砕スラグであって、平均扁平率が0.6以上であることを特徴とする風砕スラグ。 A flat crushed slag having an average particle diameter of 0.5 to 5 mm , wherein the average flatness is 0.6 or more.
JP2014066429A 2014-03-27 2014-03-27 Pneumatic slag production apparatus, production method of crushed slag Expired - Fee Related JP6070614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066429A JP6070614B2 (en) 2014-03-27 2014-03-27 Pneumatic slag production apparatus, production method of crushed slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066429A JP6070614B2 (en) 2014-03-27 2014-03-27 Pneumatic slag production apparatus, production method of crushed slag

Publications (2)

Publication Number Publication Date
JP2015189600A JP2015189600A (en) 2015-11-02
JP6070614B2 true JP6070614B2 (en) 2017-02-01

Family

ID=54424432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066429A Expired - Fee Related JP6070614B2 (en) 2014-03-27 2014-03-27 Pneumatic slag production apparatus, production method of crushed slag

Country Status (1)

Country Link
JP (1) JP6070614B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340639B2 (en) * 2015-10-29 2018-06-13 Jfeスチール株式会社 Manufacturing method of slag material
JP2022032810A (en) * 2020-08-14 2022-02-25 新日本繊維株式会社 Flaky composition and production method of flaky composition
CN115418420B (en) * 2022-09-26 2023-07-25 马鞍山钢铁股份有限公司 Treatment device and treatment method for improving wind-break slagging of steel slag

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108123A (en) * 1977-03-04 1978-09-20 Nippon Steel Corp Method of producing granular slag
JPS53142395A (en) * 1977-05-18 1978-12-12 Nippon Steel Corp Granulated slag producing apparatus
JPS6158845A (en) * 1984-08-30 1986-03-26 株式会社神戸製鋼所 Manufacture of special form grain slag
JPS6320099A (en) * 1986-07-10 1988-01-27 Jgc Corp Treatment of molten slag of waste water sludge
JP3522795B2 (en) * 1993-08-03 2004-04-26 川鉄鉱業株式会社 Resin composition
JP4252883B2 (en) * 2003-01-17 2009-04-08 Jfeマテリアル株式会社 Method for producing high carbon ferrochrome-crushed slag and abrasive

Also Published As

Publication number Publication date
JP2015189600A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
CA2935621C (en) Process and apparatus for dry granulation of slag with reduced formation of slag wool
JP6070614B2 (en) Pneumatic slag production apparatus, production method of crushed slag
JP4353706B2 (en) Process for producing milled slag and facility for producing milled slag
CN103757152B (en) Method and device for treating steel slag
TWI473883B (en) Converter steelmaking method
CN103014201A (en) Device and method for gas-solid ejection and granulation of molten blast furnace slags
JP6340639B2 (en) Manufacturing method of slag material
CN104507893A (en) Powdery set-accelerating agent and method for spray application of monothilic refractory
CN102433404A (en) Blast-furnace smelting method of high-chromium high-vanadium schreyerite
CN106755660B (en) A kind of foamed slag dilute phase dry granulation methods based on steel mill's solid waste melting and reducing
CN102527920B (en) Preparation method for molding sand used for non-ferrous metal
CN104831006B (en) It is a kind of to reclaim the method that refining waste residue produces molten steel covering agent
RU2669653C2 (en) Method of producing granular metallic iron
JP4418489B2 (en) High temperature slag treatment method
CN204999925U (en) Granulating device
JPH0475288B2 (en)
CN203846041U (en) Multifunctional granulator
JP4069837B2 (en) Hot phosphorus dephosphorization method
CN101423251B (en) Method for manufacturing zircite granulation
CN2850763Y (en) Air-permeable brick for bottom powder-applying process
CN219032226U (en) Air quenching method steel slag treatment system
CN203695431U (en) Wear resistant steel ball section crushed aggregates recovery device
CN102417940B (en) Defoaming and slagging heat insulation agent for blast furnace ironmaking and preparation method thereof
JP5517063B2 (en) Slag processing method
CN107148482A (en) Mixture, the purposes of the mixture and the method for pre-processing the slag on the metal bath being present in Ferrous Metallurgy in metallurgical tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees