JP6068127B2 - Contact material for vacuum valves - Google Patents

Contact material for vacuum valves Download PDF

Info

Publication number
JP6068127B2
JP6068127B2 JP2012276321A JP2012276321A JP6068127B2 JP 6068127 B2 JP6068127 B2 JP 6068127B2 JP 2012276321 A JP2012276321 A JP 2012276321A JP 2012276321 A JP2012276321 A JP 2012276321A JP 6068127 B2 JP6068127 B2 JP 6068127B2
Authority
JP
Japan
Prior art keywords
alloy layer
contact material
vacuum valve
contact
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012276321A
Other languages
Japanese (ja)
Other versions
JP2014120408A (en
Inventor
草野 貴史
貴史 草野
山本 敦史
敦史 山本
遥 佐々木
遥 佐々木
宏通 染井
宏通 染井
裕希 関森
裕希 関森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012276321A priority Critical patent/JP6068127B2/en
Publication of JP2014120408A publication Critical patent/JP2014120408A/en
Application granted granted Critical
Publication of JP6068127B2 publication Critical patent/JP6068127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Description

本発明の実施形態は、低サージ型真空バルブに用いられる真空バルブ用接点材料に関する。   Embodiments described herein relate generally to a contact material for a vacuum valve used in a low surge type vacuum valve.

従来、Ag−WC系接点材料は、遮断時に発生するサージ電圧を抑制することが知られている。これは、WCの熱電子放出効果とAgの蒸気圧との相乗的な効果によって裁断電流を抑制するとされている。一方、焼結法などによる製造にあたっては、高密度化や低ガス化を図るため、1wt%程度のCoやNiなどの焼結助材の添加が行われている(例えば、特許文献1参照。)。   Conventionally, Ag-WC-based contact materials are known to suppress a surge voltage generated at the time of interruption. This is supposed to suppress the cutting current by a synergistic effect of the thermoelectron emission effect of WC and the vapor pressure of Ag. On the other hand, in the production by a sintering method or the like, about 1 wt% of a sintering aid such as Co or Ni is added in order to achieve high density and low gas (for example, see Patent Document 1). ).

しかしながら、焼結助材が過少であると、焼結性が向上せず、高密度化が困難となる。逆に、焼結助材が過大になると、ろう付けによる接合性が低下する。このため、Ag−WC系接点材料に焼結助材を添加するものの、高密度化を図れるとともに、接合性の向上を図れるものが望まれていた。なお、高密度化により、遮断時の低ガス化や亀裂などを防止でき、遮断特性を向上させることができる。また、接合性により、電極や通電軸との接合強度が向上し、接点脱落などを防止することができる。   However, if the sintering aid is too small, the sinterability is not improved and it is difficult to increase the density. Conversely, when the sintering aid is excessive, the bondability by brazing is reduced. For this reason, although a sintering aid is added to the Ag-WC-based contact material, it has been desired to increase the density and improve the bondability. Note that by increasing the density, it is possible to prevent gas reduction or cracking at the time of interruption, and to improve the interruption characteristics. Further, the bonding strength improves the bonding strength between the electrode and the current-carrying shaft, and can prevent the contact from falling off.

特開平5−74284号公報JP-A-5-74284

本発明が解決しようとする課題は、Ag−WC系接点材料に焼結助材を添加するものの、高密度化とともに、接合性を向上させることのできる真空バルブ用接点材料を提供することにある。   The problem to be solved by the present invention is to provide a contact material for a vacuum valve capable of improving the bondability as well as increasing the density, although a sintering aid is added to the Ag-WC contact material. .

上記課題を解決するために、実施形態の真空バルブ用接点材料は、接離自在の一対の接点を有する真空バルブに用いられる真空バルブ用接点材料において、前記接点を、接触面となる第1のAg−WC系合金層と、前記第1のAg−WC系合金層に連接されるとともに、電気銅からなる電極にろう付けにより固着される第2のAg−WC系合金層とで構成し、前記第1のAg−WC系合金層および前記第2のAg−WC系合金層には、それぞれ焼結助材を添加し、前記第2のAg−WC系合金層よりも前記第1のAg−WC系合金層の前記焼結助材の添加量を多くしたことを特徴とする。 In order to solve the above-described problem, the vacuum valve contact material of the embodiment is a vacuum valve contact material used for a vacuum valve having a pair of contactable and separable contacts, and the contact is a first contact surface. An Ag-WC-based alloy layer and a second Ag-WC-based alloy layer connected to the first Ag-WC-based alloy layer and fixed to the electrode made of electrolytic copper by brazing ; A sintering aid is added to each of the first Ag—WC alloy layer and the second Ag—WC alloy layer, and the first Ag—more than the second Ag—WC alloy layer. -The amount of the sintering aid added to the WC alloy layer is increased.

本発明の実施例1に係る真空バルブ用接点材料を用いた接点の構成を示す断面図。Sectional drawing which shows the structure of the contact using the contact material for vacuum valves which concerns on Example 1 of this invention. 本発明の実施例1に係る真空バルブ用接点材料の製造方法を説明する図。The figure explaining the manufacturing method of the contact material for vacuum valves which concerns on Example 1 of this invention. 本発明の実施例2に係る真空バルブ用接点材料の製造方法を説明する図。The figure explaining the manufacturing method of the contact material for vacuum valves which concerns on Example 2 of this invention.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る真空バルブ用接点材料を図1、図2を参照して説明する。図1は、本発明の実施例1に係る真空バルブ用接点材料を用いた接点の構成を示す断面図、図2は、本発明の実施例1に係る真空バルブ用接点材料の製造方法を説明する図である。なお、接離自在の一対の接点を有する真空バルブにおいて、一方の接点を用いて説明する。   First, a contact material for a vacuum valve according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a configuration of a contact using a vacuum valve contact material according to Embodiment 1 of the present invention, and FIG. 2 illustrates a method for manufacturing a vacuum valve contact material according to Embodiment 1 of the present invention. It is a figure to do. In addition, in the vacuum valve which has a pair of contact which can be contacted / separated, it demonstrates using one contact.

図1に示すように、接点1は、接触面となる円板状の第1のAg−WC系合金層2と、第1のAg−WC系合金層2に連接された円板状の第2のAg−WC系合金層3とで構成されている。いずれの合金層2、3も導電成分にAg、耐弧成分にWCを用い、焼結助材を添加し、第2のAg−WC系合金層3よりも第1のAg−WC系合金層2の焼結助材が多くなるようにしている。第2のAg−WC系合金層3には、例えば、縦磁界を発生させる電気銅よりなる電極4がろう付けで固着されている。電極4には、軸方向の中心部に電気銅よりなる通電軸5がろう付けで固着されている。   As shown in FIG. 1, the contact 1 includes a disk-shaped first Ag—WC alloy layer 2 serving as a contact surface, and a disk-shaped first Ag-WC alloy layer 2 connected to the first Ag—WC alloy layer 2. 2 Ag—WC alloy layer 3. Each of the alloy layers 2 and 3 uses Ag as a conductive component, WC as an arc-proof component, and a sintering aid is added, so that the first Ag-WC alloy layer is more than the second Ag-WC alloy layer 3. The amount of sintering aid 2 is increased. For example, an electrode 4 made of electrolytic copper that generates a longitudinal magnetic field is fixed to the second Ag—WC alloy layer 3 by brazing. An energizing shaft 5 made of electrolytic copper is fixed to the electrode 4 by brazing at the center in the axial direction.

次に、製造方法を図2を参照して説明する。   Next, a manufacturing method will be described with reference to FIG.

図2(a)に示すように、先ず、φ50mmの金型6を用意し、平均粒径2μmのAg粉末と、平均粒径1μmのWC粉末を質量比1:1とし、焼結助材のCoを0.5mass%添加して混合する。この第1のAg−WC−Co混合粉7を金型6の底部に充填する。次に、平均粒径2μmのAg粉末と、平均粒径1μmのWC粉末を質量比1:1とし、焼結助材のCoを3.0mass%添加して混合する。この第2のAg−WC−Co混合粉8を第1のAg−WC−Co混合粉7の上に充填し、二層となるようにする。第1、第2のAg−WC−Co混合粉7、8の質量比は、2:3とする。   As shown in FIG. 2 (a), first, a mold 50 having a diameter of 50 mm is prepared. Ag powder having an average particle diameter of 2 μm and WC powder having an average particle diameter of 1 μm are set to a mass ratio of 1: 1. Add 0.5 mass% of Co and mix. The first Ag—WC—Co mixed powder 7 is filled in the bottom of the mold 6. Next, Ag powder having an average particle diameter of 2 μm and WC powder having an average particle diameter of 1 μm are set to a mass ratio of 1: 1, and 3.0 mass% of Co as a sintering aid is added and mixed. The second Ag—WC—Co mixed powder 8 is filled on the first Ag—WC—Co mixed powder 7 so as to form two layers. The mass ratio of the first and second Ag—WC—Co mixed powders 7 and 8 is 2: 3.

次に、図2(b)に示すように、7ton/cm2で加圧し、第1のAg−WC−Co圧粉体9と第2のAg−WC−Co圧粉体10を得る。これらの圧粉体9、10を水素雰囲気中で950℃×2時間の条件で固相焼結し、φ45mm×t3mmの接点1に加工する。厚さは、第1、第2のAg−WC−Co混合粉7、8の充填量を調整するものとする。加工後、第1のAg−WC−Co圧粉体9(第2のAg−WC系合金層3に相当)側に電極4をろう付けする。接触面は、第2のAg−WC−Co圧粉体10(第1のAg−WC系合金層2に相当)となる。   Next, as shown in FIG.2 (b), it pressurizes by 7 ton / cm <2>, and the 1st Ag-WC-Co green compact 9 and the 2nd Ag-WC-Co green compact 10 are obtained. These green compacts 9 and 10 are solid-phase sintered in a hydrogen atmosphere under conditions of 950 ° C. × 2 hours and processed into contacts 1 of φ45 mm × t3 mm. Thickness shall adjust the filling amount of the 1st, 2nd Ag-WC-Co mixed powder 7 and 8. After the processing, the electrode 4 is brazed to the first Ag—WC—Co green compact 9 (corresponding to the second Ag—WC alloy layer 3) side. The contact surface is the second Ag—WC—Co green compact 10 (corresponding to the first Ag—WC alloy layer 2).

これにより、接触面となる第1のAg−WC系合金層2では、焼結助材のCoが3.0mass%と多く、高密度化を促進させることができる。そして、アークに対して耐性が向上し、亀裂、割れを防いでガス量を抑え、遮断特性を向上させることができる。また、第2のAg−WC系合金層3では、Coが0.5mass%と少なく、電極4との接合性を向上させることができる。焼結助材は、略1mass%を境とし、これより多いと高密度化を図ることができ、少ないと接合性を向上させることができる。   Thereby, in the 1st Ag-WC system alloy layer 2 used as a contact surface, Co of a sintering auxiliary material is as large as 3.0 mass%, and it can accelerate | stimulate densification. And resistance to an arc improves, a crack and a crack can be prevented, gas amount can be suppressed, and the interruption | blocking characteristic can be improved. In the second Ag—WC alloy layer 3, Co is as low as 0.5 mass%, and the bonding property with the electrode 4 can be improved. If the sintering aid is approximately 1 mass% as a boundary, and the amount is higher than this, the density can be increased, and if it is less, the bondability can be improved.

また、第1のAg−WC系合金層2と第2のAg−WC系合金層3の界面では、粉末状態から混ざり合って焼結するので、互いの合金層2、3を強固に連接させることができる。更には、第1のAg−WC系合金層2を第2のAg−WC系合金層3よりも板厚を厚くしているので、アークによる接点消耗に裕度を持たせることができる。   Further, since the powder is mixed and sintered at the interface between the first Ag—WC alloy layer 2 and the second Ag—WC alloy layer 3, the alloy layers 2 and 3 are firmly connected to each other. be able to. Furthermore, since the thickness of the first Ag—WC alloy layer 2 is larger than that of the second Ag—WC alloy layer 3, it is possible to give a margin to contact wear due to arc.

上記実施例1の真空バルブ用接点材料によれば、接触面となる第1のAg−WC系合金層2の焼結助材を多く、電極4と接合される第2のAg−WC系合金層3の焼結助材を少なくしているので、接触面では高密度化を促進することができ、接合面では接合性を向上させることができる。   According to the contact material for the vacuum valve of Example 1 described above, the second Ag—WC alloy is bonded to the electrode 4 with a large amount of the sintering aid of the first Ag—WC alloy layer 2 serving as the contact surface. Since the sintering aid of the layer 3 is reduced, the densification can be promoted on the contact surface, and the joining property can be improved on the joining surface.

上記実施例1では、焼結助材にCoを用いたが、この他にNi、Fe、Crの少なくとも1種類を用いることができる。   In Example 1 above, Co is used as the sintering aid, but at least one of Ni, Fe, and Cr can be used.

また、耐弧成分にWCを用いたが、Mo2C、NbC、TaC、TiC、VC、ZrC、HfCの1種類以上を混合することができる。   Moreover, although WC was used for the arc resistant component, one or more of Mo2C, NbC, TaC, TiC, VC, ZrC, and HfC can be mixed.

次に、本発明の実施例2に係る真空バルブ用接点材料を図3を参照して説明する。図3は、本発明の実施例2に係る真空バルブ用接点材料の製造方法を説明する図である。なお、この実施例2が実施例1と異なる点は、接点の製造方法である。接点の構成は、実施例1と同様であるので、説明を省略する。   Next, contact materials for vacuum valves according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 3 is a view for explaining a method for manufacturing a contact material for a vacuum valve according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in the contact manufacturing method. Since the configuration of the contacts is the same as that of the first embodiment, description thereof is omitted.

図3(a)に示すように、先ず、平均粒径1μmのWC粉末と平均粒径2μmのNi粉末を質量比99:1として混合し、3ton/cm2で成形する。この圧粉体を水素雰囲気中で900℃×1時間の条件で焼結し、WC−Ni仮焼結体11を得る。次に、この仮焼結体11に、平均粒径2μmのAg粉末と平均粒径2μmのNi粉末を質量比97:3として混合したAg−Ni混合粉12を載置する。これを、水素雰囲気中で1150℃×1時間の条件で熱処理し、Ag−Ni混合粉12をWC−Ni焼結体11に溶浸させる。溶浸後には、図3(b)に示すように、Ni含有の少ない第1のAg−WC−Ni合金層13とNi含有の多い第2のAg−WC−Ni合金層14を得ることができる。   As shown in FIG. 3A, first, WC powder having an average particle diameter of 1 μm and Ni powder having an average particle diameter of 2 μm are mixed at a mass ratio of 99: 1 and molded at 3 ton / cm 2. The green compact is sintered in a hydrogen atmosphere at 900 ° C. for 1 hour to obtain a WC—Ni temporary sintered body 11. Next, Ag-Ni mixed powder 12 obtained by mixing Ag powder having an average particle diameter of 2 μm and Ni powder having an average particle diameter of 2 μm at a mass ratio of 97: 3 is placed on the temporary sintered body 11. This is heat-treated in a hydrogen atmosphere under conditions of 1150 ° C. × 1 hour, and the Ag—Ni mixed powder 12 is infiltrated into the WC—Ni sintered body 11. After the infiltration, as shown in FIG. 3B, a first Ag—WC—Ni alloy layer 13 with a low Ni content and a second Ag—WC—Ni alloy layer 14 with a high Ni content can be obtained. it can.

これを、第2のAg−WC−Ni合金層14側が接触面になるように、φ45mm×t3mmの接点1に加工する。加工後、第1のAg−WC−Ni合金層13側に電極4をろう付けする。なお、湿式分析すると、第1のAg−WC−Ni合金層13のNi含有量は0.7mass%、第2のAg−WC−Ni合金層14のNi含有量は2.5mass%であった。WCは、第2のAg−WC−Ni合金層14で略60mass%であった。また、接触面となる第2のAg−WC−Ni合金層14が第1のAg−WC−Ni合金層13よりも厚くなるようにAg−Ni混合粉12などを調整するものとする。   This is processed into a contact 45 of φ45 mm × t3 mm so that the second Ag—WC—Ni alloy layer 14 side becomes a contact surface. After the processing, the electrode 4 is brazed to the first Ag—WC—Ni alloy layer 13 side. When wet analysis was performed, the Ni content of the first Ag-WC-Ni alloy layer 13 was 0.7 mass%, and the Ni content of the second Ag-WC-Ni alloy layer 14 was 2.5 mass%. . The WC was approximately 60 mass% in the second Ag—WC—Ni alloy layer 14. In addition, the Ag—Ni mixed powder 12 and the like are adjusted so that the second Ag—WC—Ni alloy layer 14 serving as the contact surface is thicker than the first Ag—WC—Ni alloy layer 13.

これにより、溶浸法においても、接触面となる第2のAg−WC−Ni合金層14(第1のAg−WC系合金層2に相当)のNi添加量を多くでき、高密度化を図り、第1のAg−WC−Ni合金層13(第2のAg−WC系合金層3に相当)のNi添加量を少なくでき、接合性を向上させることができる。   As a result, even in the infiltration method, the amount of Ni added to the second Ag—WC—Ni alloy layer 14 (corresponding to the first Ag—WC alloy layer 2) serving as the contact surface can be increased, and the density can be increased. As a result, the amount of Ni added to the first Ag—WC—Ni alloy layer 13 (corresponding to the second Ag—WC alloy layer 3) can be reduced, and the bondability can be improved.

上記実施例2の真空バルブ用接点材料によれば、溶浸法によっても実施例1と同様の効果を得ることができる。   According to the vacuum valve contact material of the second embodiment, the same effect as that of the first embodiment can be obtained by the infiltration method.

上記実施例2では、焼結助材にNiを用いたが、この他にCo、Fe、Crの少なくとも1種類を用いることができる。   In Example 2 above, Ni was used as the sintering aid, but at least one of Co, Fe, and Cr can be used.

本発明の実施形態によれば、接点の接触面では、焼結助材が多く、高密度化を図ることができ、接合面では、焼結助材が少なく、接合性を向上させることができる。   According to the embodiment of the present invention, the contact surface has a large amount of sintering aid and can be densified, and the joining surface has a small amount of sintering aid and can improve the joining property. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 接点
2 第1のAg−WC系合金層
3 第2のAg−WC系合金層
4 電極
5 通電軸
DESCRIPTION OF SYMBOLS 1 Contact 2 1st Ag-WC system alloy layer 3 2nd Ag-WC system alloy layer 4 Electrode 5 Current supply axis

Claims (6)

接離自在の一対の接点を有する真空バルブに用いられる真空バルブ用接点材料において、
前記接点を、接触面となる第1のAg−WC系合金層と、
前記第1のAg−WC系合金層に連接されるとともに、電気銅からなる電極にろう付けにより固着される第2のAg−WC系合金層とで構成し、
前記第1のAg−WC系合金層および前記第2のAg−WC系合金層には、それぞれ焼結助材を添加し、
前記第2のAg−WC系合金層よりも前記第1のAg−WC系合金層の前記焼結助材の添加量を多くしたことを特徴とする真空バルブ用接点材料。
In a vacuum valve contact material used for a vacuum valve having a pair of contactable and separable contacts,
The contact, a first Ag-WC alloy layer serving as a contact surface;
The second Ag-WC alloy layer is connected to the first Ag-WC alloy layer and fixed to the electrode made of electrolytic copper by brazing .
A sintering aid is added to each of the first Ag—WC alloy layer and the second Ag—WC alloy layer,
A contact material for a vacuum valve, wherein the amount of the sintering aid added to the first Ag-WC alloy layer is larger than that of the second Ag-WC alloy layer.
前記第1のAg−WC系合金層および前記第2のAg−WC系合金層は、焼結法で構成されることを特徴とする請求項1に記載の真空バルブ用接点材料。   The contact material for a vacuum valve according to claim 1, wherein the first Ag-WC alloy layer and the second Ag-WC alloy layer are formed by a sintering method. 前記第1のAg−WC系合金層および前記第2のAg−WC系合金層は、溶浸法で構成されることを特徴とする請求項1に記載の真空バルブ用接点材料。   The contact material for a vacuum valve according to claim 1, wherein the first Ag-WC alloy layer and the second Ag-WC alloy layer are formed by an infiltration method. 前記焼結助材は、Co、Ni、Fe、Crのうち、少なくとも1種類を用いることを特徴とする請求項1乃至請求項3のいずれか1項に記載の真空バルブ用接点材料。   The contact material for a vacuum valve according to any one of claims 1 to 3, wherein the sintering aid is at least one of Co, Ni, Fe, and Cr. 前記第2のAg−WC系合金層よりも前記第1のAg−WC系合金層の板厚が厚いことを特徴とする請求項1乃至請求項4のいずれか1項に記載の真空バルブ用接点材料。   5. The vacuum valve use according to claim 1, wherein the first Ag—WC alloy layer is thicker than the second Ag—WC alloy layer. 6. Contact material. 前記WCに、Mo2C、NbC、TaC、TiC、VC、ZrC、HfCの1種類以上を混合することを特徴とする請求項1乃至請求項5のいずれか1項に記載の真空バルブ用接点材料。   The contact material for a vacuum valve according to any one of claims 1 to 5, wherein at least one of Mo2C, NbC, TaC, TiC, VC, ZrC, and HfC is mixed with the WC.
JP2012276321A 2012-12-19 2012-12-19 Contact material for vacuum valves Expired - Fee Related JP6068127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276321A JP6068127B2 (en) 2012-12-19 2012-12-19 Contact material for vacuum valves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276321A JP6068127B2 (en) 2012-12-19 2012-12-19 Contact material for vacuum valves

Publications (2)

Publication Number Publication Date
JP2014120408A JP2014120408A (en) 2014-06-30
JP6068127B2 true JP6068127B2 (en) 2017-01-25

Family

ID=51175064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276321A Expired - Fee Related JP6068127B2 (en) 2012-12-19 2012-12-19 Contact material for vacuum valves

Country Status (1)

Country Link
JP (1) JP6068127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093655B (en) * 2016-09-21 2022-03-29 新电元工业株式会社 Semiconductor device with a plurality of semiconductor chips

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536710B2 (en) * 1971-12-27 1978-03-10
JPS5810322A (en) * 1981-07-13 1983-01-20 株式会社東芝 Method of producing sintered electric contact
JPH11126531A (en) * 1997-10-21 1999-05-11 Furukawa Electric Co Ltd:The Contact material and contact point

Also Published As

Publication number Publication date
JP2014120408A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
US9570245B2 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
JP6356821B2 (en) NTC device and method for its manufacture
WO2020003554A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2012007203A (en) Method of manufacturing electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker
JP4410066B2 (en) Manufacturing method of electrical contact material
JP2005135778A (en) Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter
CN106233409B (en) For the electrical contact top of switch application and electric switchgear
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP6068127B2 (en) Contact material for vacuum valves
JPWO2014136617A1 (en) Electrical contact materials and breakers
US8847463B2 (en) Carbon brush for transmitting high currents
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JP2020059906A (en) Powder for electric contact, compact for electric contact, electric contact, and manufacturing method of powder for electric contact
US9455079B2 (en) Multilayered power inductor and method for preparing the same
JP6145285B2 (en) Electrical contact material, method for producing the same, and electrical contact
CN105761956A (en) Contact material, vacuum arc-extinguishing chamber contact and manufacturing method thereof
JP5581153B2 (en) Oxidation resistant heat resistant alloy
JP2019169534A (en) Thermoelectric device, thermoelectric conversion module and method for manufacturing thermoelectric device
WO2016178388A1 (en) Method for producing electrode material, and electrode material
JP5920408B2 (en) Method for producing electrode material
JP6453101B2 (en) Ceramic / metal joints
JP2014216074A (en) Contact material for vacuum valve and production method therefor
JP6055176B2 (en) Contact material for vacuum valve
JPWO2019155655A1 (en) Electric contact and vacuum valve using the same
JP5517816B2 (en) Ceramic body with conductive layer, and joined body of ceramic and metal

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R151 Written notification of patent or utility model registration

Ref document number: 6068127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees