JP6064199B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP6064199B2
JP6064199B2 JP2013094379A JP2013094379A JP6064199B2 JP 6064199 B2 JP6064199 B2 JP 6064199B2 JP 2013094379 A JP2013094379 A JP 2013094379A JP 2013094379 A JP2013094379 A JP 2013094379A JP 6064199 B2 JP6064199 B2 JP 6064199B2
Authority
JP
Japan
Prior art keywords
heat
heated
furnace
soaking plate
plate unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013094379A
Other languages
Japanese (ja)
Other versions
JP2014214999A (en
Inventor
怜明 北條
怜明 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013094379A priority Critical patent/JP6064199B2/en
Publication of JP2014214999A publication Critical patent/JP2014214999A/en
Application granted granted Critical
Publication of JP6064199B2 publication Critical patent/JP6064199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)
  • Tunnel Furnaces (AREA)

Description

本発明は、炉体内部に搬送される被加熱物への熱処理を行う熱処理装置に関するものである。   The present invention relates to a heat treatment apparatus for performing a heat treatment on an object to be heated conveyed inside a furnace body.

熱処理装置は、化学反応を伴う合成、不純物の除去、結晶構造の改善、又は、粒子の成長などを目的に、比較的高温で長時間の熱処理を行う装置である。このような熱処理装置は、被加熱物の上部及び下部に列設したヒータからの輻射熱又は熱風等で被加熱物を加熱する装置であり、被加熱物の場所ごとに温度の差異無く、効率良く加熱することが求められている。   The heat treatment apparatus is an apparatus that performs heat treatment for a long time at a relatively high temperature for the purpose of synthesis involving chemical reaction, removal of impurities, improvement of crystal structure, or particle growth. Such a heat treatment apparatus is an apparatus that heats an object to be heated with radiant heat or hot air from heaters arranged on the upper and lower parts of the object to be heated, and has no temperature difference for each place of the object to be heated, and efficiently. There is a need to heat.

しかし、従来の熱処理装置の温度分布は、一定の温度ばらつきを含んでいる。前記温度ばらつきの主な要因は、熱処理装置の炉内で被加熱物が搬送される方向(炉の長手方向)と直交する、炉の幅方向(以後、特に断りのない限り、「炉幅方向」と称する。)の両端部の温度が、他の部分と比較して相対的に低くなるためである。即ち、炉幅方向で生じる温度差異の影響により、被加熱物の面内温度ばらつきを増大させる。このばらつきの原因は、一般に炉体を構成する炉壁の温度が低いことから、炉幅方向の中央部の放散熱量に対して、炉壁側の放散熱量が多いことなどが挙げられる。また、被加熱物が搬送される方向においては、炉内雰囲気変動に伴うヒータ制御ばらつき又は搬送面の輻射率ばらつきなどの影響によって、被加熱物の面内温度ばらつきが発生しうる。これらの温度差異は、即、品質のバラつきに結びつくことから、温度差異を一定の範囲内に収めるべく、効率良く加熱できる性能が求められている。そこで、被加熱物の温度差異を一定の範囲内に収める為に、被加熱物を二次輻射によって均熱化させる均熱板を設ける手段が知られており、例えば特許文献1の方式が挙げられる。   However, the temperature distribution of the conventional heat treatment apparatus includes a certain temperature variation. The main cause of the temperature variation is the width direction of the furnace (hereinafter referred to as “furnace width direction unless otherwise specified”), which is orthogonal to the direction (longitudinal direction of the furnace) in which the object to be heated is conveyed in the furnace of the heat treatment apparatus. This is because the temperature at both ends of the second portion is relatively lower than the other portions. That is, the in-plane temperature variation of the object to be heated is increased by the influence of the temperature difference that occurs in the furnace width direction. The cause of this variation is that, generally, the temperature of the furnace wall constituting the furnace body is low, so the amount of heat dissipated on the furnace wall side is greater than the amount of heat dissipated in the center in the furnace width direction. Further, in the direction in which the object to be heated is conveyed, in-plane temperature variation of the object to be heated may occur due to the influence of heater control variation or radiation rate variation on the conveying surface due to furnace atmosphere fluctuation. Since these temperature differences immediately lead to variations in quality, the ability to heat efficiently is required to keep the temperature differences within a certain range. Therefore, in order to keep the temperature difference of the object to be heated within a certain range, means for providing a heat equalizing plate that equalizes the temperature of the object to be heated by secondary radiation is known. For example, the method of Patent Document 1 is cited. It is done.

図13は特許文献1の説明図である。図13の熱処理炉20は、炉壁21、22、24、25と、相対面する上下の前記炉壁21、22に配置されたヒータ23と、熱処理炉20の横の炉壁24、25に設置されかつ炉20内を均熱化する反射板としての熱処理用シリコンプレート26とを備えることを特徴とする。この熱処理用シリコンプレート26を炉壁24、25に設けることによって、ヒータ23の熱が、熱処理用シリコンプレート26によって炉20内に反射されるので、炉内温度が均一化される。図13の構造によれば、熱処理炉20の炉内を800[℃]に昇温した場合、炉内中心部と炉内周辺部との温度差は5[℃]である。   FIG. 13 is an explanatory diagram of Patent Document 1. FIG. The heat treatment furnace 20 of FIG. 13 includes furnace walls 21, 22, 24, 25, heaters 23 arranged on the upper and lower furnace walls 21, 22 facing each other, and furnace walls 24, 25 next to the heat treatment furnace 20. And a heat-treating silicon plate 26 as a reflecting plate that is installed and soaks the inside of the furnace 20. By providing the heat treatment silicon plate 26 on the furnace walls 24 and 25, the heat of the heater 23 is reflected into the furnace 20 by the heat treatment silicon plate 26, so that the furnace temperature is made uniform. According to the structure of FIG. 13, when the temperature of the inside of the heat treatment furnace 20 is raised to 800 [° C.], the temperature difference between the furnace center and the furnace periphery is 5 [° C.].

特開2008‐138986号公報JP 2008-138986 A

しかしながら、特許文献1に代表される従来の熱処理装置においては、被加熱物の配置位置によって温度ばらつきが生じる問題、また、周囲環境又は経時変化によっては炉内温度が変化したり、基板の熱容量が異なる場合には、ヒータ設定値又は処理時間が同じであっても、基板の温度変化の状況が異なり、基板の温度分布にばらつきが生じるといった問題がある。   However, in the conventional heat treatment apparatus represented by Patent Document 1, there is a problem that temperature variation occurs depending on the arrangement position of the object to be heated, the temperature in the furnace changes depending on the surrounding environment or changes over time, and the heat capacity of the substrate increases. If they are different, there is a problem that even if the heater setting value or the processing time is the same, the temperature change state of the substrate is different and the temperature distribution of the substrate varies.

従って、本発明の目的は、前記課題を解決することにあって、被加熱物を環境変化による炉温の変動又は被加熱物品種等に関わらず、均一に熱処理できる熱処理装置を提供するものである。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and to provide a heat treatment apparatus capable of uniformly heat treating an object to be heated regardless of a change in furnace temperature due to environmental changes or the kind of the object to be heated. is there.

上記目的を達成するために、本発明の態様は以下のように構成する。   In order to achieve the above object, an aspect of the present invention is configured as follows.

本発明の一つの態様は、内部空間で被加熱物を熱処理する炉体と、
前記炉体の内部の熱源と、
前記被加熱物と前記熱源との間に前記熱源からの輻射を二次輻射し、前記被加熱物を均熱化させる均熱板ユニットとを有する熱処理装置において、
前記均熱板ユニットは、複数の矩形状の開口部が設けられた均熱板を、前記被加熱物の搬送方向とは直交する炉幅方向に配置し、前記各開口部の長手方向が前記搬送方向沿いに配置され、前記各開口部の短手方向が前記炉幅方向に配置されるとともに、前記均熱板は、前記熱源に近い熱源側均熱板と、前記熱源から遠く前記被加熱物に近い被加熱物側均熱板とで構成され、前記熱源側均熱板と前記被加熱物側均熱板とが前記搬送方向及び前記炉幅方向と直交する炉体垂直方向に互いに接触して重ねられた状態で配置されており、前記ヒータ側均熱板の表面の輻射率をε、前記被加熱物側均熱板の表面の輻射率をεとするとき、Δε=|ε−ε|で示される輻射率差がΔε≧0.6であり、かつε≧0.8であり、前記均熱板ユニットは、前記搬送方向と直交する炉幅方向に対して、三分割以上に複数に分割されており、
さらに、前記熱処理装置は、前記熱源側均熱板と前記被加熱物側均熱板とを炉幅方向に相対的にスライドさせて、前記熱源側均熱板の開口部と前記被加熱物側均熱板の開口部との位相を一致した状態と位置ずれした状態との間で移動させる駆動部を備える、熱処理装置を提供する。
One aspect of the present invention is a furnace body for heat-treating an object to be heated in an internal space;
A heat source inside the furnace body;
In a heat treatment apparatus having a soaking plate unit that secondaryly radiates radiation from the heat source between the heated object and the heat source and soaks the heated object.
The soaking plate unit arranges soaking plates provided with a plurality of rectangular openings in the furnace width direction perpendicular to the conveying direction of the heated object, and the longitudinal direction of each opening is the above It is arranged along the conveying direction, and the short direction of each opening is arranged in the furnace width direction, and the heat equalizing plate is a heat source side heat equalizing plate close to the heat source and far from the heat source. The heat source side soaking plate and the to-be-heated object side soaking plate are in contact with each other in the furnace body vertical direction orthogonal to the transport direction and the furnace width direction. When the emissivity of the surface of the heater-side soaking plate is ε h and the emissivity of the surface of the heated object-side soaking plate is ε w , Δε = | ε hw | 0.6 emissivity difference [Delta] [epsilon] ≧ represented by, and a epsilon h ≧ 0.8, the soaking plate unit , To the furnace width direction perpendicular to the conveying direction, it is divided into a plurality of thirds or more,
Further, the heat treatment apparatus slides the heat source side heat equalizing plate and the heated object side heat equalizing plate relatively in the furnace width direction so that the opening of the heat source side heat equalizing plate and the heated object side Provided is a heat treatment apparatus including a drive unit that moves between a state in which a phase with an opening of a heat equalizing plate coincides with a state in which the phase shifts.

本発明の前記態様にかかる熱処理装置によれば、炉壁放散熱又は炉体の周囲環境及び炉材の経時変化による炉温の変動又は被加熱物の品種などにかかわらず、均一に熱処理できる。   According to the heat treatment apparatus according to the aspect of the present invention, the heat treatment can be performed uniformly regardless of the furnace wall radiated heat, the ambient environment of the furnace body, the fluctuation of the furnace temperature due to the aging of the furnace material, or the kind of the object to be heated.

本発明の第1実施形態における熱処理装置の内部であって、炉幅方向沿いの断面図The inside of the heat processing apparatus in 1st Embodiment of this invention, Comprising: Sectional drawing along a furnace width direction 本発明の第1実施形態における熱処理装置の内部であって、搬送方向沿いの断面図Sectional drawing inside the heat processing apparatus in 1st Embodiment of this invention, and along a conveyance direction (a)と(b)はそれぞれ本発明の第1実施形態における均熱板ユニットを説明するための平面図と断面図(A) And (b) is the top view and sectional drawing for demonstrating the soaking plate unit in 1st Embodiment of this invention, respectively. 本発明の第1実施形態における均熱板ユニットの伝熱形態を示す図The figure which shows the heat-transfer form of the heat equalizing plate unit in 1st Embodiment of this invention. 本発明の第1実施形態における均熱板ユニットの輻射率差と温度差の関係を示す図The figure which shows the relationship between the radiation rate difference and temperature difference of the soaking plate unit in 1st Embodiment of this invention. 本発明の第1実施形態における均熱板ユニットの輻射率と温度差の関係を示す図The figure which shows the relationship between the radiation rate and temperature difference of the soaking plate unit in 1st Embodiment of this invention. 従来の均熱板の温度分布を示す図The figure which shows the temperature distribution of the conventional soaking plate 本発明の第1実施形態における均熱板ユニットの開口部と温度差の関係を示す図The figure which shows the relationship between the opening part of the heat equalizing plate unit in 1st Embodiment of this invention, and a temperature difference. 本発明の第1実施形態における均熱板ユニットの開口率と温度差の関係を示す図The figure which shows the relationship between the aperture ratio of the heat equalizing plate unit in 1st Embodiment of this invention, and a temperature difference. 本発明の第1実施形態における均熱板ユニットの開口部作動状況と開口率の状態を示す図The figure which shows the opening part operating condition of the heat equalizing plate unit in 1st Embodiment of this invention, and the state of an aperture ratio. 本発明の第1実施形態における均熱板ユニットの開口部作動パターン(降温部)の例を示す図The figure which shows the example of the opening part operation pattern (temperature fall part) of the heat equalizing plate unit in 1st Embodiment of this invention. 本発明の第1実施形態における均熱板ユニットの開口部作動状況と温度差の関係を示す図The figure which shows the relationship between the opening part operating condition of the heat equalizing plate unit in 1st Embodiment of this invention, and a temperature difference. 本発明の第2実施形態における熱処理装置の内部を示す上面図The top view which shows the inside of the heat processing apparatus in 2nd Embodiment of this invention. 従来の均熱板を用いた熱処理装置を示す図The figure which shows the heat processing equipment using the conventional soaking plate

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
初めに、本発明の第1実施形態にかかる熱処理装置1の全体構成について説明する。図1Aは、本発明の第1実施形態にかかる熱処理装置1の内部であって、被加熱物2の搬送方向と直交する炉幅方向沿いの断面図である。図1Bは、本発明の第1実施形態にかかる熱処理装置1の内部であって、搬送方向沿いの断面図であり、図1AのB−B線断面図で、搬送方向に直交する縦方向(例えば上下方向)に切断した断面図である。なお、図1A中の矢印は一次輻射が、均熱板ユニット3を介して被加熱物2に二次輻射されるまでの流れを示したものである。図1Bの符号で、Dは被加熱物2の搬送方向を示している。また、図2の(a),(b)は、本発明の第1実施形態における均熱板ユニット3の全体構造を説明する図であり、本発明の第1実施形態にかかる均熱板ユニット3の平面図と断面図とを示した図である。
(First embodiment)
First, the overall configuration of the heat treatment apparatus 1 according to the first embodiment of the present invention will be described. FIG. 1A is a cross-sectional view of the inside of the heat treatment apparatus 1 according to the first embodiment of the present invention, taken along the furnace width direction orthogonal to the conveying direction of the article 2 to be heated. FIG. 1B is a cross-sectional view of the inside of the heat treatment apparatus 1 according to the first embodiment of the present invention, taken along the transport direction, and is a cross-sectional view taken along the line BB in FIG. For example, it is a cross-sectional view cut in the vertical direction. In addition, the arrow in FIG. 1A shows the flow until the primary radiation is secondarily radiated to the article 2 to be heated via the soaking plate unit 3. The sign of FIG. 1B, D b represents the conveyance direction of the object to be heated 2. FIGS. 2A and 2B are views for explaining the overall structure of the heat equalizing plate unit 3 in the first embodiment of the present invention, and the heat equalizing plate unit according to the first embodiment of the present invention. 3 is a diagram showing a plan view and a cross-sectional view of FIG.

本発明の第1実施形態にかかる熱処理装置1は、複数の搬送ローラ5と、被加熱物2と、搬送ローラ支持台9と、搬送ローラ5と上部の分割ヒータ4の間に配置された複数、例えば3枚の均熱板ユニット3と、複数の均熱板ユニット3をそれぞれ支持する複数の均熱板支持フレーム7と、複数の均熱板支持フレーム7を横方向(例えば水平方向)にそれぞれ移動させる複数のシリンダ駆動部6a,6b,6cと、装置全体を断熱材8で覆うように構成された炉体1aとを備えて構成されている。搬送ローラ支持台9の上で、複数の分割ヒータ4と複数の均熱板ユニット3と複数の均熱板支持フレーム7の一部と搬送ローラ5の一部とを断熱材8で囲い込むようにして炉体1aを形成し、炉体1aの内部空間で被加熱物2を熱処理する。分割ヒータ4は、熱源の一例として機能する。均熱板支持フレーム7は、支持部材の一例として機能する。被加熱物2の一例としては、基板などが例示される。シリンダ駆動部6a,6b,6cは、駆動部の一例として機能し、具体的には、油圧式シリンダ6a,6b,6cで構成されている。   The heat treatment apparatus 1 according to the first embodiment of the present invention includes a plurality of transport rollers 5, a heated object 2, a transport roller support 9, and a plurality of heat rollers arranged between the transport rollers 5 and the upper divided heater 4. For example, three soaking plate units 3, a plurality of soaking plate support frames 7 that respectively support a plurality of soaking plate units 3, and a plurality of soaking plate support frames 7 in a lateral direction (for example, a horizontal direction) A plurality of cylinder drive parts 6a, 6b, 6c to be moved, and a furnace body 1a configured to cover the entire apparatus with a heat insulating material 8 are provided. A plurality of divided heaters 4, a plurality of heat equalizing plate units 3, a part of the plurality of heat equalizing plate support frames 7 and a part of the conveying roller 5 are surrounded by a heat insulating material 8 on the conveying roller support 9. A furnace body 1a is formed, and the object to be heated 2 is heat-treated in the internal space of the furnace body 1a. The divided heater 4 functions as an example of a heat source. The soaking plate support frame 7 functions as an example of a support member. As an example of the object to be heated 2, a substrate is exemplified. The cylinder driving units 6a, 6b, and 6c function as an example of a driving unit, and specifically include hydraulic cylinders 6a, 6b, and 6c.

熱処理装置1は、焼成炉、乾燥炉、キュア炉、又はリフロー炉など、加熱処理を行う炉である。熱処理装置1では、加熱対象の熱容量又はサイズに応じた多点温度制御を実施し、分割ヒータ4からの輻射熱を個別にコントロールし、断熱材8によって熱遮断されている炉体内を均一に加熱している。   The heat treatment apparatus 1 is a furnace that performs heat treatment, such as a baking furnace, a drying furnace, a curing furnace, or a reflow furnace. In the heat treatment apparatus 1, multi-point temperature control is performed according to the heat capacity or size of the heating target, the radiant heat from the divided heater 4 is individually controlled, and the furnace body that is heat-insulated by the heat insulating material 8 is uniformly heated. ing.

ここで、熱処理装置1においては、炉内で、分割ヒータ4の他に、上側の分割ヒータ4と下側の被加熱物2との間の中間部に複数の均熱板ユニット3が複数の均熱板支持フレーム7の上にそれぞれ配置されている。これらの複数の均熱板ユニット3は、被加熱物2と分割ヒータ4との間に配置されることにより、分割ヒータ4からの輻射を二次輻射し、被加熱物2を均熱化させる機能を有している。   Here, in the heat treatment apparatus 1, in the furnace, in addition to the divided heater 4, a plurality of soaking plate units 3 are provided in the middle portion between the upper divided heater 4 and the lower heated object 2. It arrange | positions on the soaking plate support frame 7, respectively. The plurality of heat equalizing plate units 3 are arranged between the object to be heated 2 and the divided heater 4, so that the radiation from the divided heater 4 is secondarily emitted and the object to be heated 2 is equalized. It has a function.

図2に明りょうに示すように、一例として、均熱板ユニット3は、三分割以上の複数個に分割されている。この例では、均熱板ユニット3を、中央部の1枚の金属板の均熱板ユニット3と、中央部の均熱板ユニット3を挟む両側の2枚の金属板の炉壁側の均熱板ユニット3(第1炉壁側(例えば図1Aの左炉壁側)の1枚の金属板の均熱板ユニット3と第2炉壁側(例えば図1Aの右炉壁側)の1枚の金属板の均熱板ユニット3)とに3分割している。分割された1つの均熱板ユニット3は、それぞれの金属板に、複数の矩形状の開口部3aを有する均熱板3bを炉幅方向に複数個並べて構成している。各均熱板3bは、複数の矩形状の開口部10aを有するヒータ側均熱板10と、複数の矩形状の開口部11aを有する被加熱物側均熱板11とが、搬送方向及び炉幅方向と直交する炉体垂直方向に互いに接触して重ねられて構成されている。後述するように、ヒータ側均熱板10に対して被加熱物側均熱板11は相対的に移動可能となっている。   As clearly shown in FIG. 2, as an example, the soaking plate unit 3 is divided into a plurality of three or more parts. In this example, the soaking plate unit 3 is composed of a soaking plate unit 3 of one metal plate in the center and two soaking plates on both sides sandwiching the soaking plate unit 3 in the center. Heat plate unit 3 (one furnace plate side of the first furnace wall side (for example, the left furnace wall side in FIG. 1A) and one soaking plate unit 3 on the second furnace wall side (for example, the right furnace wall side in FIG. 1A) The sheet is divided into three soaking plate units 3). One divided soaking plate unit 3 is configured by arranging a plurality of soaking plates 3b having a plurality of rectangular openings 3a in each metal plate in the furnace width direction. Each of the soaking plates 3b includes a heater-side soaking plate 10 having a plurality of rectangular openings 10a and a heated object-side soaking plate 11 having a plurality of rectangular openings 11a. It is configured to be stacked in contact with each other in the vertical direction of the furnace body orthogonal to the width direction. As will be described later, the heated object side heat equalizing plate 11 is relatively movable with respect to the heater side heat equalizing plate 10.

尚、図2のC1,C2は均熱板ユニット3の金属板の分割位置を示している。ここでは、2つの分割位置C1,C2により、均熱板ユニット3の金属板は3分割されている。また、図2の矢印D,Dはそれぞれ分割ヒータ4と被加熱物2との配置位置方向を示している。図2のLは炉幅方向沿いの開口部短手方向長さを示し、Wsは炉幅方向と垂直な開口部長手方向長さを示している。Lは1つの均熱板ユニット3の炉幅方向の長さを示している。Lは均熱板ユニット3全体の配置スペースの炉幅方向の長さを示している。 Note that C1 and C2 in FIG. 2 indicate the division positions of the metal plate of the soaking plate unit 3. Here, the metal plate of the heat equalizing plate unit 3 is divided into three by two division positions C1 and C2. Further, arrows D h and D w in FIG. 2 indicate the arrangement position directions of the divided heater 4 and the object to be heated 2, respectively. L s in Figure 2 shows the opening short side direction length along the furnace width direction, Ws represents a vertical opening the longitudinal direction of the length and the furnace width direction. L indicates the length of one soaking plate unit 3 in the furnace width direction. L 0 indicates the length in the furnace width direction of the arrangement space of the heat equalizing plate unit 3 as a whole.

本発明の第1実施形態にかかる均熱板ユニット3は、図2に示すように2枚の均熱板、すなわちヒータ側均熱板10と被加熱物側均熱板11とが接触した状態で2層に重ねたものである。このとき、ヒータ側均熱板10は、耐熱鋼の表面を十分に酸化させた高輻射率の材質で作られたものである。被加熱物側均熱板11は、セラミック又はファインフレックスモールド等の、ヒータ側均熱板10よりも低輻射率の材質で作られたものである。本発明の第1実施形態にかかる均熱板ユニット3は、一例として、2枚の均熱板10,11共、図2に示す領域(W×Lの面積)の開口部3aを、炉幅方向に、複数個、等間隔に切り出して作られている。加えて、熱処理装置1は、被加熱物2の炉幅方向温度分布を均一に保つ為、分割ヒータ4及び均熱板ユニット3は、それぞれ、炉幅方向に対して複数個に分割されている。一例として、図1Aの分割ヒータ4と図2の均熱板ユニット3とは、それぞれ3分割されている様子を表している。 As shown in FIG. 2, the heat equalizing plate unit 3 according to the first embodiment of the present invention is in a state where two heat equalizing plates, that is, the heater-side heat equalizing plate 10 and the heated object-side heat equalizing plate 11 are in contact with each other. The two layers are stacked. At this time, the heater-side soaking plate 10 is made of a material having a high emissivity obtained by sufficiently oxidizing the surface of the heat-resistant steel. The to-be-heated object side soaking plate 11 is made of a material having a lower emissivity than the heater side soaking plate 10 such as ceramic or fine flex mold. As an example, the heat equalizing plate unit 3 according to the first embodiment of the present invention includes, as an example, the two heat equalizing plates 10 and 11 having the opening 3a in the region (area of W s × L s ) illustrated in FIG. A plurality of pieces are cut out at equal intervals in the furnace width direction. In addition, since the heat treatment apparatus 1 maintains a uniform temperature distribution in the furnace width direction of the article 2 to be heated, the divided heater 4 and the soaking plate unit 3 are each divided into a plurality of pieces in the furnace width direction. . As an example, the divided heater 4 in FIG. 1A and the heat equalizing plate unit 3 in FIG. 2 each show a state of being divided into three.

また、複数の均熱板ユニット3が載置された複数の均熱板支持フレーム7は、それらの一端にシリンダ駆動部6a,6b,6cがそれぞれ個別に設けられて、シリンダ駆動部6a,6b,6cが独立して個別に駆動されることにより、対応する均熱板支持フレーム7が炉幅方向に独立して個別にスライドすなわち進退移動させられて、ヒータ側均熱板10と被加熱物側均熱板11とを相対的に移動させる。一例として、ヒータ側均熱板10をすべて炉体側に固定し、被加熱物側均熱板11をそれぞれ均熱板支持フレーム7で支持して、均熱板支持フレーム7の移動に伴い被加熱物側均熱板11が、ヒータ側均熱板10に対して移動するようにしている。このような構成の代わりに、逆に、被加熱物側均熱板11をすべて炉体側に固定し、ヒータ側均熱板10をそれぞれ均熱板支持フレーム7で支持して、均熱板支持フレーム7の移動に伴いヒータ側均熱板10が、被加熱物側均熱板11に対して移動するようにしてもよい。また、均熱板支持フレーム7をヒータ側均熱板10用と被加熱物側均熱板11用との2種類設け、2種類の均熱板支持フレーム7にそれぞれ駆動部を設けて、ヒータ側均熱板10と被加熱物側均熱板11とを同時的に駆動して、結果として、被加熱物側均熱板11とヒータ側均熱板10とが相対的に移動するようにしてもよい。   Further, the plurality of soaking plate support frames 7 on which the plurality of soaking plate units 3 are mounted are provided with cylinder driving portions 6a, 6b, 6c individually at one end thereof, and the cylinder driving portions 6a, 6b. , 6c are independently driven individually, and the corresponding heat equalizing plate support frame 7 is individually slid, that is, moved forward and backward independently in the furnace width direction, so that the heater-side heat equalizing plate 10 and the object to be heated are moved. The side soaking plate 11 is moved relatively. As an example, all the heater-side soaking plates 10 are fixed to the furnace body side, the heated object-side soaking plates 11 are supported by the soaking plate support frames 7, respectively, and the heated soaking plates 7 are heated as the soaking plates support frame 7 moves. The object side soaking plate 11 is moved relative to the heater side soaking plate 10. In place of such a configuration, conversely, all the heated object side heat equalizing plates 11 are fixed to the furnace body side, and the heater side heat equalizing plates 10 are respectively supported by the heat equalizing plate supporting frames 7 to support the heat equalizing plates. The heater side soaking plate 10 may move with respect to the article to be heated side soaking plate 11 as the frame 7 moves. Further, two types of soaking plate support frames 7 are provided for the heater side soaking plate 10 and for the heated object side soaking plate 11, and a drive unit is provided for each of the two types of soaking plate support frames 7 to provide a heater. The side soaking plate 10 and the heated object side soaking plate 11 are driven simultaneously, and as a result, the heated object side soaking plate 11 and the heater side soaking plate 10 move relatively. May be.

よって、このように、均熱板ユニット3を分割ヒータ4と被加熱物2との間に介在させ、更に均熱板ユニット3の被加熱物側均熱板11をヒータ側均熱板10に対してシリンダ駆動部6a,6b,6cによって炉幅方向にスライドさせることで、分割ヒータ4からの輻射熱を均一化させ、搬送ローラ5により搬送される被加熱物2の炉幅方向の温度ばらつきを低減させることができる。ここで、一例として、被加熱物側均熱板11のスライド量が最小のときとは、矩形状の各開口部が一致している状態を意味し、被加熱物側均熱板11のスライド量が最大のときとは、矩形状の各開口部が塞がれている状態を意味する。よって、この例では、被加熱物側均熱板11のスライド量は、0以上、各開口部の幅寸法以下となる。   Therefore, in this way, the heat equalizing plate unit 3 is interposed between the divided heater 4 and the object to be heated 2, and further, the object to be heated side heat equalizing plate 11 of the heat equalizing plate unit 3 is replaced with the heater side heat equalizing plate 10. On the other hand, by sliding in the furnace width direction by the cylinder driving parts 6a, 6b, 6c, the radiant heat from the divided heater 4 is made uniform, and the temperature variation in the furnace width direction of the heated object 2 conveyed by the conveying roller 5 is made. Can be reduced. Here, as an example, when the sliding amount of the heated object-side heat equalizing plate 11 is the minimum, it means a state where the rectangular openings coincide with each other, and the heated object-side heat equalizing plate 11 slides. When the amount is maximum, it means a state where each rectangular opening is closed. Therefore, in this example, the sliding amount of the heated object-side heat equalizing plate 11 is not less than 0 and not more than the width dimension of each opening.

本発明の第1実施形態にかかる均熱板ユニット3による伝熱形態及び均熱効果は、均熱板ユニット3の輻射率、分割数、又は、開口部形状のパラメータによって特徴付けられるものである。均熱板ユニット3の前記パラメータと効果とについて、具体的な検証結果に基づいて説明する。   The heat transfer mode and the soaking effect by the soaking plate unit 3 according to the first embodiment of the present invention are characterized by the radiation rate, the number of divisions, or the opening shape parameters of the soaking plate unit 3. . The parameters and effects of the soaking plate unit 3 will be described based on specific verification results.

図1A及び図1Bにおいて、一例として、まず、断熱材8で構成された炉体1aの内部の寸法は、縦方向(例えば上下方向)の高さZ=200[mm]、搬送方向D沿いの長さY=400[mm]、炉幅方向沿いの横方向の横幅X=800[mm]とする。 1A and 1B, as an example, first, the internal dimensions of the furnace body 1a made of a heat insulating material 8, the vertical direction (e.g., vertical direction) of Z = 200 of [mm], along the conveying direction D b Length Y = 400 [mm], and lateral width X along the furnace width direction X = 800 [mm].

次に、一例として、高さ(厚さ)1[mm]の被加熱物2を熱処理装置1の炉幅方向(図1Aの紙面左右方向)に9個並置し、被加熱物2同士の間隔が10[mm]になるように配置した。ただし、それぞれの寸法は、これらに限定するものではなく、被加熱物2の処理量に応じて適切な大きさに設定する。   Next, as an example, nine heated objects 2 having a height (thickness) of 1 [mm] are juxtaposed in the furnace width direction of the heat treatment apparatus 1 (left and right direction in FIG. 1A), and the distance between the heated objects 2 is determined. Was set to 10 [mm]. However, each dimension is not limited to these, and is set to an appropriate size according to the processing amount of the object to be heated 2.

このような状態で、各分割ヒータ4を600[℃]の設定にして常温から加熱し、炉内温度が安定状態となる時点で、被加熱物2の温度ばらつきの評価を行なった。   In such a state, each divided heater 4 was set to 600 [° C.] and heated from room temperature, and when the furnace temperature became stable, the temperature variation of the object to be heated 2 was evaluated.

前提条件として、周囲環境又は経時変化により発生し得る温度変動を±0.4[%]とし、被加熱物の温度ばらつき目標は、被加熱物の加熱温度に対して炉幅方向の温度差異を0.6[%]とした。なお、以後、特に断りのない限り、搬送方向Dと直交する炉幅方向の炉体1aの中央部の被加熱物2と炉体1aの中央部から300[mm]離れた位置にある炉端部の被加熱物2との温度差異は、「600mm幅被加熱物温度差」と略し、被加熱物2の温度を炉内平均温度Tで除した値ΔT/T[%]で表す。 As a precondition, the temperature fluctuation that may occur due to the ambient environment or changes over time is set to ± 0.4 [%], and the temperature variation target of the object to be heated is the temperature difference in the furnace width direction with respect to the heating temperature of the object to be heated. 0.6 [%]. Incidentally, hereinafter, unless otherwise noted, in 300 [mm] away from the central portion of the heated object 2 and the furnace body 1a of the central portion of the furnace body 1a of the furnace width direction perpendicular to the conveying direction D b fireside The temperature difference between the heated part 2 and the heated object 2 is abbreviated as “600 mm wide heated object temperature difference” and is expressed by a value ΔT / T 0 [%] obtained by dividing the temperature of the heated object 2 by the furnace average temperature T 0. .

今、図3は、均熱板ユニット3の伝熱形態を説明する図である。図3の上側に示すように、ヒータ側均熱板10の開口部10aと被加熱物側均熱板11の開口部11aとが互いに一致するように重ね合わせた位置合わせ状態Saから、図3の下側に示すように、ヒータ側均熱板10の開口部10aに対して被加熱物側均熱板11の開口部11aをL/2だけスライドさせて動かした位置ずれ状態Sbに移行する場合を想定する。 FIG. 3 is a diagram for explaining the heat transfer mode of the heat equalizing plate unit 3. As shown in the upper side of FIG. 3, from the alignment state Sa in which the opening 10a of the heater-side heat equalizing plate 10 and the opening 11a of the heated object-side heat equalizing plate 11 are overlapped with each other, FIG. As shown on the lower side, the position shifts to the misalignment state Sb in which the opening 11a of the heated object-side heat equalizing plate 11 is slid and moved relative to the opening 10a of the heater-side heat equalizing plate 10 by L s / 2. Assume that

まず、位置合わせ状態Saにおいては、各分割ヒータ4から供給される輻射熱は、一部の輻射熱RH1が各ヒータ側均熱板10に吸収される。各ヒータ側均熱板10の開口部10aを通過する輻射熱RH2は、そのまま低輻射率均熱板11の開口部11aを通過し、直接、被加熱物2を加熱する。   First, in the alignment state Sa, a part of the radiant heat RH1 of the radiant heat supplied from each of the divided heaters 4 is absorbed by each heater-side heat equalizing plate 10. The radiant heat RH2 that passes through the opening 10a of each heater-side soaking plate 10 passes through the opening 11a of the low-radiation-rate soaking plate 11 as it is, and heats the article 2 to be heated directly.

一方、位置ずれ状態Sbにおいては、各分割ヒータ4から供給される輻射熱は、位置合わせ状態Saと同じく一部の輻射熱RH3がヒータ側均熱板10に吸収される。しかし、ヒータ側均熱板10の開口部10aを通過した輻射熱は一部の輻射熱RH4が被加熱物側均熱板11に遮蔽される為、被加熱物側均熱板11に吸収されるが、前記輻射熱RH4を除くヒータ側均熱板10の開口部10aを通過し、低輻射率均熱板11の開口部11aを通過した輻射熱RH5は、直接、被加熱物2を加熱することになる。   On the other hand, in the misalignment state Sb, a part of the radiant heat RH3 of the radiant heat supplied from each of the divided heaters 4 is absorbed by the heater-side heat equalizing plate 10 as in the alignment state Sa. However, the radiant heat that has passed through the opening 10a of the heater-side heat equalizing plate 10 is absorbed by the heated object-side heat equalizing plate 11 because part of the radiant heat RH4 is shielded by the heated object-side heat equalizing plate 11. The radiant heat RH5 that has passed through the opening 10a of the heater-side soaking plate 10 excluding the radiant heat RH4 and that has passed through the opening 11a of the low emissivity soaking plate 11 directly heats the article 2 to be heated. .

したがって、位置合わせ状態Saから位置ずれ状態Sbに移行することにより、ヒータ側均熱板10に対して被加熱物側均熱板11の輻射率が大きい場合には、各分割ヒータ4から輻射熱を受熱する低輻射率面積が増加し、また被加熱物2及び搬送ローラ5等に向けて二次輻射する高輻射率面積が増加する。即ち、均熱板ユニット3は各分割ヒータ4からの輻射熱が減少し、被加熱物2に向けて放射する二次輻射熱が増加する為、温度は、位置合わせ状態Saに比べ、位置ずれ状態Sbの方が低くなる。   Therefore, by shifting from the alignment state Sa to the misalignment state Sb, when the radiation rate of the object-side heat equalizing plate 11 is larger than that of the heater-side heat equalizing plate 10, the radiant heat is emitted from each divided heater 4. The low emissivity area for receiving heat increases, and the high emissivity area for secondary radiation toward the object to be heated 2 and the transport roller 5 increases. That is, in the heat equalizing plate unit 3, the radiant heat from each of the divided heaters 4 is reduced and the secondary radiant heat radiated toward the object to be heated 2 is increased, so that the temperature is shifted from the alignment state Sa to the misalignment state Sb. Is lower.

一方、ヒータ側均熱板10に対して被加熱物側均熱板11の輻射率が小さい場合には、各分割ヒータ4から輻射熱を受熱する高輻射率面積が増加し、また被加熱物2及び搬送ローラ5等に向けて二次輻射する低輻射率面積が増加する。即ち、均熱板ユニット3は、各分割ヒータ4からの輻射熱が増加し、被加熱物2に向けて放射する二次輻射熱が減少する為、温度は、位置合わせ状態Saに比べ、位置ずれ状態Sbの方が高くなる。   On the other hand, when the emissivity of the object to be heated-side heat equalizing plate 11 is smaller than that of the heater-side heat equalizing plate 10, the high emissivity area that receives radiant heat from each of the divided heaters 4 increases, and the object to be heated 2 In addition, the low emissivity area for secondary radiation toward the conveying roller 5 and the like increases. That is, in the heat equalizing plate unit 3, since the radiant heat from each of the divided heaters 4 increases and the secondary radiant heat radiated toward the object to be heated 2 decreases, the temperature is in a misaligned state as compared with the alignment state Sa. Sb is higher.

これらの輻射の熱移動をまとめると、次式で表せる。

Q=Qin − Qout − Qtrans

ただし、
Q:均熱板ユニット3が蓄える熱量[J]とし、
in:分割ヒータ4から供給される輻射熱[J]とし、
out:均熱板ユニット3から均熱板ユニット3を除く炉材へ二次放射される輻射熱[J]とし、
trans:炉内雰囲気に曝露されている均熱板ユニット3の表面から炉内雰囲気への放散熱[J]とする。
The heat transfer of these radiations can be summarized by the following equation.

Q = Q in −Q out −Q trans

However,
Q: The amount of heat [J] stored in the heat equalizing plate unit 3;
Q in : Radiant heat [J] supplied from the divided heater 4
Q out : Radiant heat [J] secondarily radiated from the soaking plate unit 3 to the furnace material excluding the soaking plate unit 3
Q trans : Dissipated heat [J] from the surface of the soaking plate unit 3 exposed to the furnace atmosphere to the furnace atmosphere.

以上より、均熱板ユニット3が構成するヒータ側均熱板10の輻射率と被加熱物側均熱板11の輻射率との差分をより大きくすることが、温度制御上、必要であることがわかる。   From the above, it is necessary for temperature control to increase the difference between the radiation rate of the heater-side heat plate 10 and the radiation rate of the heated object-side heat plate 11 that the heat-uniforming plate unit 3 constitutes. I understand.

図4は、均熱板ユニット3の輻射率差と温度差との関係を示す図である。詳しくはは、均熱板ユニット3を作動(スライド)しない条件(図4の黒丸のスリット開時に相当。)における、ヒータ側均熱板10と被加熱物側均熱板11との輻射率差Δεと600mm幅被加熱物温度差ΔT/T[%]との関係、及び、前記均熱板ユニット3を作動する条件(図4の白丸のスリット開閉時に相当。)における、前記輻射率差Δεと600mm幅最小被加熱物温度差ΔT/T[%]とをまとめた検証データが、図4である。このとき、ヒータ側均熱板10の輻射率をεとし、被加熱物側均熱板11の輻射率εとし、それぞれ、0<ε<1の範囲と、0<ε<1の範囲とで定義される。また、前記輻射率ε、εの差分(輻射率差)、すなわち、|ε−ε|をΔεと定義する。ただし、均熱板ユニット3を作動しない条件では、図3の位置合わせ状態Saに示す様な、ヒータ側均熱板10の開口部10aと被加熱物側均熱板11の開口部11aとが一致するように重ね合わせた位置合わせ状態とする。この具体的な検証の結果、均熱板ユニット3の作動条件に関わらず、600mm幅被加熱物温度差は、被加熱物温度ばらつき目標値に対して±0.6[%]以下を、ε<εの条件では満たさないが、ε>εの条件で満たす。また、ε>εの条件で均熱板ユニット3を作動しない条件においては、輻射率差ΔεがΔε≧0.8で600mm幅被加熱物温度差は、被加熱物温度ばらつき目標値に対して±0.6[%]以下を満たす。一方、ε>εの条件で均熱板ユニット3を位置合わせ状態Saと位置ずれ状態Sbとの間で作動する条件では、輻射率差ΔεがΔε≧0.6で前記600mm幅被加熱物温度差は、被加熱物温度ばらつき目標値に対して±0.2[%]以下となる。したがって、輻射率差ΔεがΔε≧0.6において均熱板ユニット3を作動させることで、均熱板ユニット3を作動しない条件に対して更に被加熱物2の温度差を圧縮でき、かつ周囲環境又は経時変化による発生し得る温度変動として±0.4[%]を吸収することができる。 FIG. 4 is a diagram showing the relationship between the emissivity difference and the temperature difference of the soaking plate unit 3. Specifically, the radiation rate difference between the heater-side soaking plate 10 and the heated object-side soaking plate 11 under the condition that the soaking plate unit 3 does not operate (slide) (corresponding to when the black circle slit in FIG. 4 is opened). The difference in emissivity in the relationship between Δε and the 600 mm width heated object temperature difference ΔT / T 0 [%] and the conditions for operating the soaking plate unit 3 (corresponding to the opening and closing of the white circle in FIG. 4). FIG. 4 shows verification data that summarizes Δε and the 600 mm width minimum heated object temperature difference ΔT / T 0 [%]. At this time, the emissivity of the heater-side soaking plate 10 is ε h, and the emissivity of the heated object-side soaking plate 11 is ε w , respectively, and a range of 0 <ε h <1 and 0 <ε w <1. Defined by the range of Further, the difference between the emissivities ε h and ε w (radiation rate difference), that is, | ε h −ε w | is defined as Δε. However, under the condition that the soaking plate unit 3 is not operated, the opening 10a of the heater-side soaking plate 10 and the opening 11a of the heated-side soaking plate 11 as shown in the alignment state Sa in FIG. It is set as the alignment state superimposed so that it might correspond. As a result of this specific verification, regardless of the operating conditions of the soaking plate unit 3, the 600 mm width heated object temperature difference is ± 0.6 [%] or less with respect to the heated object temperature variation target value, and ε <it does not satisfy the conditions of ε w, ε h> h satisfy the conditions of ε w. Further, under the condition that the heat equalizing plate unit 3 is not operated under the condition of ε h > ε w , the emissivity difference Δε is Δε ≧ 0.8 and the 600 mm width heated object temperature difference becomes the target temperature variation target value. On the other hand, it satisfies ± 0.6 [%] or less. On the other hand, under the condition that the heat equalizing plate unit 3 is operated between the alignment state Sa and the misalignment state Sb under the condition of ε h > ε w , the above-mentioned 600 mm width heated heating is performed when the emissivity difference Δε is Δε ≧ 0.6. The object temperature difference is ± 0.2 [%] or less with respect to the target temperature variation target value. Therefore, by operating the soaking plate unit 3 when the emissivity difference Δε is Δε ≧ 0.6, the temperature difference of the object to be heated 2 can be further compressed with respect to the condition in which the soaking plate unit 3 is not operated. ± 0.4 [%] can be absorbed as temperature fluctuations that can occur due to environmental or temporal changes.

図5は、均熱板ユニット3の輻射率と温度差との関係を示す図である。詳しくは、均熱板ユニット3を作動しない条件におけるヒータ側均熱板10と被加熱物側均熱板11との輻射率ε、εと600mm幅被加熱物温度差ΔT/T[%]との関係、及び前記均熱板ユニット3を作動する条件における前記輻射率ε、εと600mm幅最小被加熱物温度差ΔT/T[%]とをまとめた検証データが、図5である。このとき、被加熱物側均熱板11の輻射率εに対して、ヒータ側均熱板10の輻射率εが大きく、前記輻射率差ΔεがΔε=0とする。ただし、均熱板ユニット3を作動しない条件は、図3の位置合わせ状態Saに示す様なヒータ側均熱板10と被加熱物側均熱板11との開口部10a,11aが互いに一致するように重ね合わせた位置合わせ状態Saとする。この具体的な検証の結果、均熱板ユニット3を作動しない条件において、(ε,ε)=(0.9,0.3)で、600mm幅被加熱物温度差は、被加熱物温度ばらつき目標値に対して±0.6[%]以下を満たす。一方、均熱板ユニット3を作動する条件では、(ε,ε)=(0.8,0.2)、(0.9,0.3)で、前記600mm幅被加熱物温度差は、被加熱物温度ばらつき目標値に対して±0.2[%]以下を満たす。したがって、ε≧0.8において均熱板ユニット3を作動させることで、均熱板ユニット3を作動しない条件に対して、更に被加熱物温度差を圧縮でき、かつ周囲環境又は経時変化による発生し得る温度変動として±0.4[%]を吸収できる。 FIG. 5 is a diagram showing the relationship between the radiation rate of the soaking plate unit 3 and the temperature difference. Specifically, the emissivities ε h and ε w between the heater-side soaking plate 10 and the heated object-side soaking plate 11 and the 600 mm-width heated object temperature difference ΔT / T 0 in a condition where the soaking plate unit 3 is not operated. %], And verification data that summarizes the emissivities ε h and ε w and the 600 mm width minimum heated object temperature difference ΔT / T 0 [%] under the conditions for operating the soaking plate unit 3, FIG. At this time, the emissivity ε h of the heater-side heat soaking plate 10 is larger than the emissivity ε w of the heated object-side soaking plate 11, and the emissivity difference Δε is set to Δε = 0. However, the conditions for not operating the soaking plate unit 3 are that the openings 10a and 11a of the heater-side soaking plate 10 and the heated object-side soaking plate 11 as shown in the alignment state Sa in FIG. In this way, the registration state Sa is set. As a result of this specific verification, under the condition that the heat equalizing plate unit 3 is not operated, (ε h , ε w ) = (0.9, 0.3) and the 600 mm width heated object temperature difference is It satisfies ± 0.6 [%] or less with respect to the target value of temperature variation. On the other hand, under the condition for operating the soaking plate unit 3, the temperature difference of the 600 mm wide heated object is (ε h , ε w ) = (0.8, 0.2), (0.9, 0.3). Satisfies ± 0.2 [%] or less with respect to the target temperature variation target. Therefore, by operating the soaking plate unit 3 at ε h ≧ 0.8, the temperature difference of the object to be heated can be further compressed with respect to the condition where the soaking plate unit 3 is not operated, and due to the surrounding environment or a change over time. ± 0.4 [%] can be absorbed as the temperature fluctuation that can occur.

図5の具体的な検証結果より、輻射率の絶対値に関しては、輻射率が高い方が望ましいことが分かる。これは、被加熱物2の均熱性において、均熱板ユニット3の輻射率が小さい場合には、分割ヒータ4より供給される輻射熱の一部しか吸収できず、吸収されなかった輻射熱は均熱板ユニット3を除くその他の炉材に放射されることになる。このため、分割ヒータ4によって供給される輻射熱が、炉内で散逸し易くなり、その結果、炉内の均熱性、ひいては被加熱物2の均熱性を悪化させることになる。本発明の第1実施形態にかかる均熱板ユニット3においては、前述したように温度制御の観点から、より大きい輻射率差が必要となる為、ヒータ輻射熱の受熱面積が広いヒータ側均熱板10の輻射率が、被加熱物側均熱板11の輻射率よりも、より大きい方が望ましい。   From the specific verification result of FIG. 5, it can be seen that the absolute value of the emissivity is preferably higher. This is because, in the soaking property of the article 2 to be heated, when the radiation rate of the soaking plate unit 3 is small, only a part of the radiant heat supplied from the divided heater 4 can be absorbed, and the radiant heat not absorbed is soaked. It is radiated to other furnace materials except the plate unit 3. For this reason, the radiant heat supplied by the divided heater 4 is easily dissipated in the furnace, and as a result, the heat uniformity in the furnace, and hence the heat uniformity of the article to be heated 2 is deteriorated. In the heat equalizing plate unit 3 according to the first embodiment of the present invention, a larger radiation rate difference is necessary from the viewpoint of temperature control as described above. It is desirable that the emissivity of 10 is larger than the emissivity of the heated object-side soaking plate 11.

一般に、熱処理装置に代表される通常の加熱形態においては、炉幅方向に対して被加熱物の搬送領域の両端部を除いた内側の80[%]〜90[%]以内の領域を均熱領域とし、この範囲において被加熱物が搬送されるようになっている。図6は、熱処理装置1に、従来の均熱板と搬送ローラとを使用した場合における、均熱板の温度分布を示す。このとき、搬送ローラの炉幅方向に対する搬送領域は、断熱材8の内部の炉幅方向沿いの横方向の横幅Xで、X=800[mm]である。図6は、従来の均熱板の温度分布を示す図である。詳しくは、図6は、前記炉幅方向に対して炉体1aの中央を0[mm]としたとき、炉幅方向距離とその位置での均熱板温度との関係をまとめた検証データである。尚、搬送領域の端部は、図6において400[mm]の位置に対応する。図6より、225[mm]〜375[mm]の範囲で温度分布が急速に降温している様子が分かる。   In general, in a normal heating mode represented by a heat treatment apparatus, a region within 80 [%] to 90 [%] on the inner side excluding both ends of a conveyance region of an object to be heated in the furnace width direction is soaked. An area to be heated is conveyed in this range. FIG. 6 shows the temperature distribution of the soaking plate when the conventional soaking plate and the conveying roller are used in the heat treatment apparatus 1. At this time, the conveyance area | region with respect to the furnace width direction of a conveyance roller is the horizontal width X along the furnace width direction inside the heat insulating material 8, and is X = 800 [mm]. FIG. 6 is a diagram showing a temperature distribution of a conventional heat equalizing plate. Specifically, FIG. 6 is verification data that summarizes the relationship between the furnace width direction distance and the soaking plate temperature at that position when the center of the furnace body 1a is 0 [mm] with respect to the furnace width direction. is there. In addition, the edge part of a conveyance area | region respond | corresponds to the position of 400 [mm] in FIG. It can be seen from FIG. 6 that the temperature distribution rapidly drops in the range of 225 [mm] to 375 [mm].

この具体的な検証結果を踏まえ、本発明の第1実施形態にかかる均熱板ユニット3の分割位置は、一例として、従来の均熱板温度分布において温度分布悪化影響の大きい、炉幅方向に対して225[mm]〜400[mm]の搬送領域を区分けして分割する位置としている。このように、均熱板ユニット3を分割するとき、炉幅方向の、従来の均熱板温度分布において温度分布悪化影響の大きい位置(例えば、分割位置C1,C2)で分割することにより、温度分布悪化影響を最小限に抑制して、炉幅方向全体での温度分布の均熱化を図ることができる。   Based on this specific verification result, the division position of the soaking plate unit 3 according to the first embodiment of the present invention is, for example, in the furnace width direction, which has a large influence on the temperature distribution deterioration in the conventional soaking plate temperature distribution. On the other hand, the conveyance area of 225 [mm] to 400 [mm] is divided and divided. Thus, when dividing the soaking plate unit 3, the temperature is divided by dividing at a position (for example, the dividing positions C1, C2) in the conventional soaking plate temperature distribution in the furnace width direction where the temperature distribution is greatly affected. The influence of the distribution deterioration can be suppressed to the minimum, and the temperature distribution in the entire furnace width direction can be equalized.

図7は、均熱板ユニット3の均熱板3bの短手方向長さをLと600mm幅被加熱物温度差ΔT/T[%]との関係を示す図である。すなわち、均熱板ユニット3の炉幅方向沿いの開口部3aの短手方向長さをLとし、均熱板ユニット3の任意の開口部3a間に位置する板厚を有する部分の短手方向長さと前記Lを含む長さをLとする。この長さLを15[mm]、30[mm]、60[mm]、100[mm]と変化させる。このときの長さLと600mm幅被加熱物温度差ΔT/T[%]との関係を、図7は示している。尚、前記均熱板ユニット3の任意の開口部3a間に位置しかつ板厚を有する部分は均熱板3bであるが、ここでは、開口部3aとの対比の関係上、非開口部3cと略す。ただし、ヒータ側均熱板10と被加熱物側均熱板11との輻射率差ΔεはΔε=0.6とし、ヒータ側輻射率εはε=0.8とし、分割数は3とし、開口率ηはη=50[%]とする。この具体的な検証結果より、L=15[mm]、30[mm]、60[mm]において、被加熱物温度ばらつき目標値に対して±0.6[%]以下を満たす。 FIG. 7 is a diagram showing the relationship between the length in the short-side direction of the soaking plate 3b of the soaking plate unit 3 and the 600 mm width heated object temperature difference ΔT / T 0 [%]. That is, the length of the opening 3a along the furnace width direction of the soaking plate unit 3 in the short direction is L s, and the short portion of the portion having a plate thickness located between any opening 3a of the soaking plate unit 3 is used. Let L be the length including the direction length and L s . The length L is changed to 15 [mm], 30 [mm], 60 [mm], and 100 [mm]. FIG. 7 shows the relationship between the length L at this time and the 600 mm-width heated object temperature difference ΔT / T 0 [%]. In addition, although the part which is located between the arbitrary opening parts 3a of the said soaking | uniform-heating board unit 3 and has a plate | board thickness is the soaking | uniform-heating board 3b, on account of contrast with the opening part 3a here, non-opening part 3c Abbreviated. However, the emissivity difference Δε between the heater-side soaking plate 10 and the heated object-side soaking plate 11 is Δε = 0.6, the heater-side emissivity ε h is ε h = 0.8, and the number of divisions is 3 And the aperture ratio η is η = 50 [%]. From this specific verification result, L = 15 [mm], 30 [mm], and 60 [mm] satisfy ± 0.6 [%] or less with respect to the target temperature variation target value.

以上より、均熱板ユニット3の開口部3aと前記非開口部3cとの和である長さLの範囲は、15[mm]≦L≦60[mm]が好ましい。   From the above, the range of the length L, which is the sum of the opening 3a and the non-opening 3c of the soaking plate unit 3, is preferably 15 [mm] ≦ L ≦ 60 [mm].

均熱板ユニット3の開口部3aの開口率は、非開口部3cの短手方向長さと前記Lを含む長さをLとし、前記開口率をηとして下式で与えられる。ただし、ヒータ側均熱板10と被加熱物側均熱板11との輻射率差ΔεをΔε=0.6とし、ヒータ側輻射率εをε=0.8とし、分割数を3とする。

η= L/L×100

ただし、
η:均熱板ユニット3の開口部3aの開口率[%]とし、
:均熱板ユニット3の開口部3aの短手方向長さ[mm]とし、
L:均熱板ユニット3の非開口部3cの短手方向長さと前記Lを含む長さ[mm]とする。
The aperture ratio of the opening portions 3a of the heat equalizing plate unit 3, the length including a short direction length and the L s of the non-opening portion 3c is L, it is given by the following formula the opening ratio as eta. However, the emissivity difference Δε between the heater-side soaking plate 10 and the heated object-side soaking plate 11 is Δε = 0.6, the heater-side emissivity ε h is ε h = 0.8, and the number of divisions is 3 And

η = L s / L × 100

However,
η: Opening ratio [%] of the opening 3a of the heat equalizing plate unit 3;
L s : The length in the short direction [mm] of the opening 3 a of the heat equalizing plate unit 3,
L: short direction length and the length including the L s of the non-opening portion 3c of the heat equalizing plate unit 3 and [mm].

図8は、均熱板ユニット3の開口部3aと開口率との関係を示す図である。すなわち、上式で定義される均熱板ユニット3の開口率ηをη=0[%]、25[%]、50[%]、75[%]と変化させたときの600mm幅被加熱物温度差ΔT/T[%]との関係をまとめた検証データが、図8である。ただし、η=0[%]は、均熱板ユニット3の開口部3aを設けない、従来の均熱板のことを指す。この具体的な検証の結果、L=25[%]、50[%]においては、被加熱物温度ばらつき目標値に対して±0.6[%]以下を満たす。 FIG. 8 is a diagram showing the relationship between the opening 3a of the heat equalizing plate unit 3 and the opening ratio. That is, a 600 mm width heated object when the aperture ratio η of the heat equalizing plate unit 3 defined by the above equation is changed to η = 0 [%], 25 [%], 50 [%], and 75 [%]. FIG. 8 shows verification data that summarizes the relationship with the temperature difference ΔT / T 0 [%]. However, η = 0 [%] indicates a conventional heat equalizing plate in which the opening 3a of the heat equalizing plate unit 3 is not provided. As a result of this specific verification, L = 25 [%] and 50 [%] satisfy ± 0.6 [%] or less with respect to the target temperature variation target value.

以上より、均熱板ユニット3の開口率ηの範囲は25[%]≦η≦50[%]が好ましい。   From the above, the range of the aperture ratio η of the soaking plate unit 3 is preferably 25 [%] ≦ η ≦ 50 [%].

図9は、均熱板ユニット3のヒータ側均熱板10に対して均熱板ユニット3の被加熱物側均熱板11をスライドさせて動かしたときの様子を示す図である。このとき、図9に示すスライド後の開口割合をη’として、下式で与えられる。   FIG. 9 is a diagram showing a state when the heated object-side heat equalizing plate 11 of the heat equalizing plate unit 3 is slid and moved with respect to the heater-side heat equalizing plate 10 of the heat equalizing plate unit 3. At this time, the opening ratio after sliding shown in FIG.

炉体1aの中央部の均熱板ユニットの開口部の開口割合:η’= (L−S)/L×100
炉体1aを構成する炉壁側の均熱板ユニットの開口部の開口割合:η’= (L−S)/L×100

ただし、
η’:均熱板ユニット3の開口部3aの開口割合[%]とし、
:均熱板ユニット3の開口部3aの短手方向長さ[mm]とし、
L:均熱板ユニット3の非開口部3cの短手方向長さと前記Lを含む長さ[mm]とし、
:炉体1aの中央部の均熱板ユニット3のヒータ側均熱板10又は被加熱物側均熱板11のスライド移動量[mm]とし、
:炉壁側の均熱板ユニット3のヒータ側均熱板10又は被加熱物側均熱板11のスライド移動量[mm]とする。
Opening ratio of the opening of the heat equalizing plate unit at the center of the furnace body 1a: η ′ = (L s −S m ) / L × 100
Opening ratio of the opening of the soaking plate unit on the furnace wall side constituting the furnace body 1a: η ′ = (L s −S w ) / L × 100

However,
η ′: The opening ratio [%] of the opening 3a of the heat equalizing plate unit 3;
L s : The length in the short direction [mm] of the opening 3 a of the heat equalizing plate unit 3,
L: the length in the short direction of the non-opening portion 3c of the heat equalizing plate unit 3 and the length [mm] including the L s ,
S m : The sliding movement amount [mm] of the heater-side heat equalizing plate 10 or the heated object-side heat equalizing plate 11 of the heat equalizing plate unit 3 at the center of the furnace body 1a,
S w : The sliding movement amount [mm] of the heater-side heat equalizing plate 10 or the heated object-side heat equalizing plate 11 of the heat equalizing plate unit 3 on the furnace wall side.

本発明の第1実施形態にかかる均熱板ユニット3は、ヒータ側均熱板10に対して被加熱物側均熱板11、又は、被加熱物側均熱板11に対してヒータ側均熱板10を、L/2だけスライドさせたときの開口割合η’=50[%]の状態を初期状態として使用する。図9に示す様に、前記初期状態の開口割合η’=50[%]から、開口割合η’=0[%]の状態に近づけることで、ヒータ輻射熱を受熱する低輻射率面積と、二次輻射する高輻射率面積と、放熱表面積とが増加する為、均熱板ユニット3の温度が減少する。同様に、前記初期状態の開口割合η’=50[%]から、開口割合η’=100[%]の状態に近づけることで、ヒータ輻射熱を受熱する低輻射率面積と、二次輻射する高輻射率面積と、放熱表面積とが減少する為、均熱板ユニット3の温度が増加する。 The soaking plate unit 3 according to the first embodiment of the present invention includes a heater-side soaking plate 11 with respect to the heater-side soaking plate 10 or a heater-side soaking plate with respect to the heating-side soaking plate 11. The state of the opening ratio η ′ = 50 [%] when the hot plate 10 is slid by L s / 2 is used as the initial state. As shown in FIG. 9, by approaching the opening ratio η ′ = 50 [%] in the initial state to the state of the opening ratio η ′ = 0 [%], a low emissivity area that receives the radiant heat of the heater, Since the high emissivity area for the next radiation and the heat radiation surface area increase, the temperature of the soaking plate unit 3 decreases. Similarly, by approaching the opening ratio η ′ = 50 [%] in the initial state to the state of the opening ratio η ′ = 100 [%], a low emissivity area for receiving the heater radiant heat and a high secondary radiation amount are obtained. Since the emissivity area and the heat radiation surface area decrease, the temperature of the soaking plate unit 3 increases.

図10は、均熱板ユニット3の開口部作動パターン(降温部)の例を示す図である。被加熱物2は、一般に、加熱部と、温度キープ部と、冷却部との工程で構成させる温度プロファイルによって加熱される。熱処理装置1における炉幅方向の温度分布は、加熱部の昇温過程では、炉体1aの端部側が熱し易く、炉体1aの中央部が熱し難い。一方、冷却部では、炉体1aの中央部が冷え難く、炉壁側が冷え易い。これらは、物質が一定の熱容量を持つことに起因する。本発明の第1実施形態にかかる均熱板ユニット3を作動させる条件として、例えば降温部においては、炉体1aの中央部が高温で炉壁側が低温であるから、図11に示す様に、炉幅方向に分割された炉壁側のヒータ側均熱板10及び被加熱物側均熱板11、並びに、炉体1aの中央部のヒータ側均熱板10及び被加熱物側均熱板11を用いて、炉壁側の分割均熱板10,11の開口部10a,11aの開口割合η’を大きく、炉体1aの中央部の分割均熱板10、11の開口部10a,11aの開口割合η’を小さくすることにより、炉幅方向の均熱板温度差異を低減し、均熱板ユニット3から二次輻射する輻射熱を均一化でき、その具体的な検証結果により、被加熱物2を均熱化することができる。   FIG. 10 is a diagram illustrating an example of an opening operation pattern (temperature drop portion) of the heat equalizing plate unit 3. In general, the article to be heated 2 is heated by a temperature profile that is configured by a process of a heating unit, a temperature keeping unit, and a cooling unit. The temperature distribution in the furnace width direction of the heat treatment apparatus 1 is such that the end side of the furnace body 1a is easily heated and the center part of the furnace body 1a is not easily heated in the temperature rising process of the heating section. On the other hand, in the cooling part, the central part of the furnace body 1a is difficult to cool and the furnace wall side is easy to cool. These are due to the fact that the material has a certain heat capacity. As a condition for operating the soaking plate unit 3 according to the first embodiment of the present invention, for example, in the temperature lowering part, the center part of the furnace body 1a is high temperature and the furnace wall side is low temperature. The heater side heat equalizing plate 10 and the heated object side heat equalizing plate 11 on the furnace wall side divided in the furnace width direction, and the heater side heat equalizing plate 10 and the heated object side heat equalizing plate in the center of the furnace body 1a. 11, the opening ratio η ′ of the openings 10 a, 11 a of the divided soaking plates 10, 11 on the furnace wall side is increased, and the openings 10 a, 11 a of the divided soaking plates 10, 11 at the center of the furnace body 1 a are used. By reducing the opening ratio η ′, the temperature difference in the soaking plate in the furnace width direction can be reduced, and the radiant heat that is radiated from the soaking plate unit 3 can be made uniform. The product 2 can be soaked.

これは、例えば、以下のような構成で達成することができる。すなわち、均熱板ユニット3を、中央部の均熱板ユニット3と、中央部の均熱板ユニット3を挟む両側の炉壁側の均熱板ユニット3(第1炉壁側(例えば図1Aの左炉壁側)の均熱板ユニット3と第2炉壁側(例えば図1Aの右炉壁側)の均熱板ユニット3)とに3分割すると同様に、均熱板支持フレーム7も、中央部の均熱板支持フレーム7と、中央部の均熱板支持フレーム7を挟む両側の炉壁側、すなわち、第1炉壁側(例えば図1Aの左炉壁側)の均熱板支持フレーム7と第2炉壁側(例えば図1Aの右炉壁側)の均熱板支持フレーム7とに3分割する。中央部の均熱板ユニット3を支持する中央部の均熱板支持フレーム7は、中央部のシリンダ駆動部6bでスライド可能とする。第1炉壁側の均熱板ユニット3を支持する第1炉壁側の均熱板支持フレーム7は、第1炉壁側のシリンダ駆動部6aでスライド可能とする。第2炉壁側の均熱板ユニット3を支持する第2炉壁側の均熱板支持フレーム7は、第2炉壁側のシリンダ駆動部6cでスライド可能とする。よって、第1又は第2炉壁側のシリンダ駆動部6a,6cの駆動により、第1又は第2炉壁側の均熱板ユニット3のヒータ側均熱板10の開口部10aに対して被加熱物側均熱板11の開口部11aを一致させるか、ほぼ一致させるようにスライドさせれば、第1又は第2炉壁側の分割均熱板10,11の開口部10a,11aの開口割合η’を大きくすることができる(図10の状態Sdを参照。)。一方、中央部のシリンダ駆動部6bの駆動により、中央部の均熱板ユニット3のヒータ側均熱板10の開口部10aに対して被加熱物側均熱板11の開口部11aをL/2以上ずらせて、例えば、両方の開口部10a,11aを閉じるようにスライドさせれば、中央部の分割均熱板10,11の開口部10a,11aの開口割合η’を小さくすることができる(図10の状態Sdを参照。)。なお、図10の状態Scは、第1及び第2炉壁側及び中央部のシリンダ駆動部6a,6c,6bの駆動により、第1及び第2炉壁側及び中央部の均熱板ユニット3のヒータ側均熱板10の開口部10aに対して被加熱物側均熱板11の開口部11aをL/2だけずらせた状態を示している。 This can be achieved, for example, with the following configuration. That is, the soaking plate unit 3 is divided into a center soaking plate unit 3 and a soaking plate unit 3 on both sides of the center soaking plate unit 3 (first furnace wall side (for example, FIG. 1A)). Similarly, the soaking plate support frame 7 is divided into three parts, the soaking plate unit 3 on the left furnace wall side) and the soaking plate unit 3 on the second furnace wall side (for example, the right furnace wall side in FIG. 1A). The central heat equalizing plate support frame 7 and the furnace wall side on both sides sandwiching the central heat equalizing plate support frame 7, that is, the first furnace wall side (for example, the left furnace wall side in FIG. 1A). It is divided into a support frame 7 and a soaking plate support frame 7 on the second furnace wall side (for example, the right furnace wall side in FIG. 1A). The central heat equalizing plate support frame 7 that supports the central heat equalizing plate unit 3 is slidable by the cylinder driving portion 6b in the central portion. The soaking plate support frame 7 on the first furnace wall side that supports the soaking plate unit 3 on the first furnace wall side is slidable by the cylinder driving portion 6a on the first furnace wall side. The soaking plate support frame 7 on the second furnace wall side that supports the soaking plate unit 3 on the second furnace wall side is slidable by the cylinder driving portion 6c on the second furnace wall side. Therefore, the opening 10a of the heater side heat equalizing plate 10 of the heat equalizing plate unit 3 on the first or second furnace wall side is covered by driving of the cylinder driving portions 6a and 6c on the first or second furnace wall side. If the opening part 11a of the heated object side heat equalizing plate 11 is made to coincide or is slid so as to substantially coincide, the openings of the opening parts 10a, 11a of the divided heat equalizing plates 10, 11 on the first or second furnace wall side The ratio η ′ can be increased (see the state Sd in FIG. 10). On the other hand, the opening 11a of the heated object-side heat equalizing plate 11 is moved to L s with respect to the opening 10a of the heater-side heat equalizing plate 10 of the central heat-uniforming plate unit 3 by driving the central cylinder driving portion 6b. For example, if both the openings 10a and 11a are slid so as to be closed, the opening ratio η ′ of the openings 10a and 11a of the divided heat equalizing plates 10 and 11 at the center can be reduced. Yes (see state Sd in FIG. 10). The state Sc in FIG. 10 is obtained by driving the first and second furnace wall sides and the central cylinder drive portions 6a, 6c, and 6b, so that the first and second furnace wall sides and the central heat plate unit 3 are provided. The opening part 11a of the to-be-heated material side soaking plate 11 is shifted by L s / 2 with respect to the opening part 10a of the heater side soaking plate 10.

図11は、均熱板ユニット3の開口部3aの作動状況と温度差との関係を示す図である。すなわち、炉体1aの中央部が高温で、炉壁側が低温の状態において、炉体1aの中央部の均熱板ユニット3の被加熱物側均熱板10のスライド移動量をSとし、炉壁側均熱板ユニット3の被加熱物側均熱板11のスライド移動量をSとしたとき、(S,S)=(0,0)、(10,0)、(20,0)、(30,0)、(0,30)と前記スライド移動量を変化させたときの600mm幅被加熱物温度差ΔT/T[%]との関係をまとめた検証データが、図11である。ただし、ヒータ側均熱板10と被加熱物側均熱板11の輻射率差ΔεをΔε=0.6とし、ヒータ側輻射率εをε=0.8とし、分割数を3とし、開口部3aと非開口部3cとの和LをL=30[mm]とし、均熱板ユニット3の開口率ηをη=50[%]とする。この具体的な検証の結果、(S,S)=(10,0)、(20,0)、(30,0)において、被加熱物温度ばらつき目標値に対して±0.6[%]以下を満たす。 FIG. 11 is a diagram showing the relationship between the operating state of the opening 3a of the soaking plate unit 3 and the temperature difference. That is, when the central portion of the furnace body 1a is high temperature and the furnace wall side is low temperature, the sliding movement amount of the heated object-side heat equalizing plate 10 of the heat equalizing plate unit 3 in the central portion of the furnace body 1a is S m , When the sliding movement amount of the heated object-side heat equalizing plate 11 of the furnace wall-side heat equalizing plate unit 3 is S w , (S m , S w ) = (0, 0), (10, 0), (20 , 0), (30, 0), (0, 30) and 600 mm width heated object temperature difference ΔT / T 0 [%] when the slide movement amount is changed, FIG. However, the emissivity difference Δε between the heater-side soaking plate 10 and the heated object-side soaking plate 11 is Δε = 0.6, the heater-side emissivity ε h is ε h = 0.8, and the number of divisions is 3. The sum L of the opening 3a and the non-opening 3c is L = 30 [mm], and the opening ratio η of the soaking plate unit 3 is η = 50 [%]. As a result of this specific verification, in (S m , S w ) = (10, 0), (20, 0), (30, 0), ± 0.6 [ %] Satisfies the following.

したがって、被加熱物側均熱板11のスライド移動量SがS=0のとき、被加熱物側均熱板10のスライド移動量Sは、10≦S≦30が好ましい。 Therefore, when the slide movement amount S w of the heated object side heat equalizing plate 11 is S w = 0, the slide moving amount S m of the heated object side heat equalizing plate 10 is preferably 10 ≦ S m ≦ 30.

本発明の第1実施形態にかかる熱処理装置1によれば、均熱板ユニット3を分割ヒータ4と被加熱物2との間に介在させ、更に、複数の均熱板ユニット3の被加熱物側均熱板11をヒータ側均熱板10に対してシリンダ駆動部6a,6b,6cによって炉幅方向に個別に独立してスライドさせることで、分割ヒータ4からの輻射熱を均一化させ、搬送ローラ5により搬送される被加熱物2の炉幅方向の温度ばらつきを低減させることができる。よって、炉壁放散熱又は炉体1aの周囲環境及び炉材の経時変化による炉温の変動又は被加熱物2の品種などにかかわらず、均一に熱処理できる。   According to the heat treatment apparatus 1 according to the first embodiment of the present invention, the heat equalizing plate unit 3 is interposed between the divided heater 4 and the object to be heated 2, and further, the objects to be heated of the plurality of heat equalizing plate units 3. The side heat equalizing plate 11 is individually slid in the furnace width direction by the cylinder driving units 6a, 6b, and 6c with respect to the heater side heat equalizing plate 10, thereby making the radiant heat from the divided heater 4 uniform and transporting. The temperature variation in the furnace width direction of the article to be heated 2 conveyed by the roller 5 can be reduced. Therefore, the heat treatment can be performed uniformly regardless of the furnace wall diffused heat or the ambient environment of the furnace body 1a and the change in the furnace temperature due to the temporal change of the furnace material or the type of the article 2 to be heated.

(第2実施形態)
図12は、本発明の第2実施形態における均熱板ユニット3Tの構成について説明する図である。熱処理装置1において、本発明の第1実施形態は、分割ヒータ(図示せず)と均熱板ユニット3Tとを炉幅方向に対して並列に複数個分割させており、それぞれの分割ヒータの数に対して、分割された均熱板ユニット3Tの数を対応させている。
(Second Embodiment)
FIG. 12 is a diagram illustrating the configuration of the heat equalizing plate unit 3T according to the second embodiment of the present invention. In the heat treatment apparatus 1, according to the first embodiment of the present invention, a plurality of divided heaters (not shown) and a soaking plate unit 3T are divided in parallel with respect to the furnace width direction. , The number of the soaking plate units 3T is made to correspond.

これに対して、本発明の第2実施形態における均熱板ユニット3Tは、前記第1実施形態の構成と異なり、均熱板ユニット3Tと分割ヒータとが搬送方向Dに対して並列に複数個分割しており、それぞれの分割ヒータの数に対して、分割均熱板ユニット3Tの数を対応させている。通常、熱処理装置に代表される連続炉では連続搬送である為、搬送方向に対して被加熱物が受ける熱履歴の加熱順による差異は、小さい。しかし、間欠炉のような断続的な搬送方式、例えば、一般に、搬送方向Dに対して一定ピッチ(固定周期)での搬送方法の場合、炉幅方向に代えて、搬送方向Dにおける被加熱物2の位置によっても温度差異が生じる為、搬送方向Dの温度差異抑制手段が求められる。 Multiple contrast, soaking plate unit 3T in the second embodiment of the present invention, unlike the configuration of the first embodiment, in parallel with the divided heater and the heat equalizing plate unit 3T is the conveying direction D b The number of divided heaters 3T is made to correspond to the number of divided heaters. Usually, since a continuous furnace represented by a heat treatment apparatus performs continuous conveyance, the difference in heat history received by the article to be heated with respect to the conveyance direction is small. However, intermittent conveyance method, such as intermittent furnaces, for example, generally, when the transfer method at constant pitch (fixed period) to the conveying direction D b, instead of the furnace width direction, the in the conveying direction D b since temperature differences depending on the position of the heated object 2 occurs, the temperature difference suppressing means in the conveying direction D b is determined.

したがって、前述の様に、搬送方向Dに対して温度差異が発生する状況において、本発明の第2実施形態にかかる均熱板ユニット3Tを搬送方向Dに対して分割して配置し、駆動部(図示せず)により、スライド移動させることによって、搬送方向Dに対して温度差異を抑制することができる。尚、図1A及び図1Bに示されるヒータ4T及び均熱板ユニット3Tに関しては、被加熱物2の上部に限定するものではなく、下部のみ、又は、上下の両方にそれぞれ配置されていても良い。 Therefore, as described above, in a situation where the temperature difference occurs, divided and the soaking plate unit 3T according to a second embodiment of the present invention with respect to the conveying direction D b arranged with respect to the conveying direction D b, by a driving unit (not shown), by sliding movement, it is possible to suppress the temperature difference with respect to the conveying direction D b. Note that the heater 4T and the soaking plate unit 3T shown in FIGS. 1A and 1B are not limited to the upper part of the object to be heated 2, and may be arranged only in the lower part or both in the upper and lower parts. .

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本発明にかかる熱処理装置は、炉壁放散熱又は炉体の周囲環境及び炉材の経時変化による炉温の変動又は被加熱物の品種などにかかわらず、均一に熱処理でき、焼成炉、乾燥炉、キュア炉、又はリフロー炉など、加熱処理を行う炉等として有用である。   The heat treatment apparatus according to the present invention can heat-treat uniformly regardless of the furnace wall radiated heat or the ambient environment of the furnace body and the fluctuation of the furnace temperature due to the aging of the furnace material or the kind of the object to be heated. It is useful as a furnace for heat treatment such as a curing furnace or a reflow furnace.

1 熱処理装置
1a 炉体
2 被加熱物
3,3T 均熱板ユニット
3a 開口部
3b 均熱板
3c 非開口部
4 分割ヒータ
5 搬送ローラ
6a,6b,6c 油圧式シリンダ
7 均熱板ユニット支持フレーム
8 断熱材
9 搬送ローラ支持台
10 ヒータ側均熱板
10a 開口部
11 被加熱物側均熱板
11a 開口部
20 熱処理炉
21,22 炉壁
23 ヒータ
24,25 炉壁
26 シリコンプレート
DESCRIPTION OF SYMBOLS 1 Heat processing apparatus 1a Furnace body 2 To-be-heated object 3,3T Soaking plate unit 3a Opening part 3b Soaking plate 3c Non-opening part 4 Dividing heater 5 Conveyance rollers 6a, 6b, 6c Hydraulic cylinder 7 Soaking plate unit support frame 8 Heat insulating material 9 Conveying roller support base 10 Heater side heat equalizing plate 10a Opening 11 Heated object side heat equalizing plate 11a Opening 20 Heat treatment furnaces 21, 22 Furnace wall 23 Heaters 24, 25 Furnace wall 26 Silicon plate

Claims (3)

内部空間で被加熱物を熱処理する炉体と、
前記炉体の内部の熱源と、
前記被加熱物と前記熱源との間に前記熱源からの輻射を二次輻射し、前記被加熱物を均熱化させる均熱板ユニットとを有する熱処理装置において、
前記均熱板ユニットは、複数の矩形状の開口部が設けられた均熱板を前記被加熱物の搬送方向とは直交する炉幅方向に配置し、前記各開口部の長手方向が前記搬送方向沿いに配置され、前記各開口部の短手方向が前記炉幅方向に配置されるとともに、前記均熱板は、前記熱源に近い熱源側均熱板と、前記熱源から遠く前記被加熱物に近い被加熱物側均熱板とで構成され、前記熱源側均熱板と前記被加熱物側均熱板とが前記搬送方向及び前記炉幅方向と直交する炉体垂直方向に互いに接触して重ねられた状態で配置されており、前記熱源側均熱板の表面の輻射率をε、前記被加熱物側均熱板の表面の輻射率をεとするとき、Δε=|ε−ε|で示される輻射率差がΔε≧0.6であり、かつε≧0.8であり、前記均熱板ユニットは、前記搬送方向と直交する炉幅方向に対して、三分割以上に複数に分割されており、
さらに、前記熱処理装置は、前記熱源側均熱板と前記被加熱物側均熱板とを炉幅方向に相対的にスライドさせて、前記熱源側均熱板の開口部と前記被加熱物側均熱板の開口部との位相を一致した状態と位置ずれした状態との間で移動させる駆動部を備える、熱処理装置。
A furnace body for heat-treating an object to be heated in an internal space;
A heat source inside the furnace body;
In a heat treatment apparatus having a soaking plate unit that secondaryly radiates radiation from the heat source between the heated object and the heat source and soaks the heated object.
In the heat equalizing plate unit, a heat equalizing plate provided with a plurality of rectangular openings is arranged in the furnace width direction orthogonal to the conveying direction of the object to be heated, and the longitudinal direction of each opening is the conveying And the transverse direction of each opening is arranged in the furnace width direction, and the soaking plate includes a heat source side soaking plate close to the heat source, and the object to be heated far from the heat source. The heat source side heat equalizing plate and the heated object side heat equalizing plate are in contact with each other in the furnace body vertical direction orthogonal to the transport direction and the furnace width direction. When the emissivity of the surface of the heat source side soaking plate is ε h and the emissivity of the surface of the heated object side soaking plate is ε w , Δε = | ε h-epsilon w | 0.6 emissivity difference [Delta] [epsilon] ≧ represented by, and a epsilon h ≧ 0.8, the soaking plate unit Against chamber width direction orthogonal to the conveying direction, it is divided into a plurality of thirds or more,
Further, the heat treatment apparatus slides the heat source side heat equalizing plate and the heated object side heat equalizing plate relatively in the furnace width direction so that the opening of the heat source side heat equalizing plate and the heated object side A heat treatment apparatus comprising a drive unit that moves between a state in which the phase with the opening of the heat equalizing plate coincides with a state in which the phase shifts.
前記均熱板ユニットの前記開口部の開口率ηは、25[%]≦η≦50[%]の範囲である請求項1に記載の熱処理装置。   2. The heat treatment apparatus according to claim 1, wherein an opening ratio η of the opening of the soaking plate unit is in a range of 25 [%] ≦ η ≦ 50 [%]. 前記均熱板ユニットの前記開口部のピッチをLとすると、15[mm]≦L≦60[mm]の範囲である請求項2に記載の熱処理装置。   The heat treatment apparatus according to claim 2, wherein the pitch of the openings of the heat equalizing plate unit is in a range of 15 [mm] ≤ L ≤ 60 [mm].
JP2013094379A 2013-04-26 2013-04-26 Heat treatment equipment Expired - Fee Related JP6064199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094379A JP6064199B2 (en) 2013-04-26 2013-04-26 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094379A JP6064199B2 (en) 2013-04-26 2013-04-26 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2014214999A JP2014214999A (en) 2014-11-17
JP6064199B2 true JP6064199B2 (en) 2017-01-25

Family

ID=51940921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094379A Expired - Fee Related JP6064199B2 (en) 2013-04-26 2013-04-26 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP6064199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288602B2 (en) * 2013-12-17 2018-03-07 株式会社Ihi Radiation heating device and radiation heating method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079916A (en) * 1983-10-11 1985-05-07 Mitsubishi Monsanto Chem Co Heating method of thermoplastic resin film
JPS61279619A (en) * 1985-06-05 1986-12-10 Daido Steel Co Ltd Heating method for material to be heated in roller hearth type vacuum furnace
US4739154A (en) * 1986-09-05 1988-04-19 Baker's Pride Oven Co., Inc. Conveyor oven design and method for using same
JP3182532B2 (en) * 1992-01-27 2001-07-03 東京エレクトロン株式会社 Heat treatment equipment
JP3229533B2 (en) * 1995-12-28 2001-11-19 日本電熱計器株式会社 Reflow soldering method and reflow soldering device
JPH09237789A (en) * 1996-02-29 1997-09-09 Toshiba Corp Shielding body as well as apparatus and method for heat treatment
JPH10144618A (en) * 1996-11-11 1998-05-29 Sony Corp Heater for manufacturing semiconductor device
JP4683902B2 (en) * 2004-11-02 2011-05-18 シャープ株式会社 Heat treatment apparatus and heat treatment method
JP4781165B2 (en) * 2006-05-18 2011-09-28 東京エレクトロン株式会社 Heat treatment equipment
US7725012B2 (en) * 2007-01-19 2010-05-25 Asm America, Inc. Movable radiant heat sources
JP2012229821A (en) * 2011-04-25 2012-11-22 Panasonic Corp Heat treatment device

Also Published As

Publication number Publication date
JP2014214999A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
US8418502B2 (en) Heating apparatus for glass-sheet-forming and a bending method for a glass sheet
US20130047673A1 (en) Glass Tempering Method And Apparatus
US7363777B2 (en) Closed cassette and method for heat treating glass sheets
FI82235C (en) Method and apparatus for heating glass sheets in horizontal position to bomb and / or cure them
CN107848001B (en) Method and device for changing the temperature of a metal strip for adjusting the flatness
JP2010163634A (en) Apparatus for treating strip material
KR20160013979A (en) Transport device for hot, thin-walled steel parts
JP6064199B2 (en) Heat treatment equipment
JP2004345916A (en) Method for annealing glass article, and method for heating glass article, method for manufacturing glass molding, and heat treatment apparatus
JP2014047411A (en) Rapid heating device in continuous annealing furnace
JP6436309B2 (en) Temperature control device and temperature control method for metal strip in continuous annealing equipment
JP6050835B2 (en) Hot stamping heating device
KR20180074187A (en) Apparatus for balancing temperature of steel plate
JP2014189903A (en) Heat treatment method of steel plate
KR20120126268A (en) In-line type heat treatment apparatus
JP2015094023A (en) Heating device
JP3866929B2 (en) Continuous firing furnace
JP2014020762A (en) Heat treatment apparatus
JP2017534492A (en) Baking method of coated printing plate
KR20130032349A (en) In-line type heat treatment apparatus and method for controlling temperature of the same
JP2001255073A (en) Vacuum furnace
CN104944748A (en) Method for manufacturing glass substrate, and device for manufacturing glass substrate
JP4847770B2 (en) Plate temperature control method for radiant tube heating zone
KR101191407B1 (en) A hybrid heat treatment apparatus to combine a induction furnace and a diffusion furnace
KR19980016195A (en) Continuous bending device of glass and method of bending thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R151 Written notification of patent or utility model registration

Ref document number: 6064199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees