JP6062160B2 - Optical element design method - Google Patents

Optical element design method Download PDF

Info

Publication number
JP6062160B2
JP6062160B2 JP2012123916A JP2012123916A JP6062160B2 JP 6062160 B2 JP6062160 B2 JP 6062160B2 JP 2012123916 A JP2012123916 A JP 2012123916A JP 2012123916 A JP2012123916 A JP 2012123916A JP 6062160 B2 JP6062160 B2 JP 6062160B2
Authority
JP
Japan
Prior art keywords
optical element
lens
chamfered portion
object side
concave surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012123916A
Other languages
Japanese (ja)
Other versions
JP2013250362A (en
Inventor
泰基 荻野目
泰基 荻野目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2012123916A priority Critical patent/JP6062160B2/en
Publication of JP2013250362A publication Critical patent/JP2013250362A/en
Application granted granted Critical
Publication of JP6062160B2 publication Critical patent/JP6062160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明はデジタルカメラ、ビデオカメラなどの撮像装置に用いられる撮影レンズを構成する光学素子に関し、特に内面反射に起因するリング状の反射像の発生を防止した光学素子に関する。   The present invention relates to an optical element that constitutes a photographing lens used in an imaging apparatus such as a digital camera or a video camera, and more particularly to an optical element that prevents generation of a ring-shaped reflection image due to internal reflection.

撮影装置に用いられる撮影レンズの設計・製造においては、レンズ鏡筒内に配置されている光学素子の外周面や面取り部で反射や散乱を起こす内面反射が問題となる。   In the design and manufacture of a photographing lens used in a photographing apparatus, internal reflection that causes reflection or scattering on the outer peripheral surface or chamfered portion of an optical element arranged in a lens barrel becomes a problem.

内面反射を起こした光線が像面に届いた場合にはゴーストやフレアとなって撮像されることとなり、画質を低下させる原因の一つとなる。また、内面反射を起こした光線が像面に届かない場合でも、物体側に光線が戻り、内面反射の原因となった光学素子の外周面や面取り部が物体側から観察した際に目立って見えることがある。このように、撮影される画像そのものに悪影響が及ばない場合でも、内面反射を嫌う光学機器としての製品の品位を損ねるとされ、対策が求められている。   When the light beam that has caused internal reflection reaches the image plane, the image is captured as a ghost or flare, which is one of the causes of lowering the image quality. Even if the light beam that caused internal reflection does not reach the image plane, the light beam returns to the object side, and the outer peripheral surface or chamfered part of the optical element that caused the internal reflection is conspicuous when viewed from the object side. Sometimes. As described above, even when the photographed image itself is not adversely affected, it is assumed that the quality of the product as an optical device that dislikes internal reflection is impaired, and countermeasures are required.

内面反射を起こした光線が像面に届くことで生じた画質の低下を防ぐためには、内面反射を起こした光線が像面に届かないように遮光部材を設けたり、光学素子の外周面や面取り部に光線が当らないようにレンズの径を増大させたり、光学素子の外周面や面取り部に光吸収材料を塗布する等して内面反射を抑制する対策を行なったりしている(例えば特許文献1)。   In order to prevent degradation of image quality caused by light rays that have caused internal reflection reaching the image surface, a light shielding member is provided so that the light rays that have undergone internal reflection do not reach the image surface, and the outer peripheral surface or chamfer of the optical element is provided. Measures are taken to suppress internal reflection by increasing the diameter of the lens so that light does not strike the part, or by applying a light-absorbing material to the outer peripheral surface or chamfered part of the optical element (for example, patent documents) 1).

また、内面反射によって製品の品位を損ねることの無いように、光学素子の外周面や面取り部に光吸収材料を塗布して内面反射を抑制し、光学素子の外周面や面取り部が目立たないように対策が行なわれている(例えば特許文献2)。しかしながら、高い屈折率(概ね1.8以上)を持つ光学素子においては光吸収塗料の内面反射防止効果が低下しやすいため、光吸収材料の塗布だけでは対策が不十分な場合が存在することがわかっている。   Also, in order not to impair the quality of the product due to internal reflection, a light-absorbing material is applied to the outer peripheral surface or chamfered portion of the optical element to suppress internal reflection so that the outer peripheral surface or chamfered portion of the optical element is not noticeable. A countermeasure is taken (for example, Patent Document 2). However, in an optical element having a high refractive index (approximately 1.8 or more), the effect of preventing the inner reflection of the light-absorbing paint is likely to deteriorate, so that there are cases where countermeasures are insufficient only by application of the light-absorbing material. know.

また一般に、撮影レンズを物体側から観察すると、光学素子の外周部や光学素子を保持している鏡室などがリング状に並んでいる様が見える。これらは通常、目立たないように形状や表面処理を工夫することで対策が行われ、光学機器としての品位を損なわないように配慮されている。ところが、光学素子の外周面に像側に頂点をおいた円錐台の側面に相当する形状の面取り部(以下、コニカル型面取り部)がある場合には、当該面取り部で反射した光線が物体側に進むため、撮影レンズを物体側から観察した際に白いリング状の反射像が生じる場合がある(図5の斜線部X)。このような白いリング状の反射像には、コニカル型面取り部に反射した光が直接物体側に戻ることによって生じる一面反射像と、コニカル型面取り部に反射した光が光学素子内の他の面でさらに反射して物体側に戻ることによって生じる二面反射像とがあることが知られている。   In general, when the photographing lens is observed from the object side, it can be seen that the outer peripheral portion of the optical element and the mirror chamber holding the optical element are arranged in a ring shape. These measures are usually taken by devising the shape and surface treatment so as not to stand out, and consideration is given so as not to impair the quality of the optical device. However, when there is a chamfered portion (hereinafter referred to as a conical chamfered portion) having a shape corresponding to the side surface of the truncated cone having the apex on the image side on the outer peripheral surface of the optical element, the light beam reflected by the chamfered portion is reflected on the object side. Therefore, when the photographing lens is observed from the object side, a white ring-shaped reflection image may be generated (shaded portion X in FIG. 5). In such a white ring-shaped reflection image, a one-surface reflection image generated by the light reflected on the conical chamfered portion returning directly to the object side, and the light reflected on the conical chamfered portion on the other surface in the optical element. It is known that there is a two-surface reflection image generated by further reflecting and returning to the object side.

また、このような二面反射像が発生しやすい光学素子の形状として、コニカル型面取り部を光学素子の外周に持ち、さらに光学素子が像側に凹面を向けた面を像側に持つものがある。また、撮影レンズを構成する光学素子の中でも物体側寄りに配置され、さらに物体側に配置された光学素子と外径差があるためにコニカル型面取り部が観察されやすい配置である場合にも二面反射像が発生しやすい。さらに、屈折率が高い硝材を使用している場合も、光吸収塗料の内面反射防止効果が低下しやすく、全反射が起こりやすい状況であるために二面反射像が発生しやすい状況といえる。このような光学素子の形状及び配置によって、コニカル型面取り部で反射した光線が、光学素子の像側の面に臨界角以上の入射角で入射し、像側の面で全反射して物体側に光線が戻ることで、白いリング状の二面反射像を発生させていることがわかっている。   In addition, as a shape of such an optical element in which a two-surface reflection image is likely to be generated, a conical chamfered portion is provided on the outer periphery of the optical element, and the optical element has a concave surface on the image side on the image side. is there. Also, the optical element constituting the photographic lens is arranged closer to the object side, and there is a difference in outer diameter from the optical element arranged on the object side, so that the conical chamfered portion is easily observed. Surface reflection images are likely to occur. Furthermore, even when a glass material having a high refractive index is used, it can be said that a two-surface reflection image is likely to be generated because the effect of preventing internal reflection of the light-absorbing paint is likely to be reduced and total reflection is likely to occur. Due to the shape and arrangement of the optical element, the light beam reflected by the conical chamfered portion is incident on the image-side surface of the optical element at an incident angle greater than the critical angle, and is totally reflected by the image-side surface and is reflected on the object side. It is known that a white ring-shaped two-sided reflection image is generated by returning the light beam to.

特開2001−33677号公報JP 2001-33677 A 特開2009−282488号公報JP 2009-282488 A

上述したような二面反射像を生じるという課題に対する対策として、光線の像側の面への入射角が臨界角未満となるようにコニカル型面取り部の角度を設定するという方法が挙げられる。しかしながら、本発明が課題としている二面反射像の発生は、各撮影レンズによってまちまちであり、コニカル型面取り部の角度を一定の角度に設定すれば解決するといった類のものではない。   As a countermeasure against the problem of generating the above-described two-surface reflection image, there is a method of setting the angle of the conical chamfered portion so that the incident angle of the light beam on the image-side surface is less than the critical angle. However, the generation of the two-surface reflection image, which is a problem of the present invention, varies depending on each photographing lens, and is not a problem that can be solved by setting the angle of the conical chamfered portion to a constant angle.

また一方で、コニカル型面取り部の角度を限りなく光軸と平行に近づけるなど(図4)、二面反射像が発生する角度よりも大幅に余裕を取った角度に設定するという対策もあるものの、光学素子及び撮影レンズの大型化や加工性の悪化を招くなど、新たに生じる弊害を避けることが出来ない。   On the other hand, although there is a measure to set the angle of the conical chamfered part to an angle much larger than the angle at which the two-surface reflected image is generated, such as making the angle of the conical chamfered part as close as possible parallel to the optical axis (Fig. 4). In addition, it is impossible to avoid newly adverse effects such as an increase in the size of the optical element and the photographing lens and a deterioration in workability.

即ち、本発明が解決しようとする課題は、物体側から入射した光線がコニカル型面取り部で反射して像側の面へ入射しても、光線の像側の面への入射角度が臨界角未満になることで全反射を防ぎ、撮影レンズを物体側から観察した際に生じる二面反射像の発生を防止した形状の光学素子を提供することである。   That is, the problem to be solved by the present invention is that even if a light beam incident from the object side is reflected by the conical chamfer and incident on the image side surface, the incident angle of the light beam on the image side surface is the critical angle. It is an object of the present invention to provide an optical element having a shape that prevents total reflection by being less than that and prevents generation of a two-surface reflection image that occurs when a photographing lens is observed from the object side.

前述の課題を解決するための手段である発明は、撮像装置に用いられる撮影レンズを構成する光学素子の設計方法であって、像側に凹面R2を有し、前記凹面R2の端部を面取りする面取り部Tを有するとき、以下の条件式(1)及び(2)を用い、両式を満足するように面取り部Tの角度を設定する工程を有する光学素子の設計方法である。
(1) n1>n2
(2) 0<θ1<{arcsin(n2/n1)−arccos(h/R)}/2+π/4
θ1:面取り部Tと光軸とがなす角度
h:面取り部Tで反射した光線HLが凹面R2に入射した位置の光線高
R:凹面R2の曲率半径
n1:光学素子の屈折率
n2:光学素子の周辺を充填する媒質の屈折率
An invention that is a means for solving the above-described problem is a method for designing an optical element that constitutes a photographing lens used in an imaging apparatus, and has a concave surface R2 on the image side, and the end of the concave surface R2 is chamfered. This is a method for designing an optical element having a step of setting the angle of the chamfered portion T so as to satisfy both formulas using the following conditional expressions (1) and (2).
(1) n1> n2
(2) 0 <θ1 <{arcsin (n2 / n1) −arccos (h / R)} / 2 + π / 4
θ1: Angle formed by the chamfered portion T and the optical axis h: Ray height R at the position where the light beam HL reflected by the chamfered portion T is incident on the concave surface R2: Radius of curvature of the concave surface R2 n1: Refractive index n2 of the optical element: Optical element Refractive index of the medium filling the periphery of

本発明によれば、物体側から入射した光線が面取り部で反射して像側の面へ入射しても、光線の像側の面への入射角度が臨界角未満になることで全反射を防ぎ、撮影レンズを物体側から観察した際に生じる二面反射像の発生を防止した形状の光学素子を提供することができる。   According to the present invention, even if a light beam incident from the object side is reflected by the chamfered portion and incident on the image side surface, the incident angle of the light beam on the image side surface becomes less than the critical angle, so that total reflection is achieved. It is possible to provide an optical element having a shape that prevents the occurrence of a two-surface reflection image that occurs when the photographing lens is observed from the object side.

本発明の光学素子の断面図である。It is sectional drawing of the optical element of this invention. 本発明に係る実施例1の撮影レンズのレンズ構成図である。It is a lens block diagram of the photographic lens of Example 1 which concerns on this invention. 本発明に係る実施例1の第4レンズG4を45°で面取りした断面図である。It is sectional drawing which chamfered the 4th lens G4 of Example 1 which concerns on this invention at 45 degrees. 本発明に係る実施例1の第4レンズG4を5°で面取りした断面図である。It is sectional drawing which chamfered 4th lens G4 of Example 1 which concerns on this invention at 5 degrees. 本発明に係る実施例1の撮影レンズを物体側から見た外観図である。It is the external view which looked at the imaging lens of Example 1 which concerns on this invention from the object side.

本発明の光学素子は、デジタルカメラ、ビデオカメラなどの撮像装置に用いられる撮影レンズを構成する光学素子であって、像側に凹面R2を有し、前記凹面R2の端部を面取りする面取り部Tを有することを特徴とする。   The optical element of the present invention is an optical element that constitutes a photographing lens used in an imaging apparatus such as a digital camera or a video camera, and has a concave surface R2 on the image side, and a chamfered portion that chamfers an end of the concave surface R2. It is characterized by having T.

また本発明の光学素子は、以下に示す条件式(1)及び(2)を満足することを特徴とする。
(1) n1>n2
(2) 0<θ1<{arcsin(n2/n1)−arccos(h/R)}/2+π/4
θ1:面取り部Tと光軸Aとがなす角度
h:面取り部Tで反射した光線HLが凹面R2に入射した位置の光線高
R:凹面R2の曲率半径
n1:光学素子の屈折率
n2:光学素子の周辺を充填する媒質の屈折率
The optical element of the present invention satisfies the following conditional expressions (1) and (2).
(1) n1> n2
(2) 0 <θ1 <{arcsin (n2 / n1) −arccos (h / R)} / 2 + π / 4
θ1: Angle formed by the chamfered portion T and the optical axis A h: Light ray height R at the position where the light beam HL reflected by the chamfered portion T is incident on the concave surface R2: Radius of curvature of the concave surface R2 n1: Refractive index n2 of the optical element: Optical Refractive index of the medium filling the periphery of the element

条件式(1)は、物体側から平行に入射し、面取り部Tで反射した光線が凹面R2において全反射する条件を規定するため、光学素子の屈折率n1と光学素子の周辺を充填する媒質の屈折率n2との関係を規定したものである。   Conditional expression (1) prescribes a condition in which light rays incident in parallel from the object side and reflected by the chamfered portion T are totally reflected on the concave surface R2, so that the medium fills the refractive index n1 of the optical element and the periphery of the optical element. This defines the relationship with the refractive index n2.

条件式(2)は光軸に平行に面取り部Tに入射し、面取り部Tで反射した光線の凹面R2への入射角が全反射を起こさない臨界角以下の条件を算出するために、θ1、n1、n2、h、及びRとの関係を規定したものである。   Conditional expression (2) is incident on the chamfered portion T parallel to the optical axis, and in order to calculate a condition where the incident angle of the light beam reflected by the chamfered portion T to the concave surface R2 is less than the critical angle at which total reflection does not occur. , N1, n2, h, and R are defined.

条件式(2)の上限を上回ると、面取り部Tで反射した光線の凹面R2への入射角は、臨界角を上回り、全反射を起こし物体側に戻ってしまい、物体側よりレンズを観察した際、面取り部Tの二面反射像が写り込んでしまう。   When the upper limit of conditional expression (2) is exceeded, the incident angle of the light beam reflected by the chamfered portion T on the concave surface R2 exceeds the critical angle, causes total reflection, and returns to the object side, and the lens is observed from the object side. At this time, a two-surface reflection image of the chamfered portion T is reflected.

条件式(2)の下限を下回ると、θ1は0°を下回るため面取り部Tは像側に頂点をおいた円錐台の側面に相当する形状の面取り部でなくなってしまう。   If the lower limit of conditional expression (2) is not reached, θ1 is less than 0 °, so that the chamfered portion T is not a chamfered portion having a shape corresponding to the side surface of the truncated cone having the apex on the image side.

ここで、条件式(1)及び(2)の導出過程を説明する。図1は、撮像装置に用いられる撮影レンズを構成する光学素子であって、像側に凹面R2を有し、前記凹面R2の端部を面取りする面取り部Tを有することを特徴とする光学素子の断面を示している。図1において、右側には撮影レンズが像を結ぶ像面があり、左側には撮影レンズの被写体であるところの物体がある。   Here, the process of deriving conditional expressions (1) and (2) will be described. FIG. 1 shows an optical element constituting a photographic lens used in an image pickup apparatus, which has a concave surface R2 on the image side and a chamfered portion T that chamfers an end of the concave surface R2. The cross section of is shown. In FIG. 1, there is an image plane on which the photographic lens connects images on the right side, and an object that is the subject of the photographic lens is on the left side.

図1において、Tは面取り部、R2は像側の凹面、HLは光軸と平行に面取り部Tに入射した光線、TLは面取り部Tで反射した光線HLが凹面R2に入射した位置における凹面R2の接線、Aは光軸である。また図1において、θ1は面取り部Tと光軸Aとがなす角度、θ2は接線TLと光軸Aとがなす角度、θcは面取り部Tで反射した光線HLの凹面R2への入射角、hは面取り部Tで反射した光線HLが凹面R2に入射した位置の光線高である。なお、図1において、斜線部は光学素子の断面を表しており、光学素子の外周部は光軸Aと平行であるとする。さらに、凹面R2の曲率半径をR、光学素子の屈折率をn1、光学素子の周辺を充填する媒質の屈折率をn2とする。   In FIG. 1, T is a chamfered portion, R2 is a concave surface on the image side, HL is a light beam incident on the chamfered portion T parallel to the optical axis, TL is a concave surface at a position where the light beam HL reflected by the chamfered portion T is incident on the concave surface R2. The tangent of R2, A is the optical axis. In FIG. 1, θ1 is an angle formed by the chamfered portion T and the optical axis A, θ2 is an angle formed by the tangent TL and the optical axis A, θc is an incident angle of the light beam HL reflected by the chamfered portion T to the concave surface R2, h is the light ray height at the position where the light beam HL reflected by the chamfered portion T is incident on the concave surface R2. In FIG. 1, the hatched portion represents a cross section of the optical element, and the outer peripheral portion of the optical element is assumed to be parallel to the optical axis A. Furthermore, the radius of curvature of the concave surface R2 is R, the refractive index of the optical element is n1, and the refractive index of the medium filling the periphery of the optical element is n2.

ここに挙げた変数のうち、h、R、n1、及びn2は撮影レンズの光学設計を行う中で決定され、θc及びθ2はθ1によって変化するため、課題の解決にあたって変更できるものはθ1のみとなる。   Among the variables listed here, h, R, n1, and n2 are determined during the optical design of the taking lens, and θc and θ2 change according to θ1, so that only θ1 can be changed in solving the problem. Become.

ここで、図1に示すように光学素子の面取り部Tに入射する光線HLは光軸と平行に入射するものと仮定している。そもそも、物体側から撮影レンズを観察した際に観察される白いリング状の二面反射像の原因となる光線は、光軸とほぼ平行な光線HLであることがわかっている。そのため、導出を簡略化するために、光学素子の面取り部Tに入射する光線HLは光軸と平行に入射するものと仮定することとした。   Here, as shown in FIG. 1, it is assumed that the light beam HL incident on the chamfered portion T of the optical element is incident parallel to the optical axis. In the first place, it is known that the light beam that causes the white ring-shaped two-surface reflection image observed when the photographing lens is observed from the object side is the light beam HL substantially parallel to the optical axis. Therefore, in order to simplify the derivation, it is assumed that the light beam HL incident on the chamfered portion T of the optical element is incident parallel to the optical axis.

光軸と平行な光線HLが物体側から面取り部Tに入射するとき、面取り部Tにおいて反射し、凹面R2で全反射し、再び物体側に戻る。このような経路を辿る光線HLは、撮影レンズを物体側から観察すると白いリング状の二面反射像として観察される。このような二面反射像を消すためには、そもそも面取り部Tに光線が入射しないようにしてしまえば良いが、光学素子の有効光線径に対し著しく大きな外径を備える必要が生じ、撮影レンズの大型化につながるため現実的な対策とはいえない。そのため、面取り部Tで反射した光線HLが凹面R2で全反射しない条件を導出しなければならない。   When a light beam HL parallel to the optical axis is incident on the chamfered portion T from the object side, it is reflected at the chamfered portion T, totally reflected by the concave surface R2, and returned to the object side again. The light beam HL that follows such a path is observed as a white ring-shaped two-surface reflection image when the photographing lens is observed from the object side. In order to eliminate such a two-surface reflection image, it is only necessary to prevent the light from entering the chamfered portion T, but it is necessary to provide an outer diameter that is significantly larger than the effective light beam diameter of the optical element. This is not a realistic measure because it leads to an increase in size. Therefore, it is necessary to derive a condition that the light beam HL reflected by the chamfered portion T is not totally reflected by the concave surface R2.

そこで、面取り部Tで反射した光線が凹面R2に入射する点に着目すると、この点における光線HLの入射角がθc、この点における凹面R2の接線TLが光軸となす角がθ2であるから、以下の式(a)及び(b)が成立する。
(a) θ2=arccos(h/R)
(b) θc=−π/2+2θ1+θ2
Therefore, focusing on the point where the light beam reflected by the chamfered portion T enters the concave surface R2, the incident angle of the light beam HL at this point is θc, and the angle between the tangent TL of the concave surface R2 at this point and the optical axis is θ2. The following formulas (a) and (b) are established.
(A) θ2 = arccos (h / R)
(B) θc = −π / 2 + 2θ1 + θ2

また、面取り部Tで反射した光線が凹面R2で全反射しないのは、θcが全反射の臨界角未満となる場合であるから、以下の式(c)が成立する。
(c) θc<arcsin(n2/n1)
ただし、
(1) n1>n2
Further, the reason why the light beam reflected by the chamfered portion T is not totally reflected by the concave surface R2 is that θc is less than the critical angle of total reflection, and therefore the following equation (c) is established.
(C) θc <arcsin (n2 / n1)
However,
(1) n1> n2

以上の式(a)、(b)、及び(c)からθ2及びθcを消去すれば、以下の式(d)が成立する。
(d) −π/2+2θ1+arccos(h/R)<arcsin(n2/n1)
If θ2 and θc are eliminated from the above equations (a), (b), and (c), the following equation (d) is established.
(D) −π / 2 + 2θ1 + arcos (h / R) <arcsin (n2 / n1)

ここで、θ1について以下の式(e)が成り立つので、式(d)及び(e)より、式(1)及び(2)となる。
(e) 0<θ1
(1) n1>n2
(2) 0<θ1<{arcsin(n2/n1)−arccos(h/R)}/2+π/4
Here, since the following formula (e) holds for θ1, the formulas (1) and (2) are obtained from the formulas (d) and (e).
(E) 0 <θ1
(1) n1> n2
(2) 0 <θ1 <{arcsin (n2 / n1) −arccos (h / R)} / 2 + π / 4

次に、本発明の光学素子について、その二面反射像削減効果を実際の撮影レンズを例に説明する。なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。   Next, with respect to the optical element of the present invention, the effect of reducing the two-surface reflection image will be described using an actual photographing lens as an example. In the following description, the lens configuration is described in order from the object side to the image side.

図2は、本発明の実施例1に係る撮影レンズのレンズ構成図である。本実施例に係る撮影レンズは、一眼レフカメラに用いる交換レンズであり、物体側から像側へ順に、正の屈折力を有する第1レンズ群L1と、負の屈折力を有する第2レンズ群L2と、正の屈折力を有する第3レンズ群L3と、正の屈折力を有する第4レンズ群L4からなるズームレンズである。   FIG. 2 is a lens configuration diagram of the photographing lens according to Example 1 of the present invention. The photographing lens according to the present embodiment is an interchangeable lens used in a single-lens reflex camera, and in order from the object side to the image side, a first lens group L1 having a positive refractive power and a second lens group having a negative refractive power. The zoom lens includes L2, a third lens unit L3 having a positive refractive power, and a fourth lens unit L4 having a positive refractive power.

第1レンズ群L1は、物体側に凸面を向けた負レンズG1と像面側に凸面を向けた正レンズG2からなる接合レンズDB1と、物体側に凸面を向けた正メニスカスレンズG3で構成される。   The first lens unit L1 includes a cemented lens DB1 including a negative lens G1 having a convex surface facing the object side, a positive lens G2 having a convex surface facing the image side, and a positive meniscus lens G3 having a convex surface facing the object side. The

第2レンズ群L2は、負メニスカスレンズである基材G4bの物体側に光硬化性樹脂層G4aによって非球面を形成した第4レンズG4と、物体側に凹面を向けた負レンズG5と、物体側に凸面を向けた正レンズG6と、物体側に凹面を向けた負レンズG7および物体側に凸面を向けたG8とからなる接合レンズDB2から構成される。また、第2レンズ群L2は、無限遠から近距離への焦点調節に際して光軸に沿って物体側に移動する。   The second lens unit L2 includes a fourth lens G4 in which an aspheric surface is formed by a photocurable resin layer G4a on the object side of a base G4b that is a negative meniscus lens, a negative lens G5 having a concave surface facing the object side, It is composed of a cemented lens DB2 composed of a positive lens G6 having a convex surface on the side, a negative lens G7 having a concave surface on the object side, and G8 having a convex surface on the object side. The second lens unit L2 moves toward the object side along the optical axis during focus adjustment from infinity to a short distance.

第3レンズ群L3は、物体側に凸面を向けた正レンズG9と、物体側に凸面を向けた正レンズG9と物体側に凹面を向けた負メニスカスレンズG10からなる接合レンズDB3と、物体側に凹面を向けた負レンズG11と物体側に凸面を向けた正メニスカスレンズG12からなる接合レンズDB4と、物体側に凸面を向けた正メニスカスレンズG13から構成される。また、接合レンズDB4は手振れ発生時に光軸と垂直方向にシフトさせることで像ブレを抑制する防振機能を有する。   The third lens unit L3 includes a cemented lens DB3 including a positive lens G9 having a convex surface facing the object side, a positive lens G9 having a convex surface facing the object side, and a negative meniscus lens G10 having a concave surface facing the object side. A cemented lens DB4 composed of a negative lens G11 having a concave surface facing the surface, a positive meniscus lens G12 having a convex surface facing the object side, and a positive meniscus lens G13 having a convex surface facing the object side. In addition, the cemented lens DB4 has an anti-vibration function that suppresses image blur by shifting in the direction perpendicular to the optical axis when camera shake occurs.

第4レンズ群L4は、物体側に凸面を向けた正レンズG14と、物体側に凸面を向けた正レンズG15と、物体側は平面で像面側に凹面を向けた負レンズG16と、物体側に凸面を向けた正レンズG17から構成される。また、光硬化性樹脂層G4aによって形成した凸面R1と、正メニスカスレンズG12の物体側の凸面と、正レンズG15の両面は、それぞれ所定の非球面形状となっている。   The fourth lens unit L4 includes a positive lens G14 having a convex surface directed toward the object side, a positive lens G15 having a convex surface directed toward the object side, a negative lens G16 having a flat surface on the object side and a concave surface directed to the image surface side, It is composed of a positive lens G17 having a convex surface on the side. Further, the convex surface R1 formed by the photocurable resin layer G4a, the convex surface on the object side of the positive meniscus lens G12, and the both surfaces of the positive lens G15 each have a predetermined aspherical shape.

ここで、本発明に係る実施例1の第4レンズG4に着目する。第4レンズG4は、物体側に光硬化性樹脂層G4aによって非球面を形成した凸面R1を、像側に基材G4bによって形成した凹面R2を有する複合光学素子であり、物体側に凸面を向けた負メニスカス形状を有している。   Here, attention is focused on the fourth lens G4 of Example 1 according to the present invention. The fourth lens G4 is a composite optical element having a convex surface R1 formed with an aspheric surface by the photocurable resin layer G4a on the object side and a concave surface R2 formed with the base material G4b on the image side, and the convex surface is directed to the object side. It has a negative meniscus shape.

図2からわかるように、第4レンズG4は物体側に位置する他の光学素子よりも外径が小さく、且つ面取り部Tは凸面R1の有効光線高よりも低い位置にあり、且つ負の屈折力を持つため、物体側から光が入射した際に面取り部Tの広い範囲に光線が当たり易い形状を備えている。   As can be seen from FIG. 2, the fourth lens G4 has a smaller outer diameter than other optical elements located on the object side, and the chamfered portion T is at a position lower than the effective ray height of the convex surface R1, and negative refraction. Since it has force, it has a shape that allows light to easily hit a wide range of the chamfered portion T when light enters from the object side.

さらに、基材G4bの屈折率n1は1.883と屈折率が高いため、一般的な撮影レンズの光学素子がそうであるように外周面に光吸収塗料が塗布されていても、反射率は高くなってしまい、物体側から入射して面取り部Tで反射した光線が凹面R2で全反射して物体側に戻り易い構成となっている。   Furthermore, since the refractive index n1 of the base material G4b is as high as 1.883, even if a light-absorbing paint is applied to the outer peripheral surface as in the case of an optical element of a general photographing lens, the reflectance is The light beam incident on the object side and reflected by the chamfered portion T is easily reflected by the concave surface R2 and easily returns to the object side.

またここで、図3に標準的な面取りの角度である45°で面取りした第4レンズG4の断面図を示す。この場合、面取り部Tで反射した光線が凹面R2へ入射する際の入射角θcは以下のようになる。なお、R=14.42、h=0とする。これは、全反射が起こらないか否かを確認するため、最も全反射が起こりやすい条件、即ち入射角θcの最大値について検討するためであり、物体側から光軸と平行に面取り部Tに入射する光線の光線高によって変化する入射角θcが最大値を取る凹面R2上の点は、凹面R2と光軸とが交わる点であるためである。
θc=−90°+2θ1+θ2
=−90°+2θ1+arccos(h/R)
=−90°+2×45°+arccos(0/14.42)
=90°
FIG. 3 is a cross-sectional view of the fourth lens G4 chamfered at a standard chamfer angle of 45 °. In this case, the incident angle θc when the light beam reflected by the chamfered portion T enters the concave surface R2 is as follows. Note that R = 14.42 and h = 0. This is to confirm whether or not total reflection does not occur in order to examine the conditions under which total reflection is most likely to occur, that is, the maximum value of the incident angle θc. The chamfered portion T is parallel to the optical axis from the object side. This is because the point on the concave surface R2 where the incident angle θc that changes depending on the height of the incident light beam takes the maximum value is a point where the concave surface R2 and the optical axis intersect.
θc = −90 ° + 2θ1 + θ2
= -90 ° + 2θ1 + arccos (h / R)
= −90 ° + 2 × 45 ° + arccos (0 / 14.42)
= 90 °

ここで、凹面R2へ入射する光線が全反射をする臨界角θmは以下のようになる。
θm=arcsin(n2/n1)
=arcsin(1.000/1.883)
=32.1°
Here, the critical angle θm at which the light incident on the concave surface R2 is totally reflected is as follows.
θm = arcsin (n2 / n1)
= Arcsin (1.000 / 1.883)
= 32.1 °

よって入射角θcは臨界角θmより大きいため、全反射が起きることが分かる。従って、第4レンズG4を標準的な面取りの角度である45°で面取りした場合は、白いリング状の二面反射像が物体側から観察されることとなる。   Therefore, since the incident angle θc is larger than the critical angle θm, it can be seen that total reflection occurs. Therefore, when the fourth lens G4 is chamfered at a standard chamfer angle of 45 °, a white ring-shaped two-surface reflection image is observed from the object side.

そこで、以下の式(1)及び(2)を用いて面取り部Tの角度θ1を求める。なお、ここでも先ほどと同様の理由によりh=0とする。
(1)n1>n2
(2)0<θ1<{arcsin(n2/n1)−arccos(h/R)}/2+π/4
0<θ1<(32.1°−90°)/2+45°
0<θ1<16.1°
Therefore, the angle θ1 of the chamfered portion T is obtained using the following equations (1) and (2). Here, h = 0 is set for the same reason as before.
(1) n1> n2
(2) 0 <θ1 <{arcsin (n2 / n1) −arccos (h / R)} / 2 + π / 4
0 <θ1 <(32.1 ° -90 °) / 2 + 45 °
0 <θ1 <16.1 °

ここで、製品に個体差があることを考慮して面取り部Tの角度を15°とする。この時、面取り部Tで反射した光線が凹面R2へ入射する際の入射角θcは以下の通りとなる。
θc=−90°+2θ1+θ2
θc=−90°+2×15°+arccos(0/14.42)
=30°
Here, the angle of the chamfered portion T is set to 15 ° in consideration of individual differences in products. At this time, the incident angle θc when the light beam reflected by the chamfered portion T enters the concave surface R2 is as follows.
θc = −90 ° + 2θ1 + θ2
θc = −90 ° + 2 × 15 ° + arccos (0 / 14.42)
= 30 °

よって入射角θcは臨界角θmより大きいため、全反射は発生しない。従って、面取り部Tの角度を15°した場合には物体側からレンズを観察しても白いリング状の二面反射像が物体側から観察されることは無く、外観上見栄えが悪くなることはない。   Therefore, since the incident angle θc is larger than the critical angle θm, total reflection does not occur. Therefore, when the angle of the chamfered portion T is 15 °, even if the lens is observed from the object side, a white ring-shaped two-surface reflection image is not observed from the object side, and the appearance is not good. Absent.

このように、先述の式(1)及び(2)を用いることで、二面反射像が発生しない面取り部Tの角度θ1を求めることが出来る。   Thus, by using the above-described equations (1) and (2), the angle θ1 of the chamfered portion T where no two-surface reflection image is generated can be obtained.

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
G4 第4レンズ
S 開口絞り
I 像面
TL 接線
HL 光線
A 光軸
R1 物体側の面
R2 像側の面
θ1 面取り部Tと光軸とがなす角度
θ2 接線TLと光軸とがなす角度
θc 面取り部Tで反射した光線HLの凹面R2への入射角
h 面取り部Tで反射した光線HLが凹面R2に入射した位置の光線高
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group G4 4th lens S Aperture stop I Image surface TL Tangent HL Ray A Optical axis R1 Object side surface R2 Image side surface θ1 Chamfer Angle θ2 formed by T and optical axis Angle θc formed by tangent TL and optical axis Incident angle h of light beam HL reflected by chamfered portion T to concave surface R2 Position where light beam HL reflected by chamfered portion T is incident on concave surface R2 Ray height

Claims (1)

撮像装置に用いられる撮影レンズを構成する光学素子の設計方法であって、
像側に凹面R2を有し、
前記凹面R2の端部を面取りする面取り部Tを有するとき、以下の条件式(1)及び(2)を用い、両式を満足するように面取り部Tの角度を設定する工程を有する光学素子の設計方法。
(1) n1>n2
(2) 0<θ1<{arcsin(n2/n1)−arccos(h/R)}/2+π/4
θ1:面取り部Tと光軸とがなす角度
h:面取り部Tで反射した光線HLが凹面R2に入射した位置の光線高
R:凹面R2の曲率半径
n1:光学素子の屈折率
n2:光学素子の周辺を充填する媒質の屈折率
A method for designing an optical element constituting a photographing lens used in an imaging device,
A concave surface R2 on the image side;
An optical element having a step of setting the angle of the chamfered portion T so as to satisfy both equations using the following conditional expressions (1) and (2) when the chamfered portion T chamfers the end of the concave surface R2 Design method.
(1) n1> n2
(2) 0 <θ1 <{arcsin (n2 / n1) −arccos (h / R)} / 2 + π / 4
θ1: Angle formed by the chamfered portion T and the optical axis h: Ray height R at the position where the light beam HL reflected by the chamfered portion T is incident on the concave surface R2: Radius of curvature of the concave surface R2 n1: Refractive index n2 of the optical element: Optical element Refractive index of the medium filling the periphery of
JP2012123916A 2012-05-31 2012-05-31 Optical element design method Active JP6062160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123916A JP6062160B2 (en) 2012-05-31 2012-05-31 Optical element design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123916A JP6062160B2 (en) 2012-05-31 2012-05-31 Optical element design method

Publications (2)

Publication Number Publication Date
JP2013250362A JP2013250362A (en) 2013-12-12
JP6062160B2 true JP6062160B2 (en) 2017-01-18

Family

ID=49849122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123916A Active JP6062160B2 (en) 2012-05-31 2012-05-31 Optical element design method

Country Status (1)

Country Link
JP (1) JP6062160B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211030A (en) * 1990-01-17 1991-09-13 Hitachi Ltd Plastic lens
JPH05164905A (en) * 1991-12-11 1993-06-29 Hitachi Ltd Lens
JPH0720366A (en) * 1993-06-29 1995-01-24 Nikon Corp Lens parts
JP4791793B2 (en) * 2005-10-19 2011-10-12 株式会社リコー Zoom lens, imaging device, and imaging device
JP2008064851A (en) * 2006-09-05 2008-03-21 Fujinon Corp Lens device
JP2009282071A (en) * 2008-05-19 2009-12-03 Fujinon Corp Lens assembly and imaging apparatus
JP2010169971A (en) * 2009-01-23 2010-08-05 Olympus Corp Optical element and method for working the same, and chamfering and grinding stone
JP2010276755A (en) * 2009-05-27 2010-12-09 Konica Minolta Opto Inc Super-wide angle anamorphic lens

Also Published As

Publication number Publication date
JP2013250362A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US10067321B2 (en) Optical system and imaging system
US9829681B2 (en) Optical system and image pickup apparatus including the same
EP2312341B1 (en) Rear attachment lens and imaging optical system including the same
TWI529412B (en) Optical image capturing system
US9678305B2 (en) Inner focus lens
KR100823812B1 (en) Image-pickup optical system
TWI586996B (en) Optical image capturing system
JP4855042B2 (en) Photography optical system, photography lens unit and camera
US10627646B2 (en) Image pickup optical system and image pickup apparatus
TW201544837A (en) Optical image capturing system
US7864451B2 (en) Imaging lens and image pickup apparatus including the same
JP2009109723A (en) Optical system and imaging device provided with it
US20150248016A1 (en) Inner focus lens
JP6566991B2 (en) Zoom lens and imaging apparatus having the same
US20130208173A1 (en) Tele-side converter lens and image pickup apparatus including the same
JP2011085788A (en) Optical system and optical apparatus having the same
JP5641718B2 (en) Shooting lens
US11372206B2 (en) Optical system with two lens groups of +− refractive powers having five lens subgroups of +−+−− refractive powers, and image pickup apparatus including the same
JP2012047870A (en) Optical system and optical apparatus having the same
JP2010276841A (en) Lens barrel
JP5305831B2 (en) Imaging optics
CN111751965A (en) Zoom lens and imaging apparatus having the same
JP2006047348A (en) Zoom lens and imaging device having the same
JP2012047869A (en) Rear converter lens and imaging optical system having the same
JP2012047869A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250