JP6064541B2 - Sugar chain purification method - Google Patents

Sugar chain purification method Download PDF

Info

Publication number
JP6064541B2
JP6064541B2 JP2012255762A JP2012255762A JP6064541B2 JP 6064541 B2 JP6064541 B2 JP 6064541B2 JP 2012255762 A JP2012255762 A JP 2012255762A JP 2012255762 A JP2012255762 A JP 2012255762A JP 6064541 B2 JP6064541 B2 JP 6064541B2
Authority
JP
Japan
Prior art keywords
sugar chain
purifying
trapping substance
sugar
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012255762A
Other languages
Japanese (ja)
Other versions
JP2014101470A (en
Inventor
碧 阪口
碧 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2012255762A priority Critical patent/JP6064541B2/en
Publication of JP2014101470A publication Critical patent/JP2014101470A/en
Application granted granted Critical
Publication of JP6064541B2 publication Critical patent/JP6064541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生体試料中に含まれる糖鎖を効率よく精製、標識するための方法に関するものである。 The present invention relates to a method for efficiently purifying and labeling a sugar chain contained in a biological sample.

糖鎖、糖タンパク、糖ペプチド、ペプチド、オリゴペプチド、タンパク、核酸、脂質などといった生体高分子は、医学、細胞工学、臓器工学などのバイオテクノロジー分野において重要な役割を担っており、これら物質による生体反応の制御機構を明らかにすることはバイオテクノロジー分野の発展に繋がることになる。
この中でも、糖鎖は、非常に多様性に富んでおり、天然に存在する生物が有する様々な機能に関与する物質である。糖鎖は生体内でタンパク質や脂質などに結合した複合糖質として存在することが多く、生体内の重要な構成成分の一つである。生体内の糖鎖は細胞間情報伝達, タンパク質の機能や相互作用の調整などに深く関わっていることが明らかにな
りつつある。
Biopolymers such as sugar chains, glycoproteins, glycopeptides, peptides, oligopeptides, proteins, nucleic acids, and lipids play an important role in biotechnology fields such as medicine, cell engineering, and organ engineering. Clarifying the control mechanism of biological reactions will lead to the development of the biotechnology field.
Among these, sugar chains are very diverse and are substances that are involved in various functions of naturally occurring organisms. Sugar chains often exist as complex carbohydrates bound to proteins, lipids, and the like in vivo, and are one of the important components in vivo. It is becoming clear that sugar chains in the body are deeply involved in cell-to-cell information transmission, protein function and interaction regulation.

なお、糖鎖とは、グルコース, ガラクトース, マンノース, フコース, キシロース,
N− アセチルグルコサミン, N − アセチルガラクトサミン, シアル酸などの単糖およびこれらの誘導体がグリコシド結合によって鎖状に結合した分子の総称である。
例えば、糖鎖を有する生体高分子としては、細胞の安定化に寄与する植物細胞の細胞壁のプロテオグリカン、細胞の分化、増殖、接着、移動等に影響を与える糖脂質、及び細胞間相互作用や細胞認識に関与している糖タンパク質等が挙げられる。これらの生体高分子に含まれる糖鎖が、この生体高分子と互いに機能を代行、補助、増幅、調節、あるいは阻害しあいながら高度で精密な生体反応を制御する機構が次第に明らかにされつつある。さらに、このような糖鎖と細胞の分化増殖、細胞接着、免疫、及び細胞の癌化との関係が明確にされれば、この糖鎖工学と、医学、細胞工学、あるいは臓器工学とを密接に関連させて新たな展開を図ることが期待できる。
Sugar chains are glucose, galactose, mannose, fucose, xylose,
N-acetylglucosamine, N-acetylgalactosamine, sialic acid and other monosaccharides and their derivatives are generic names for molecules linked in a chain by glycosidic bonds.
For example, biopolymers having sugar chains include plant cell wall proteoglycans that contribute to cell stabilization, glycolipids that affect cell differentiation, proliferation, adhesion, migration, etc., and cell-cell interactions and cells. Examples include glycoproteins involved in recognition. The mechanisms by which sugar chains contained in these biopolymers control advanced and precise biological reactions while acting, assisting, amplifying, regulating, or inhibiting the functions of these biopolymers are gradually being clarified. Furthermore, if the relationship between such sugar chains and cell differentiation / proliferation, cell adhesion, immunity, and cell carcinogenesis is clarified, this sugar chain engineering and medicine, cell engineering, or organ engineering are closely related. We can expect new developments related to

また、糖タンパク質性医薬品ではその糖鎖が生物活性発現等に重要な役割を担っている場合が多い。したがって、糖タンパク質性医薬品の品質管理のパラメーターとして、糖鎖の評価はきわめて重要であり、特に抗体医薬品についてはその糖鎖構造が抗体依存性細胞傷害活性(ADCC活性)を左右するとの報告がされており、糖鎖構造解析の重要性が高まっている。 In glycoprotein drugs, the sugar chain often plays an important role in the expression of biological activity. Therefore, the evaluation of sugar chains is extremely important as a quality control parameter for glycoprotein drugs, and it has been reported that the sugar chain structure affects antibody-dependent cytotoxic activity (ADCC activity), especially for antibody drugs. Therefore, the importance of sugar chain structure analysis is increasing.

そのため近年糖鎖構造を迅速、簡便に、かつ精度高く解析する方法が求められるようになり、高速液体クロマトグラフィ(HPLC)、核磁気共鳴法、キャピラリー電気泳動法(CE法)、質量分析法、レクチンアレイ法などの多種多様の方法により糖鎖解析が行われている。 Therefore, in recent years, there has been a demand for a method for analyzing a sugar chain structure quickly, simply, and with high accuracy. High-performance liquid chromatography (HPLC), nuclear magnetic resonance, capillary electrophoresis (CE), mass spectrometry, lectin Sugar chains are analyzed by various methods such as an array method.

これら種々の手法を用いて糖鎖を解析するためには、あらかじめ生体試料中に含まれるタンパク質、ペプチド、脂質、核酸などと糖鎖を分離・精製することが必要である。MALDI−TOF−MSは簡便でハイスルーップト性に優れるため、広く普及している。しかし、糖鎖はイオン化効率が、ペプチドなど他の夾雑物に比べ悪いため高い感度を得るためには精度の良い精製が必要である。しかしながら、これら糖鎖の精製や標識化は時間と工数がかかり、一度に多種多量の試料を調整するのは困難を要する。
上述した課題を解決する技術として、例えば特許文献1 に記載された特定の糖鎖捕捉物
質を用いて実現される試料調整方法が挙げられる。
In order to analyze sugar chains using these various techniques, it is necessary to separate and purify sugar chains from proteins, peptides, lipids, nucleic acids, etc. contained in biological samples in advance. MALDI-TOF-MS is widely used because it is simple and excellent in high throughput. However, since sugar chains have poor ionization efficiency compared to other contaminants such as peptides, purification with high accuracy is required to obtain high sensitivity. However, purification and labeling of these sugar chains takes time and man-hours, and it is difficult to prepare a large number of samples at once.
As a technique for solving the above-described problems, for example, there is a sample preparation method realized using a specific sugar chain-capturing substance described in Patent Document 1.

国際公開第2008/018170号International Publication No. 2008/018170

夾雑物の混入の多い生体試料から糖鎖のみを効率よく確実に精製する方法を実現する。 Realize a method for efficiently and reliably purifying only sugar chains from biological samples with much contamination.

本発明は以下の通りである。
(1)生体試料中に含有する糖鎖を精製する方法であって、(a)生体試料から糖鎖を特異的に捕捉する物質である糖鎖捕捉物質に糖鎖を捕捉する工程、(b)糖鎖を捕捉した糖鎖捕捉物質を洗浄する工程(c)糖鎖捕捉物質から糖鎖を遊離させる工程、を含み、(a)、(b)、(c)の工程を同一の反応容器内で連続して行い(b)の工程では、(a)の工程で糖鎖が捕捉された糖鎖捕捉物質を、界面活性剤を添加した水溶性洗浄液で洗浄し、当該界面活性剤が、硫酸直鎖アルキルエステル塩であることを特徴とする糖鎖精製方法。
(2)硫酸直鎖アルキルエステル塩の濃度が0.05〜5重量%である(1)に記載の糖鎖精製方法。
(3)前記硫酸直鎖アルキルエステル塩がドデシル硫酸ナトリウムである(1)または(2)に記載の糖鎖精製方法。
(4)(a)の工程において、糖鎖捕捉物質が糖鎖のアルデヒド基と特異的に反応する官能基を有する担体である(1)乃至(3)いずれか1項に記載の糖鎖精製方法。
(5)前記官能基が、ヒドラジド基又はアミノオキシ基である(4)記載の糖鎖精製方法。
(6)前記糖鎖捕捉物質が下記の(式1)で表される架橋型ポリマー構造を有するものである(5)記載の糖鎖精製方法。

(R1,R2は−O−,−S−,−NH−,−CO−,−CONH−で中断されてもよい炭素数1〜20の炭化水素鎖,R3,R4,R5はH,CH3,または炭素数2〜5の炭化水素鎖を示す。m,nはモノマーユニット数を示す。)
(7)前記糖鎖捕捉物質が下記の(式2)で表される架橋型ポリマー構造を有するものである(6)記載の糖鎖精製方法。

(m,nはモノマーユニット数を示す。)
(8)(c)の工程において、糖鎖捕捉物質に酸処理を行なう工程を有する(1)乃至(7)いずれか1項に記載の糖鎖精製方法。
(9)(a)および(c)の工程において、反応溶媒を蒸発させる工程を有する(1)乃至(8)いずれか1項に記載の糖鎖精製方法。
The present invention is as follows.
(1) A method for purifying a sugar chain contained in a biological sample, wherein (a) a step of capturing a sugar chain in a sugar chain-capturing substance that is a substance that specifically captures a sugar chain from a biological sample; And (c) a step of releasing the sugar chain from the sugar chain-trapping substance, wherein the steps (a), (b), and (c) are performed in the same reaction vessel. In step (b), the sugar chain-trapping substance in which the sugar chain has been captured in step (a) is washed with a water-soluble cleaning solution to which a surfactant is added. A method for purifying a sugar chain, which is a linear alkyl ester salt of sulfate.
(2) The method for purifying a sugar chain according to (1), wherein the concentration of the sulfate linear alkyl ester salt is 0.05 to 5% by weight.
(3) The method for purifying a sugar chain according to (1) or (2), wherein the sulfate linear alkyl ester salt is sodium dodecyl sulfate.
(4) The sugar chain purification according to any one of (1) to (3), wherein in the step (a), the sugar chain trapping substance is a carrier having a functional group that specifically reacts with an aldehyde group of the sugar chain. Method.
(5) The method for purifying a sugar chain according to (4), wherein the functional group is a hydrazide group or an aminooxy group.
(6) The method for purifying a sugar chain according to (5), wherein the sugar chain-trapping substance has a crosslinked polymer structure represented by the following (formula 1).

(R 1, R 2 are hydrocarbon chains having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO—, —CONH—, R 3, R 4, R 5 are H, CH 3, Or a hydrocarbon chain having 2 to 5 carbon atoms, m and n represent the number of monomer units.)
(7) The method for purifying a sugar chain according to (6), wherein the sugar chain-trapping substance has a crosslinked polymer structure represented by the following (formula 2).

(M and n indicate the number of monomer units.)
(8) The method for purifying a sugar chain according to any one of (1) to (7), wherein in the step (c), the sugar chain-trapping substance is subjected to an acid treatment.
(9) The method for purifying a sugar chain according to any one of (1) to (8), wherein the steps (a) and (c) have a step of evaporating the reaction solvent.

夾雑物の混入の多い未精製の生体試料から糖鎖のみを効率よく確実に精製する方法を提供することが可能となった。 It has become possible to provide a method for efficiently and reliably purifying only sugar chains from an unpurified biological sample containing a large amount of contaminants.

実施例および比較例のMALDI−TOF−MS測定結果。The MALDI-TOF-MS measurement result of an Example and a comparative example.

本発明は、生体試料中に含有する糖鎖を標識化する方法であって、
(a)生体試料から糖鎖を特異的に捕捉する物質である糖鎖捕捉物質に糖鎖を捕捉する工程、
(b)糖鎖を捕捉した糖鎖捕捉物質を洗浄する工程
(c)糖鎖捕捉物質から糖鎖を遊離させる工程、
を含み、(a)、(b)、(c)の工程を同一の反応容器内で連続して行う糖鎖精製方法である。
The present invention is a method for labeling a sugar chain contained in a biological sample,
(A) a step of capturing a sugar chain in a sugar chain-trapping substance that is a substance that specifically captures a sugar chain from a biological sample;
(B) a step of washing the sugar chain-trapping substance that has captured the sugar chain (c) a step of releasing the sugar chain from the sugar chain-trapping substance;
In this method, the steps (a), (b), and (c) are continuously carried out in the same reaction vessel.

(a)の工程において、糖鎖を特異的に捕捉する物質は糖鎖のアルデヒド基と反応する官
能基を有していることが好ましい。官能基としてはヒドラジド基又はオキシルアミノ基であることがより好ましい。
このような糖鎖捕捉物質としては、下記(式1)又は(式2)で表される構造を有する架橋型ポリマーを担体として用いることが好ましい。
In the step (a), the substance that specifically captures the sugar chain preferably has a functional group that reacts with the aldehyde group of the sugar chain. The functional group is more preferably a hydrazide group or an oxylamino group.
As such a sugar chain-trapping substance, a cross-linked polymer having a structure represented by the following (formula 1) or (formula 2) is preferably used as a carrier.


(R1,R2は−O−,−S−,−NH−,−CO−,−CON H−で中断されてもよい
炭素数1〜20の炭化水素鎖,R3,R4,R5はH,CH3,または炭素数2〜5の炭化水素鎖を示す。m , n はモノマーユニット数を示す。)
R 1 は、−O−,−S−,−NH−,−CO−,−CONH−で中断されてもよい炭素
数1〜20の炭化水素鎖を示し、例えば下記のものを挙げることができる。なお式中、a、b、dは1から5の整数を表し、cは1から10の整数を表す。

(R 1 and R 2 are hydrocarbon chains having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO—, —CON H—, R 3, R 4 and R 5 are H, CH 3 Or a hydrocarbon chain having 2 to 5 carbon atoms, m and n represent the number of monomer units.)
R 1 represents a hydrocarbon chain having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO— or —CONH—, and examples thereof include the following. . In the formula, a, b, and d represent an integer of 1 to 5, and c represents an integer of 1 to 10.

(m,nはモノマーユニット数を示す。)
その他市販のヒドラジド基含有架橋粒子、例えば、アフィゲルHz(BIO−RAD、153−6047)、CarboLink(TM)CouplingGel(PIERCE、20391)、UltraLink(R)HydrazideGel(PIERCE、53149)などを用いても良い
(M and n indicate the number of monomer units.)
Other commercially available hydrazide group-containing crosslinked particles such as Affigel Hz (BIO-RAD, 153-6047), CarboLink (TM) Coupling Gel (PIERCE, 20391), UltraLink (R) Hydrazide Gel (PIERCE, 53149) and the like may be used.

(b)の洗浄工程は、(a)の工程で糖鎖が捕捉された糖鎖捕捉物質を洗浄し、捕捉された糖鎖以外の生体由来物質を除去する工程である。
糖鎖以外の生体由来物質を除去する方法としては、例えば、疎水結合を解離する能力のあるカオトロピック試薬であるグアニジン水溶液や、単純に純水や水溶性緩衝液で洗浄する場合が多いが、本発明者は、界面活性剤、特に硫酸直鎖アルキルエステルナトリウム塩を、カオトロピック試薬等との併用でなく、単独で用いることが効果的であることを見出した。
The washing step (b) is a step of washing the sugar chain-trapping substance in which the sugar chain has been captured in the step (a) and removing biological substances other than the captured sugar chain.
Examples of methods for removing biological substances other than sugar chains include washing with an aqueous solution of guanidine, which is a chaotropic reagent capable of dissociating hydrophobic bonds, or simply with pure water or a water-soluble buffer. The inventor has found that it is effective to use a surfactant, particularly a sulfuric acid linear alkyl ester sodium salt alone, not in combination with a chaotropic reagent or the like.

硫酸直鎖アルキルエステル塩としては、例えば、sodium alkylsulfate, sulfuric acid alkyl ester sodium salt, alkylsulfate sodium salt, alcohol sulfuric ester sodium salt, sodium dodecyl sulfate, sodium lauryl sulfate等があるが、入手のし易さ、取
り扱いの容易さより、sodium dodecyl sulfate(ドデシル硫酸ナトリウム、SDSと略)を用いることが好ましい。
Examples of the linear alkyl ester salts of sulfuric acid include sodium alkylsulfate, sulfuric acid alkyl ester sodium salt, alkylsulfate sodium salt, alcohol sulfuric ester sodium salt, sodium dodecyl sulfate, sodium lauryl sulfate, and the like. From the standpoint of ease, sodium dodecyl sulfate (sodium dodecyl sulfate, abbreviated as SDS) is preferably used.

洗浄剤にドデシル硫酸ナトリウム塩を用いる場合、水溶液にして使用する。溶液としては、純水、緩衝液を好適に使用することができる。
ここで使用する緩衝液としては、例えばリン酸緩衝液、トリス緩衝液等を使用することができる。ドデシル硫酸ナトリウム水溶液の濃度としては、好ましくは0.05〜5重量%、より好ましくは0.1〜1重量%である。
洗浄工程における洗浄条件としては、温度が4〜40℃、洗浄時間が10秒〜30分である。
When sodium dodecyl sulfate is used as the cleaning agent, it is used as an aqueous solution. As the solution, pure water and a buffer solution can be preferably used.
As a buffer solution used here, a phosphate buffer solution, a Tris buffer solution, etc. can be used, for example. As a density | concentration of sodium dodecyl sulfate aqueous solution, Preferably it is 0.05 to 5 weight%, More preferably, it is 0.1 to 1 weight%.
As washing conditions in the washing step, the temperature is 4 to 40 ° C., and the washing time is 10 seconds to 30 minutes.

洗浄方法としては、ビーズの場合は、洗浄液に浸漬し、洗浄液の交換を繰り返すことで洗浄することができる。 As a washing method, in the case of beads, the beads can be washed by immersing them in a washing solution and repeating the exchange of the washing solution.

具体的には、遠沈管やチューブにビーズを入れ、洗浄液を加え、振とうの後、遠心操作によりビーズを沈殿させて、上清を除去する操作を繰り返すことにより洗浄する。
例えば、遠心チューブ内にビーズを入れ、洗浄液を加え、ビーズを自然沈降、または、遠心分離により強制的に沈降させた後、上清を除去する操作を繰り返すことで洗浄することができる。前記洗浄操作は3〜6回行うことが好ましい。
プレートの場合は、各ウェル内に洗浄液を分注、吸引除去を繰り返すことで簡便に洗浄することができる。また、必要に応じてプレートを遠心可能な遠心分離機を用いても良い。
Specifically, the beads are put into a centrifuge tube or a tube, a washing solution is added, and after shaking, washing is performed by repeating the operation of precipitating the beads by centrifugation and removing the supernatant.
For example, it can be washed by repeating the operation of putting beads in a centrifuge tube, adding a washing solution, and allowing the beads to settle naturally or by centrifugal separation and then removing the supernatant. The washing operation is preferably performed 3 to 6 times.
In the case of a plate, the washing liquid can be simply washed by dispensing and sucking and removing in each well. Moreover, you may use the centrifuge which can centrifuge a plate as needed.

また、チューブ状の容器であって、底面部に、液体透過可能で該ビーズが不透過な孔径を有するフィルターを装着するフィルターチューブを用いることも可能である。該フィルターチューブにビーズを入れて使用することで、洗浄に要した洗浄液を、フィルターを介して除去することが可能となり、前記の遠心操作後の上清除去の工程が必要なくなり、作業性の向上を図ることができる。 Moreover, it is also possible to use a filter tube which is a tube-shaped container and is equipped with a filter having a pore size that allows liquid permeation and does not allow permeation of the beads to the bottom surface portion. By using beads in the filter tube, it is possible to remove the washing solution required for washing through the filter, eliminating the need for the supernatant removal step after the centrifugal operation, and improving workability. Can be achieved.

また、6〜384穴のマルチウェルプレートの底部が前記フィルターを装着したものが各種市販されており、これらのプレートを用いることでハイスループット化することが可能である。特に96穴マルチウェルプレートは、溶液分注機器、吸引除去システム、およびプレートの搬送システム等が開発されており、ハイスループット化に最適である。 Various types of multi-well plates having 6 to 384 holes with the filter attached are commercially available, and high throughput can be achieved by using these plates. In particular, a 96-well multi-well plate has been developed as a solution dispensing device, a suction removal system, a plate transport system, and the like, and is optimal for high throughput.

この洗浄処理は、連続式にて糖鎖捕捉反応を行った場合には、カラムに洗浄溶液を通して糖鎖捕捉反応から連続的に処理してもよい。また、マルチプレートを用いた場合には、ろ過操作あるいは遠心操作により糖鎖捕捉物質以外の物質を除去してもよい。 In the case where the sugar chain capture reaction is performed in a continuous manner, this washing treatment may be performed continuously from the sugar chain capture reaction by passing a washing solution through the column. When a multiplate is used, substances other than the sugar chain-trapping substance may be removed by filtration or centrifugation.

(c)の工程では、糖鎖が捕捉された糖鎖捕捉物質から糖鎖を遊離させる、すなわち糖鎖を糖鎖捕捉物質から切り出す反応を行う。この工程では、酸と有機溶媒の混合溶媒あるいは酸と水と有機溶媒の混合溶媒にて、糖鎖捕捉物質に酸処理を行うのが好ましい。酸と水と有機溶媒の混合溶媒の場合、水の含有率は好ましくは0.1%〜90%、より好まし
くは0.1%〜80%、さらに好ましくは0.1%〜50%である。水の代わりに水性緩衝液を含有しても良い。緩衝液の濃度は好ましくは0.1mM〜1M、より好ましくは0.1mM〜500mM、さらに好ましくは1mM〜100mMである。反応溶液のpHは好ましくは2〜9、より好ましくは2〜7であり、さらに好ましくは2〜6である。使用する酸は例えば、酢酸、ギ酸、トリフルオロ酢酸、塩酸、クエン酸、リン酸、硫酸が好ましく、より好ましくは酢酸、ギ酸、トリフルオロ酢酸、リン酸、さらに好ましくは酢酸、トリフルオロ酢酸である。反応温度に関しては4〜90℃が好ましく、好ましくは25〜90℃で、さらに好ましくは40〜90℃である。反応時間は、10分間〜24時間、好ましくは10分間〜8時間、より好ましくは10分間〜3時間である。反応は、糖鎖を遊離させる反応を効率よく行う観点から、開放系で行って溶媒を完全に蒸発させることが好ましい。
In the step (c), a sugar chain is released from the sugar chain-trapping substance in which the sugar chain has been trapped, that is, a reaction for cutting out the sugar chain from the sugar chain-trapping substance is performed. In this step, it is preferable to subject the sugar chain-trapping substance to an acid treatment with a mixed solvent of an acid and an organic solvent or a mixed solvent of an acid, water and an organic solvent. In the case of a mixed solvent of acid, water and organic solvent, the water content is preferably 0.1% to 90%, more preferably 0.1% to 80%, and even more preferably 0.1% to 50%. . An aqueous buffer may be contained instead of water. The concentration of the buffer is preferably 0.1 mM to 1M, more preferably 0.1 mM to 500 mM, and even more preferably 1 mM to 100 mM. The pH of the reaction solution is preferably 2-9, more preferably 2-7, and even more preferably 2-6. The acid used is preferably, for example, acetic acid, formic acid, trifluoroacetic acid, hydrochloric acid, citric acid, phosphoric acid, sulfuric acid, more preferably acetic acid, formic acid, trifluoroacetic acid, phosphoric acid, and more preferably acetic acid, trifluoroacetic acid. . The reaction temperature is preferably 4 to 90 ° C, preferably 25 to 90 ° C, more preferably 40 to 90 ° C. The reaction time is 10 minutes to 24 hours, preferably 10 minutes to 8 hours, more preferably 10 minutes to 3 hours. The reaction is preferably performed in an open system to evaporate the solvent completely from the viewpoint of efficiently carrying out the reaction for releasing the sugar chain.

弱酸性から中性付近で、糖鎖遊離反応を行うことができるため、従来の強酸性処理、たとえば10%トリフルオロ酢酸処理による切出しのような強酸の存在下での切出し反応に比べて、シアル酸残基の脱離など糖鎖の加水分解などを引き起こすことを抑制することができるようになる。 Since the sugar chain release reaction can be carried out from weakly acidic to neutral, compared to conventional strong acid treatment, for example, excision reaction in the presence of strong acid such as excision by 10% trifluoroacetic acid treatment, It is possible to suppress the occurrence of sugar chain hydrolysis such as elimination of acid residues.

次の工程としては、糖鎖捕捉担体から糖鎖を遊離させる工程になる。
糖鎖捕捉担体から糖鎖を遊離する方法には、還元的アミノ化法と交換反応法がある。
還元アミノ化法は、例えばアミノ基を有する物質を過剰に加えることにより還元的アミノ化反応を惹起し、糖鎖捕捉担体より糖鎖を遊離する方法である。
また、交換反応法とは、ヒゾラゾン結合からオキシム試薬を用いたオキシム交換反応を利用した糖鎖を遊離する方法である。
The next step is a step of releasing the sugar chain from the sugar chain-trapping carrier.
There are a reductive amination method and an exchange reaction method as a method for releasing a sugar chain from a sugar chain-trapping carrier.
The reductive amination method is a method of inducing a reductive amination reaction by adding an excess of a substance having an amino group, for example, and releasing a sugar chain from a sugar chain-trapping carrier.
In addition, the exchange reaction method is a method of releasing a sugar chain from a hyzolazone bond using an oxime exchange reaction using an oxime reagent.

まず、還元アミノ化法について詳細に記載する。
還元アミノ化法は、糖鎖が捕捉された糖鎖捕捉物質から糖鎖を遊離させる、すなわち糖鎖を糖鎖捕捉物質から切り出す反応である。この工程では、酸と有機溶媒の混合溶媒あるいは酸と水と有機溶媒の混合溶媒にて、糖鎖捕捉物質に酸処理を行うのが好ましい。酸と水と有機溶媒の混合溶媒の場合、水の含有率は好ましくは0.1%〜90%、より好ましくは0.1%〜80%、さらに好ましくは0.1%〜50%である。水の代わりに水性緩衝液を含有しても良い。緩衝液の濃度は好ましくは0.1mM〜1M、より好ましくは0.1mM〜500mM、さらに好ましくは1mM〜100mMである。反応溶液のp H は好ましくは2〜9、より好ましくは2〜7であり、さらに好ましくは2〜6である。使用する酸は例えば、酢酸、ギ酸、トリフルオロ酢酸、塩酸、クエン酸、リン酸、硫酸が好ましく、より好ましくは酢酸、ギ酸、トリフルオロ酢酸、リン酸、さらに好ましくは酢酸、トリフルオロ酢酸である。反応温度に関しては4〜90℃が好ましく、好ましくは25〜90℃で、さらに好ましくは40〜90℃である。反応時間は、10分間〜24時間、好ましくは10分間〜8時間、より好ましくは10分間〜3時間である。反応は、糖鎖を遊離させる反応を効率よく行う観点から、開放系で行って溶媒を完全に蒸発させることが好ましい。
First, the reductive amination method will be described in detail.
The reductive amination method is a reaction in which a sugar chain is released from a sugar chain-trapping substance in which the sugar chain has been trapped, that is, a sugar chain is excised from the sugar chain-trapping substance. In this step, it is preferable to subject the sugar chain-trapping substance to an acid treatment with a mixed solvent of an acid and an organic solvent or a mixed solvent of an acid, water and an organic solvent. In the case of a mixed solvent of acid, water and organic solvent, the water content is preferably 0.1% to 90%, more preferably 0.1% to 80%, and even more preferably 0.1% to 50%. . An aqueous buffer may be contained instead of water. The concentration of the buffer is preferably 0.1 mM to 1M, more preferably 0.1 mM to 500 mM, and even more preferably 1 mM to 100 mM. The pH of the reaction solution is preferably 2-9, more preferably 2-7, and even more preferably 2-6. The acid used is preferably, for example, acetic acid, formic acid, trifluoroacetic acid, hydrochloric acid, citric acid, phosphoric acid, sulfuric acid, more preferably acetic acid, formic acid, trifluoroacetic acid, phosphoric acid, and more preferably acetic acid, trifluoroacetic acid. . The reaction temperature is preferably 4 to 90 ° C, preferably 25 to 90 ° C, more preferably 40 to 90 ° C. The reaction time is 10 minutes to 24 hours, preferably 10 minutes to 8 hours, more preferably 10 minutes to 3 hours. The reaction is preferably performed in an open system to evaporate the solvent completely from the viewpoint of efficiently carrying out the reaction for releasing the sugar chain.

弱酸性から中性付近で、糖鎖遊離反応を行うことができるため、従来の強酸性処理、たとえば1 0 % トリフルオロ酢酸処理による切出しのような強酸の存在下での切出し反応
に比べて、シアル酸残基の脱離など糖鎖の加水分解などを引き起こすことを抑制することができるようになる。
Since the sugar chain release reaction can be carried out from weakly acidic to neutral, compared to the conventional cleavage reaction in the presence of a strong acid such as cleavage by 10% trifluoroacetic acid treatment, It is possible to suppress the occurrence of sugar chain hydrolysis such as elimination of sialic acid residues.

続けて上記工程で得られた遊離の糖鎖を標識化することも可能である。
標識化の方法は、アミノ基を有する化合物により、例えば還元的アミノ化反応を用いて任意のアミノ化合物で標識化する反応であることが好ましい。反応系においてp H が酸性から中性の条件であるのが好ましく、好ましくは2〜9、より好ましくは2〜8であり、さらに好ましくは2〜7である。反応温度に関しては4〜90℃が好ましく、好ましくは25〜90℃ で、さらに好ましくは40〜90℃である。アミノ化合物の濃度は、1m
M 〜10Mであるのが好ましく、還元剤の濃度は、1mM〜10Mであるのが好ましい
。反応時間は、10分間〜24時間、好ましくは10分間〜8時間、より好ましくは10分間〜 3時間である。
It is also possible to label the free sugar chain obtained in the above step.
The labeling method is preferably a reaction in which an amino group-containing compound is labeled with any amino compound using, for example, a reductive amination reaction. In the reaction system, the pH is preferably from acidic to neutral, preferably from 2 to 9, more preferably from 2 to 8, and even more preferably from 2 to 7. The reaction temperature is preferably 4 to 90 ° C, preferably 25 to 90 ° C, more preferably 40 to 90 ° C. The concentration of the amino compound is 1 m
It is preferable that it is M-10M, and it is preferable that the density | concentration of a reducing agent is 1 mM-10M. The reaction time is 10 minutes to 24 hours, preferably 10 minutes to 8 hours, more preferably 10 minutes to 3 hours.

ここで、アミノ基を有する化合物は、紫外可視吸収特性又は蛍光特性を有することが好ましく、具体的には下記の群から選ばれる少なくとも1つであることが好ましい。
8−Aminopyrene−1,3,6−trisulfonate,8−Aminonaphthalene−1,3,6−trisulphonate,7−amino−1,3−naphtalenedisulfonicacid,2−Amino9(10H)−acridone,5−Aminofluorescein,Dansylethylenediamine,2−Aminopyridine,7−Amino−4−methylcoumarine,2−Aminobenzamide,2−Aminobenzoicacid,3−Aminobenzoicacid,7−Amio−1−naphthol,3−(Acetylamino)−6−aminoacrdine,2−Amino−6−cyanoethylpyridine,Ethylp−amino
benzoate,p−Aminobenzonitrile,及び7−aminonaphthalene−1,3−disulfonicacid。
Here, the compound having an amino group preferably has ultraviolet-visible absorption characteristics or fluorescence characteristics, and specifically, is preferably at least one selected from the following group.
8-Aminopyrene-1,3,6-trisulfonate, 8-Aminophathalene-1,3,6-trisulphonate, 7-amino-1,3-naphthalenedisulfonicacid, 2-Amino9 (10H) -acidonediene, 5-Aminofluoresceine, Dynefluorescence -Aminopyridine, 7-Amino-4-methylcoumarin, 2-Aminobenzomide, 2-Aminobenzoicacid, 3-Aminobenzoicacid, 7-Amio-1-naphthol, 3- (Acetylamino) -6-aminoacrino6-caminoaminocrine6-caminoamino ethylpyridine, Ethylp-amino
benzoate, p-Aminobenzonitrile, and 7-aminophenathalene-1,3-disulphonicacid.

特に、アミノ化合物が2−aminobenzamideの場合、pHが酸性から中性の条件で、好ましくは2〜9、より好ましくは2〜8であり、さらに好ましくは2〜7である。反応温度に関しては4〜90℃、好ましくは30〜90℃で、さらに好ましくは40〜80℃である。アミノ化合物の濃度は1mM〜10M、好ましくは10mM〜10Mで、さらに好ましくは100mM〜1Mである。還元剤の濃度は、1mM〜10M、好ましくは10mM〜10M 、さらに好ましくは100mM〜2Mである。反応時間は、10
分間〜24時間、好ましくは10分間〜8時間、さらに好ましくは1時間〜3時間である。
また、還元剤は例えば、シアノ水素化ホウ素ナトリウム、メチルアミンボラン、ジメチルアミンボラン、トリメチルアミンボラン、ピコリンボラン、ピリジンボランなどが使用可能であるが、シアノ水素化ホウ素ナトリウムを使用するのが反応性の面から考えて好ましい。
In particular, when the amino compound is 2-aminobenzamide, the pH is preferably 2 to 9, more preferably 2 to 8, and further preferably 2 to 7 under acidic to neutral conditions. Regarding the reaction temperature, it is 4-90 degreeC, Preferably it is 30-90 degreeC, More preferably, it is 40-80 degreeC. The concentration of the amino compound is 1 mM to 10M, preferably 10 mM to 10M, and more preferably 100 mM to 1M. The concentration of the reducing agent is 1 mM to 10M, preferably 10 mM to 10M, more preferably 100 mM to 2M. The reaction time is 10
Minutes to 24 hours, preferably 10 minutes to 8 hours, and more preferably 1 hour to 3 hours.
As the reducing agent, for example, sodium cyanoborohydride, methylamine borane, dimethylamine borane, trimethylamine borane, picoline borane, pyridine borane and the like can be used, but it is reactive to use sodium cyanoborohydride. It is preferable from the viewpoint.

先の糖鎖切り離し工程後、得られる溶液は標識された糖鎖と過剰量加えた未反応アミノ化合物、還元剤が存在するため、これら余剰試薬を除去する工程を行うのが好ましい。シリカカラムによる除去、ゲル濾過による除去、イオン交換樹脂による除去、いずれの方法を用いても良いが、シアル酸の離脱を防ぐために使用する溶媒は中性であるのが好ましい。 After the previous sugar chain separation step, the resulting solution contains a labeled sugar chain, an unreacted amino compound and a reducing agent added in excess, and therefore, a step of removing these excess reagents is preferably performed. Any method of removal by silica column, removal by gel filtration, removal by ion exchange resin may be used, but the solvent used to prevent sialic acid from leaving is preferably neutral.

もう一方の交換反応は、洗浄操作後、アミノオキシ基を有する化合物を作用させることにより、ヒドラゾン−オキシム交換反応によって糖鎖がポリマー粒子から切り離され、同時にアミノオキシ化合物によってラベル化される反応を用いて糖鎖を遊離させる。 The other exchange reaction uses a reaction in which a sugar chain is separated from a polymer particle by a hydrazone-oxime exchange reaction and simultaneously labeled with an aminooxy compound by allowing a compound having an aminooxy group to act after the washing operation. To release sugar chains.

アミノオキシ基を有する化合物としては、下記から選ばれた物質またはその塩であることが好ましい。
O−benzylhydroxylamine; O-phenylhydroxylamine; O−(2,3,4,5,6−pentafluorobenzyl)hydroxylamine; O−(4−nitrobenzyl)hydroxylamine;
2−aminooxypyridine; 2−aminooxymethylpyr
idine; 4−[(aminooxyacetyl)amino]benzoic a
cid methyl ester; 4−[(aminooxyacetyl)amino]benzoic acid ethyl ester; 4−[(aminooxyacetyl)amino]benzoic acid n−butylester.
The compound having an aminooxy group is preferably a substance selected from the following or a salt thereof.
O-phenylhydroxylamine; O- (2,3,4,5,6-pentafluorobenzoyl) hydroxylamine; O- (4-nitrobenzoyl) hydrolamine;
2-aminoxypyridine; 2-aminooxymethylpyr
idin; 4-[(aminooxyethyl) amino] benzoic a
cid methyl ester; 4-[(aminooxyethyl) amino] benzoic acid ethyl ester; 4-[(aminooxyethyl) amino] benzoic acid n-butylester.

アミノオキシ基を有する化合物は、アルギニン残基、トリプトファン残基、フェニルアラニン残基、チロシン残基、システイン残基およびこれら誘導体の少なくとも一つからなる部分を含むことが好ましい。特に下記(式3)で表される構造を有するものが好ましい。
The compound having an aminooxy group preferably contains a moiety consisting of at least one of an arginine residue, a tryptophan residue, a phenylalanine residue, a tyrosine residue, a cysteine residue and a derivative thereof. In particular, those having a structure represented by the following (formula 3) are preferable.

交換反応時の反応液のpHは、pH2〜7が好ましく、pH3〜6がより好ましく、pH3.5〜5.5が最も好ましい。酢酸/アセトニトリル溶液を加えることにより、反応液を上記のpHに調整することができる。交換反応時の温度は、50〜95℃が好ましく、60〜90℃がより好ましく、70〜90℃が最も好ましい。交換反応時、反応容器を開放して加熱操作を行うことにより、溶媒を蒸発させながら反応を進め、最終的に乾固させることにより、効率よく交換反応を行うことができる。   The pH of the reaction solution during the exchange reaction is preferably pH 2 to 7, more preferably pH 3 to 6, and most preferably pH 3.5 to 5.5. The reaction solution can be adjusted to the above pH by adding an acetic acid / acetonitrile solution. The temperature during the exchange reaction is preferably 50 to 95 ° C, more preferably 60 to 90 ° C, and most preferably 70 to 90 ° C. During the exchange reaction, by opening the reaction vessel and performing a heating operation, the reaction proceeds while evaporating the solvent, and finally, the exchange reaction can be efficiently performed by drying.

回収したラベル化糖鎖溶液はそのまま、あるいは、過剰に含まれるアミノオキシ化合物を除去したのち、質量分析法やHPLCなどの分析手段によって分析することができる。以上、糖鎖精製方法について説明したが、次にその具体的方法について実施例を挙げて説明する。
The collected labeled sugar chain solution can be analyzed as it is or after removing the excessively contained aminooxy compound, by an analytical means such as mass spectrometry or HPLC. The sugar chain purification method has been described above. Next, the specific method will be described with reference to examples.

以下、実施例で本発明を説明するがこれに限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but is not limited thereto.

<実施例>
(糖鎖サンプルの調整)
ウシ血清由来IgG(SIGMA、I5506)1 mgを100mM重炭酸アンモニウ
ム(和光純薬、017−02875)50μLに溶解させた後、120mM DTT(ジ
チオスレイトール、SIGMA、D9779)を5μL加え、60℃で30分間反応させた。反応終了後、123mM IAA(ヨードアセトアミド、和光純薬、093−02152)10μLを加えて遮光下、室温で1時間反応させた。続いて400Uのトリプシン(SIGMA、T0303)によってプロテアーゼ処理をし、タンパク質部分をペプチド断片化した。反応溶液を90℃で5分処理した後、5UのグリコシダーゼF(Roche、1−365−193)による処理を行って糖鎖をペプチドから遊離させ、予備処理済の生体試料を得た。
<Example>
(Adjustment of sugar chain sample)
1 mg of bovine serum-derived IgG (SIGMA, I5506) was dissolved in 50 μL of 100 mM ammonium bicarbonate (Wako Pure Chemicals, 017-02875), and then 5 μL of 120 mM DTT (dithiothreitol, SIGMA, D9779) was added at 60 ° C. The reaction was allowed for 30 minutes. After completion of the reaction, 10 μL of 123 mM IAA (iodoacetamide, Wako Pure Chemical, 093-02152) was added and reacted at room temperature for 1 hour under light shielding. Subsequently, protease treatment was performed with 400 U of trypsin (SIGMA, T0303) to fragment the protein portion into peptides. The reaction solution was treated at 90 ° C. for 5 minutes, and then treated with 5 U of glycosidase F (Roche, 1-365-193) to release sugar chains from the peptide to obtain a pretreated biological sample.

(糖鎖捕捉担体による糖鎖精製)
糖鎖捕捉用の担体であるヒドラジド基を有する粒子5mg(BlotGlyco(R))、住友ベークライト株式会社製、BS−45603)が入ったディスポカラムに上記糖鎖溶液20μLおよび180μLの2%酢酸/アセトニトリル溶液を加え、80℃で1時間反応させた。反応は開放系で行い、溶媒が完全に蒸発し粒子が乾固した状態であることを
目視で確認した。0.5%SDS水溶液で洗浄後、さらに水、トリエチルアミン溶液にて粒子を洗浄した。続いて10%無水酢酸/メタノールを添加し、室温で30分間反応させ、未反応のヒドラジド基をキャッピングした。キャッピング後、水にて粒子を洗浄した。
(Sugar chain purification by sugar chain capture carrier)
The sugar chain solution 20 μL and 180 μL of 2% acetic acid / acetonitrile in a disposable column containing 5 mg of particles having a hydrazide group (BlotGlyco®), manufactured by Sumitomo Bakelite Co., Ltd., BS-45603) as a carrier for capturing sugar chains The solution was added and reacted at 80 ° C. for 1 hour. The reaction was carried out in an open system, and it was visually confirmed that the solvent was completely evaporated and the particles were dried. After washing with a 0.5% SDS aqueous solution, the particles were further washed with water and a triethylamine solution. Subsequently, 10% acetic anhydride / methanol was added and reacted at room temperature for 30 minutes to cap unreacted hydrazide groups. After capping, the particles were washed with water.

続いて、粒子の入ったディスポカラムに超純水20μLおよび2%酢酸/アセトニトリ
ル溶液180μLを加え、70℃で1.5時間反応させ、糖鎖捕捉用担体から糖鎖を遊離した。反応は開放系で行い、溶媒が完全に蒸発し粒子が乾固した状態であることを目視で確認した。
Subsequently, 20 μL of ultrapure water and 180 μL of a 2% acetic acid / acetonitrile solution were added to the disposable column containing the particles and reacted at 70 ° C. for 1.5 hours to release sugar chains from the sugar chain-trapping carrier. The reaction was carried out in an open system, and it was visually confirmed that the solvent was completely evaporated and the particles were dried.

(糖鎖の回収)
乾固した粒子に水50μLを加え、溶液のみを回収した。同様の操作をさらに2回実施し、合計150μLの糖鎖溶液を得た。
(Collecting sugar chains)
50 μL of water was added to the dried particles, and only the solution was recovered. The same operation was further performed twice to obtain a total sugar chain solution of 150 μL.

(糖鎖の検出)
得られた糖鎖溶液を得られた糖鎖サンプルをマトリックス支援レーザーイオン化−飛行時間型質量分析器(MALDI-TOF-MS)(MALDI-TOF-MS, Bruker社製 'autoflex III')によ
り分析した。マトリックスには2,5-ジヒドロキシ安息香酸を用いた。測定結果を図1(下段)に示す。
(Sugar chain detection)
The resulting glycan solution was analyzed with a matrix-assisted laser ionization-time-of-flight mass spectrometer (MALDI-TOF-MS) (MALDI-TOF-MS, Bruker's 'autoflex III'). . 2,5-Dihydroxybenzoic acid was used for the matrix. The measurement results are shown in FIG.

<比較例>
(糖鎖サンプルの調整)
実施例と同様に実施。
<Comparative example>
(Adjustment of sugar chain sample)
Implemented in the same way as the example.

(糖鎖捕捉担体による糖鎖精製)
粒子の洗浄に用いる洗浄液を0.5%SDS水溶液からグアニジン塩酸塩水溶液に変更した以外は実施例に同じ。
(Sugar chain purification by sugar chain capture carrier)
The same as in the Examples, except that the cleaning solution used for cleaning the particles was changed from a 0.5% SDS aqueous solution to a guanidine hydrochloride aqueous solution.

(糖鎖の回収)
実施例と同様に実施。
(Collecting sugar chains)
Implemented in the same way as the example.

(糖鎖の検出)
実施例と同様に実施。測定結果を図1の上段に示す。
(Sugar chain detection)
Implemented in the same way as the example. The measurement results are shown in the upper part of FIG.

(効果)
グアニジン塩酸塩水溶液による洗浄では除き切れなかった、夾雑物ピークをSDSによる洗浄によって排除することができる。


(effect)
Contaminant peaks that could not be removed by washing with an aqueous guanidine hydrochloride solution can be eliminated by washing with SDS.


Claims (8)

生体試料中に含有する糖鎖を精製する方法であって、
(a)生体試料から糖鎖を特異的に捕捉する物質である糖鎖捕捉物質に糖鎖を捕捉する工程、
(b)糖鎖を捕捉した糖鎖捕捉物質を洗浄する工程
(c)糖鎖捕捉物質から糖鎖を遊離させる工程、
を含み、(a)、(b)、(c)の工程を同一の反応容器内で連続して行い
(b)の工程では、(a)の工程で糖鎖が捕捉された糖鎖捕捉物質を、界面活性剤を添加した水溶性洗浄液で洗浄し、
当該界面活性剤が、硫酸直鎖アルキルエステル塩であり、前記硫酸直鎖アルキルエステル塩がドデシル硫酸ナトリウムであり、かつカオトロピック試薬等と併用しないことを特徴とする糖鎖精製方法。
A method for purifying sugar chains contained in a biological sample,
(A) a step of capturing a sugar chain in a sugar chain-trapping substance that is a substance that specifically captures a sugar chain from a biological sample;
(B) a step of washing the sugar chain-trapping substance that has captured the sugar chain (c) a step of releasing the sugar chain from the sugar chain-trapping substance;
In the step (b), the steps (a), (b), and (c) are continuously performed in the same reaction vessel. In the step (b), the sugar chain-trapping substance in which the sugar chain is captured in the step (a) Is washed with a water-soluble cleaning solution to which a surfactant is added,
The surfactant, Ri sulfate linear alkyl ester salts der, wherein a sulfate linear alkyl ester salt, sodium dodecyl sulfate, and a sugar chain purification method characterized by not in combination with chaotropic agents, and the like.
硫酸直鎖アルキルエステル塩の濃度が0.05〜5重量%である請求項1に記載の糖鎖精製方法。 The method for purifying a sugar chain according to claim 1, wherein the concentration of the sulfuric acid linear alkyl ester salt is 0.05 to 5% by weight. (a)の工程において、糖鎖捕捉物質が糖鎖のアルデヒド基と特異的に反応する官能基を有する担体である請求項1または2いずれか1項に記載の糖鎖精製方法。 The method for purifying a sugar chain according to claim 1 or 2 , wherein in the step (a), the sugar chain-trapping substance is a carrier having a functional group that specifically reacts with an aldehyde group of the sugar chain. 前記官能基が、ヒドラジド基又はアミノオキシ基である請求項記載の糖鎖精製方法。 The sugar chain purification method according to claim 3 , wherein the functional group is a hydrazide group or an aminooxy group. 前記糖鎖捕捉物質が下記の(式1)で表される架橋型ポリマー構造を有するものである請求項記載の糖鎖精製方法。

(R1,R2は−O−,−S−,−NH−,−CO−,−CONH−で中断されてもよい炭素数1〜20の炭化水素鎖,R3,R4,R5はH,CH3,または炭素数2〜5の炭化水素鎖を示す。m,nはモノマーユニット数を示す。)
The method for purifying a sugar chain according to claim 4, wherein the sugar chain-trapping substance has a crosslinked polymer structure represented by the following (formula 1).

(R 1, R 2 are hydrocarbon chains having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO—, —CONH—, R 3, R 4, R 5 are H, CH 3, Or a hydrocarbon chain having 2 to 5 carbon atoms, m and n represent the number of monomer units.)
前記糖鎖捕捉物質が下記の(式2)で表される架橋型ポリマー構造を有するものである請求項記載の糖鎖精製方法。

(m,nはモノマーユニット数を示す。)
6. The method for purifying a sugar chain according to claim 5, wherein the sugar chain-trapping substance has a crosslinked polymer structure represented by the following (formula 2).

(M and n indicate the number of monomer units.)
(c)の工程において、糖鎖捕捉物質に酸処理を行なう工程を有する請求項1乃至いずれか1項に記載の糖鎖精製方法。 The method for purifying a sugar chain according to any one of claims 1 to 6, further comprising a step of performing an acid treatment on the sugar chain-trapping substance in the step (c). (a)および(c)の工程において、反応溶媒を蒸発させる工程を有する請求項1乃至いずれか1項に記載の糖鎖精製方法。 The method for purifying a sugar chain according to any one of claims 1 to 7, further comprising a step of evaporating the reaction solvent in the steps (a) and (c).
JP2012255762A 2012-11-22 2012-11-22 Sugar chain purification method Expired - Fee Related JP6064541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255762A JP6064541B2 (en) 2012-11-22 2012-11-22 Sugar chain purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255762A JP6064541B2 (en) 2012-11-22 2012-11-22 Sugar chain purification method

Publications (2)

Publication Number Publication Date
JP2014101470A JP2014101470A (en) 2014-06-05
JP6064541B2 true JP6064541B2 (en) 2017-01-25

Family

ID=51024270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255762A Expired - Fee Related JP6064541B2 (en) 2012-11-22 2012-11-22 Sugar chain purification method

Country Status (1)

Country Link
JP (1) JP6064541B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624701A (en) * 1985-06-29 1987-01-10 Maruyama Chisato Lipopolysaccharide and its production
JPH0813847B2 (en) * 1987-08-11 1996-02-14 日本化薬株式会社 Fractionation method of hyaluronic acid
US5668272A (en) * 1995-06-30 1997-09-16 National Research Council Of Canada Method for producing synthetic N-linked glycoconjugates
CN1753864B (en) * 2002-12-26 2010-05-05 盐野义制药株式会社 Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
US9340651B2 (en) * 2006-08-09 2016-05-17 Sumitomo Bakelite Company Limited Sugar chain-capturing substance and use thereof

Also Published As

Publication number Publication date
JP2014101470A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5500067B2 (en) Glycan labeling method
JP5872768B2 (en) Glycan sample preparation method
JP5076878B2 (en) Method for analyzing glycoprotein sugar chains
WO2012124609A1 (en) Sugar chain fluorescent labeling method
EP2305692A1 (en) Method for releasing and labelling O-glycans
JP2013068594A (en) Amidation modification method of sialo-sugar chain
JP5125637B2 (en) Glycan sample preparation method
JP2009142238A (en) Method for isolating and detecting cell surface sugar chain
JP2009229426A (en) Sugar chain analysis
JP6238087B2 (en) Method for preparing labeled sugar chain sample
JP5983347B2 (en) Sugar chain purification method
JP6064541B2 (en) Sugar chain purification method
JP5392500B2 (en) Method for analyzing sugar chains by mass spectrometry
JP2013076629A (en) METHOD FOR DISCRIMINATING α2,6-SIALO-SUGAR CHAIN FROM α2,3-SIALO-SUGAR CHAIN
JP6048036B2 (en) Purification method of sugar chain
WO2004077048A1 (en) Method of separating sugar from compound having glycoside bond, sugar separation system, sugar separation agent kit, standardized sample for sugar separation and assessment system
WO2015146514A1 (en) Method for suppressing desialylation of sugar chain in preparation of labeled sugar chain sample
JP2012189439A (en) Method for manufacturing sugar chain sample
JP5682850B1 (en) Compounds for labeling glycan samples
JP2022122455A (en) Method and kit for labeling sugar chain
JP2022026938A (en) Method and kit for labeling sugar chains
JP2015040817A (en) Preparation method of glycoprotein
JP2009216608A (en) Sample preparation method
JP2013076649A (en) Method for manufacturing monosaccharide analysis sample
WO2016017192A1 (en) Labeling agent, method for preparing labeled sugar chain sample, method for analyzing sugar chain, and method for inhibiting degradation of compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6064541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees