JP6069943B2 - Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system - Google Patents

Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system Download PDF

Info

Publication number
JP6069943B2
JP6069943B2 JP2012176938A JP2012176938A JP6069943B2 JP 6069943 B2 JP6069943 B2 JP 6069943B2 JP 2012176938 A JP2012176938 A JP 2012176938A JP 2012176938 A JP2012176938 A JP 2012176938A JP 6069943 B2 JP6069943 B2 JP 6069943B2
Authority
JP
Japan
Prior art keywords
fine convex
convex structure
convex pattern
fine
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012176938A
Other languages
Japanese (ja)
Other versions
JP2014036133A (en
Inventor
祐樹 有塚
祐樹 有塚
長沼 宏之
宏之 長沼
幹雄 石川
幹雄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012176938A priority Critical patent/JP6069943B2/en
Publication of JP2014036133A publication Critical patent/JP2014036133A/en
Application granted granted Critical
Publication of JP6069943B2 publication Critical patent/JP6069943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、微細凸構造体の修正方法及び製造方法、並びに微細凸構造体を製造するシステムに関する。   The present invention relates to a method for correcting and manufacturing a fine convex structure, and a system for manufacturing the fine convex structure.

微細加工技術として、近年、ナノインプリント技術やフォトリソグラフィー技術等が注目されている。ナノインプリント技術は、基材の表面に微細凹凸構造が形成されてなる型部材(モールド)を用い、当該微細凹凸構造を被加工物に転写することで微細凹凸構造を等倍転写するパターン形成技術である(特許文献1)。また、フォトリソグラフィー技術は、微細パターンを有するフォトマスク等を用いて感光性レジストに対して露光し、現像することで、当該微細パターンに応じた微細凹凸構造を有するレジストパターンを形成するパターン形成技術である。   In recent years, nanoimprint technology, photolithography technology, and the like have attracted attention as fine processing technology. The nanoimprint technology is a pattern formation technology that uses a mold member (mold) having a fine concavo-convex structure formed on the surface of a substrate, and transfers the fine concavo-convex structure to a workpiece by transferring the fine concavo-convex structure at the same magnification. Yes (Patent Document 1). In addition, the photolithography technique is a pattern forming technique for forming a resist pattern having a fine concavo-convex structure corresponding to the fine pattern by exposing and developing the photosensitive resist using a photomask having a fine pattern. It is.

ナノインプリントにおいては、一般に、流動性を有する樹脂等にモールドを押し当てた状態で、当該樹脂等を硬化させ、その後硬化した樹脂等からモールドを引き剥がすことにより、微細凹凸構造を有する微細凹凸構造体(樹脂パターン)が形成される。また、フォトリソグラフィーにおいては、一般に、フォトマスク等を介して感光性レジストをUV、EUV、電子線、X線等で露光し、現像液により現像した後、リンス液を用いたリンス処理を行うことで、微細凹凸構造を有する微細凹凸構造体(レジストパターン)が形成される。   In nanoimprint, generally, a fine concavo-convex structure having a fine concavo-convex structure is obtained by curing the resin in a state where the mold is pressed against a resin having fluidity and then peeling the mold from the cured resin. (Resin pattern) is formed. In photolithography, generally, a photosensitive resist is exposed to UV, EUV, electron beam, X-ray, etc. through a photomask and the like, developed with a developer, and then rinsed with a rinse. Thus, a fine uneven structure (resist pattern) having a fine uneven structure is formed.

上述したナノインプリント又はフォトリソグラフィーにより形成される微細凸構造を有する微細凸構造体(例えば、ピラー状、ラインアンドスペース状等の樹脂パターン又はレジストパターン)は、例えば、そのまま細胞培養シート等として、また、エッチングにより基板等に微細凹構造を形成するためのエッチングマスク等として用いられることから、当該樹脂パターン又はレジストパターンにおいては、当該微細凸構造が樹脂パターン面又はレジストパターン面に対して略垂直に立設されていることが要求される。   The fine convex structure having a fine convex structure formed by nanoimprint or photolithography described above (for example, a resin pattern or a resist pattern such as a pillar shape and a line and space shape) is used as a cell culture sheet or the like as it is, Since it is used as an etching mask or the like for forming a fine concave structure on a substrate or the like by etching, in the resin pattern or resist pattern, the fine convex structure stands substantially perpendicular to the resin pattern surface or resist pattern surface. It is required to be installed.

しかしながら、ナノインプリントにおいては、硬化した樹脂とモールドとを剥離する際に、樹脂パターン面に対する垂直方向の力(引張力)のみならず面内方向の力(引張力)も微細凸構造に加わるために、微細凸構造が倒れてしまうことがある。特に、モールドや被転写物としての樹脂が柔軟性を有する材料からなる場合や、ベルト状インプリント用モールドや回転体の表面に微細凹構造が形成されてなるモールドを回転させながら、所定方向に搬送される長尺状の被転写材に押し付けることで、当該長尺状の被転写材上に微細凸構造を形成しようとする場合等において、微細凸構造に加わる面内方向の力が大きくなり、微細凸構造の倒れがより深刻となる。   However, in nanoimprint, when the cured resin and the mold are peeled off, not only the force (tensile force) in the vertical direction to the resin pattern surface but also the force in the in-plane direction (tensile force) is applied to the fine convex structure. The fine convex structure may collapse. In particular, when the resin as a mold or a transfer object is made of a flexible material, or while rotating a mold having a micro-concave structure formed on the surface of a belt-like imprint mold or a rotating body, in a predetermined direction. By pressing against the long material to be transferred, the force in the in-plane direction applied to the fine convex structure becomes large when trying to form a fine convex structure on the long material to be transferred. The collapse of the fine convex structure becomes more serious.

また、フォトリソグラフィー技術においては、現像工程又はリンス工程にて用いられる現像液又はリンス液の乾燥時に生じる表面張力の影響等により、隣接する微細凸構造が寄り添うようにして倒れてしまうことがある。さらに、フォトリソグラフィー技術以外においても、例えば、予め形成した凸構造の側壁にスペーサーと呼称される薄膜層を形成した後、所定の溶媒等を用いて当該薄膜層を残しつつ凸構造を溶解除去することで、薄膜層により構築された微細凸構造を形成する場合においても同様に、当該微細凸構造の倒れが生じ得る。   In the photolithography technique, adjacent fine convex structures may fall down due to the influence of surface tension generated during the drying of the developer or rinse liquid used in the development step or the rinse step. In addition to photolithography technology, for example, after forming a thin film layer called a spacer on the side wall of a previously formed convex structure, the convex structure is dissolved and removed using a predetermined solvent or the like while leaving the thin film layer. Thus, even when a fine convex structure constructed by a thin film layer is formed, the fine convex structure may fall down.

さらに、微細凸構造の倒れは、帯電した微細凸構造体から電荷が放出される際にも生じる場合がある。例えば、ナノインプリントによって樹脂による微細凸構造体を基板上に形成した後、当該微細凸構造体における微細凸構造(微細凸パターン)の頂部上にのみ金属薄膜を形成し、当該金属薄膜をマスクとしてエッチングを行うことで微細凸構造体における凹部分に残存する樹脂膜(樹脂残膜)を選択的に除去し、基板の表面を露出させる場合を考える(特許文献2参照)。このとき、樹脂残膜を選択的に除去する方法として、CHF3によるRIE法を用いるとすると、微細凸パターンのうち、周囲のパターンから孤立したパターンが存在する場合、当該孤立パターン上の金属薄膜にはドライエッチングの際に電荷が蓄積された状態になる。そして、周囲のパターンが接地された状態にあると、孤立パターン上の金属薄膜から電荷を放出しようとして、孤立パターンが撓み、孤立パターンが倒れるようにして周囲のパターンに接触する場合がある。このとき、周囲のパターンに接触した孤立パターンは電荷を放出した後も倒れたままの状態となってしまう。 Further, the collapse of the fine convex structure may also occur when charges are released from the charged fine convex structure. For example, after forming a fine convex structure made of resin on a substrate by nanoimprinting, a metal thin film is formed only on the top of the fine convex structure (fine convex pattern) in the fine convex structure, and etching is performed using the metal thin film as a mask. Is considered to selectively remove the resin film (resin remaining film) remaining in the concave portion of the fine convex structure and expose the surface of the substrate (see Patent Document 2). At this time, if the RIE method using CHF 3 is used as a method for selectively removing the resin residual film, if there is a pattern isolated from the surrounding pattern among the fine convex patterns, the metal thin film on the isolated pattern In this case, charge is accumulated during dry etching. When the surrounding pattern is in a grounded state, the isolated pattern may bend and the isolated pattern may be brought into contact with the surrounding pattern in an attempt to release charges from the metal thin film on the isolated pattern. At this time, the isolated pattern in contact with the surrounding pattern remains in a collapsed state even after the charge is released.

このような微細凸構造の倒れが生じると、所望とする製品が得られなくなり、製品の歩留まりの低下を引き起こすこととなるが、上述したような微細加工技術分野においてさらなる微細化や高アスペクト比の要求が高まっている現状において、特に微細凸構造の倒れの問題が顕著になってくる。   If such a collapse of the fine convex structure occurs, the desired product cannot be obtained and the yield of the product is reduced. However, in the field of fine processing technology as described above, further miniaturization and high aspect ratio are required. In the present situation where the demand is increasing, the problem of collapse of the fine convex structure becomes particularly prominent.

そこで、従来、ナノインプリントにより所定の形状(ライン形状、十字形状等)の微細凸構造を形成しようとする場合において、硬化した樹脂からインプリントモールドを引き離す方向(剥離方向)を微細凸構造の形状等に応じて制御することにより微細凸構造の倒れ(湾曲等の欠陥)を防止する技術や、表面張力を低下させたリンス液を用いることで、フォトリソグラフィーにより形成された微細凸構造の倒れを防止する技術等が提案されている(特許文献3,4等参照)。   Therefore, conventionally, when trying to form a fine convex structure of a predetermined shape (line shape, cross shape, etc.) by nanoimprint, the direction (peeling direction) for separating the imprint mold from the cured resin is the shape of the fine convex structure, etc. The technology prevents the collapse of the fine convex structure formed by photolithography by using the technology to prevent the collapse of the fine convex structure (defects such as bending) by controlling according to the condition and the rinse liquid with reduced surface tension. The technique etc. which do are proposed (refer patent document 3, 4 grade | etc.,).

米国特許第5,772,905号US Pat. No. 5,772,905 特開2009−194170号公報JP 2009-194170 A 特開2007−296683号公報JP 2007-296683 A 特開2007−213013号公報Japanese Patent Laid-Open No. 2007-213013

上記特許文献3及び4に記載の発明は、微細凸構造体の形成時に微細凸構造が倒れてしまわないようにすることに主眼を置いたものであるが、いずれの発明においても微細凸構造の倒れを完全に防止することは困難であり、特に微細凸構造のさらなる微細化、高アスペクト比の要求が高まる中、微細凸構造の倒れを完全に防止することは極めて困難であるという問題がある。   The inventions described in Patent Documents 3 and 4 focus on preventing the fine convex structure from collapsing during the formation of the fine convex structure. It is difficult to completely prevent the collapse, and in particular, there is a problem that it is extremely difficult to completely prevent the collapse of the fine convex structure while further miniaturization of the fine convex structure and the demand for a high aspect ratio are increasing. .

上記特許文献3に記載の発明においては、インプリントモールドの剥離動作の制御により微細凸構造の倒れが防止され得るため、そのような剥離動作を実現可能な設備(インプリント装置等)が必要であるという問題がある。また、そのような設備を用いたとしても、当該剥離動作により倒れを防止し得る形状(ライン形状、十字形状等)の微細凸構造を有する微細凸構造体しか製造することができず、他の形状を有する微細凸構造体の製造には適さないという問題がある。すなわち、上記特許文献2に記載の発明は、汎用性に欠けるという問題がある。   In the invention described in Patent Document 3, since the collapse of the fine convex structure can be prevented by controlling the peeling operation of the imprint mold, equipment (such as an imprint apparatus) that can realize such a peeling operation is necessary. There is a problem that there is. Moreover, even if such a facility is used, only a fine convex structure having a fine convex structure having a shape (line shape, cross shape, etc.) that can be prevented from falling by the peeling operation can be produced. There exists a problem that it is not suitable for manufacture of the fine convex structure which has a shape. That is, the invention described in Patent Document 2 has a problem that it lacks versatility.

また、特許文献4に記載の発明は、確かに微細凸構造の倒れを防止し得る方法ではあるものの、表面張力を完全にゼロにすることは不可能であるため、微細凸構造のアスペクト比が大きくなった場合や、寸法、ピッチ等の条件によっては、微細凸構造の倒れを防止することが困難となる場合があるという問題がある。   In addition, although the invention described in Patent Document 4 is certainly a method that can prevent the collapse of the fine convex structure, it is impossible to make the surface tension completely zero. There is a problem that it may be difficult to prevent collapse of the fine convex structure depending on conditions such as an increase in size and dimensions and pitch.

上述の問題に鑑みて、本発明は、微細凸構造を有する微細凸構造体の形成時に、意図せずして倒れてしまった微細凸構造を簡易に修正することのできる微細凸構造体の修正方法及び当該修正方法を用いた微細凸構造体の製造方法、並びに微細凸構造体の製造システムを提供することを目的とする。   In view of the above problems, the present invention corrects a fine convex structure that can easily correct a fine convex structure that has collapsed unintentionally when forming a fine convex structure having a fine convex structure. It is an object of the present invention to provide a method, a manufacturing method of a fine convex structure using the correction method, and a manufacturing system of the fine convex structure.

上記課題を解決するために、本発明は、平面部と当該平面部から突出してなる微細凸構造部とを有する微細凸構造体において、当該微細凸構造部が当該平面部に直交する方向に対し傾斜しているときに、当該微細凸構造部の傾斜を修正する方法であって、前記傾斜した微細凸構造部を有する前記微細凸構造体の、前記平面部の表面と前記微細凸構造部の表面とに同じ極性の電荷を生じさせることにより、前記微細凸構造部の傾斜を修正することを特徴とする微細凸構造体の修正方法を提供する(発明1)。
In order to solve the above-described problems, the present invention provides a fine convex structure having a flat portion and a fine convex structure portion protruding from the flat portion, and the fine convex structure portion is perpendicular to the plane portion. A method of correcting the inclination of the fine convex structure portion when the fine convex structure portion is inclined, the surface of the planar portion and the fine convex structure portion of the fine convex structure body having the inclined fine convex structure portion. Provided is a method for correcting a fine convex structure, wherein the inclination of the fine convex structure portion is corrected by generating electric charges having the same polarity on the surface (Invention 1).

上記発明(発明1)によれば、微細凸構造体における平面部と微細凸構造部とに同じ極性の電荷を生じさせるだけで、電気的反発力により微細凸構造部を平面部から遠ざける方向、すなわち傾斜している微細凸構造部が平面部に対する直交方向に突出するように、当該微細凸構造部を変形させることができるため、傾斜して(倒れて)しまった微細凸構造部を本来目的とする方向に突出させるように修正することができる。   According to the above invention (Invention 1), the direction in which the fine convex structure portion is moved away from the flat portion by the electric repulsive force only by generating charges of the same polarity in the flat portion and the fine convex structure portion in the fine convex structure, In other words, since the fine convex structure portion can be deformed so that the inclined fine convex structure portion protrudes in a direction orthogonal to the flat surface portion, the original purpose of the fine convex structure portion that is inclined (falls down) It can correct so that it may protrude in the direction.

なお、本発明において「平面部」とは、突出する微細凸構造部の基部となる面のことを意味し、平坦面であってもよいし、凹面、凸面、曲面等の非平坦面であってもよい。また、「平面部に直交する方向」とは、微細凸構造部を上方に、平面部を下方に位置させた微細凸構造体の側面視であって、一の方向からの側面視及び当該一の方向に直交する他の方向からの側面視のいずれにおいても、微細凸構造部の幅方向中心を通る線分(軸線)と平面部との交点を通る、平面部の接線に直交する方向を意味するものとし、平面部が非平坦面である場合においては、「平面部に直交する方向」は各微細凸構造部における当該方向を意味するものとする。   In the present invention, the “planar portion” means a surface that serves as a base portion of the protruding fine convex structure portion, and may be a flat surface or a non-flat surface such as a concave surface, a convex surface, or a curved surface. May be. In addition, the “direction perpendicular to the plane portion” is a side view of the fine convex structure body in which the fine convex structure portion is positioned upward and the plane portion is positioned downward. The direction perpendicular to the tangent of the plane portion passing through the intersection of the line segment (axis line) passing through the center in the width direction of the fine convex structure portion and the plane portion in any side view from other directions orthogonal to the direction of In the case where the planar portion is a non-flat surface, the “direction orthogonal to the planar portion” means the direction in each fine convex structure portion.

上記発明(発明1)においては、前記微細凸構造体を帯電させることが可能な雰囲気下に、当該微細凸構造体を存在させることにより前記微細凸構造体に電荷を生じさせてもよいし(発明2)、前記微細凸構造体を誘電分極又は静電誘導させることにより前記微細凸構造体に電荷を生じさせてもよい(発明3)。   In the said invention (invention 1), you may produce an electric charge in the said fine convex structure by making the said fine convex structure exist in the atmosphere which can charge the said fine convex structure ( Invention 2) The electric charge may be generated in the fine convex structure by dielectric polarization or electrostatic induction of the fine convex structure (Invention 3).

上記発明(発明1〜3)においては、前記微細凸構造体における一部の領域に電荷を生じさせることにより、当該電荷が生じた領域における前記微細凸構造部の傾斜を修正するようにしてもよい(発明4)。   In the above inventions (Inventions 1 to 3), it is possible to correct the inclination of the fine convex structure portion in the region where the charge is generated by generating a charge in a partial region of the fine convex structure. Good (Invention 4).

上記発明(発明1〜4)においては、前記微細凸構造体が、絶縁性材料により構成されていてもよいし(発明5)、前記微細凸構造体が、導電性材料を含む材料により構成されており、少なくとも前記微細凸構造体における一部の領域を電気的フローティング状態として、前記微細凸構造体に電荷を生じさせてもよい(発明6)。   In the said invention (invention 1-4), the said fine convex structure may be comprised with the insulating material (invention 5), and the said fine convex structure is comprised with the material containing an electroconductive material. In addition, at least a part of the region of the fine convex structure may be in an electrically floating state to generate charges in the fine convex structure (Invention 6).

また、本発明は、平面部と、当該平面部から突出してなる微細凸構造部とを有する微細凸構造体を形成する微細凸構造体形成工程と、前記微細凸構造体形成工程により形成された前記微細凸構造体において、前記微細凸構造部が前記平面部に直交する方向に対し傾斜している場合に、上記発明(発明1〜6)に係る微細凸構造体の修正方法を用いて前記微細凸構造部の傾斜を修正する微細凸構造部傾斜修正工程とを含むことを特徴とする微細凸構造体の製造方法を提供する(発明7)。   Further, the present invention is formed by a fine convex structure forming step of forming a fine convex structure having a flat portion and a fine convex structure portion protruding from the flat portion, and the fine convex structure forming step. In the fine convex structure, when the fine convex structure portion is inclined with respect to a direction orthogonal to the plane portion, the fine convex structure correcting method according to the inventions (Inventions 1 to 6) is used. A method of manufacturing a fine convex structure, comprising: a fine convex structure portion inclination correcting step of correcting the inclination of the fine convex structure portion (Invention 7).

上記発明(発明7)においては、前記微細凸構造体形成工程により形成された前記微細凸構造部が、前記平面部に直交する方向に対し傾斜しているか否かを検知する傾斜検知工程をさらに含み、前記傾斜検知工程により前記微細凸構造部が傾斜していると判定された場合に、前記微細凸構造部傾斜修正工程を行うのが好ましい(発明8)。   In the said invention (invention 7), the inclination detection process which detects whether the said fine convex structure part formed by the said fine convex structure formation process inclines with respect to the direction orthogonal to the said plane part is further provided. In addition, when it is determined that the fine convex structure portion is inclined by the inclination detection step, the fine convex structure portion inclination correction step is preferably performed (invention 8).

さらに、本発明は、平面部と、当該平面部から突出してなる微細凸構造部とを有する微細凸構造体を形成する微細凸構造体形成部と、前記微細凸構造体形成部により形成された前記微細凸構造体において、前記微細凸構造部が前記平面部に直交する方向に対して傾斜している場合に、前記微細凸構造体の前記平面部の表面と前記微細凸構造部の表面と同じ極性の電荷を生じさせることにより前記微細凸構造部の傾斜を修正する傾斜修正部とを備えることを特徴とする微細凸構造体製造システムを提供する(発明9)。 Furthermore, the present invention is formed by a fine convex structure forming portion that forms a fine convex structure having a flat portion and a fine convex structure portion protruding from the flat portion, and the fine convex structure forming portion. In the fine convex structure, when the fine convex structure portion is inclined with respect to a direction orthogonal to the planar portion, the surface of the planar portion of the fine convex structure and the surface of the fine convex structure portion And a tilt correcting section that corrects the tilt of the fine convex structure section by generating electric charges having the same polarity to each other (Invention 9).

本発明によれば、微細凸構造を有する微細凸構造体の形成時に、意図せずして倒れてしまった微細凸構造を簡易に修正することのできる微細凸構造体の修正方法及び当該修正方法を用いた微細凸構造体の製造方法、並びに微細凸構造体の製造システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the correction method of the fine convex structure which can correct | amend easily the fine convex structure which fell down unintentionally at the time of formation of the fine convex structure which has a fine convex structure, and the said correction method The manufacturing method of the fine convex structure using this, and the manufacturing system of a fine convex structure can be provided.

図1は、本発明の一実施形態に係るパターン修正方法を切断端面により示すフロー図である。FIG. 1 is a flowchart showing a pattern correction method according to an embodiment of the present invention by a cut end face. 図2は、本発明の一実施形態に係るパターン修正方法における被修正物である微細凸状パターン形成体の他の例(その1)を示す切断端面図である。FIG. 2 is a cut end view showing another example (No. 1) of a fine convex pattern forming body which is a correction object in the pattern correction method according to the embodiment of the present invention. 図3(a)は、本発明の一実施形態に係るパターン修正方法における被修正物である微細凸状パターン形成体の他の例(その2)を示す切断端面図であり、図3(b)は、当該微細凸状パターン形成体の他の例(その2)を示す斜視図である。FIG. 3A is a cut end view showing another example (part 2) of the fine convex pattern forming body which is a correction object in the pattern correction method according to the embodiment of the present invention, and FIG. ) Is a perspective view showing another example (No. 2) of the fine convex pattern forming body. 図4は、本発明の一実施形態における微細凸状パターン形成体の製造方法のうち、ナノインプリント法により微細凸状パターン形成体を形成する工程を示す切断端面図である。FIG. 4 is a cut end view showing a step of forming a fine convex pattern forming body by a nanoimprinting method in the manufacturing method of the fine convex pattern forming body in one embodiment of the present invention. 図5は、本発明の一実施形態における微細凸状パターン形成体の製造方法のうち、フォトリソグラフィー法により微細凸状パターン形成体を形成する工程を示す切断端面図である。FIG. 5 is a cut end view showing a step of forming a fine convex pattern forming body by a photolithography method in the manufacturing method of the fine convex pattern forming body in one embodiment of the present invention. 図6は、本発明の一実施形態における微細凸状パターン形成体製造システムの概略構成を示すブロック図である。FIG. 6 is a block diagram showing a schematic configuration of a fine convex pattern forming body manufacturing system in one embodiment of the present invention.

本発明の実施の形態について図面を参照しながら説明する。図1は、本発明の一実施形態に係るパターン修正方法を切断端面により示すフロー図であり、図2は、本発明の一実施形態に係るパターン修正方法における被修正物である微細凸状パターン形成体の他の例(その1)を示す切断端面図であり、図3は、本発明の一実施形態に係るパターン修正方法における被修正物である微細凸状パターン形成体の他の例(その2)を示す切断端面図(図3(a))及び斜視図(図3(b))である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a pattern correction method according to an embodiment of the present invention by a cut end face, and FIG. 2 is a fine convex pattern which is a correction object in the pattern correction method according to an embodiment of the present invention. FIG. 3 is a cut end view showing another example of the formed body (part 1), and FIG. 3 is another example of the fine convex pattern formed body that is a correction object in the pattern correcting method according to the embodiment of the present invention ( It is the cut end view (Drawing 3 (a)) and perspective view (Drawing 3 (b)) which show the 2).

なお、本実施形態においては、修正対象となる微細凸状パターンとして、ピラー状の微細凸状パターンを例に挙げて説明するが、平面部から突出する凸状パターンである限り、本発明はこのような態様に限定されるものではなく、例えば、ラインアンドスペース状の微細凸状パターンであってもよい。   In the present embodiment, a pillar-shaped fine convex pattern is described as an example of the fine convex pattern to be corrected, but the present invention is not limited to this as long as it is a convex pattern protruding from the plane portion. For example, a line-and-space fine convex pattern may be used.

本実施形態に係るパターン修正方法においては、平面部11と、平面部11から突出してなる微細凸状パターン(微細凸構造部)12とを有する微細凸状パターン形成体(微細凸構造体)1における、当該微細凸状パターン12が平面部11に直交する方向CDに対し傾斜してしまっている場合(図1(a)参照)、当該微細凸状パターン形成体1に電荷を生じさせる(図1(b)参照)。すなわち、当該微細凸状パターン形成体1を帯電させる。   In the pattern correction method according to the present embodiment, a fine convex pattern forming body (fine convex structure) 1 having a flat portion 11 and a fine convex pattern (fine convex structure portion) 12 protruding from the flat portion 11. When the fine convex pattern 12 is inclined with respect to the direction CD perpendicular to the plane portion 11 (see FIG. 1A), an electric charge is generated in the fine convex pattern forming body 1 (FIG. 1 (b)). That is, the fine convex pattern forming body 1 is charged.

本実施形態に係るパターン修正方法において、修正対象となる微細凸状パターン12は、ナノインプリント法やフォトリソグラフィー法による微細凹凸パターンの形成に一般的に用いられる樹脂材料(熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等の絶縁性樹脂材料;導電性樹脂材料等)により構成される。このような樹脂材料としては、例えば、オレフィン系、スチレン系、エチレン系、エステル系、チオフォエン系、アニリン系、ナイロン系、ポリエーテル系、ウレタン系、エポキシ系、フェノール系、アクリル系、ポリイミド系、ポリアセチレン系等の樹脂材料;ポリジメチルシロキサン、ポリシロキサン等のシリコーン樹脂;ポリプロピレン、ポリカーボネート、ポリアミド、ポリアセタール、ポリエーテルエーテルケトン(PEEK)、アクリロニトリルブタジエンスチレン樹脂(ABS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニリンオキサイド、ポリフッ化ビニリデン、ポリサルフォン、ポリ乳酸、ポリエチレンテレフタレート(PET)、塩化ビニル等が挙げられる。   In the pattern correction method according to this embodiment, the fine convex pattern 12 to be corrected is a resin material (thermoplastic resin, thermosetting resin) generally used for forming a fine uneven pattern by a nanoimprint method or a photolithography method. Insulating resin material such as photo-curable resin; conductive resin material, etc.). Examples of such resin materials include olefin-based, styrene-based, ethylene-based, ester-based, thiophoene-based, aniline-based, nylon-based, polyether-based, urethane-based, epoxy-based, phenol-based, acrylic-based, polyimide-based, Resin materials such as polyacetylene; silicone resins such as polydimethylsiloxane and polysiloxane; polypropylene, polycarbonate, polyamide, polyacetal, polyether ether ketone (PEEK), acrylonitrile butadiene styrene resin (ABS), polyphenylene sulfide resin (PPS), poly Examples include phenyloline oxide, polyvinylidene fluoride, polysulfone, polylactic acid, polyethylene terephthalate (PET), and vinyl chloride.

なお、導電性樹脂材料は、熱硬化性樹脂や熱可塑性樹脂等の樹脂材料に導電性を有する金属、炭素化合物、ヨウ素等の電子受容体又は電子供与体をドーピングすることにより得られるものである。かかる電子受容体又は電子供与体がドーピングされ得る樹脂材料としては、例えば、ポリオレフィン、ポリアミド、ポリイミド、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリエステル、フェノール系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリウレタン等が挙げられる。   The conductive resin material is obtained by doping a resin material such as a thermosetting resin or a thermoplastic resin with an electron acceptor or an electron donor such as a conductive metal, a carbon compound, or iodine. . Examples of the resin material that can be doped with the electron acceptor or the electron donor include polyolefin, polyamide, polyimide, polyacetylene, polythiophene, polyaniline, polyester, phenol resin, epoxy resin, acrylic resin, polyurethane, and the like. .

また、微細凸状パターン12が絶縁性樹脂材料により構成される場合に、当該微細凸状パターン12の表面又はその頂上部に導電性を有する無機膜(例えば、クロム、ニッケル、チタン、シリコン、モリブデン、アルミニウム、タンタル、金、コバルト、銅、白金、パラジウム等の金属やそれらの少なくとも1種を含む合金;カーボン等)が形成されてなるものであってもよい。   Further, when the fine convex pattern 12 is made of an insulating resin material, a conductive inorganic film (for example, chromium, nickel, titanium, silicon, molybdenum) is formed on the surface of the fine convex pattern 12 or on the top thereof. , Aluminum, tantalum, gold, cobalt, copper, platinum, palladium, or an alloy containing at least one of them; carbon, etc.) may be formed.

本実施形態において、微細凸状パターン形成体1における微細凸状パターン12の寸法(パターン幅)又はアスペクト比(パターン高さ/パターン幅)は、微細凸状パターン形成体1に電荷を生じさせることで微細凸状パターン12の傾斜を修正し得る程度の寸法又はアスペクト比である限り特に制限されるものではない。しかしながら、例えば、微細寸法(寸法100nm以下程度)、かつ高アスペクト比(アスペクト比2.0以上程度)の微細凸状パターン12であると、微細凸状パターン形成体1の形成時に微細凸状パターン12が傾斜してしまわないように細心の注意を払ったとしても、当該微細凸状パターン12の傾斜が生じてしまうことがある。   In the present embodiment, the size (pattern width) or aspect ratio (pattern height / pattern width) of the fine convex pattern 12 in the fine convex pattern forming body 1 causes the fine convex pattern forming body 1 to generate a charge. As long as the size or aspect ratio is such that the inclination of the fine convex pattern 12 can be corrected, there is no particular limitation. However, for example, when the fine convex pattern 12 has a fine dimension (dimension of about 100 nm or less) and a high aspect ratio (aspect ratio of about 2.0 or more), the fine convex pattern is formed when the fine convex pattern forming body 1 is formed. Even if extreme care is taken so that 12 does not tilt, the fine convex pattern 12 may be tilted.

なお、上記微細凸状パターン12の寸法(100nm以下程度)は、上述した樹脂材料を用いてアスペクト比2.0の円柱ピラー状の微細凸状パターン12を形成した場合において当該微細凸状パターン12が傾斜してしまう寸法の一例であり、当該寸法100nmを超える微細凸状パターン12に対してであっても、本実施形態に係るパターン修正方法を適用可能である。すなわち、微細凸状パターン12の構造(円柱ピラー状、多角ピラー状、ライン状、L字状、十字状等の形状;アスペクト比等)や樹脂材料の種類等によっては、例えば、寸法100nmを超える微細凸状パターン12であっても傾斜が生じてしまうことはあるし、その傾斜を修正することも可能である。   In addition, the dimension (about 100 nm or less) of the said fine convex pattern 12 is the said fine convex pattern 12 when the cylindrical pillar-shaped fine convex pattern 12 of aspect ratio 2.0 is formed using the resin material mentioned above. The pattern correction method according to the present embodiment can be applied even to a fine convex pattern 12 having a dimension exceeding 100 nm. That is, depending on the structure of the fine convex pattern 12 (cylindrical pillar shape, polygonal pillar shape, line shape, L shape, cross shape, etc .; aspect ratio, etc.), the type of resin material, etc., for example, the dimension exceeds 100 nm. Even the fine convex pattern 12 may be inclined, and the inclination can be corrected.

また、上記アスペクト比(2.0以上)についても同様であり、微細凸状パターン12の構造(円柱ピラー状、多角ピラー状、ライン状、L字状、十字状等の形状;アスペクト比等)や樹脂材料の種類等によって、アスペクト比2.0未満の微細凸状パターン12であっても傾斜が生じることはあるし、その傾斜を修正することも可能である。   The same applies to the aspect ratio (2.0 or more). The structure of the fine convex pattern 12 (columnar pillar shape, polygonal pillar shape, line shape, L shape, cross shape, etc .; aspect ratio, etc.) Depending on the type of the resin material and the like, the fine convex pattern 12 having an aspect ratio of less than 2.0 may be inclined, and the inclination can be corrected.

例えば、フォトリソグラフィーにより微細凸状パターン12を形成する場合、使用する現像液、リンス液の表面張力によって、微細凸状パターン12にかかる応力が異なるため、アスペクト比によらずしても使用する樹脂材料によっては傾斜が生じることはある。   For example, when the fine convex pattern 12 is formed by photolithography, the stress applied to the fine convex pattern 12 varies depending on the surface tension of the developer and the rinsing liquid to be used. Depending on the material, tilt may occur.

このことはナノインプリントにおいても同様である。例えば、モールドと硬化した樹脂との界面に対して垂直方向に剥離を実施する場合、モールドの全面が同時に樹脂から離れるわけではなく、モールドと樹脂との剥離は、モールドにおける樹脂との接触面外周から生じ、当該接触面中心に向かって進行する。すなわち、モールドの剥離時には、モールド及び樹脂の間にギャップが生じ、モールド及び樹脂(基板)に撓みが生じることになる。よって、モールドと樹脂との接触面積が小さければ、樹脂から離れ始めるモールドの外周から当該外周に最近傍の微細凸状パターン12までの距離が短いために、モールドや硬化した樹脂(基板)の撓み量が小さく、当該撓み量に応じて微細凸状パターン12にかかる面内方向の応力を無視することができるが、当該接触面積が大きくなると当該応力を無視することができなくなり、アスペクト比が2.0未満の微細凸状パターン12であっても、アスペクト比のさらに小さい微細凹凸パターン12(例えば、アスペクト比1.5未満)であっても傾斜が生じることがある。   The same applies to nanoimprints. For example, when peeling in the direction perpendicular to the interface between the mold and the cured resin, the entire surface of the mold is not separated from the resin at the same time. And proceed toward the center of the contact surface. That is, when the mold is peeled, a gap is generated between the mold and the resin, and the mold and the resin (substrate) are bent. Therefore, if the contact area between the mold and the resin is small, the distance from the outer periphery of the mold that starts to move away from the resin to the fine convex pattern 12 nearest to the outer periphery is short, so that the mold or the cured resin (substrate) is bent. Although the amount is small and the stress in the in-plane direction applied to the fine convex pattern 12 can be ignored according to the amount of deflection, the stress cannot be ignored when the contact area increases, and the aspect ratio is 2 Even a fine convex pattern 12 of less than 0.0 or a fine uneven pattern 12 having a smaller aspect ratio (for example, an aspect ratio of less than 1.5) may be inclined.

このように、微細凸状パターン12の構造やそれを構成する樹脂材料の種類等により本実施形態に係るパターン修正方法を適用可能な微細凸状パターン12の寸法、アスペクト比は変動するものの、少なくとも微細凸状パターン12が自立可能な構造及び樹脂材料等によって構成されている場合において、本実施形態に係るパターン修正方法を用いることで、特に効果的に当該微細凸状パターン12の傾斜を修正することができる。   As described above, although the size and aspect ratio of the fine convex pattern 12 to which the pattern correction method according to this embodiment can be applied vary depending on the structure of the fine convex pattern 12 and the type of the resin material constituting the fine convex pattern 12, at least When the fine convex pattern 12 is configured by a self-supporting structure and a resin material, the inclination of the fine convex pattern 12 is particularly effectively corrected by using the pattern correction method according to this embodiment. be able to.

本実施形態において、平面部11は、ナノインプリント法により基板13上に微細凸状パターン形成体1を形成する場合にモールドの凹状パターン以外の部分に相当する部分として基板13上に残存する樹脂残膜により構成される(図1(a)参照)。なお、フォトリソグラフィー法により微細凸状パターン形成体1を形成した場合には、図2に示すように、微細凸状パターン12が形成されている基板(例えば、シリコン基板、金属基板、ガラス基板、石英基板等)13が上記平面部11として構成される。また、熱ナノインプリントにてフィルム状又は板状の樹脂材料に直接微細凸状パターン12を形成する場合には、微細凸状パターン12以外の部分として残存する樹脂材料により平面部11が構成される。   In the present embodiment, the planar portion 11 is a residual resin film remaining on the substrate 13 as a portion corresponding to a portion other than the concave pattern of the mold when the fine convex pattern forming body 1 is formed on the substrate 13 by the nanoimprint method. (See FIG. 1A). When the fine convex pattern forming body 1 is formed by photolithography, as shown in FIG. 2, the substrate on which the fine convex pattern 12 is formed (for example, a silicon substrate, a metal substrate, a glass substrate, A quartz substrate or the like) 13 is configured as the flat portion 11. Further, when the fine convex pattern 12 is directly formed on a film-like or plate-like resin material by thermal nanoimprint, the planar portion 11 is constituted by the resin material remaining as a portion other than the fine convex pattern 12.

平面部11が基板13上に残存する樹脂残膜として構成される場合、当該平面部11の厚さは、平面部11の表面に電荷を生じさせ得る程度の厚さであれば特に制限されるものではない。ナノインプリント法により基板13上に形成される微細凸状パターン形成体1が、例えば、基板13をエッチングするためのマスクとして用いられるものである場合、一般に、基板13のエッチング工程の前処理としてのアッシング工程等により、基板13上に残存する樹脂残膜は除去されるが、樹脂残膜のアッシングに伴い、微細凸状パターン12が変形したり、微細凸状パターン12の寸法が変化したりすることがあり、それによりエッチング工程における基板13の加工精度が低下してしまうことがある。そのような弊害を是正するために、ナノインプリント法において形成した微細凸状パターン形成体1を基板13のエッチング時のマスクとして用いる場合には、樹脂残膜の厚さを極めて薄くすることが望まれている。   When the flat part 11 is configured as a resin residual film remaining on the substrate 13, the thickness of the flat part 11 is particularly limited as long as it is a thickness capable of generating a charge on the surface of the flat part 11. It is not a thing. When the fine convex pattern forming body 1 formed on the substrate 13 by the nanoimprint method is used, for example, as a mask for etching the substrate 13, in general, ashing as a pretreatment of the etching process of the substrate 13 is performed. Although the resin residual film remaining on the substrate 13 is removed by a process or the like, the fine convex pattern 12 is deformed or the dimension of the fine convex pattern 12 is changed with the ashing of the resin residual film. As a result, the processing accuracy of the substrate 13 in the etching process may be reduced. In order to correct such an adverse effect, when the fine convex pattern formed body 1 formed by the nanoimprint method is used as a mask at the time of etching the substrate 13, it is desired to make the thickness of the resin residual film extremely thin. ing.

したがって、平面部11が基板13上の樹脂残膜により構成される場合において、その樹脂残膜(平面部11)の厚さは、樹脂残膜の除去に伴う微細凸状パターン12の変形や寸法変化等に対する影響を考慮しつつ、樹脂残膜(平面部11)の表面に効果的に電荷を生じさせ得る程度の厚さであるのが望ましい。   Therefore, in the case where the flat portion 11 is constituted by the resin residual film on the substrate 13, the thickness of the resin residual film (planar portion 11) is the deformation or dimension of the fine convex pattern 12 accompanying the removal of the resin residual film. It is desirable that the thickness be such that an electric charge can be effectively generated on the surface of the residual resin film (planar portion 11) while taking into consideration the influence on the change and the like.

なお、樹脂残膜により構成される平面部11が、微細凸状パターン12の傾斜を修正困難な程度にしか帯電できない厚さを有するものであったとしても、図1に示すように、基板13上に微細凸状パターン形成体1が製造される場合、当該基板13が絶縁性基板であるか、導電性基板であっても接地されていない状態であれば、当該平面部11よりも有意に厚い基板13に帯電するため、帯電した基板13と微細凸状パターン12との間の電気的反発力を利用して、微細凸状パターン12の傾斜を修正することができる。   Even if the flat portion 11 constituted by the resin residual film has a thickness that can only be charged to such an extent that it is difficult to correct the inclination of the fine convex pattern 12, as shown in FIG. When the fine convex pattern forming body 1 is manufactured on the top, if the substrate 13 is an insulating substrate or a conductive substrate that is not grounded, it is significantly more than the flat portion 11. Since the thick substrate 13 is charged, the inclination of the fine convex pattern 12 can be corrected using the electric repulsive force between the charged substrate 13 and the fine convex pattern 12.

一方で、基板13が導電性基板であって、微細凸状パターン形成体1に電荷を生じさせるときにおいて接地されている状態であると、平面部11の厚さが極めて薄い場合には、平面部11に生じた電荷の一部が基板13側に逃げてしまうことがある。このような場合には、微細凸状パターン12及び平面部11が、導電性基板13に逃げてしまう電荷を差し引いたとしても充分に電荷を保持できる状態であるのが好ましい。具体的には、平面部11を構成する樹脂材料が誘電率の高いものであるのが好ましく、平面部11の厚さ及び面積(基板13との接触面における面積)が可能な限り大きいのが好ましい。   On the other hand, if the substrate 13 is a conductive substrate and is grounded when generating charges in the fine convex pattern forming body 1, the plane portion 11 is flat when the plane portion 11 is extremely thin. Part of the charge generated in the portion 11 may escape to the substrate 13 side. In such a case, it is preferable that the fine convex pattern 12 and the flat portion 11 are in a state that can sufficiently hold the charge even if the charge that escapes to the conductive substrate 13 is subtracted. Specifically, it is preferable that the resin material constituting the flat portion 11 has a high dielectric constant, and the thickness and area of the flat portion 11 (area on the contact surface with the substrate 13) is as large as possible. preferable.

なお、本実施形態に係るパターン修正方法においては、微細凸状パターン形成体1を帯電させることにより、微細凸状パターン12と平面部11との間のみならず、隣接する微細凸状パターン12,12間にも電気的反発力が作用し、その結果として微細凸状パターン12の傾斜が修正される。そのため、微細凸状パターン形成体1における隣接する微細凸状パターン12,12の間隔が離れすぎていると、それらの間で効果的に電気的反発力を作用させることが困難となるおそれがある。したがって、本実施形態において、隣接する微細凸状パターン12,12の間隔は、微細凸状パターン12の傾斜を修正可能な程度の電気的反発力が当該隣接する微細凸状パターン12,12の間で作用するような間隔であるのが好ましく、特に、微細凸状パターン12の高さが隣接する微細凸状パターン12,12の間隔よりも小さい場合には、当該間隔は、微細凸状パターン12の寸法(幅)の2倍以下程度であるのが好ましい。なお、当該間隔が微細凸状パターン12の寸法の2倍未満である場合、微細凸状パターン12と平面部11との間に作用する電気的反発力のみによって当該微細凸状パターン12の傾斜が修正されることになる。   In the pattern correction method according to the present embodiment, by charging the fine convex pattern forming body 1, not only between the fine convex pattern 12 and the plane portion 11 but also the adjacent fine convex pattern 12, An electric repulsive force acts between the two, and as a result, the inclination of the fine convex pattern 12 is corrected. Therefore, if the distance between the adjacent fine convex patterns 12 and 12 in the fine convex pattern forming body 1 is too large, it may be difficult to effectively apply an electric repulsive force between them. . Therefore, in the present embodiment, the interval between the adjacent fine convex patterns 12 and 12 is such that the electric repulsive force that can correct the inclination of the fine convex pattern 12 is between the adjacent fine convex patterns 12 and 12. In particular, when the height of the fine convex pattern 12 is smaller than the interval between the adjacent fine convex patterns 12, 12, the distance is the fine convex pattern 12. It is preferable that it is about twice or less of the dimension (width). In addition, when the said space | interval is less than twice the dimension of the fine convex pattern 12, the inclination of the said fine convex pattern 12 is only by the electric repulsive force which acts between the fine convex pattern 12 and the plane part 11. FIG. Will be corrected.

微細凸状パターン形成体1に電荷を生じさせる方法としては、平面部11の表面と微細凸状パターン12の表面とに同じ極性の電荷を生じさせることのできる方法であれば特に制限はなく、例えば、プラズマ発生装置や、ドライエッチング装置等を用い、プラズマ雰囲気等の微細凸状パターン形成体1を帯電させることが可能な雰囲気下に当該微細凸状パターン形成体1を存在させることで、平面部11及び微細凸状パターン12の表面に同じ極性の電荷(例えばマイナス電荷)を与える方法;電界発生装置等により発生した電界中に微細凸状パターン形成体1を存在させ、微細凸状パターン形成体1の誘電分極又は静電誘導により平面部11及び微細凸状パターン12の表面に同じ極性の電荷(マイナス電荷又はプラス電荷)を偏在させる方法等が挙げられる。これら方法の選択は、既に述べたように微細凸状パターン12の厚さや樹脂材料の種類等に応じて適宜設定すればよい。なお、微細凸状パターン形成体1に電荷を生じさせる方法として、ドライエッチング装置を用いて形成したプラズマ雰囲気下に微細凸状パターン形成体1を存在させる方法を選択した場合、微細凸状パターン形成体1(特に、樹脂残膜や基板13等)が実質的にエッチングされない程度の出力(例えば、ドライエッチング装置を用いてドライエッチング処理を行うときに、基板13の所望のエッチングレートが得られるプラズマ出力の80%以下程度、好ましくは50〜70%程度の出力)にてプラズマ雰囲気が形成されるようにし、所望により微細凸状パターン形成体1が載置された電極に高周波電流が印加されないようにする(微細凸状パターン形成体1側にプラズマ中の陽イオンが引き込まれ難いようにする)のが好ましい。これにより、プラズマ雰囲気中にて微細凸状パターン形成体がエッチングされることなく、当該微細凸状パターン形成体1に電荷を生じさせることができる。   The method for generating a charge in the fine convex pattern forming body 1 is not particularly limited as long as it is a method capable of generating a charge having the same polarity on the surface of the flat portion 11 and the surface of the fine convex pattern 12. For example, by using a plasma generating apparatus, a dry etching apparatus, or the like, the fine convex pattern forming body 1 exists in an atmosphere capable of charging the fine convex pattern forming body 1 such as a plasma atmosphere. A method of applying charges of the same polarity (for example, negative charges) to the surfaces of the portion 11 and the fine convex pattern 12; the fine convex pattern forming body 1 is present in the electric field generated by the electric field generator or the like to form the fine convex pattern Charges of the same polarity (negative charge or positive charge) are unevenly distributed on the surfaces of the flat surface portion 11 and the fine convex pattern 12 by dielectric polarization or electrostatic induction of the body 1. Law, and the like. The selection of these methods may be appropriately set according to the thickness of the fine convex pattern 12, the type of resin material, and the like as already described. In addition, when the method of making the fine convex pattern formation body 1 exist in the plasma atmosphere formed using the dry etching apparatus as a method for generating the electric charge in the fine convex pattern formation body 1, the fine convex pattern formation is selected. An output with which the body 1 (particularly the resin residual film, the substrate 13 and the like) is not substantially etched (for example, plasma capable of obtaining a desired etching rate of the substrate 13 when dry etching is performed using a dry etching apparatus). A plasma atmosphere is formed at an output of about 80% or less, preferably about 50 to 70% of the output), so that a high frequency current is not applied to the electrode on which the fine convex pattern forming body 1 is mounted if desired. It is preferable that the positive ions in the plasma are not easily drawn into the fine convex pattern forming body 1 side. Thereby, an electric charge can be produced in the said fine convex pattern formation body 1 without etching a fine convex pattern formation body in a plasma atmosphere.

また、微細凸状パターン形成体1に電荷を生じさせることを目的とするならば、微細凸状パターン形成体1の存在する雰囲気下に高密度の電荷を一時的に発生させることも効果的である。しかし、高密度の電荷を発生させる条件は、例えば、上記プラズマ出力を一時的に上昇させる等、基板13等がエッチングされやすい条件と等価又は近しい状態であるために、例えば、プラズマ出力時間の短縮や、基板13側へイオンを引き込むためのバイアス電圧を下げる(例えば、基板13に電気的に接続されている引き込み電極の出力を下げる)、基板13等のエッチング時に用いるエッチャントとは種類の異なる、基板13等のエッチングレートのより低いエッチャントを用いる等、基板13等のエッチングされる量が無視可能な程度に収まるような高密度の電荷を生じさせる条件を設定する必要がある。   Further, if the purpose is to generate charges in the fine convex pattern forming body 1, it is also effective to temporarily generate a high density charge in the atmosphere where the fine convex pattern forming body 1 exists. is there. However, the conditions for generating high-density charges are equivalent to or close to the conditions in which the substrate 13 and the like are easily etched, such as temporarily increasing the plasma output, for example. Alternatively, the bias voltage for drawing ions to the substrate 13 side is lowered (for example, the output of the drawing electrode electrically connected to the substrate 13 is lowered), and the type is different from the etchant used for etching the substrate 13 or the like. It is necessary to set conditions for generating a high-density charge such that the etching amount of the substrate 13 or the like is negligible, such as using an etchant having a lower etching rate such as the substrate 13.

微細凸状パターン形成体1に電荷を生じさせる際には、微細凸状パターン12及び平面部11の表面に、電気的反発力により微細凸状パターン12の傾斜を修正可能な程度の電荷量の電荷を生じさせる。微細凸状パターン12の傾斜を修正可能な程度の電荷量は、微細凸状パターン12の寸法やアスペクト比、微細凸状パターン12を構成する材料の物性(例えば、弾性率等)、微細凸状パターン12の傾斜の程度(傾斜角度)、隣接する微細凸状パターン12,12の間隔等に応じて適宜設定され得る。   When a charge is generated in the fine convex pattern forming body 1, the amount of charge is such that the inclination of the fine convex pattern 12 can be corrected by the electric repulsive force on the surfaces of the fine convex pattern 12 and the flat portion 11. Generate charge. The amount of charge that can correct the inclination of the fine convex pattern 12 includes the size and aspect ratio of the fine convex pattern 12, the physical properties of the material constituting the fine convex pattern 12, such as the elastic modulus, and the fine convex shape. It can be appropriately set according to the degree of inclination of the pattern 12 (inclination angle), the interval between the adjacent fine convex patterns 12, 12, and the like.

なお、微細凸状パターン12及び平面部11が導体(例えば、導電性高分子、金属材料等)により構成されている場合、又は微細凸状パターン12は絶縁体により構成されているが、平面部11が導体により構成されている場合において、例えば、導体により構成される微細凸状パターン12や平面部11が接地されていると、微細凸状パターン形成体1に電荷を生じさせるべく当該微細凸状パターン形成体1をプラズマ雰囲気下に存在させたとしても、微細凸状パターン12や平面部11の表面に電荷を生じさせる(帯電させる)ことができない。そのため、このような場合には、微細凸状パターン形成体1の一部の領域(例えば、微細凸状パターン12の傾斜を修正する対象となる領域(修正対象領域))又は微細凸状パターン形成体1全体が、電気的フローティング状態(電気的に接続されていない状態,接地されていない状態)にされている必要がある。   In addition, when the fine convex pattern 12 and the flat part 11 are comprised by the conductor (for example, conductive polymer, a metal material, etc.), or the fine convex pattern 12 is comprised by the insulator, 11 is composed of a conductor, for example, if the fine convex pattern 12 or the flat surface portion 11 composed of a conductor is grounded, the fine convex pattern forming body 1 is caused to generate a charge. Even if the pattern forming body 1 is present in a plasma atmosphere, it is not possible to generate (charge) charges on the surface of the fine convex pattern 12 or the flat portion 11. Therefore, in such a case, a part of the fine convex pattern forming body 1 (for example, a region to be corrected for the inclination of the fine convex pattern 12 (correction target region)) or a fine convex pattern formation. The entire body 1 needs to be in an electrically floating state (a state where it is not electrically connected or a state where it is not grounded).

微細凸状パターン形成体1の一部の領域を電気的フローティング状態にする方法としては、例えば、微細凸状パターン形成体1(微細凸状パターン12及び平面部11)が導電性高分子により構成されていて、当該微細凸状パターン形成体1がガラス基板等の絶縁性基板13上に設けられている場合において、図3(a)及び(b)に示すように、修正対象領域TAと他の領域OAとを、スリット14を介して分断する方法等が挙げられる。このようにして他の領域OAは接地された状態とすることで、修正対象領域TAのみに電荷を生じさせ、その修正対象領域TA内の微細凸状パターン12のみ傾斜の修正が可能となる。   As a method for bringing a partial region of the fine convex pattern forming body 1 into an electrically floating state, for example, the fine convex pattern forming body 1 (the fine convex pattern 12 and the planar portion 11) is made of a conductive polymer. In the case where the fine convex pattern forming body 1 is provided on an insulating substrate 13 such as a glass substrate, as shown in FIGS. And a method of dividing the region OA through the slit 14. In this way, by setting the other area OA to the grounded state, the charge is generated only in the correction target area TA, and the inclination of only the fine convex pattern 12 in the correction target area TA can be corrected.

なお、フォトリソグラフィー法により形成された微細凸状パターン形成体1において、平面部11としての基板13が金属基板のような導体である場合、当該基板13を絶縁シート上に載置する等、電気的フローティング状態にすることで、導体である金属基板13にも帯電させることができる。   In the fine convex pattern forming body 1 formed by the photolithography method, when the substrate 13 as the plane portion 11 is a conductor such as a metal substrate, the substrate 13 is placed on an insulating sheet or the like. By setting the target floating state, the metal substrate 13 which is a conductor can also be charged.

上述のようにして平面部11及び微細凸状パターン12の表面に同じ極性の電荷(例えば、マイナス電荷)を生じさせることで、微細凸状パターン12と平面部11との間や隣接する微細凸状パターン12,12間における電気的反発力により、微細凸状パターン12が平面部11から離間する方向に変形する(図1(c)参照)。すなわち、傾斜している微細凸状パターン12が、平面部11に直交する方向に向かって立ち上がるようにして変形する。これにより、微細凸状パターン12の傾斜が修正されることになる。   By generating charges of the same polarity (for example, negative charges) on the surfaces of the flat surface portion 11 and the fine convex pattern 12 as described above, the fine convex portions between the fine convex pattern 12 and the flat portion 11 or adjacent to each other. The fine convex pattern 12 is deformed in a direction away from the plane portion 11 by the electric repulsive force between the pattern patterns 12 and 12 (see FIG. 1C). That is, the inclined fine convex pattern 12 is deformed so as to rise in a direction perpendicular to the plane portion 11. Thereby, the inclination of the fine convex pattern 12 is corrected.

最後に、微細凸状パターン形成体1に生じさせた電荷を放出させる(図1(d))。微細凸状パターン形成体1が電荷を有した状態のままであると、様々な悪影響が生じるおそれがある。例えば、電荷を有した状態のままであると、周辺環境に存在する微細な異物が引き寄せられやすくなり、それらが微細凸状パターン形成体1に付着してしまい、後に基板13上の微細凸状パターン形成体1をマスクとして当該基板13をエッチングする際に、エッチング精度が低下するおそれがある。また、ナノインプリントにより形成された、所定の樹脂材料等からなる平面部11と微細凸状パターン12とを有する微細凸状パターン形成体1がそのまま最終製品(例えば、細胞培養シート、メタマテリアル、親水性膜、撥水性膜等)となる場合には、微細凸状パターン形成体1に付着した異物が有する特性等により、所定の機能が奏されないおそれがある。さらに、電荷(静電気)により微細凸状パターン12に欠損が生じるおそれがある。したがって、微細凸状パターン形成体1から電荷を放出させることで、上述したような微細凸状パターン形成体1の帯電による悪影響が生じるのを抑制することができる。   Finally, the charge generated in the fine convex pattern forming body 1 is released (FIG. 1 (d)). If the fine convex pattern forming body 1 remains in a charged state, various adverse effects may occur. For example, if it remains in a charged state, fine foreign substances existing in the surrounding environment are likely to be attracted, and they adhere to the fine convex pattern forming body 1, and are later formed into fine convex shapes on the substrate 13. When the substrate 13 is etched using the pattern forming body 1 as a mask, the etching accuracy may be reduced. In addition, the fine convex pattern forming body 1 having the flat portion 11 and the fine convex pattern 12 formed by nanoimprint and made of a predetermined resin material or the like is used as it is as a final product (for example, cell culture sheet, metamaterial, hydrophilicity). In the case of a film, a water-repellent film, etc., there is a possibility that a predetermined function may not be achieved due to the characteristics of the foreign matter attached to the fine convex pattern forming body 1. Furthermore, there is a possibility that the fine convex pattern 12 may be damaged due to electric charges (static electricity). Therefore, by discharging the charges from the fine convex pattern forming body 1, it is possible to suppress the adverse effects caused by the charging of the fine convex pattern forming body 1 as described above.

微細凸状パターン形成体1から電荷を放出させる方法としては、特に限定されるものではない。例えば、図1(b)に示す工程において、微細凸状パターン形成体1をプラズマ雰囲気下に存在させることによりその表面に電荷を生じさせた場合には、当該微細凸状パターン形成体1表面に導体を接触させることにより電荷を放出させる方法、微細凸状パターン形成体1の表面に生じている電荷と逆の極性を有する電荷を与えることにより微細凸状パターン形成体1の表面の電荷を中和する方法等が挙げられる。また、図1(b)に示す工程において、微細凸状パターン形成体1を誘電分極又は静電誘導させることによりその表面に電荷を生じさせた場合には、電界中に載置されている微細凸状パターン形成体1を当該電界中から取り出すことにより当該微細凸状パターン形成体1中の電荷の偏在を解消する方法等が挙げられる。   The method for discharging charges from the fine convex pattern forming body 1 is not particularly limited. For example, in the step shown in FIG. 1B, when the fine convex pattern forming body 1 is caused to exist in a plasma atmosphere to generate charges on the surface thereof, the surface of the fine convex pattern forming body 1 is formed. A method of discharging charges by bringing a conductor into contact with each other, and by applying a charge having a polarity opposite to the charge generated on the surface of the fine convex pattern forming body 1, the charge on the surface of the fine convex pattern forming body 1 is moderated. The method of summing etc. is mentioned. Further, in the step shown in FIG. 1B, when a charge is generated on the surface of the fine convex pattern forming body 1 by dielectric polarization or electrostatic induction, the fine pattern placed in the electric field For example, there is a method of eliminating the uneven distribution of electric charges in the fine convex pattern forming body 1 by taking out the convex pattern forming body 1 from the electric field.

なお、微細凸状パターン形成体1から電荷を放出させてしまうと、電荷を生じさせることにより傾斜を修正した微細凸状パターン12が再び傾斜してしまうような場合(元の状態に戻ってしまうような場合)には、上述した放電工程(図1(d))を省略してもよい。特に、微細凸状パターン形成体1から電荷を放出させることによる上記悪影響が生じない、又は上記悪影響の生じる可能性の極めて低い環境下にあって、微細凸状パターン形成体1が帯電したままの状態であっても次工程を実施可能であるならば、微細凸状パターン形成体1から電荷を放出させる必要はなく、上述した放電工程(図1(d))を省略してもよい。例えば、傾斜した微細凸状パターン12を修正した後にドライエッチング工程を実施するような場合にあっては、図1(b)に示す工程において、ドライエッチング装置を用い、実質的にエッチング量を無視することができる程度又はエッチングされない程度にプラズマ出力を調整し、所望により微細凸状パターン形成体1が載置される電極に高周波電流を印加することなく、微細凸状パターン形成体1をプラズマ雰囲気下に存在させることで微細凸状パターン形成体1に電荷を生じさせ、それにより傾斜した微細凸状パターン12を修正する(図1(c)参照)。そして、プラズマ雰囲気下に存在する微細凸状パターン形成体1から電荷を放出させることなく、そのままの状態でプラズマの出力を増大させ、所望により微細凸状パターン形成体1が載置される電極に高周波電流を印加して、ドライエッチング工程を実施してもよい。このような方法であれば、微細凸状パターン12の傾斜を修正しつつ、そのまま次工程であるドライエッチング工程を実施することができ、スループットの向上を図ることができるため好ましい。換言すると、本実施形態に係るパターン修正方法を一工程として含むドライエッチング方法によれば、ドライエッチング方法による基板加工のスループットを改善・向上させることができる。   In addition, when the electric charges are released from the fine convex pattern forming body 1, the fine convex pattern 12 whose inclination is corrected by generating the electric charge is inclined again (returns to the original state). In such a case, the above-described discharge step (FIG. 1D) may be omitted. In particular, the fine convex pattern forming body 1 remains charged in an environment where the above-mentioned adverse effects due to the discharge of the electric charges from the fine convex pattern forming body 1 do not occur or the possibility of the adverse effects occurring is extremely low. If the next process can be carried out even in this state, it is not necessary to discharge the charges from the fine convex pattern forming body 1, and the above-described discharge process (FIG. 1 (d)) may be omitted. For example, in the case where the dry etching process is performed after the inclined fine convex pattern 12 is corrected, a dry etching apparatus is used in the process shown in FIG. The plasma output is adjusted to such an extent that it can be performed or is not etched, and if desired, the fine convex pattern forming body 1 can be put into a plasma atmosphere without applying a high-frequency current to the electrode on which the fine convex pattern forming body 1 is placed. By making it exist below, electric charges are generated in the fine convex pattern forming body 1, thereby correcting the fine convex pattern 12 inclined (see FIG. 1C). Then, without discharging electric charges from the fine convex pattern forming body 1 existing in the plasma atmosphere, the output of the plasma is increased as it is, and if desired, the electrode on which the fine convex pattern forming body 1 is placed is placed. A dry etching process may be performed by applying a high-frequency current. Such a method is preferable because the next dry etching process can be performed as it is while correcting the inclination of the fine convex pattern 12, and the throughput can be improved. In other words, according to the dry etching method including the pattern correction method according to the present embodiment as one step, the throughput of substrate processing by the dry etching method can be improved / improved.

上述した本実施形態に係るパターン修正方法によれば、微細凸状パターン形成体1に電荷を生じさせるだけで、微細凸状パターン12の傾斜を簡易に修正することができるため、微細凸状パターン形成体1からなる製品(例えば、細胞培養シート、メタマテリアル、親水性膜、撥水性膜等)を高精度で得ることができ、また当該微細凸状パターン形成体1をマスクとするエッチング工程等により得られる製品の歩留まりを向上させることができる。   According to the pattern correction method according to the present embodiment described above, the inclination of the fine convex pattern 12 can be easily corrected simply by generating a charge in the fine convex pattern forming body 1. A product (for example, a cell culture sheet, a metamaterial, a hydrophilic film, a water repellent film, etc.) comprising the formed body 1 can be obtained with high accuracy, and an etching process using the fine convex pattern formed body 1 as a mask. The yield of the product obtained by this can be improved.

〔微細凸状パターン形成体の製造方法〕
本実施形態における微細凸状パターン形成体の製造方法は、微細凸状パターン形成体1を形成する工程(形成工程)と、上述した本実施形態に係るパターン修正方法(図1参照)を用いて微細凸状パターン12の傾斜を修正する工程(修正工程)とを含む。
[Method for producing fine convex pattern forming body]
The manufacturing method of the fine convex pattern formation body in this embodiment uses the process (formation process) which forms the fine convex pattern formation body 1, and the pattern correction method (refer FIG. 1) which concerns on this embodiment mentioned above. A step of correcting the inclination of the fine convex pattern 12 (correction step).

微細凸状パターン形成体1を形成する工程は、ナノインプリント法により微細凸状パターン形成体1を製造する場合、インプリント用樹脂膜15が形成されてなる所定の基板13を用意し(図4(a)参照)、当該基板13上のインプリント用樹脂膜15に、微細凹状パターンを有するインプリント用モールド21を押圧し、その状態で当該インプリント用樹脂膜15を硬化させる転写工程(図4(b)参照)と、硬化したインプリント用樹脂膜15からインプリント用モールド21を剥離する離型工程(図4(c)参照)とを含む。なお、熱ナノインプリント法により微細凸状パターン形成体1を製造する場合、基板13を用いることなくフィルム状又は板状の樹脂材料に直接インプリント用モールド21を押圧し、当該樹脂材料を硬化させてもよい。   In the process of forming the fine convex pattern forming body 1, when the fine convex pattern forming body 1 is manufactured by the nanoimprint method, a predetermined substrate 13 on which the imprinting resin film 15 is formed is prepared (FIG. 4 ( a)), a transfer step of pressing the imprint mold 21 having a fine concave pattern against the imprint resin film 15 on the substrate 13 and curing the imprint resin film 15 in this state (FIG. 4). (B)) and a mold release step (see FIG. 4C) for peeling the imprint mold 21 from the cured imprint resin film 15. In addition, when manufacturing the fine convex pattern formation body 1 by the thermal nanoimprint method, the imprint mold 21 is pressed directly on a film-like or plate-like resin material without using the substrate 13, and the resin material is cured. Also good.

一方、フォトリソグラフィー法により微細凸状パターン形成体1を製造する場合、上記微細凸状パターン形成体1を形成する工程は、フォトレジスト膜16が形成されてなる所定の基板13を用意し(図5(a)参照)、当該基板13上のフォトレジスト膜16を、所定開口パターン22a及び遮光パターン22bを有するフォトマスク22を介して露光する露光工程(図5(b)参照)と、露光されたフォトレジスト膜16を、所望の現像液を用いて現像する現像工程(図5(c)参照)と、その後純水等のリンス液を用いてリンスするリンス工程とが含まれる。   On the other hand, when the fine convex pattern forming body 1 is manufactured by the photolithography method, the step of forming the fine convex pattern forming body 1 prepares a predetermined substrate 13 on which a photoresist film 16 is formed (FIG. 5 (a)), an exposure process (see FIG. 5 (b)) for exposing the photoresist film 16 on the substrate 13 through a photomask 22 having a predetermined opening pattern 22a and a light shielding pattern 22b, and exposure. In addition, a development step (see FIG. 5C) for developing the photoresist film 16 using a desired developer and a rinse step for rinsing with a rinse solution such as pure water are included.

上述したように、微細凸状パターン12を有する微細凸状パターン形成体1を形成することができるが、例えば、ナノインプリント法における離型工程において、インプリント用モールド21の凹状パターン内壁とインプリント用樹脂膜15(微細凸状パターン12)との付着等により当該微細凸状パターン12が引っ張られたり、インプリント用モールド21がインプリント用樹脂膜15に対する直交方向よりも傾いた方向に引き上げられたりすること等により、傾斜した微細凸状パターン12が形成されてしまうことがある(図4(c)参照)。また、フォトリソグラフィー法における現像工程(図5(c)参照)やリンス工程後、現像液やリンス液の乾燥時に生じる表面張力の影響等により、隣接する微細凸状パターン12が倒れてしまうことがある。特に、形成された微細凸状パターン形成体1において、微細凸状パターン12が上述したような寸法やアスペクト比を有するような場合には、微細凸状パターン12の倒れが顕著に生じるおそれがある。   As described above, the fine convex pattern forming body 1 having the fine convex pattern 12 can be formed. For example, in the mold release step in the nanoimprint method, the concave pattern inner wall of the imprint mold 21 and the imprint pattern The fine convex pattern 12 is pulled due to adhesion to the resin film 15 (fine convex pattern 12), or the imprint mold 21 is pulled up in a direction inclined with respect to the orthogonal direction to the imprint resin film 15. By doing so, an inclined fine convex pattern 12 may be formed (see FIG. 4C). Further, after the development step (see FIG. 5C) or the rinsing step in the photolithography method, the adjacent fine convex pattern 12 may fall down due to the influence of the surface tension generated when the developer or the rinsing liquid is dried. is there. In particular, in the formed fine convex pattern forming body 1, when the fine convex pattern 12 has the dimensions and aspect ratio as described above, the fine convex pattern 12 may be significantly tilted. .

このような場合に、上述した本実施形態に係るパターン修正方法(図1参照)を用いて、微細凸状パターン12の傾斜を修正する。これにより、傾斜した微細凸状パターン12を、平面部11に対する直交方向に立設させるように修正することができるため、平面部11に対する略直交方向に突出してなる微細凸状パターン12を有する微細凸状パターン形成体1を高精度に製造することができる。   In such a case, the inclination of the fine convex pattern 12 is corrected using the pattern correction method (see FIG. 1) according to the present embodiment described above. Thereby, since the inclined fine convex pattern 12 can be corrected so as to stand upright in the direction orthogonal to the plane part 11, the fine pattern having the fine convex pattern 12 protruding in the direction substantially orthogonal to the plane part 11 is obtained. The convex pattern forming body 1 can be manufactured with high accuracy.

なお、微細凸状パターン12が平面部11に対する略直交方向に突出するとは、微細凸状パターン12を上方に、平面部11を下方に位置させた微細凸状パターン形成体1の一の方向からの側面視及び当該一の方向に直交する他の方向からの側面視のいずれにおいても、微細凸状パターン12の底部(平面部11に接する部分)の幅方向中心と、微細凸状パターン12の頂部の幅方向中心とを通る線分(微細凸状パターン12の軸線)の、平面部11に対するなす角度が実質的に90°であることを意味し、当該平面部11に対するなす角度は、微細凸状パターン形成体1の用途(リソグラフィー用マスク等の用途)等に依存する許容範囲内にあればよく、具体的には90°±10°以内であればよい。   Note that the fine convex pattern 12 protrudes in a direction substantially orthogonal to the flat portion 11 from one direction of the fine convex pattern forming body 1 in which the fine convex pattern 12 is positioned upward and the flat portion 11 is positioned downward. In both the side view and the side view from another direction orthogonal to the one direction, the center in the width direction of the bottom of the fine convex pattern 12 (the part in contact with the flat portion 11) and the fine convex pattern 12 This means that the angle formed by the line segment passing through the center in the width direction of the top portion (the axis of the fine convex pattern 12) with respect to the plane portion 11 is substantially 90 °. It suffices to be within an allowable range depending on the application of the convex pattern forming body 1 (application of a lithography mask, etc.), specifically 90 ° ± 10 ° or less.

なお、本実施形態における微細凸状パターン形成体の製造方法において、形成した微細凸状パターン形成体1の微細凸状パターン12が意図せずして傾斜してしまった場合に本実施形態に係るパターン修正方法(図1参照)を用いて微細凸状パターン12の傾斜を修正することに鑑みると、上記微細凸状パターン形成体1を形成する工程、特に図4(a)〜(c)に示すようにナノインプリント法により微細凸状パターン形成体1を形成する際に、隣接する微細凸状パターン12,12の間隔が所定の範囲(微細凸状パターン12の高さの2倍以下)となるように、また平面部11としての樹脂残膜の厚さが所定の厚さ(平面部11の表面に効果的に電荷を生じさせ得る程度)となるように微細凸状パターン形成体1を形成するのが好ましい。   In addition, in the manufacturing method of the fine convex pattern formation body in this embodiment, when the fine convex pattern 12 of the formed fine convex pattern formation body 1 inclines unintentionally, it concerns on this embodiment. In view of correcting the inclination of the fine convex pattern 12 using the pattern correction method (see FIG. 1), the step of forming the fine convex pattern forming body 1, particularly in FIGS. 4 (a) to (c). As shown, when the fine convex pattern forming body 1 is formed by the nanoimprint method, the interval between the adjacent fine convex patterns 12, 12 is within a predetermined range (not more than twice the height of the fine convex pattern 12). In addition, the fine convex pattern forming body 1 is formed so that the thickness of the resin residual film as the plane portion 11 becomes a predetermined thickness (a level that can effectively generate charges on the surface of the plane portion 11). Preferably

本実施形態における微細凸状パターン形成体の製造方法においては、微細凸状パターン形成体1の形成後、微細凸状パターン12が傾斜しているか否かを検知する工程(検知工程)をさらに含み、当該検知工程において微細凸状パターン12が傾斜していると検知された微細凸状パター形成体1のみに、本実施形態に係るパターン修正方法を適用するようにしてもよい。このようにすることで、微細凸状パターン形成体1の製造効率を向上させることができる。   In the manufacturing method of the fine convex pattern formation body in this embodiment, after formation of the fine convex pattern formation body 1, the process (detection process) which detects whether the fine convex pattern 12 inclines is further included. The pattern correction method according to the present embodiment may be applied only to the fine convex pattern formation 1 that is detected in the detection step as the fine convex pattern 12 is inclined. By doing in this way, the manufacturing efficiency of the fine convex pattern formation body 1 can be improved.

この場合において、微細凸状パターン12が傾斜しているか否かを検知する方法としては、例えば、形状を観察し評価する方法、形状の変化により得られる情報から傾斜の有無を判断する方法等が挙げられる。   In this case, as a method for detecting whether or not the fine convex pattern 12 is inclined, for example, a method for observing and evaluating the shape, a method for determining the presence or absence of inclination from information obtained by a change in the shape, and the like. Can be mentioned.

具体的には、微細凸状パターン形成体1をその上面又は側面からレーザー顕微鏡やSEM等を用いて撮像して、微細凸状パターン12の傾斜の有無を判断したり、AFM等を用いて微細凸状パターン形成体1に探針を近接又は接触させ、微細凸状パターン12の傾斜の有無を判断したりすることができる。一方、光学顕微鏡を用いると、微細凸状パターン12に応答する分解能が十分ではなく、各微細凸状パターン12を識別することは難しいが、微細凸状パターン12が正常に形成されている(傾斜していない)又はその傾斜が修正されたことが分かっている領域の画像と比較したり、そのような領域を同一解像度にて撮像した画像と比較したりすることで、当該画像のコントラストや色味等の光学特性の違いにより微細凸状パターン12の傾斜の有無を判断することもできるし、透過率、屈折率、反射率等の測定データに基づいて微細凸状パターン12の傾斜の有無を判断してもよく、さらにはこれらの方法を組み合わせて用いてもよい。   Specifically, the fine convex pattern forming body 1 is imaged from its upper surface or side surface using a laser microscope, SEM, or the like, and the presence or absence of the inclination of the fine convex pattern 12 is determined, or the fine convex pattern forming body 1 is The probe can be brought close to or in contact with the convex pattern forming body 1 to determine whether the fine convex pattern 12 is inclined. On the other hand, when an optical microscope is used, the resolution in response to the fine convex pattern 12 is not sufficient, and it is difficult to identify each fine convex pattern 12, but the fine convex pattern 12 is normally formed (inclined). The contrast or color of the image by comparing it with an image of an area whose slope is known to have been corrected, or comparing such an area with an image captured at the same resolution. The presence or absence of the inclination of the fine convex pattern 12 can be determined based on the difference in optical characteristics such as taste, and the presence or absence of the inclination of the fine convex pattern 12 can be determined based on measurement data such as transmittance, refractive index, and reflectance. It may be judged, and further, these methods may be used in combination.

上述した本実施形態における微細凸状パターン形成体の製造方法によれば、微細凸状パターン形成体1の製造過程において意図せずして傾斜してしまった微細凸状パターン12を容易に修正することができるため、平面部11に対する略直交方向に立設してなる微細凸状パターン12を有する微細凸状パターン形成体1を高精度に製造することができる。その結果、当該微細凸状パターン形成体1からなる製品(例えば、細胞培養シート、メタマテリアル、親水性膜、撥水性膜等)を高精度で得ることができ、また当該微細凸状パターン形成体1をマスクとするエッチング工程等により得られる製品の歩留まりを向上させることができる。   According to the manufacturing method of the fine convex pattern forming body in the present embodiment described above, the fine convex pattern 12 that is inclined unintentionally in the manufacturing process of the fine convex pattern forming body 1 is easily corrected. Therefore, the fine convex pattern forming body 1 having the fine convex pattern 12 erected in a direction substantially orthogonal to the plane portion 11 can be manufactured with high accuracy. As a result, a product (for example, a cell culture sheet, metamaterial, hydrophilic film, water-repellent film, etc.) comprising the fine convex pattern forming body 1 can be obtained with high accuracy, and the fine convex pattern forming body can be obtained. The yield of products obtained by an etching process or the like using 1 as a mask can be improved.

〔微細凸状パターン形成体製造システム〕
続いて、上述した微細凸状パターン形成体の製造方法を実施し得るシステムについて説明する。図6は、本実施形態における微細凸状パターン形成体製造システムの概略構成を示すブロック図である。
[Fine convex pattern production system]
Then, the system which can implement the manufacturing method of the fine convex pattern formation body mentioned above is demonstrated. FIG. 6 is a block diagram showing a schematic configuration of a fine convex pattern forming body manufacturing system in the present embodiment.

図6に示すように、本実施形態における微細凸状パターン形成体製造システム30は、微細凸状パターン形成体1を製造する製造部31と、製造部31において製造された微細凸状パターン形成体1の微細凸状パターン12が傾斜しているか否かを検知する検知部32と、検知部32により傾斜していると検知された微細凸状パターン形成体1の微細凸状パターン12の傾斜を修正する修正部33とを有する。   As shown in FIG. 6, the fine convex pattern forming body manufacturing system 30 in the present embodiment includes a manufacturing unit 31 that manufactures the fine convex pattern forming body 1, and a fine convex pattern forming body manufactured in the manufacturing unit 31. The detection unit 32 that detects whether or not one fine convex pattern 12 is inclined, and the inclination of the fine convex pattern 12 of the fine convex pattern forming body 1 that is detected as being inclined by the detection unit 32. And a correction unit 33 for correction.

製造部31は、微細凸状パターン形成体1を製造するために一般的に用いられる単一の装置又は複数の装置群により構成される。例えば、ナノインプリント法により微細凸状パターン形成体1を製造する製造部31としては、モールド保持部、基板ステージ、インプリントチャンバー等を備える光ナノインプリント装置や熱ナノインプリント装置;ベルト状又は回転体状ナノインプリント用モールドを用い、長尺シート状の被転写体(樹脂シート)を搬送しながら、ベルト状又は回転体状ナノインプリント用モールドを当該被転写体に押圧することで微細凸状パターン形成体1を製造し得るシートナノインプリント装置等が挙げられる。特に、シートナノインプリント装置を用いて微細凸状パターン形成体1を製造すると、ベルト状又は回転体状ナノインプリント用モールドが被転写体(樹脂シート)から引き離される際に、微細凸状パターン12に面内方向の力が加わる(微細凸状パターン12が被転写体(樹脂シート)の搬送方向と反対の方向に引っ張られる)ため、微細凸状パターン12の倒れが生じやすくなる。特に微細凸状パターン12の寸法が小さくなり、アスペクト比が大きくなると、微細凸状パターンの倒れが顕著に生じやすくなる。したがって、かかるシートナノインプリント装置を用いて製造された微細凸状パターン形成体1における微細凸状パターン12の傾斜を修正する方法として、本実施形態に係るパターン修正方法は特に好適な方法であると言える。   The manufacturing unit 31 includes a single device or a plurality of device groups that are generally used to manufacture the fine convex pattern forming body 1. For example, as the manufacturing unit 31 for manufacturing the fine convex pattern forming body 1 by the nanoimprinting method, an optical nanoimprinting device or a thermal nanoimprinting device including a mold holding unit, a substrate stage, an imprinting chamber, etc .; for belt-like or rotating nanoimprinting The fine convex pattern forming body 1 is manufactured by pressing a belt-like or rotating body-like nanoimprint mold against the transferred body while conveying a long sheet-shaped transferred body (resin sheet) using the mold. Examples thereof include a sheet nanoimprint apparatus to be obtained. In particular, when the fine convex pattern forming body 1 is manufactured by using the sheet nanoimprint apparatus, the fine convex pattern 12 is in-plane when the belt-shaped or rotating nanoimprint mold is separated from the transfer target (resin sheet). Since a force in the direction is applied (the fine convex pattern 12 is pulled in a direction opposite to the transfer direction of the transfer object (resin sheet)), the fine convex pattern 12 is likely to fall down. In particular, when the size of the fine convex pattern 12 is reduced and the aspect ratio is increased, the fine convex pattern is likely to fall down significantly. Therefore, it can be said that the pattern correction method according to the present embodiment is a particularly preferable method as a method of correcting the inclination of the fine convex pattern 12 in the fine convex pattern forming body 1 manufactured using the sheet nanoimprint apparatus. .

また、フォトリソグラフィー法により微細凸状パターン形成体1を製造する製造部31としては、例えば、所定のフォトマスクを介して基板上のフォトレジスト膜を露光する露光装置と、露光装置により露光された基板上のフォトレジスト膜を所定の現像液により現像する現像装置とを含むフォトリソグラフィー装置等が挙げられる。   Moreover, as the manufacturing part 31 which manufactures the fine convex pattern formation body 1 by the photolithographic method, it exposed by the exposure apparatus which exposes the photoresist film on a board | substrate via a predetermined photomask, and exposure apparatus, for example Examples thereof include a photolithography apparatus including a developing device that develops a photoresist film on a substrate with a predetermined developer.

検知部32としては、微細凸状パターン12の傾斜の有無を検知し得るものである限り、特にその装置構成に制限はなく、例えば、撮像装置及び制御装置を有し、撮像装置にて微細凸状パターン形成体1をその上面又は側面から撮影し、撮像データに基づいて制御装置により微細凸状パターン12の傾斜の有無を判別するものであってもよいし、撮像装置にて微細凸状パターン形成体1に起因する光学特性を計測し、計測値に基づいて制御装置により微細凸状パターン12の傾斜の有無を判別するものであってもよい。   The detection unit 32 is not particularly limited as long as it can detect the presence or absence of the inclination of the fine convex pattern 12. For example, the detection unit 32 includes an imaging device and a control device. The pattern forming body 1 may be photographed from the upper surface or side surface thereof, and the presence or absence of the inclination of the fine convex pattern 12 may be determined by the control device based on the imaging data. The optical characteristics resulting from the formed body 1 may be measured, and the presence or absence of the inclination of the fine convex pattern 12 may be determined by a control device based on the measurement value.

修正部33としては、微細凸状パターン形成体1に電荷を生じさせ、微細凸状パターン12の傾斜を修正し得るものである限り、特にその装置構成に制限はなく、例えば、プラズマチャンバーを有するプラズマ発生装置、プラズマ発生装置を有するドライエッチング装置、電界発生装置等が挙げられる。   The correction unit 33 is not particularly limited in the device configuration as long as it can generate charges in the fine convex pattern forming body 1 and correct the inclination of the fine convex pattern 12, and has, for example, a plasma chamber. Examples include a plasma generator, a dry etching apparatus having a plasma generator, and an electric field generator.

なお、製造部31がシートナノインプリント装置からなる場合、修正部33よりも上流側に製造部31により製造された、長尺シート状の微細凸状パターン形成体1を所定の大きさに切断する切断装置を有していてもよい。この場合において、検知部32により微細凸状パターン12が傾斜していると判断された場合に、製造部31により製造された長尺シート状の微細凸状パターン形成体1における当該傾斜部位を含む所定の大きさ部分のみが切断装置により切断され、当該切断された部分のみが修正部33に搬送されるようにしてもよい。   In addition, when the manufacturing unit 31 includes a sheet nanoimprint apparatus, cutting that cuts the long sheet-like fine convex pattern forming body 1 manufactured by the manufacturing unit 31 upstream of the correction unit 33 into a predetermined size. You may have a device. In this case, when the detection unit 32 determines that the fine convex pattern 12 is inclined, the inclined portion in the long sheet-like fine convex pattern formed body 1 manufactured by the manufacturing unit 31 is included. Only a predetermined size portion may be cut by the cutting device, and only the cut portion may be conveyed to the correction unit 33.

上述した構成を有する微細凸状パターン形成体製造システム30において、製造部31にて製造された微細凸状パターン形成体1が、検知部32に搬送され、検知部32にて当該微細凸状パターン形成体1における微細凸状パターン12の傾斜の有無が検知される。このとき、微細凸状パターン12が傾斜していると検知部32にて判断された場合には、当該微細凸状パターン形成体1は修正部33に搬送され、修正部33にて上述した本実施形態に係るパターン修正方法を用いて微細凸状パターン12の傾斜が修正される。これにより、平面部11と平面部11に対する略直交方向に立設してなる微細凸状パターン12とを有する微細凸状パターン形成体1を製造することができる。   In the fine convex pattern forming body manufacturing system 30 having the above-described configuration, the fine convex pattern forming body 1 manufactured by the manufacturing unit 31 is transported to the detection unit 32, and the detection unit 32 performs the fine convex pattern. The presence or absence of the inclination of the fine convex pattern 12 in the formed body 1 is detected. At this time, when the detection unit 32 determines that the fine convex pattern 12 is inclined, the fine convex pattern formation 1 is conveyed to the correction unit 33 and the book described above in the correction unit 33. The inclination of the fine convex pattern 12 is corrected using the pattern correction method according to the embodiment. Thereby, the fine convex pattern formation body 1 which has the plane part 11 and the fine convex pattern 12 standingly arranged in the substantially orthogonal direction with respect to the plane part 11 can be manufactured.

このように、本実施形態における微細凸状パターン形成体製造システム30によれば、製造部31にて製造された微細凸状パターン形成体1において、意図せずして微細凸状パターン12が傾斜してしまった場合においても、修正部33にて当該微細凸状パターン12の傾斜を簡易に修正することができる。その結果として、平面部11に対する略直交方向に立設してなる微細凸状パターン12を有する微細凸状パターン形成体1を容易に、かつ高精度に製造することができる。   Thus, according to the fine convex pattern forming body manufacturing system 30 in the present embodiment, in the fine convex pattern forming body 1 manufactured by the manufacturing unit 31, the fine convex pattern 12 is inclined unintentionally. Even if it has been done, the correction portion 33 can easily correct the inclination of the fine convex pattern 12. As a result, the fine convex pattern forming body 1 having the fine convex pattern 12 erected in a direction substantially orthogonal to the flat portion 11 can be manufactured easily and with high accuracy.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

上記実施形態における微細凸状パターン形成体製造システムは、微細凸状パターン12の傾斜を検知する検知部32を有しているものであるが、本発明はこのような態様に限定されるものではなく、当該検知部32を有していなくてもよい。   Although the fine convex pattern formation body manufacturing system in the said embodiment has the detection part 32 which detects the inclination of the fine convex pattern 12, this invention is not limited to such an aspect. The detection unit 32 may not be provided.

また、上記実施形態の微細凸状パターン形成体の製造方法又は製造システムにおける検知工程又は検知部32において、微細凸状パターン12の傾斜角度(微細凸状パターン形成体1の側面視(一の方向及びそれに直交する他の方向からの側面視)において、平面部11の直交方向に対する微細凸状パターン12の軸線のなす角度)に基づいて、当該微細凸状パターン12の傾斜の有無を判断し、所定の傾斜角度以上の微細凸状パターン12(当該微細凸状パターン12を含む所定の領域)を特定するようにしてもよい。   Moreover, in the detection process or detection part 32 in the manufacturing method or manufacturing system of the fine convex pattern formation body of the said embodiment, the inclination angle of the fine convex pattern 12 (side view (one direction of the fine convex pattern formation body 1) And an angle formed by the axis of the fine convex pattern 12 with respect to the orthogonal direction of the flat surface portion 11), the presence or absence of the inclination of the fine convex pattern 12 is determined. You may make it specify the fine convex pattern 12 (predetermined area | region containing the said fine convex pattern 12) more than a predetermined inclination angle.

さらに、上記実施形態においては、微細凸状パターン形成体の製造方法における修正工程にて微細凸状パターン12の傾斜の修正処理が施された微細凸状パターン形成体1について、当該傾斜が修正されたか否かを確認する工程をさらに含むものであってもよい。この場合において、上記検知工程と同様の方法により傾斜が修正されたか否かを確認することができる。また、上記実施形態における微細凸状パターン形成体製造システム30においては、修正部33にて修正処理が施された微細凸状パターン形成体1を検知部32に搬送し、検知部32にて微細凸状パターン12の傾斜が修正されたか否かを確認すればよい。   Furthermore, in the said embodiment, the said inclination is corrected about the fine convex pattern formation body 1 in which the correction process of the inclination of the fine convex pattern 12 was performed in the correction process in the manufacturing method of a fine convex pattern formation body. It may further include a step of confirming whether or not. In this case, it can be confirmed whether or not the inclination is corrected by the same method as in the detection step. Moreover, in the fine convex pattern formation body manufacturing system 30 in the said embodiment, the fine convex pattern formation body 1 in which the correction process was performed in the correction part 33 is conveyed to the detection part 32, and fine in the detection part 32 What is necessary is just to confirm whether the inclination of the convex pattern 12 was corrected.

上記実施形態においては、傾斜の修正対象となる微細凸状パターン12は、平面部11の直交方向に突出することを目的として形成されるものであるため、平面部11に対する略直交方向に突出させるように、傾斜する微細凸状パターン12を修正している。しかしながら、目的とする微細凸状パターン形成体における微細凸状パターンが所定の角度で傾斜してなるものの場合であって、当該所定の角度よりも傾斜してしまっている場合においても、本発明を適用することができる。言い換えると、微細凸状パターン形成体における微細凸状パターンの平面部からの突出角度(微細凸状パターンを上方に、平面部を下方に位置させた微細凸状パターン形成体の側面視において、微細凸状パターンの幅方向中心を通る線分(軸線)と平面部との交点を通る平面部の接線に対する当該軸線のなす角度)が、本来目的とする角度よりも傾斜してしまっている場合に、当該微細凸状パターンの突出角度を本来目的とする角度に修正するためにも、本発明を適用することができる。   In the above-described embodiment, the fine convex pattern 12 to be corrected for inclination is formed for the purpose of projecting in the orthogonal direction of the plane part 11, and is thus projected in a direction substantially orthogonal to the plane part 11. As described above, the inclined fine convex pattern 12 is corrected. However, even in the case where the fine convex pattern in the target fine convex pattern forming body is inclined at a predetermined angle, and is inclined more than the predetermined angle, the present invention is Can be applied. In other words, the protrusion angle from the flat portion of the fine convex pattern in the fine convex pattern formation body (in the side view of the fine convex pattern formation body with the fine convex pattern positioned upward and the flat portion positioned downward) When the angle formed by the axis line with respect to the tangent of the plane part passing through the intersection of the line pattern (axis) and the plane part passing through the center of the convex pattern is inclined more than the intended angle The present invention can also be applied to correct the protrusion angle of the fine convex pattern to the originally intended angle.

例えば、突出角度が70°の微細凸状パターン12を有する微細凸状パターン形成体1を製造しようとしたところ、得られた微細凸状パターン形成体1における微細凸状パターン12の突出角度が30°であった場合、当該微細凸状パターン12に電荷を生じさせるとともに生じさせる電荷量を制御することで、突出角度を70°にするように修正することができる。なお、微細凸状パターン12が所定の角度で傾斜する微細凸状パターン形成体1をナノインプリントにより製造する方法としては、微細凹状パターンを有するインプリントモールドであって、当該微細凹状パターンの側壁が微細凸状パターン12の突出角度に対応する角度に傾斜する傾斜面により構成されるインプリントモールドを用いる方法を例示することができる。また、当該微細凸状パターン形成体をフォトリソグラフィーにより製造する方法としては、感光性レジストに対する露光光(UV、電子線等)の入射角を制御する方法を例示することができる。   For example, when trying to manufacture the fine convex pattern forming body 1 having the fine convex pattern 12 having a protrusion angle of 70 °, the protrusion angle of the fine convex pattern 12 in the obtained fine convex pattern forming body 1 is 30. If it is, the protrusion angle can be corrected to 70 ° by controlling the amount of charge generated and generated in the fine convex pattern 12. In addition, as a method of manufacturing the fine convex pattern forming body 1 in which the fine convex pattern 12 is inclined at a predetermined angle by nanoimprinting, an imprint mold having a fine concave pattern, in which the side wall of the fine concave pattern is fine A method using an imprint mold constituted by an inclined surface inclined at an angle corresponding to the protruding angle of the convex pattern 12 can be exemplified. Moreover, as a method of manufacturing the said fine convex pattern formation body by photolithography, the method of controlling the incident angle of exposure light (UV, an electron beam, etc.) with respect to a photosensitive resist can be illustrated.

以下、実施例等を挙げて本発明をさらに詳細に説明するが、本発明は下記の実施例等に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. are given and this invention is demonstrated further in detail, this invention is not limited to the following Example etc. at all.

〔実施例1〕
石英基板13の一方面上に、紫外線硬化性樹脂材料を用いたUVナノインプリントにより、縦3個、横3個の正方格子状に配列されてなるピラー形状の微細凸状パターン12(寸法:30nm、アスペクト比:1.5、隣接する微細凸状パターン12間のピッチ:50nm)を形成し、微細凸状パターン形成体1を作製した。なお、石英基板13上の微細凸状パターン12の周囲には、当該微細凸状パターン12と同一の高さの樹脂膜(最近接の微細凸状パターン12から20nm離間している)を上記微細凸状パターン12と同時に形成し、次に、微細凸状パターン12の上面及び樹脂膜Mの上面にCr膜(厚さ:10nm)を成膜した。
[Example 1]
On one surface of the quartz substrate 13, pillar-shaped fine convex patterns 12 (dimensions: 30 nm, which are arranged in a three-sided and three-sided square lattice pattern by UV nanoimprinting using an ultraviolet curable resin material) (Aspect ratio: 1.5, pitch between adjacent fine convex patterns 12: 50 nm) was formed to produce a fine convex pattern forming body 1. In addition, around the fine convex pattern 12 on the quartz substrate 13, a resin film having the same height as the fine convex pattern 12 (separated from the nearest fine convex pattern 12 by 20 nm) is formed in the fine pattern. Then, a Cr film (thickness: 10 nm) was formed on the upper surface of the fine convex pattern 12 and the upper surface of the resin film M.

上記のようにして5個の微細凸状パターン形成体1を作成し、各微細凸状パターン形成体1をSEMにて確認したところ、すべての微細凸状パターン形成体1において微細凸状パターン12の倒れが確認された。   As described above, five fine convex pattern forming bodies 1 were prepared and each fine convex pattern forming body 1 was confirmed by SEM. As a result, the fine convex pattern 12 in all the fine convex pattern forming bodies 1 was obtained. Was confirmed.

上記微細凸状パターン12の倒れの生じた微細凸状パターン形成体1について、ICP−RIEを用いたドライエッチング処理を施した。かかるドライエッチング処理において、まず紫外線硬化性樹脂、Cr及び石英がエッチングされない程度のICPの出力(目的とする石英のエッチングレートが得られるようなICPの出力の60%)としてプラズマ雰囲気を形成し、微細凸状パターン形成体1を載置した電極に高周波電流を印加することなく、10秒間プラズマ雰囲気下に微細凸状パターン形成体1を存在させ、次いで目的とする石英のエッチングレートが得られるようなICPの出力に上げた。   The fine convex pattern forming body 1 in which the fine convex pattern 12 collapsed was subjected to a dry etching process using ICP-RIE. In such a dry etching process, first, a plasma atmosphere is formed as an ICP output (60% of the ICP output that can achieve the target quartz etching rate) such that the ultraviolet curable resin, Cr, and quartz are not etched. Without applying high-frequency current to the electrode on which the fine convex pattern forming body 1 is placed, the fine convex pattern forming body 1 is allowed to exist in the plasma atmosphere for 10 seconds, and then the target quartz etching rate is obtained. The output of the ICP was increased.

上記のようにしてドライエッチング処理を施した後の石英基板13をSEMにて観察したところ、微細凸状パターン12の倒れが反映されることなく、直立したピラーパターンが形成されていることが確認された。   When the quartz substrate 13 subjected to the dry etching process as described above was observed with an SEM, it was confirmed that an upstanding pillar pattern was formed without reflecting the collapse of the fine convex pattern 12. It was done.

〔比較例1〕
ドライエッチング処理を通じて、ICPの出力を目的とする石英のエッチングレートが得られるような出力とした以外は、実施例1と同様の方法により作製した微細凸状パターン形成体1にドライエッチング処理を施した。このようにしてドライエッチング処理を施した後の石英基板13をSEMにて観察したところ、微細凸状パターン12の倒れが反映された状態で石英基板13がドライエッチングされていることが確認された。
[Comparative Example 1]
The fine convex pattern formed body 1 manufactured by the same method as in Example 1 is subjected to dry etching treatment, except that the output is such that the target quartz etching rate is obtained through the dry etching treatment. did. Observation of the quartz substrate 13 after the dry etching treatment in this way with an SEM confirmed that the quartz substrate 13 was dry-etched in a state where the collapse of the fine convex pattern 12 was reflected. .

上記実施例1及び比較例1の結果から明らかなように、実施例1のように、ドライエッチング処理において紫外線硬化性樹脂、Cr膜及び石英基板13がエッチングされない程度にICPの出力を下げることで、微細凸状パターン形成体1(微細凸状パターン12)に電荷を生じさせることができ、その結果として生じる電気的反発力により微細凸状パターン12を直立させるように修正することができたために、その状態のままICPの出力を上げてドライエッチング処理を施すことで、石英基板13に直立したピラーパターンを形成することができたと推察される。   As is clear from the results of Example 1 and Comparative Example 1 above, as in Example 1, the output of the ICP is lowered to such an extent that the ultraviolet curable resin, Cr film, and quartz substrate 13 are not etched in the dry etching process. Because the fine convex pattern forming body 1 (fine convex pattern 12) can be charged, and the electric repulsive force generated as a result can be corrected so that the fine convex pattern 12 stands upright. It is surmised that an upright pillar pattern could be formed on the quartz substrate 13 by increasing the output of the ICP in this state and performing a dry etching process.

本発明は、ナノインプリント法やフォトリソグラフィー法による微細凸構造体(微細凸状パターン形成体)の製造に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for producing a fine convex structure (fine convex pattern forming body) by a nanoimprint method or a photolithography method.

1…微細凸状パターン形成体(微細凸構造体)
11…平面部
12…微細凸状パターン(微細凸構造部)
30…微細凸状パターン形成体製造システム(微細凸構造体製造システム)
31…製造部(微細凸構造体形成部)
33…修正部(傾斜修正部)
1 ... Fine convex pattern formation (fine convex structure)
11 ... plane part 12 ... fine convex pattern (fine convex structure part)
30 ... Fine convex pattern forming body manufacturing system (fine convex structure manufacturing system)
31 ... Manufacturing section (microconvex structure forming section)
33 ... correction part (inclination correction part)

Claims (9)

平面部と当該平面部から突出してなる微細凸構造部とを有する微細凸構造体において、当該微細凸構造部が当該平面部に直交する方向に対し傾斜しているときに、当該微細凸構造部の傾斜を修正する方法であって、
前記傾斜した微細凸構造部を有する前記微細凸構造体の、前記平面部の表面と前記微細凸構造部の表面とに同じ極性の電荷を生じさせることにより、前記微細凸構造部の傾斜を修正することを特徴とする微細凸構造体の修正方法。
In a fine convex structure having a flat portion and a fine convex structure portion protruding from the flat portion, the fine convex structure portion when the fine convex structure portion is inclined with respect to a direction orthogonal to the flat portion. A method of correcting the inclination of
The fine convex structure having the inclined fine convex structure is corrected by inclining the fine convex structure by generating charges of the same polarity on the surface of the flat surface and the surface of the fine convex structure. A method for correcting a fine convex structure, characterized in that:
前記微細凸構造体を帯電させることが可能な雰囲気下に、当該微細凸構造体を存在させることにより前記微細凸構造体に電荷を生じさせることを特徴とする請求項1に記載の微細凸構造体の修正方法。   2. The fine convex structure according to claim 1, wherein an electric charge is generated in the fine convex structure by causing the fine convex structure to exist in an atmosphere capable of charging the fine convex structure. How to correct the body. 前記微細凸構造体を誘電分極又は静電誘導させることにより前記微細凸構造体に電荷を生じさせることを特徴とする請求項1に記載の微細凸構造体の修正方法。   2. The method for correcting a fine convex structure according to claim 1, wherein the fine convex structure is caused to generate electric charges by dielectric polarization or electrostatic induction. 前記微細凸構造体における一部の領域に電荷を生じさせることにより、当該電荷が生じた領域における前記微細凸構造部の傾斜を修正することを特徴とする請求項1〜3のいずれかに記載の微細凸構造体の修正方法。   The inclination of the fine convex structure part in the area | region where the said electric charge was produced | generated by correcting an electric charge in the one part area | region in the said fine convex structure body is characterized by the above-mentioned. Method for correcting the fine convex structure. 前記微細凸構造体が、絶縁性材料により構成されていることを特徴とする請求項1〜4のいずれかに記載の微細凸構造体の修正方法。   The method for correcting a fine convex structure according to claim 1, wherein the fine convex structure is made of an insulating material. 前記微細凸構造体が、導電性材料を含む材料により構成されており、
少なくとも前記微細凸構造体における一部の領域を電気的フローティング状態として、前記微細凸構造体に電荷を生じさせることを特徴とする請求項1〜4のいずれかに記載の微細凸構造体の修正方法。
The fine convex structure is made of a material containing a conductive material,
The correction of the fine convex structure according to any one of claims 1 to 4, wherein at least a part of the fine convex structure is in an electrically floating state, and charges are generated in the fine convex structure. Method.
平面部と、当該平面部から突出してなる微細凸構造部とを有する微細凸構造体を形成する微細凸構造体形成工程と、
前記微細凸構造体形成工程により形成された前記微細凸構造体において、前記微細凸構造部が前記平面部に直交する方向に対し傾斜している場合に、請求項1〜6のいずれかに記載の微細凸構造体の修正方法を用いて前記微細凸構造部の傾斜を修正する微細凸構造部傾斜修正工程と
を含むことを特徴とする微細凸構造体の製造方法。
A fine convex structure forming step of forming a fine convex structure having a flat portion and a fine convex structure protruding from the flat portion;
In the said fine convex structure formed by the said fine convex structure formation process, when the said fine convex structure part inclines with respect to the direction orthogonal to the said plane part, It is in any one of Claims 1-6 And a fine convex structure part inclination correcting step of correcting the inclination of the fine convex structure part using the fine convex structure correction method.
前記微細凸構造体形成工程により形成された前記微細凸構造部が、前記平面部に直交する方向に対し傾斜しているか否かを検知する傾斜検知工程をさらに含み、
前記傾斜検知工程により前記微細凸構造部が傾斜していると判定された場合に、前記微細凸構造部傾斜修正工程を行うことを特徴とする請求項7に記載の微細凸構造体の製造方法。
An inclination detecting step of detecting whether or not the fine convex structure portion formed by the fine convex structure forming step is inclined with respect to a direction orthogonal to the plane portion;
The method of manufacturing a fine convex structure according to claim 7, wherein when the fine convex structure portion is determined to be inclined by the inclination detection step, the fine convex structure portion inclination correction step is performed. .
平面部と、当該平面部から突出してなる微細凸構造部とを有する微細凸構造体を形成する微細凸構造体形成部と、
前記微細凸構造体形成部により形成された前記微細凸構造体において、前記微細凸構造部が前記平面部に直交する方向に対して傾斜している場合に、前記微細凸構造体の前記平面部の表面と前記微細凸構造部の表面と同じ極性の電荷を生じさせることにより前記微細凸構造部の傾斜を修正する傾斜修正部と
を備えることを特徴とする微細凸構造体製造システム。
A fine convex structure forming part for forming a fine convex structure having a flat part and a fine convex structure part protruding from the flat part;
In the fine convex structure formed by the fine convex structure forming portion, the planar portion of the fine convex structure when the fine convex structure portion is inclined with respect to a direction orthogonal to the planar portion. A fine convex structure manufacturing system comprising: an inclination correction unit that corrects an inclination of the fine convex structure part by generating electric charges having the same polarity on the surface of the fine convex structure part and the surface of the fine convex structure part.
JP2012176938A 2012-08-09 2012-08-09 Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system Active JP6069943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176938A JP6069943B2 (en) 2012-08-09 2012-08-09 Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176938A JP6069943B2 (en) 2012-08-09 2012-08-09 Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system

Publications (2)

Publication Number Publication Date
JP2014036133A JP2014036133A (en) 2014-02-24
JP6069943B2 true JP6069943B2 (en) 2017-02-01

Family

ID=50284929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176938A Active JP6069943B2 (en) 2012-08-09 2012-08-09 Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system

Country Status (1)

Country Link
JP (1) JP6069943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019953B2 (en) * 2012-09-04 2016-11-02 大日本印刷株式会社 Convex structure manufacturing method and manufacturing system
JP6473060B2 (en) * 2015-09-11 2019-02-20 東芝メモリ株式会社 Manufacturing method of semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311514A (en) * 2003-04-02 2004-11-04 Mitsubishi Electric Corp Mold and method for forming pattern, method of manufacturing electronic device, and electronic device
US20090270711A1 (en) * 2005-10-14 2009-10-29 Stacey Jarvin Pressure sensors and measurement methods
JP2007207913A (en) * 2006-01-31 2007-08-16 Toppan Printing Co Ltd Method and device for manufacturing glass substrate with pattern
JP5235506B2 (en) * 2008-06-02 2013-07-10 キヤノン株式会社 Pattern transfer apparatus and device manufacturing method
JP2010258106A (en) * 2009-04-22 2010-11-11 Toshiba Corp Pattern transfer method
JP2010262957A (en) * 2009-04-30 2010-11-18 Toshiba Corp Patterning method, patterning apparatus, and method for manufacturing semiconductor device
US20110195276A1 (en) * 2010-02-11 2011-08-11 Seagate Technology Llc Resist adhension to carbon overcoats for nanoimprint lithography

Also Published As

Publication number Publication date
JP2014036133A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5464308B1 (en) Method for producing fine convex pattern structure and system for producing fine convex pattern structure
Mohammad et al. Fundamentals of electron beam exposure and development
Li et al. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography
Bruinink et al. Capillary force lithography: fabrication of functional polymer templates as versatile tools for nanolithography
JP5570688B2 (en) Fine resist pattern forming method and nanoimprint mold structure
US10079152B1 (en) Method for forming planarized etch mask structures over existing topography
JP4183245B2 (en) Alignment method and exposure method using the alignment method
JP6069943B2 (en) Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system
Kono et al. Half-pitch 14nm direct patterning with nanoimprint lithography
JP6044166B2 (en) Fine convex structure correcting method and manufacturing method, and fine convex structure manufacturing system
JP2006195252A (en) Manufacturing method of mask substrate and micro lens
Sundaram et al. An easy method to perform e-beam negative tone lift-off fabrication on dielectric material with a sandwiched conducting polymer layer
JP6277588B2 (en) Pattern forming method and nanoimprint template manufacturing method
Noga et al. Understanding pattern collapse in high-resolution lithography: impact of feature width on critical stress
Moradi et al. A Novel Large‐Scale, Multilayer, and Facilely Aligned Micropatterning Technique Based on Flexible and Reusable SU‐8 Shadow Masks
JP6996333B2 (en) Blanks base material, imprint mold, imprint mold manufacturing method and imprint method
KR102164381B1 (en) Method for manufacturing nanostructure and nanostructure manufactured by using the same
CN108594595B (en) Mask plate manufacturing method with micro-nano graphic structure and nano photoetching method
JP2013110330A (en) Defect correction method for nanoimprint template
JP4654299B2 (en) Scanning electron microscope point aberration measurement alignment chip
Alkaisi et al. Nanolithography using wet etched silicon nitride phase masks
Matsuoka et al. Nanoimprint wafer and mask tool progress and status for high volume semiconductor manufacturing
US11796910B2 (en) Template, manufacturing method of template
Nakano et al. Negative Pattern Formation in Positive Resist Layer by EB/UV Hybrid Lithography
Kim et al. A novel solution for next-generation EUV pellicle: breathable membrane with increased transmittance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6069943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150