JP6068582B2 - Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes - Google Patents

Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes Download PDF

Info

Publication number
JP6068582B2
JP6068582B2 JP2015156989A JP2015156989A JP6068582B2 JP 6068582 B2 JP6068582 B2 JP 6068582B2 JP 2015156989 A JP2015156989 A JP 2015156989A JP 2015156989 A JP2015156989 A JP 2015156989A JP 6068582 B2 JP6068582 B2 JP 6068582B2
Authority
JP
Japan
Prior art keywords
cells
cεmx
mige
ige
pharmaceutical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015156989A
Other languages
Japanese (ja)
Other versions
JP2015221820A (en
Inventor
テウェン チャン
テウェン チャン
ジウン−ボ チェン
ジウン−ボ チェン
ファイディアス シー. ウー
ファイディアス シー. ウー
アルファー エフ. ハン
アルファー エフ. ハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academia Sinica
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to JP2015156989A priority Critical patent/JP6068582B2/en
Publication of JP2015221820A publication Critical patent/JP2015221820A/en
Application granted granted Critical
Publication of JP6068582B2 publication Critical patent/JP6068582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

IgEは、アレルギー性喘息、アレルギー性鼻炎、アトピー性皮膚炎等を引き起こす原因である、I型過敏性反応の誘導に、中心的な役割を果たす。アレルギー反応は、イエダニ、樹木及び草花の花粉、特定の食物及び薬物、並びにヒアリの咬傷等の、低害性の環境物質に対する、免疫系の応答である。そのような応答において、アレルゲンと、好塩基球及びマスト細胞の表面上のIgEとの結合は、IgEの架橋、及びIgE.Fcの根本的な受容体である、I型IgE.Fc受容体、又はFcεRIの集合を引き起こす。この受容体の集合は、続いて、顆粒のエキソサイトーシス及び医薬的仲介物質、例えばヒスタミン、ロイコトリエン、トリプターゼ、サイトカイン及びケモカイン等の放出を引き起こす、シグナル経路を活性化する。このマスト細胞及び好塩基球からの仲介物質の放出は、様々なアレルギーの病理的兆候を引き起こす。   IgE plays a central role in the induction of type I hypersensitivity reactions that cause allergic asthma, allergic rhinitis, and atopic dermatitis. An allergic reaction is a response of the immune system to less harmful environmental substances such as house dust mites, tree and grass pollen, certain foods and drugs, and fire ant bites. In such a response, binding of the allergen to IgE on the surface of basophils and mast cells is a type I IgE.Fc receptor, which is a cross-link of IgE and the underlying receptor for IgE.Fc, Or it causes the assembly of FcεRI. This receptor assembly subsequently activates signal pathways that cause granule exocytosis and release of pharmaceutical mediators such as histamine, leukotrienes, tryptase, cytokines and chemokines. This release of mediators from mast cells and basophils causes pathological signs of various allergies.

血中及び間質液中の遊離IgE、並びにB細胞中のmIgEと結合するが、好塩基球及びマスト細胞上のFcεRIに結合したIgEとは結合しない抗IgE抗体は、IgEが仲介するアレルギー性疾患の処置のために開発された。ヒト化抗IgE抗体のオマリズマブ(取引名Xolair)による処理は、様々なアレルギーの誘導におけるI型過敏性反応の低減において、複数の医薬的効果を示す。当該抗体は、FcεRIの結合部位と重複するFcのCH3ドメイン中の部位で、高い親和性でIgEと結合する。従って、この治療法は、当該抗体と、遊離IgE並びにBリンパ球及びメモリーB細胞上のmIgEとの結合に基づくもので、この結合は、血中及び間質液中の全体的な遊離IgEレベルの低下を引き起こす。   Anti-IgE antibodies that bind to free IgE in blood and interstitial fluid and mIgE in B cells, but not to IgE bound to FcεRI on basophils and mast cells, are alleged by IgE. Developed for the treatment of disease. Treatment of the humanized anti-IgE antibody with omalizumab (trade name Xolair) exhibits multiple pharmaceutical effects in reducing type I hypersensitivity reactions in the induction of various allergies. The antibody binds IgE with high affinity at a site in the CH3 domain of Fc that overlaps with the binding site of FcεRI. Therefore, this therapy is based on the binding of the antibody to free IgE and mIgE on B lymphocytes and memory B cells, which binds to the total free IgE level in the blood and interstitial fluid. Cause a decline.

抗IgEと遊離IgEとの結合は、更に、IgEが好塩基球及びマスト細胞の表面上のFcεRIと結合するのを妨げる。IgEが結合していないFcεRIは不安定であって、それらは内在化され(internalized)、分解されるので、遊離IgEと抗IgEとの結合の阻害は、好塩基球及びマスト細胞上のFcεRIを漸進的に下方制御する。当該抗体両方の他の効果の証拠として、サイトカイン活性の中和、全体的な炎症活性の緩和、及びIgE-抗IgE免疫複合体の蓄積によるアレルギーの掃引の可能性等が挙げられる。   The binding of anti-IgE to free IgE further prevents IgE from binding to FcεRI on the surface of basophils and mast cells. Since FcεRI without IgE binding is unstable and they are internalized and degraded, inhibition of the binding of free IgE to anti-IgE inhibits FcεRI on basophils and mast cells. Gradually down control. Evidence for other effects of both antibodies includes neutralization of cytokine activity, alleviation of overall inflammatory activity, and the possibility of sweeping allergies due to the accumulation of IgE-anti-IgE immune complexes.

本発明の発明者の一人(T. W. Chang)は、オマリズマブが、IgEのCH3上の抗原部位に加えて、mIgEを発現するBリンパ球の標的化の為に、ヒトmIgE上に存在する、CεmXと称される他の抗原部位に結合することを見出した。CεmXは、ヒト膜結合ε鎖(mε)のCH4ドメインとC末端膜アンカー断片との間に位置する、52アミノ酸の断片である。研究対象とした殆どのヒトにおいて、CεmXを有しないmε(mεs)は僅かな割合を占め、一方CεmXを有するmε(mεL)が優勢に発現していることが示されている。遊離している分泌されたIgEのε鎖、並びにmIgEのmεs及びmεLのmRNAは、全て、εRNA転写産物の選択的スプライシングに由来する。CεmXのアミノ酸及びヌクレオチド配列は、全タンパク質及びDNAデータベース中で特異のものである。従って、CεmXは、mIgE及びmIgE発現B細胞を標的化するための特異的な抗原部位を提供する。 One of the inventors of the present invention (TW Chang) found that Omalizumab is present on human mIgE for targeting B lymphocytes expressing mIgE in addition to the antigenic sites on CH3 of IgE and CεmX. It was found to bind to other antigenic sites called. CεmX is a 52 amino acid fragment located between the CH4 domain of the human membrane-bound ε chain (mε) and the C-terminal membrane anchor fragment. It has been shown that in most humans studied, mε (mε s ) without CεmX accounts for a small percentage, while mε (mε L ) with CεmX is predominantly expressed. The free secreted IgE ε chain and the mIgE mε s and mε L mRNA are all derived from alternative splicing of the εRNA transcript. The amino acid and nucleotide sequence of CεmX is unique among all protein and DNA databases. Thus, CεmX provides a specific antigenic site for targeting mIgE and mIgE expressing B cells.

Changの研究グループは、CεmX断片を含む組換えタンパク質、及びヒトmIgEを発現するヒトミエローマ由来細胞株のSK0−007細胞株の細胞、及びmεL(mεL(CH2-CM);CM:細胞質)の細胞質末端を通じてCH2ドメイン由来の断片に対応する遺伝子がトランスフェクションされたCHO細胞株の細胞と結合することができる、a20を含む幾つかのCεmX特異的マウスモノクローナル抗体の開発を既に報告している。抗体a20及びより初期に開発された全ての抗体は、8-a.a.のペプチド領域RADWPGPP、#45-52残基と、CεmXの52a.aのC末端で結合することが見出された。 Chang's research group is a recombinant protein containing a CεmX fragment, and a human myeloma-derived cell line SK0-007 cell line expressing human mIgE, and mε L (mε L (CH2-CM ); CM: cytoplasm) We have already reported the development of several CεmX-specific mouse monoclonal antibodies, including a20, that can bind to cells of the CHO cell line transfected with a gene corresponding to a fragment derived from the CH2 domain through the cytoplasmic tail of . Antibody a20 and all earlier developed antibodies were found to bind to the 8-aa peptide region RADWPGPP, residues # 45-52, at the C-terminus of 52a.a of CεmX.

引用される関連特許文献
US5.091.313 2/1992 Chang
US5,254,671 10/1993 Chang
US5,260,416 11/1993 Chang
US5,274,075 12/1993 Chang
US5,292,867 3/1994 Chang
US5,342,924 8/1994 Chang
US2009/0010924A1 Wu
Related patent documents cited
US5.091.313 2/1992 Chang
US5,254,671 10/1993 Chang
US5,260,416 11/1993 Chang
US5,274,075 12/1993 Chang
US5,292,867 3/1994 Chang
US5,342,924 8/1994 Chang
US2009 / 0010924A1 Wu

引用される関連非特許文献
Davis FM, Gossett LA, Chang TW (1991) An epitope on membrane-bound but not secreted IgE: implications in isotype-specific regulation. Bio/Technology 9: 53-56.
Peng C, Davis FM, Sun LK, Liou RS, Kim YW, Chang TW (1992) A new isoform of human membrane-bound IgE. J Immunol 148: 129-136.
Chen, H.Y., Liu, F.T., Hou, C.M.H., Huang, J.S.W., Sharma, B.B., and Chang, TW. (2002) Monoclonal antibodies against CεmX domain in human membrane-bound IgE and their potential on targeting IgE-expressing B cells. Int. Archives Allergy & Immunol. 128, 315-324.
Related non-patent literature cited
Davis FM, Gossett LA, Chang TW (1991) An epitope on membrane-bound but not secreted IgE: implications in isotype-specific regulation.Bio/Technology 9: 53-56.
Peng C, Davis FM, Sun LK, Liou RS, Kim YW, Chang TW (1992) A new isoform of human membrane-bound IgE. J Immunol 148: 129-136.
Chen, HY, Liu, FT, Hou, CMH, Huang, JSW, Sharma, BB, and Chang, TW. (2002) Monoclonal antibodies against CεmX domain in human membrane-bound IgE and their potential on targeting IgE-expressing B cells. Int. Archives Allergy & Immunol. 128, 315-324.

本発明は、ヒトmIgEのCεmXドメインに特異的で、ヒトBリンパ球上のmIgEに結合可能な抗体の開発及び同定に関する。また、アレルギー性疾患及びIgEにより仲介される他の疾患の処置におけるこれらの抗体の利用にも関する。   The present invention relates to the development and identification of antibodies specific for the CεmX domain of human mIgE and capable of binding to mIgE on human B lymphocytes. It also relates to the use of these antibodies in the treatment of allergic diseases and other diseases mediated by IgE.

Changの研究グループにより開発された抗CεmXモノクローナル抗体a20の研究において、a20は、Igα(CD79a)、Igβ(CD79b)、CD21、CD19、CD81及びB細胞受容体(BCR)に関連する他のタンパク質を発現しない、CHO細胞株又はNSO細胞株等の細胞株にmεL(CH2-CM)遺伝子をトランスフェクションしたものに、良好な結合を示すことを見出した。しかしながら、a20は、Igα、Igβ及び他のBCR関連タンパク質を発現する、例えばRamos細胞株等に、mεL(CH2-CM)遺伝子をトランスフェクションした細胞株に対しては、結合が弱いことが判明した。出願人らは、a20により認識されるCεmX上の抗原エピトープが、いずれかのBCR関連タンパク質によりブロックされていると推測した。故に、a20モノクローナル抗体及びそのキメラ及びヒト化版は、mIgEを発現するBリンパ球及びメモリー細胞をインビボで標的化する目的での使用には適しない。 In the study of anti-CεmX monoclonal antibody a20 developed by Chang's research group, a20 represents Igα (CD79a), Igβ (CD79b), CD21, CD19, CD81 and other proteins related to B cell receptor (BCR) It was found that a cell line such as a CHO cell line or an NSO cell line that was not expressed was transfected with the mεL (CH2-CM) gene and showed good binding. However, a20 is found to be weakly bound to cell lines that express Igα, Igβ, and other BCR-related proteins, such as the Ramos cell line transfected with the mεL (CH2-CM) gene. did. Applicants speculated that the antigenic epitope on CεmX recognized by a20 was blocked by any BCR-related protein. Therefore, the a20 monoclonal antibody and its chimeric and humanized versions are not suitable for use in targeting mIgE expressing B lymphocytes and memory cells in vivo.

前記ペプチドエピトープRADWPGPPが抗体応答を誘導する唯一のエピトープであるとすると、ヒトCεmX含有タンパク質で免疫化したマウスを使用するハイブリドーマ法で生産したモノクローナル抗体は、全てこのペプチド領域に特異的なはずである。しかしながら、このエピトープがドミナントエピトープであるが、唯一の免疫原性エピトープではないとすると、CεmX上の他の抗原に特異的なモノクローナル抗体を開発する余地がある。BCR関連タンパク質により抗体の結合がブロックされないCεmXのエピトープが存在する可能性がある。もしこれが存在するのであれば、B細胞上のIgEに結合し、そのようなB細胞を標的化するのに使用できる、抗体を開発することができる。   Given that the peptide epitope RADWPGPP is the only epitope that induces an antibody response, all monoclonal antibodies produced by the hybridoma method using mice immunized with human CεmX-containing proteins should be specific for this peptide region. . However, given that this epitope is a dominant epitope but not the only immunogenic epitope, there is room to develop monoclonal antibodies specific for other antigens on CεmX. There may be epitopes of CεmX that do not block antibody binding by BCR-related proteins. If present, antibodies can be developed that bind to IgE on B cells and can be used to target such B cells.

下記実施例において、出願人らは、RADWPGPPはドミナントエピトープであるが、CεmXの唯一の免疫原性及び抗原性エピトープではないことを示すのに成功した。更に、出願人らは、RADWPGPPの領域内に位置しない抗原性エピトープでCεmXに結合するモノクローナル抗体4B12及び26H2を見出した。これらのモノクローナル抗体は、CεmXとの結合において、a20抗体と競合しない。それらは、a20よりも一層強力にB細胞上のmIgEに結合し、a20よりも一層効果的にmIgE発現細胞の細胞溶解及びアポトーシスを引き起こす。   In the examples below, Applicants have successfully shown that RADWPGPP is a dominant epitope but not the only immunogenic and antigenic epitope of CεmX. In addition, Applicants have found monoclonal antibodies 4B12 and 26H2 that bind to CεmX with an antigenic epitope that is not located within the region of RADWPGPP. These monoclonal antibodies do not compete with the a20 antibody for binding to CεmX. They bind to mIgE on B cells more strongly than a20 and cause cytolysis and apoptosis of mIgE expressing cells more effectively than a20.

この例は、4B12及び26H2等のモノクローナル抗体が、ヒトBリンパ球上のmIgEに結合可能で、IgE合成の下方制御のために、mIgEを発現するBリンパ球及びメモリーB細胞を標的化するための使用に適していることを示唆する。キメラ又はヒト化形態の前記抗体は、アレルギー性喘息、アレルギー性鼻炎及びアトピー性皮膚炎等の、IgE介在製のアレルギー性疾患に罹患した患者における使用に有用であり得る。抗IgEによるIgEの中和は、冷却誘導性のじんましん、慢性じんましん、コリン性じんましん、慢性鼻副鼻腔炎、全身性脂肪細胞症、皮膚脂肪細胞症、アレルギー性気管支肺アスペルギルス症、再発性特発性血管性浮腫、及び間質性膀胱炎、又は好酸球関連胃腸障害を効果的に処置することが示されていることから、4B12及び26H2等の抗体は、それらの様々な疾患を処置するのに利用される場合もある。   This example shows that monoclonal antibodies such as 4B12 and 26H2 can bind to mIgE on human B lymphocytes and target mIgE-expressing B lymphocytes and memory B cells for downregulation of IgE synthesis. Suggests that it is suitable for use. The chimeric or humanized form of the antibody may be useful for use in patients suffering from IgE-mediated allergic diseases such as allergic asthma, allergic rhinitis and atopic dermatitis. Neutralization of IgE by anti-IgE is cooling-induced urticaria, chronic urticaria, cholinergic urticaria, chronic rhinosinusitis, systemic lipocytosis, cutaneous lipocytosis, allergic bronchopulmonary aspergillosis, recurrent idiopathic Antibodies such as 4B12 and 26H2 have been shown to treat these various diseases, as they have been shown to effectively treat angioedema and interstitial cystitis, or eosinophil-related gastrointestinal disorders Sometimes used.

更に、当該実施例は、CεmX、即ちmIgE発現B細胞に対する免疫応答の誘導における4B12及び26H2により認識されるペプチドの潜在的有用性を示唆する。類似の抗原的特徴、即ち、4B12及び26H2等の抗CεmX抗体に対する結合活性を有する前記ペプチド及びそれらの類似体が、個別に、又はT細胞のヘルプを誘導することが出来る部分を含有する分子構築物に組み合わせられて使用される場合もある。そのような構築物は、mIgE発現B細胞に対する強力な免疫化を誘導することができるため、全体のIgE合成の下方制御効果を実現する。   Furthermore, the example suggests the potential utility of peptides recognized by 4B12 and 26H2 in inducing an immune response against CεmX, an mIgE expressing B cell. Molecular constructs containing similar antigenic features, i.e. said peptides and their analogues having binding activity to anti-CεmX antibodies such as 4B12 and 26H2, individually or in part capable of inducing T cell help It may be used in combination with. Such constructs can induce strong immunization against mIgE-expressing B cells, thus realizing a down-regulating effect on overall IgE synthesis.

図1は、CεmXの連続的断片を有する3つの合成ペプチド、及びそれらのペプチドと様々な抗CεmX mAbsとの反応性を示す。CεmXドメインのアミノ酸残基は、太字で表記される。FIG. 1 shows three synthetic peptides with consecutive fragments of CεmX and the reactivity of these peptides with various anti-CεmX mAbs. Amino acid residues of the CεmX domain are shown in bold.

図2は、mIgE.FcL又はmIgE.Fcsを発現するCHO又はRamos細胞株に対する様々な抗CεmX mAbsの結合を示す。Figure 2 shows the binding of various anti-c [epsilon] mx mAbs to CHO or Ramos cell lines expressing MIgE.Fc L or mIgE.Fc s.

図3Aは、キメラc4B12及びc26H2が、様々なE/T比で、mIgE.FcL発現Ramos細胞にADCCを誘導することを示す。FIG. 3A shows that chimeric c4B12 and c26H2 induce ADCC in mIgE.Fc L expressing Ramos cells at various E / T ratios.

図3Bは、mIgE.FcL発現Ramos細胞に対して、キメラc4B12及びc26H2が、用量依存的にADCCを誘導することを示す。FIG. 3B shows that chimeric c4B12 and c26H2 induce ADCC in a dose-dependent manner against mIgE.Fc L- expressing Ramos cells.

図4Aは、mIgE.FcL発現Ramos細胞におけるキメラc4B12及びc26H2によるPSの露出が、用量依存的であることを示す。FIG. 4A shows that exposure of PS by chimeric c4B12 and c26H2 in mIgE.Fc L expressing Ramos cells is dose dependent.

図4Bは、アポトーシスを起こした核が、キメラc4B12及びc26H2で処理したmIgE.FcL発現Ramos細胞において観察されたことを示す。FIG. 4B shows that apoptotic nuclei were observed in mIgE.Fc L expressing Ramos cells treated with chimeric c4B12 and c26H2.

図4Cは、カスパーゼ3位及びPARPの開裂が、キメラc4B12及びc26H2で処理したmIgE.FcL発現Ramos細胞において観察されたことを示す。FIG. 4C shows that caspase position 3 and cleavage of PARP was observed in mIgE.Fc L expressing Ramos cells treated with chimeric c4B12 and c26H2.

図5は、親マウス4B12のVL及びVH、選択されたヒト生殖系列テンプレートKV2及びHV4のVL及びVH、並びにヒト化4B12(hu4B12)(アラインメント中「置換」と表記する)の、配列アラインメントを示す。このhu4B12は、キメラ4B12(c4B12)と同等の、CεmX組換えタンパク質、及びmIgE.FcL発現Ramos細胞に対する結合親和性を有する。5, V L and V H of the parental mouse 4B12, the V L and V H of human germline templates KV2 and HV4 selected, and humanized 4B12 (hu4B12) (in the alignment referred to as "substitution"), Sequence alignment is shown. This hu4B12 has a binding affinity for CεmX recombinant protein and mIgE.Fc L- expressing Ramos cells equivalent to that of chimeric 4B12 (c4B12).

実施例1:RADWPGPP以外の抗原性部位に結合する、新しい抗CεmXモノクローナル抗体
抗CεmX免疫応答を誘導するために、BALB/cマウスを、説明書に従って、TiterMax Gold adjuvant (Sigma-Aldrich)中で乳化した、50μgのn-ウンデシル−β−d−マルトピラノシド(UDM;Anatrace)可溶化mIgE.FcL組換えタンパク質を用いて、皮下投与により、2週間の間隔で、2回免疫化した。出願人らは、マウスが優勢なRADWPGPPエピトープに対してのみ抗体を産生することのないように、超免疫化(hyper-immunization)プロトコールの使用を避けた。0.1mgのUDM可溶化mIgE.FcL組換えタンパク質を、アジュバント無しで腹腔内投与して、最終的なブーストが与えられた。融合の1日前、NSO細胞を、10%ウシ胎児不活化血清(FBS; Invitrogen)及び1%ペニシリン−ストレプトマイシン(100x Pen-Strep solution; Invitrogen)混合物を添加した新鮮なDMEM培地(Invitrogen)中に、5x105 cells/mlの細胞密度で再播種した。最後のブーストの3日後、免疫化したマウス2頭の脾臓細胞を回収し、無血清DMEM培地で2回洗浄した。5x107個のNSO細胞を回収し、無血清DMEM培地で2回洗浄した。洗浄後、脾臓細胞及びNSO細胞に、予め温めておいた50%ポリエチレングリコール1500(PEG 1500, Roche Applied Science)を添加して融合させ、1分間ピペットチップを用いて静かに細胞を攪拌し、更に1分間攪拌し、2mlの予め温めておいた無血清DMEMを2分間かけて添加し、そして最後に8mlの予め温めておいた無血清DMEMを2分間かけて添加した。200xgで10分間遠心分離した後、融合した細胞を、600mlのHAT培地[2%ヒポキサンチン−アミノプテリン−チミジン混合物(50 x HAT solution; Invitrogen)、10% BM-Condimed H1(Roche Applied Science)、10%不活化FBS、及び1%ペニシリン−ストレプトマイシン混合物を添加したDMEM培地]に再懸濁し、200μl/ウェルずつ、96ウェル培養プレート30枚に分注した。3日目に、各ウェルに100μlのHAT培地を添加した。7日目及び10日目に、各ウェルの培地の半量を吸引し、同量のHAT培地を添加して、培地をリフレッシュした。14日目に、ハイブリドーマの上澄を用いて、酵素結合免疫吸着アッセイ(ELISA)により、UDM可溶化mIgE.FcL又はmIgE.Fcsタンパク質に結合する抗CεmX mAbsのスクリーニングを行った。
Example 1: Novel anti-CεmX monoclonal antibody that binds to an antigenic site other than RADWPGPP To induce an anti-CεmX immune response, BALB / c mice were emulsified in TiterMax Gold adjuvant (Sigma-Aldrich) according to the instructions. 50 μg of n-undecyl-β-d-maltopyranoside (UDM; Anatrace) solubilized mIgE.Fc L recombinant protein was used to immunize twice at 2-week intervals by subcutaneous administration. Applicants avoided the use of hyper-immunization protocols so that mice do not produce antibodies only against the predominant RADWPGPP epitope. 0.1 mg of UDM solubilized mIgE.Fc L recombinant protein was administered intraperitoneally without adjuvant to give the final boost. One day prior to fusion, NSO cells were placed in fresh DMEM medium (Invitrogen) supplemented with 10% fetal bovine inactivated serum (FBS; Invitrogen) and 1% penicillin-streptomycin (100x Pen-Strep solution; Invitrogen). Reseeding was performed at a cell density of 5 × 10 5 cells / ml. Three days after the last boost, spleen cells from two immunized mice were collected and washed twice with serum-free DMEM medium. 5 × 10 7 NSO cells were collected and washed twice with serum-free DMEM medium. After washing, spleen cells and NSO cells are fused with 50% polyethylene glycol 1500 (PEG 1500, Roche Applied Science) pre-warmed, and gently stirred using a pipette tip for 1 minute. Stir for 1 minute, 2 ml of pre-warmed serum-free DMEM was added over 2 minutes, and finally 8 ml of pre-warmed serum-free DMEM was added over 2 minutes. After centrifugation at 200 xg for 10 minutes, the fused cells were washed with 600 ml of HAT medium (2% hypoxanthine-aminopterin-thymidine mixture (50 x HAT solution; Invitrogen), 10% BM-Condimed H1 (Roche Applied Science), The suspension was resuspended in DMEM medium supplemented with 10% inactivated FBS and 1% penicillin-streptomycin mixture, and dispensed into 30 96-well culture plates at 200 μl / well. On the third day, 100 μl of HAT medium was added to each well. On days 7 and 10, half of the medium in each well was aspirated and the same amount of HAT medium was added to refresh the medium. On day 14, the hybridoma supernatant was screened for anti-CεmX mAbs binding to UDM-solubilized mIgE.FcL or mIgE.Fcs protein by enzyme-linked immunosorbent assay (ELISA).

ELISAによって抗CεmX mAbsを分泌するハイブリドーマをスクリーニングするために、0.1MのNaCO3 (pH 9.6)に溶解した精製UDM可溶化mIgE.FcL又はmIgE.Fcsタンパク質50 ng/ウェルで、96ウェルMaxiSorpプレート(Nunc)を、4℃で一昼夜コーティングした。コーティングされたウェルを、200μl/ウェルの1%BSAのPBS溶液により、室温で1時間ブロッキングした。0.05% Tween-20を加えたPBS 200μl/ウェルで、プレートを3回洗浄した。インキュベーションを、室温で2時間実行した。全てのウェルの培地を吸引し、0.05% Tween-20を加えたPBS 200μl/ウェルで、プレートを6回洗浄した。当該プレートに、1:10000で希釈したHRPコンジュゲートヤギ抗マウスIgG抗体(Chemicon)を加えて(100μl/ウェル)、1時間インキュベートした。続いて、全てのウェルの上澄を吸引し、0.05% Tween-20を加えたPBS 200μl/ウェルで、プレートを6回洗浄した。最後に、ウェルを、50μl/ウェルのテトラメチルベンジジン(TMB)基質溶液(SureBlue(商標), KPL)で現像し、50μl/ウェルの1N HClを加えて反応を停止させた。OD450の吸光度を、ELISAリーダー上で測定した。2つの細胞の融合体である4000超のハイブリドーマクローン中、17個のクローンは、ELISAにより、mIgE.Fcsよりも、UDM可溶化mIgE.FcLに特異的であることが示された。 To screen for hybridomas secreting anti-CεmX mAbs by ELISA, purified UDM solubilized mIgE.FcL or mIgE.Fcs protein dissolved in 0.1 M NaCO 3 (pH 9.6) at 50 ng / well in 96-well MaxiSorp plates ( Nunc) was coated overnight at 4 ° C. Coated wells were blocked with 200 μl / well of 1% BSA in PBS for 1 hour at room temperature. The plate was washed 3 times with 200 μl / well of PBS with 0.05% Tween-20. Incubation was performed at room temperature for 2 hours. The medium in all wells was aspirated and the plate was washed 6 times with 200 μl / well of PBS supplemented with 0.05% Tween-20. HRP-conjugated goat anti-mouse IgG antibody (Chemicon) diluted 1: 10000 was added to the plate (100 μl / well) and incubated for 1 hour. Subsequently, the supernatant of all wells was aspirated and the plate was washed 6 times with 200 μl / well of PBS supplemented with 0.05% Tween-20. Finally, the wells were developed with 50 μl / well of tetramethylbenzidine (TMB) substrate solution (SureBlue ™, KPL) and the reaction was stopped by adding 50 μl / well of 1N HCl. The absorbance of OD 450 was measured on an ELISA reader. Of the more than 4000 hybridoma clones that were fusions of two cells, 17 clones were shown by ELISA to be more specific for UDM solubilized mIgE.Fc L than mIgE.Fcs.

抗CεmX mAbsのCεmXに対する特異性を調査するために、前記複数のCεmX特異的クローンの、3つの合成ペプチドに対する反応性を試験した。当該3つの合成ペプチドは、#18残基に位置するC残基、及び#39-41残基に位置するCHC断片で分割した、CεmXの連続的な断片である。特に、P1ペプチドは、mεのCH4の最後の4アミノ酸残基、及びCεmXの最初の17アミノ酸残基(#1-17)、即ちGLAGGSAQSQRAPDRVLを含み;P2ペプチドは、CεmXの#19-38の20アミノ酸残基、即ちHSGQQQGLPRAAGGSVPHPRを含み;P3ペプチドは、CεmXの、末端の11アミノ酸残基(#42-52)、即ちGAGRADWPGPP、及び連続的ミギス(migis)領域の最初の4アミノ酸残基、即ちmε鎖の膜アンカーペプチドのN末端細胞外領域を含む。全てのペプチドは、Academia Sinica (Taipei, Taiwan)のGenomics Research Centerで合成された。これらのペプチドを、PBS中で、10mg/mlに再構築した。全てのペプチドを0.1MのNaCO3 (pH 9.6)に溶解し、500 ng/ウェルで、96ウェルMaxiSorpプレート(Nunc)を、4℃で一昼夜コーティングした。コーティングされたウェルを、200μl/ウェルの1%BSAのPBS溶液により、室温で1時間ブロッキングした。0.05% Tween-20を加えたPBS 200μl/ウェルで、プレートを3回洗浄し、続いてウェルに、1OOμlの、1μg/ml抗CεmX mAbs抗体を添加した。インキュベーションを、室温で2時間実行した。全てのウェルの培地を吸引し、0.05% Tween-20を加えたPBS 200μl/ウェルで、プレートを6回洗浄した。当該プレートに、1:10000で希釈したHRPコンジュゲートヤギ抗マウスIgG抗体を加えて、1時間インキュベートした。続いて、0.05% Tween-20を加えたPBS 200μl/ウェルで、プレートを6回洗浄した後、各ウェルに、50μl/ウェルのTMB基質溶液を添加した。当該反応を、50μl/ウェルの1N HClを加えて停止させた。OD450の吸光度を、ELISAリーダー上で測定した。出願人らの実験において調製した多数のCεmX特異的モノクローナル抗体の中で、4B12及び26H2のみ、RADWPGPPを含むP3ペプチドと反応しなかった。4B12はP1ペプチドと反応し、そして26H2はP2ペプチドと反応した。他のいずれのCεmX特異的モノクローナル抗体は、P3と反応した(図1)。従って、RADWPGPPは正しくドミナント免疫原エピトープである。しかしながら、唯一の免疫原エピトープではない。 To investigate the specificity of anti-CεmX mAbs for CεmX, the reactivity of the multiple CεmX-specific clones to three synthetic peptides was tested. The three synthetic peptides are continuous CεmX fragments divided by a C residue located at the # 18 residue and a CHC fragment located at the # 39-41 residues. In particular, the P1 peptide contains the last 4 amino acid residues of CH4 of mε and the first 17 amino acid residues (# 1-17) of CεmX, ie GLAGSSAQSQRAPDRVL; P2 peptide contains 20 of # 19-38 of CεmX The amino acid residues, i.e. HSGQQQGLPRAAGGSVPHPR; the P3 peptide is CεmX, the terminal 11 amino acid residues (# 42-52), i.e. GAGRADWPGPP, and the first 4 amino acid residues in the continuous migis region, i.e. Contains the N-terminal extracellular region of the chain membrane anchor peptide. All peptides were synthesized at the Genomics Research Center at Academia Sinica (Taipei, Taiwan). These peptides were reconstituted to 10 mg / ml in PBS. All peptides were dissolved in 0.1 M NaCO 3 (pH 9.6) and coated at 96 ng / well, 96 well MaxiSorp plates (Nunc) at 4 ° C. overnight. Coated wells were blocked with 200 μl / well of 1% BSA in PBS for 1 hour at room temperature. The plate was washed 3 times with 200 μl / well of PBS with 0.05% Tween-20, followed by the addition of 1OO μl of 1 μg / ml anti-CεmX mAbs antibody to the wells. Incubation was performed at room temperature for 2 hours. The medium in all wells was aspirated and the plate was washed 6 times with 200 μl / well of PBS supplemented with 0.05% Tween-20. To the plate, HRP-conjugated goat anti-mouse IgG antibody diluted 1: 10000 was added and incubated for 1 hour. Subsequently, the plate was washed 6 times with PBS 200 μl / well added with 0.05% Tween-20, and then 50 μl / well TMB substrate solution was added to each well. The reaction was stopped by adding 50 μl / well of 1N HCl. The absorbance of OD 450 was measured on an ELISA reader. Of the many CεmX specific monoclonal antibodies prepared in Applicants' experiments, only 4B12 and 26H2 did not react with P3 peptides including RADWPGPP. 4B12 reacted with the P1 peptide and 26H2 reacted with the P2 peptide. Any other CεmX specific monoclonal antibody reacted with P3 (FIG. 1). Thus, RADWPGPP is correctly a dominant immunogenic epitope. However, it is not the only immunogenic epitope.

実施例2:mIgE発現B細胞上のmIgEへの4B12及び26H2の結合
出願人らは、更に、mεL(CH2-CM)又はmεs(CH2-CM)のいずれかをコードする組換えDNAをトランスフェクションしたCHO及びRamos細胞株に結合する多数のCεmX特異的モノクローナル抗体の性能を試験した。トランスフェクションされた2つのCHO細胞株はそれぞれmIgE.FcL又はmIgE.Fcsを生産したが、いずれもIgα及びIgβ等の副受容体と完全なB細胞受容体を形成しなかった。CHO細胞はそれらのタンパク質を発現しなかったためである。トランスフェクションされたRamos細胞株は、それぞれmIgE.FcL又はmIgE.Fcsを生産したが、いずれも内在(native)副受容体と複合体を形成した。抗CεmX mAbsの内在CεmXに対する結合を調査するために、mIgE.FcL又はmIgE.Fcsのいずれかを発現するCHO又はRamos細胞を、FACS緩衝剤[PBS、1% FBS、0.1%アジ化ナトリウム、及び2mM EDTA(pH8.0)]に、107 cells/mlの密度で再懸濁した。そして、106個の細胞を、100μlのハイブリドーマ上澄と、氷上で30分間インキュベーションし、続いてFACS緩衝剤で洗浄した。結合した抗体を、マウスIgGに対するFITC標識ウサギF(ab')2断片特異的抗体(AbD Secrotec)と氷上で30分間インキュベーションし、続いてFACS緩衝剤で2回洗浄したものを解析することにより検出した。FACSCanto IIフローサイトメーター(BD Bioscience)を使用してフローサイトメトリー試験を行い、そしてFCSExpressソフトウェア(De Novo Software)を使用して解析を行った。全てのCεmX特異的モノクローナル抗体において、mIgE.Fcsを発現するCHO及びRamos細胞に対する結合は確認されなかった。全てのCεmX特異的モノクローナル抗体は、mIgELを発現するCHO細胞に結合することが判明した。しかしながら、4B12及び26H2のみ、mIgE.FcLを発現するRamos細胞に結合したが、他の全てのCεmX特異的モノクローナル抗体は、を発現するRamos細胞に結合できなかった(図2)。
Example 2: Binding of 4B12 and 26H2 to mIgE on mIgE-expressing B cells Applicants further provided recombinant DNA encoding either mεL (CH2-CM) or mεs (CH2-CM). The performance of a number of CεmX specific monoclonal antibodies binding to transfected CHO and Ramos cell lines was tested. Transfected two CHO cell lines were were respectively produced MIgE.Fc L or MIgE.Fc s, but none forming a secondary receptor and full B cell receptors, such as Igα and Ig [beta]. This is because CHO cells did not express these proteins. Transfected Ramos cell line has been produced MIgE.Fc L or MIgE.Fc s respectively, were all formed endogenous (native) sub receptor complex. To investigate the binding of anti-CεmX mAbs to endogenous CεmX, CHO or Ramos cells expressing either mIgE.Fc L or mIgE.Fc s were treated with FACS buffer [PBS, 1% FBS, 0.1% sodium azide. And 2 mM EDTA (pH 8.0)] at a density of 10 7 cells / ml. 10 6 cells were then incubated with 100 μl of hybridoma supernatant for 30 minutes on ice, followed by washing with FACS buffer. Detection of bound antibody by analyzing FITC-labeled rabbit F (ab ') 2 fragment-specific antibody against mouse IgG (AbD Secrotec) for 30 minutes on ice, followed by washing twice with FACS buffer did. Flow cytometry testing was performed using a FACSCanto II flow cytometer (BD Bioscience) and analysis was performed using FCSExpress software (De Novo Software). In all CεmX specific monoclonal antibodies, binding to CHO and Ramos cells expressing MIgE.Fc s was not confirmed. All CεmX specific monoclonal antibodies were found to bind to CHO cells expressing mIgE L. However, only 4B12 and 26H2 bound to Ramos cells expressing mIgE.Fc L , but all other CεmX specific monoclonal antibodies failed to bind to Ramos cells expressing (FIG. 2).

実施例3:mIgE発現B細胞に対する4B12及び26H2による抗体依存的細胞毒性の誘導
キメラ抗CεmX mAbsのADCC活性を調査するために、出願人らは、末梢血単核細胞(PBMC)をエフェクター細胞として使用して、mIgE.FcLを発現するRamos細胞を標的化した。健康なドナーの軟膜(Taiwan Blood Service Foundation)から、Ficoll-Paque Plus (GE Healthcare)を用いた密度勾配遠心により、PBMCを精製し、これを90% FBS/10% DMSO (Hybri-Max(商標); Sigma- Aldrich)中で冷凍保存した。使用の前に、PBMCを融解し、2x106 cells/mlで、10%熱不活化FBS及び1%ペニシリン−ストレプトマイシン混合物を添加したMIDM培地(Invitrogen)中、一昼夜培養した。PBMCと共培養される標的細胞を特定するために、mIgE.FcL発現Ramos細胞を、0.1% BSA/PBS中の2.5μMの5−(及び−6)−カルボキシフルオレセインジアセテートスクシンイミジルエステル(CFDA, SE; Invitrogen)で、10分間、37℃で標識した。10%FBSを含有する冷却RPMI培地(Invitrogen)で3回洗浄した後、細胞を105 cells/mlに調整した。エフェクター−標的(E/T)比を滴定するために、200μlの完全RPMI培地中の20000個の標識した細胞を、1μg/mlの抗体に37℃で30分間曝露し、続いてこれを、同体積のPBMCと、50〜3.125の複数のE/T比で組み合わせた。抗体の滴定のために、完全RPMI培地200μl中の20000個のラベルした細胞を、様々な濃度の抗体(1000〜0.01 ng/ml)で、37℃で30分間オプソニン化して、続いて、E/T比25:1で、PBMCと組み合わせた。抗体非依存的な細胞死を測定するために、ラベルした標的細胞を、所定のE/T比で、抗体非存在下で、PBMCと組み合わせた。24時間のインキュベーションを終えて、氷上で15分間、死んだ細胞を2.5μg/mlの7−アミノアクチノマイシン(7-AAD; Invitrogen)で染色した。細胞を、Becton Dickinson FACSCanto IIフローサイトメーターで解析した。生きた標的細胞は、ドットプロット解析上で、CFSE-陽性/7-AAD-陰性のパーセンテージとして定義された。所定のE/T比で死んだ細胞のパーセンテージは、以下の式に従って計算された:
100x[(抗体非依存的対照中の生きた標的細胞の%−試料中の生きた標的細胞の%)/抗体非依存的対照中の生きた標的細胞の%]
c4B12、c26H2及びオマリズマブのADCC活性は、複数のE/T比で観察された。E/T比が50であるとき、c4B12、c26H2及びオマリズマブは60%の特異的溶解を引き起こし;一方、ca20の活性は低く、引き起こされた特異的溶解は僅か20%であった(図3A)。c4B12及びc26H2の濃度が0.01 μg/mlを超える場合、顕著なADCCが観察された。最大用量の10μg/mlにおいて、c4B12及びc26H2による標的細胞の特異的溶解は80〜90%で、一方ca20の特異的溶解は50%であった(図3B)。CD20を指向する陽性対照リツキシマブ及びオマリズマブは、複数のE/T比で、濃度依存的に、ADCCを効果的に誘導した。従って、出願人らは、c4B12及びc26H2は、ADCCの誘導において、ca20よりも強力な抗CεmX mAbsであって、インビボでmIgE発現B細胞を標的とするためのエフェクターを効率的に集合させることが出来る。
Example 3 Induction of Antibody-Dependent Cytotoxicity by 4B12 and 26H2 on mIgE-expressing B Cells To investigate the ADCC activity of chimeric anti-CεmX mAbs, Applicants used peripheral blood mononuclear cells (PBMC) as effector cells. Was used to target Ramos cells expressing mIgE.Fc L. PBMCs were purified from a healthy donor buffy coat (Taiwan Blood Service Foundation) by density gradient centrifugation using Ficoll-Paque Plus (GE Healthcare), which was purified by 90% FBS / 10% DMSO (Hybri-MaxTM). And stored frozen in Sigma-Aldrich). Prior to use, PBMCs were thawed and cultured overnight at 2 × 10 6 cells / ml in MIDM medium (Invitrogen) supplemented with 10% heat-inactivated FBS and 1% penicillin-streptomycin mixture. To identify target cells co-cultured with PBMC, mIgE.Fc L expressing Ramos cells were treated with 2.5 μM 5- (and -6) -carboxyfluorescein diacetate succinimidyl ester (0.1% BSA / PBS). CFDA, SE; Invitrogen) for 10 minutes at 37 ° C. After washing 3 times with cold RPMI medium (Invitrogen) containing 10% FBS, the cells were adjusted to 10 5 cells / ml. To titrate the effector-target (E / T) ratio, 20000 labeled cells in 200 μl complete RPMI medium were exposed to 1 μg / ml antibody for 30 minutes at 37 ° C., followed by Combined with volume of PBMC and multiple E / T ratios of 50-3.125. For antibody titration, 20000 labeled cells in 200 μl of complete RPMI medium were opsonized with various concentrations of antibody (1000-0.01 ng / ml) for 30 minutes at 37 ° C., followed by E / Combined with PBMC at a T ratio of 25: 1. To measure antibody-independent cell death, labeled target cells were combined with PBMC in the absence of antibody at a given E / T ratio. At the end of the 24 hour incubation, dead cells were stained with 2.5 μg / ml 7-aminoactinomycin (7-AAD; Invitrogen) for 15 minutes on ice. Cells were analyzed on a Becton Dickinson FACSCanto II flow cytometer. Viable target cells were defined as the percentage of CFSE-positive / 7-AAD-negative on the dot plot analysis. The percentage of cells that died at a given E / T ratio was calculated according to the following formula:
100 × [(% of living target cells in antibody-independent control−% of living target cells in sample) /% of living target cells in antibody-independent control]
ADCC activity of c4B12, c26H2, and omalizumab was observed at multiple E / T ratios. When the E / T ratio is 50, c4B12, c26H2 and omalizumab caused 60% specific lysis; whereas the activity of ca20 was low and the specific lysis caused was only 20% (FIG. 3A) . Significant ADCC was observed when c4B12 and c26H2 concentrations exceeded 0.01 μg / ml. At the maximum dose of 10 μg / ml, specific lysis of target cells by c4B12 and c26H2 was 80-90%, whereas specific lysis of ca20 was 50% (FIG. 3B). The positive controls rituximab and omalizumab directed against CD20 effectively induced ADCC at multiple E / T ratios in a concentration-dependent manner. Therefore, Applicants have noted that c4B12 and c26H2 are more potent anti-CεmX mAbs than ca20 in inducing ADCC and can efficiently assemble effectors to target mIgE-expressing B cells in vivo. I can do it.

実施例4:膜結合IgE.FcL発現Ramos細胞に対するキメラ抗CεmX mAbsによるアポトーシスの誘導
ホスファチジルセリン(PS)露出(exposure)を検出するために、mIgE.FcL-発現Ramos細胞(5x105 cell/ml)を、所定の濃度で、完全培養培地中、1時間、37℃で、キメラ抗CεmXmAbs、オマリズマブ又は対照抗体とインキュベーションした。続いて細胞を、濃度10μg/mlのヒトIgGのFc断片に特異的なヤギF(ab')2断片(Jackson ImmunoResearch Laboratories Inc.)で処理し、更に、37℃で24時間インキュベーションした。ホスファチジルセリン(PS)露出の検出は、1/200に希釈したフルオレセインイソチオシアネート(FITC)ラベルアネキシンV(Bio Vision)、及び2.5μg/mlプロビジウムヨーダイド(PI, Sigma- Aldrich)を含有する200μlのアネキシン緩衝剤中で、細胞を暗所、室温で15分間染色することにより評価された。細胞は、FACSCanto IIフローサイトメーター上で解析された。アポトーシス細胞は、ドットプロット解析上で、アネキシンV陰性/PI陽性細胞のパーセンテージとして検出された。mIgE.FcL発現Ramos細胞の約80%は、c4B12、c26H2、又はオマリズマブの濃度を増大させることによりアポトーシスで死滅したが、ca20の場合、最大で1μg/mlを与えてもそのようにならなかった(図4A)。
Example 4: Induction of apoptosis by chimeric anti-CεmX mAbs on membrane-bound IgE.Fc L expressing Ramos cells To detect phosphatidylserine (PS) exposure, mIgE.Fc L -expressing Ramos cells (5x10 5 cells / ml) were incubated with chimeric anti-CεmXmAbs, omalizumab or control antibody at the indicated concentration in complete culture medium for 1 hour at 37 ° C. Subsequently, the cells were treated with a goat F (ab ′) 2 fragment (Jackson ImmunoResearch Laboratories Inc.) specific for an Fc fragment of human IgG at a concentration of 10 μg / ml, and further incubated at 37 ° C. for 24 hours. Detection of phosphatidylserine (PS) exposure is 200 μl containing fluorescein isothiocyanate (FITC) labeled annexin V (Bio Vision) diluted to 1/200 and 2.5 μg / ml probidium iodide (PI, Sigma-Aldrich). The cells were evaluated by staining the cells in the annexin buffer for 15 minutes at room temperature in the dark. Cells were analyzed on a FACSCanto II flow cytometer. Apoptotic cells were detected as a percentage of Annexin V negative / PI positive cells on the dot plot analysis. Approximately 80% of mIgE.Fc L- expressing Ramos cells died of apoptosis by increasing the concentration of c4B12, c26H2, or omalizumab, but in the case of ca20, up to 1 μg / ml did not (FIG. 4A).

アポトーシスを起こした核を検出するために、mIgE.FcL発現Ramos細胞(5x105 cell/ml)を、完全培養培地中1μg/mlのキメラ抗CεmX mAbs、オマリズマブ又は対照抗体と、37℃で1時間インキュベーションした。そして細胞を、最終濃度が10μg/mlとなるヒトIgGのFc断片に特異的なヤギF(ab')2断片で処理し、更に37℃で48時間インキュベーションした。5xlO5個の細胞を、0.5mlのプロビジウムヨーダイド(PI)/Triton溶液(PBS中0.1%酢酸ナトリウム、0.1%Triton X-100、15μg/ml PI、及び100μg/ml RNase A;全てSigma-Aldrich製)中で、氷上、暗所で1時間インキュベーションした。PIの蛍光は、FACSCanto IIフローサイトメーター上で決定した。無傷の核のDNAの内容は、リニアスケール上に記録された。低二倍(hypodiploid)DNAを含むアポトーシスを起こした核は、G0/G1ピークの下のチャンネルで蛍光を発し、全集団のパーセンテージとしてカウントされる。低二倍DNAを有する細胞集団の顕著な増大は、c4B12、c26H2又はオマリズマブで処理したmIgE.FcL発現Ramos細胞で観察された(図4B)。 To detect apoptotic nuclei, mIgE.Fc L- expressing Ramos cells (5 × 10 5 cell / ml) were mixed with 1 μg / ml chimeric anti-CεmX mAbs, omalizumab or control antibody in complete culture medium at 37 ° C. Incubated for hours. The cells were then treated with a goat F (ab ′) 2 fragment specific for the Fc fragment of human IgG to a final concentration of 10 μg / ml and further incubated at 37 ° C. for 48 hours. 5xlO 5 cells were added to 0.5 ml of Probidium iodide (PI) / Triton solution (0.1% sodium acetate, 0.1% Triton X-100, 15 μg / ml PI, and 100 μg / ml RNase A in PBS; all Sigma- Aldrich) and incubated in the dark for 1 hour on ice. PI fluorescence was determined on a FACSCanto II flow cytometer. The content of intact nuclear DNA was recorded on a linear scale. Apoptotic nuclei containing hypodiploid DNA fluoresce in the channel below the G 0 / G 1 peak and are counted as a percentage of the total population. A significant increase in cell populations with low double DNA was observed in mIgE.Fc L expressing Ramos cells treated with c4B12, c26H2 or omalizumab (FIG. 4B).

カスパーゼ3及びポリ(ADP-リボース)ポリメラーゼ(PARP)の開裂を検出するために、mIgE.FcL発現Ramos細胞を、37℃で1時間、完全培養培地中、1μg/mlの濃度で、キメラ抗CεmX mAbs、オマリズマブ又は対照抗体とインキュベーションした。そして細胞を、最終濃度が10μg/mlとなるヒトIgGのFc断片に特異的なヤギF(ab')2断片で処理し、更に37℃で24時間インキュベーションした。5xlO6個の細胞を氷冷PBSで洗浄し、100μlの氷冷調整RIPA緩衝剤[20 mM Tris (pH 7.4), 150 mM NaCl, 1% Triton-X 100, 0.5%デオキシコール酸塩, 0.1%ドデシル硫酸ナトリウム(SDS), 5 mM EDTA, 及びプロテアーゼインヒビター(Sigma-Aldrich)]中に再懸濁した。ライゼートを、20分間氷上でインキュベーションした。試料を、4℃で20分間16000xgで遠心分離した。上澄を新しい1.5mlチューブに移し、-80℃で保存した。清澄した各ライゼート中のタンパク質の量を、説明書に従い、Protein DCアッセイ(Bio-Rad Laboratories)を使用して定量した。各試料を全タンパク質量で平均化し、これをSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、続いてPVDF膜(GE Healthcare)に転写した。カスパーゼ3及びPARPに対するウサギポリクローナル抗体をCell Signaling Techonologyから入手し、これを1:500に希釈した。HRPコンジュゲートヤギ抗ウサギIgG二次抗体(Sigma Aldrich)を、1:10000に希釈した。前記膜をECL(Immobilon(商標) Western; Millipore)試薬で現像した。等量のタンパク質がロードされたことは、β−アクチンに対する抗体(Sigma-Aldrich)を用いたウエスタンブロッティングにより評価された。c4B12、c26H2及びオマリズマブで処理したmIgE.FcL発現Ramos細胞は、ca20で処理したものと比べて、処理後24時間でのカスパーゼ3のMr 19及び17kDa断片への開裂がより顕著であった。一方、PARPの開裂は、Mx 116 kDa 完全PARP及びMx 89 kDa開裂産物を認識する抗体を使用して、c4B12、c26H2及びオマリズマブで処理したmIgE.FcL発現Ramos細胞において検出することが出来た(図4C)。 To detect caspase 3 and poly (ADP-ribose) polymerase (PARP) cleavage, mIgE.Fc L expressing Ramos cells were cultured at 37 ° C for 1 hour in complete culture medium at a concentration of 1 μg / ml. Incubated with CεmX mAbs, omalizumab or control antibody. The cells were then treated with a goat F (ab ′) 2 fragment specific for the Fc fragment of human IgG to a final concentration of 10 μg / ml and further incubated at 37 ° C. for 24 hours. 5xlO 6 cells were washed with ice cold PBS, 100 μl ice cold adjusted RIPA buffer [20 mM Tris (pH 7.4), 150 mM NaCl, 1% Triton-X 100, 0.5% deoxycholate, 0.1% Resuspended in sodium dodecyl sulfate (SDS), 5 mM EDTA, and protease inhibitor (Sigma-Aldrich). The lysate was incubated on ice for 20 minutes. Samples were centrifuged at 16000 xg for 20 minutes at 4 ° C. The supernatant was transferred to a new 1.5 ml tube and stored at -80 ° C. The amount of protein in each clarified lysate was quantified using the Protein DC assay (Bio-Rad Laboratories) according to the instructions. Each sample was averaged by total protein amount, subjected to SDS polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a PVDF membrane (GE Healthcare). Rabbit polyclonal antibodies against caspase 3 and PARP were obtained from Cell Signaling Techonology and diluted 1: 500. HRP-conjugated goat anti-rabbit IgG secondary antibody (Sigma Aldrich) was diluted 1: 10000. The membrane was developed with ECL (Immobilon ™ Western; Millipore) reagent. Equivalent protein loading was assessed by Western blotting using an antibody against β-actin (Sigma-Aldrich). mIgE.Fc L- expressing Ramos cells treated with c4B12, c26H2, and omalizumab were more prominent in caspase 3 cleavage to M r 19 and 17 kDa fragments 24 hours after treatment than those treated with ca20 . On the other hand, cleavage of PARP, using antibodies that recognize M x 116 kDa full PARP and M x 89 kDa cleavage product, can be detected in MIgE.Fc L expressing Ramos cells treated with c4B12, c26H2 and omalizumab (FIG. 4C).

Claims (7)

免疫応答を誘導するための医薬組成物であってGLAGGSAQSQRAPDRVL(配列番号2)からなる治療有効量の免疫原;及びアジュバント;を含有する、当該医薬組成物A pharmaceutical composition for inducing an immune response, an immunogen a therapeutically effective amount consisting GLAGGSAQSQRAPDRVL (SEQ ID NO: 2); and an adjuvant; containing, the pharmaceutical compositions. IgE介在性疾患を治療するための、請求項1に記載の医薬組成物。The pharmaceutical composition according to claim 1, for treating IgE-mediated diseases. 前記IgE介在性疾患が、冷却誘導性のじんましん、慢性じんましん、コリン性じんましん、慢性鼻副鼻腔炎、全身性脂肪細胞症、皮膚脂肪細胞症、アレルギー性気管支肺アスペルギルス症、再発性特発性血管性浮腫、間質性膀胱炎、又は好酸球関連胃腸障害である、請求項2に記載の医薬組成物。The IgE-mediated diseases include cooling-induced urticaria, chronic urticaria, cholinergic urticaria, chronic rhinosinusitis, systemic lipocytosis, cutaneous lipocytosis, allergic bronchopulmonary aspergillosis, recurrent idiopathic vascularity The pharmaceutical composition according to claim 2, which is edema, interstitial cystitis, or eosinophil-related gastrointestinal disorder. 前記IgE介在性疾患がアレルギー性疾患である、請求項2に記載の医薬組成物。The pharmaceutical composition according to claim 2, wherein the IgE-mediated disease is an allergic disease. 前記アレルギー性疾患が、アレルギー性喘息、アレルギー性鼻炎、又はアトピー性皮膚炎である、請求項4に記載の医薬組成物。The pharmaceutical composition according to claim 4, wherein the allergic disease is allergic asthma, allergic rhinitis, or atopic dermatitis. 前記免疫応答が、GLAGGSAQSQRAPDRVL(配列番号2)に特異的な抗体の生産が誘導される抗体反応である、請求項1〜5のいずれか1項に記載の医薬組成物。The pharmaceutical composition according to any one of claims 1 to 5, wherein the immune response is an antibody reaction that induces production of an antibody specific to GLAGGSAQSQRAPDRVL (SEQ ID NO: 2). 前記抗体が、Bリンパ球上の膜結合IgEに結合し、Bリンパ球のアポトーシスを誘導することが出来る、請求項6に記載の医薬組成物。7. The pharmaceutical composition according to claim 6, wherein the antibody can bind to membrane-bound IgE on B lymphocytes and induce apoptosis of B lymphocytes.
JP2015156989A 2015-08-07 2015-08-07 Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes Active JP6068582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156989A JP6068582B2 (en) 2015-08-07 2015-08-07 Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156989A JP6068582B2 (en) 2015-08-07 2015-08-07 Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011551394A Division JP5848133B2 (en) 2009-02-25 2010-02-25 Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes

Publications (2)

Publication Number Publication Date
JP2015221820A JP2015221820A (en) 2015-12-10
JP6068582B2 true JP6068582B2 (en) 2017-01-25

Family

ID=54785043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156989A Active JP6068582B2 (en) 2015-08-07 2015-08-07 Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes

Country Status (1)

Country Link
JP (1) JP6068582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085902A1 (en) * 2017-10-31 2019-05-09 Fountain Biopharma Inc. Treating ige-mediated allergic diseases
TW202332691A (en) * 2021-10-12 2023-08-16 聯合生物製藥股份有限公司 Treatment of ige-mediated diseases

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071097B2 (en) * 2007-03-22 2011-12-06 Genentech, Inc. Apoptotic anti-IgE antibodies

Also Published As

Publication number Publication date
JP2015221820A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5848133B2 (en) Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes
US11866503B2 (en) Methods for treating inflammatory conditions of the airway or lungs by administering antagonist monoclonal antibodies to interleukin-33 and interleukin-4 receptor
JP6397938B2 (en) Humanized anti-IgE antibody that crosslinks with CD23 of B lymphocytes but does not sensitize mast cells
JP6808611B2 (en) Novel antibodies to Fcγ receptor IIB and Fcε receptor
JP2020536495A (en) Anti-LAG-3 antibody and its use
JP6068582B2 (en) Anti-CεmX antibody capable of binding to human mIgE on B lymphocytes
EP1972640A1 (en) Apoptosis inducing antibodies
WO2019192493A1 (en) Anti-human lag-3 monoclonal antibody and use thereof
TWI603979B (en) Anti-human miga antibodies capable of lysing miga-b lymphocytes and decreasing iga production
Kerekov et al. Suppression of allergen-specific B lymphocytes by chimeric protein-engineered antibodies
AU2014203008B2 (en) Anti-CepsilonmX antibodies capable of binding to human mIgE on B lymphocytes
WO2023143534A1 (en) Antibody specifically recognizing 4-1bb, preparation method therefor and use thereof
TW201702263A (en) Anti-CD20-/anti-BAFF bispecific antibodies
NZ794842A (en) Methods of treating inflammatory conditions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250