JP6061567B2 - Optical scanning apparatus and image forming apparatus - Google Patents

Optical scanning apparatus and image forming apparatus Download PDF

Info

Publication number
JP6061567B2
JP6061567B2 JP2012192101A JP2012192101A JP6061567B2 JP 6061567 B2 JP6061567 B2 JP 6061567B2 JP 2012192101 A JP2012192101 A JP 2012192101A JP 2012192101 A JP2012192101 A JP 2012192101A JP 6061567 B2 JP6061567 B2 JP 6061567B2
Authority
JP
Japan
Prior art keywords
scanning lens
scanning
light beam
lens
provisional receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012192101A
Other languages
Japanese (ja)
Other versions
JP2014048512A (en
Inventor
佳菜 大島
佳菜 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012192101A priority Critical patent/JP6061567B2/en
Publication of JP2014048512A publication Critical patent/JP2014048512A/en
Application granted granted Critical
Publication of JP6061567B2 publication Critical patent/JP6061567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複写機、プリンタ等の画像形成装置、及び画像形成装置に搭載される光走査装置に関する。   The present invention relates to an image forming apparatus such as a copying machine or a printer, and an optical scanning device mounted on the image forming apparatus.

複写機やレーザビームプリンタなどの画像形成装置に用いられている光走査装置においては、一般的に感光体上に光ビームを照射し、静電潜像を形成する構成が用いられる。具体的には、光走査装置において、画像信号に基づいてオン・オフ制御されることで光源から出射される光ビームが感光体上を走査するように、回転多面鏡などの偏向器によって光源から出射される光ビームを偏向する。そして、偏向器によって偏向された光ビームは折り返しミラーによって感光体上に導かれる。また、偏向器と感光体との間の光ビームの光路上にfθ特性を持つ走査レンズなどの結像光学素子が配置され、光ビームが光学素子を通過することによって光ビームは感光ドラム上にスポット状に結像する。光源、回転多面鏡、折り返しミラー、走査レンズなどの光走査装置を構成する部品は、光走査装置の筐体に格納して保持される。   In an optical scanning device used in an image forming apparatus such as a copying machine or a laser beam printer, a configuration is generally used in which an electrostatic latent image is formed by irradiating a light beam on a photosensitive member. Specifically, in the optical scanning device, the light beam emitted from the light source is scanned on the photosensitive member by being turned on / off based on the image signal, and is deflected from the light source by a deflector such as a rotary polygon mirror. The emitted light beam is deflected. Then, the light beam deflected by the deflector is guided onto the photosensitive member by the folding mirror. In addition, an imaging optical element such as a scanning lens having an fθ characteristic is disposed on the optical path of the light beam between the deflector and the photosensitive member, and the light beam passes on the photosensitive drum by passing the optical element. It forms an image in a spot shape. Components constituting the optical scanning device such as a light source, a rotating polygon mirror, a folding mirror, and a scanning lens are stored and held in a housing of the optical scanning device.

このような光走査装置において、走査レンズの位置精度が低いと、光ビームが感光体上の所定の位置に結像しなかったり、感光体上における光ビームのスポット径が所定のサイズにならなかったりする。そのため、走査レンズを高精度に位置決めした状態で保持する構成が必要とされる。   In such an optical scanning device, if the positional accuracy of the scanning lens is low, the light beam does not form an image at a predetermined position on the photoconductor, or the spot diameter of the light beam on the photoconductor does not become a predetermined size. Or Therefore, a configuration for holding the scanning lens in a state of being positioned with high accuracy is required.

図7−1(a)は光走査装置の構成を示す図、図7−1(b)は走査レンズの斜視図である。尚、後述する実施例において説明する構成と同じものには同じ符号を付し、ここでの説明は省略する。図7−1(a)、(b)に示すように、光ビーム出射側に凸となるアーチ形状の走査レンズ12(12a、12b)は、長尺方向の両端部において、光ビームの入射側の面に光軸方向の位置決め部を設けている。走査レンズ12は、レーザ光が通過するレーザ光通過部(図中、両矢印の濃い実線)と、走査レンズ12の長手方向においてレーザ光通過部の両端に基準面が形成された接触部(又は当接部、図中破線丸枠)が形成されている。走査レンズ12は、レーザ光通過部の両端の接触部に設けられた基準面(図中、第1及び第2の平面(レンズ側)と図示)が筐体14に設けられた位置決め部である支持部に当接した状態で、接着剤によって筐体14に固定される。あるいは、走査レンズ12は、レーザ光通過部の両端の接触部に設けられた基準面が筐体14に設けられた位置決め部である支持部に当接した状態で、板ばね等の押圧部材によって筐体14に押圧されることで筐体14に固定される(例えば、特許文献1参照)。   FIG. 7A is a diagram illustrating the configuration of the optical scanning device, and FIG. 7B is a perspective view of the scanning lens. In addition, the same code | symbol is attached | subjected to the same thing as the structure demonstrated in the Example mentioned later, and description here is abbreviate | omitted. As shown in FIGS. 7-1 (a) and (b), the scanning lens 12 (12a, 12b) having an arch shape that is convex on the light beam emitting side has light beam incident sides at both ends in the longitudinal direction. Is provided with a positioning portion in the optical axis direction. The scanning lens 12 includes a laser beam passage portion (indicated by a solid line with a double arrow in the drawing) through which the laser beam passes, and a contact portion (or a reference surface formed on both ends of the laser beam passage portion in the longitudinal direction of the scanning lens 12) A contact portion, a broken-line circle frame in the figure) is formed. The scanning lens 12 is a positioning portion in which a reference surface (first and second planes (lens side) and illustrated) in the contact portion provided at both ends of the laser beam passage portion is provided in the housing 14. It is fixed to the casing 14 with an adhesive while in contact with the support portion. Alternatively, the scanning lens 12 is pressed by a pressing member such as a leaf spring in a state in which the reference surfaces provided at the contact portions at both ends of the laser beam passage portion are in contact with the support portion that is a positioning portion provided in the housing 14. The casing 14 is fixed to the casing 14 by being pressed by the casing 14 (see, for example, Patent Document 1).

特開2006−139279号公報JP 2006-139279 A

しかしながら、光ビーム出射側に凸となるアーチ形状の走査レンズを、長尺方向の両端で、光ビーム入射側から支持する構成とすると次のような課題がある。図7−2(c)は走査レンズ12の上面図である。光ビーム出射側に凸となるアーチ形状の走査レンズ12の重心は、図7−2(c)に示す黒丸印のような位置になる。一方、図7−1(b)で説明したように、走査レンズ12の光軸方向の基準面は、走査レンズ12の入射面側に設けられている。図7−2(d)は、走査レンズ12の中央部における断面と走査レンズ12の端部における断面をZ軸方向にずらして図示したものである。走査レンズ12は光ビーム出射側に凸となるアーチ形状であるため、走査レンズ12の重心が、走査レンズ12の端部においては出射面側に位置することとなる。即ち、走査レンズ12の重心の位置が、光軸方向に関して走査レンズ12の基準面よりも出射面寄りにあることになり、走査レンズ12の重心位置と基準面とが遠くなる。ここで、走査レンズ12の自重により働く下向きの力をG、走査レンズ12の基準面から力Gの作用点までの距離をLとする。このとき、走査レンズ12の自重により走査レンズ12に働くモーメントはG×Lとなり、この距離Lが大きいとモーメントが大きくなって、走査レンズ12が図7−2(d)中、時計回り方向に回転してしまう。このように、走査レンズ12に加わる垂直方向の力Gによって走査レンズ12に大きなモーメントが働くと、走査レンズ12が位置ずれする可能性がある。そして、走査レンズ12の位置調整後に位置ずれが生じると、光ビームが感光ドラム上の所定の位置に結像せず、画質が低下してしまうおそれがある。   However, if an arch-shaped scanning lens that is convex on the light beam emitting side is supported from both ends in the longitudinal direction from the light beam incident side, there are the following problems. 7C is a top view of the scanning lens 12. FIG. The center of gravity of the arch-shaped scanning lens 12 convex toward the light beam emission side is at a position as indicated by a black circle shown in FIG. On the other hand, as described in FIG. 7B, the reference surface in the optical axis direction of the scanning lens 12 is provided on the incident surface side of the scanning lens 12. FIG. 7D illustrates the cross section at the center of the scanning lens 12 and the cross section at the end of the scanning lens 12 being shifted in the Z-axis direction. Since the scanning lens 12 has an arch shape that is convex toward the light beam emission side, the center of gravity of the scanning lens 12 is located on the emission surface side at the end of the scanning lens 12. That is, the position of the center of gravity of the scanning lens 12 is closer to the exit surface than the reference surface of the scanning lens 12 with respect to the optical axis direction, and the position of the center of gravity of the scanning lens 12 and the reference surface are distant. Here, the downward force acting due to the weight of the scanning lens 12 is G, and the distance from the reference surface of the scanning lens 12 to the point of application of the force G is L. At this time, the moment acting on the scanning lens 12 due to the weight of the scanning lens 12 becomes G × L, and when the distance L is large, the moment increases, and the scanning lens 12 moves clockwise in FIG. 7-2 (d). It will rotate. As described above, when a large moment acts on the scanning lens 12 due to the vertical force G applied to the scanning lens 12, the scanning lens 12 may be displaced. If a positional deviation occurs after the position of the scanning lens 12 is adjusted, the light beam may not form an image at a predetermined position on the photosensitive drum, and the image quality may deteriorate.

本発明は、このような状況のもとでなされたもので、走査レンズの位置変動を低減し、画質の低下を低減することを目的とする。   The present invention has been made under such circumstances, and an object of the present invention is to reduce the position variation of the scanning lens and to reduce the deterioration of the image quality.

前述の課題を解決するために、本発明は以下の構成を備える。   In order to solve the above-described problems, the present invention has the following configuration.

(1)光ビームを出射する光源と、前記光源から出射された光ビームが感光体上を走査方向に走査するように前記光ビームを偏向する偏向器と、前記偏向器により偏向された光ビームが入射し、入射した光ビームを前記感光体に導く走査レンズであって、前記光ビームの走査方向において前記入射した光ビームが出射する出射面側に凸型となる形状を備える走査レンズと、前記光源、前記偏向器及び前記走査レンズを格納する筐体と、を備える光走査装置であって、前記走査レンズは、前記走査方向における一方の端部の前記出射面側に設けられた第1の接触部と、前記走査レンズの前記走査方向における他方の端部の前記出射面側に設けられた第2の接触部と、を備え、前記筐体は、第1の基準部を有する第1の支持部及び第2の基準部を有する第2の支持部と、前記第1の支持部の前記第1の基準部に垂直に設けられた第1の仮受け部と、前記第2の支持部の前記第2の基準部に垂直に設けられた第2の仮受け部と、前記筐体の前記走査レンズの前記走査方向における中央部に対応する位置に設けられ、前記第1の仮受け部及び前記第2の仮受け部の高さに比べて高い第3の仮受け部と、を備え、前記走査レンズは、前記第1の仮受け部、前記第2の仮受け部及び前記第3の仮受け部に仮受けされ、前記第1の接触部が前記第1の基準部に接触し、前記第2の接触部が前記第2の基準部に接触することによって、前記筐体に対して前記走査レンズの光軸方向の位置が決定されることを特徴とする光走査装置。 (1) A light source that emits a light beam, a deflector that deflects the light beam so that the light beam emitted from the light source scans in a scanning direction on the photosensitive member, and a light beam deflected by the deflector Is a scanning lens that guides the incident light beam to the photoconductor, and has a shape that is convex on the exit surface side from which the incident light beam exits in the scanning direction of the light beam; An optical scanning device including a housing for storing the light source, the deflector, and the scanning lens, wherein the scanning lens is provided on the emission surface side of one end in the scanning direction. And a second contact portion provided on the exit surface side of the other end portion in the scanning direction of the scanning lens, and the housing has a first reference portion. Support part and second reference part To the second supporting portion, wherein the first temporary supporting portion provided perpendicularly to the first reference portion of the first support portion, perpendicular to the second reference portion of the second supporting portion A second provisional receiving portion provided in a position corresponding to a center portion of the scanning lens in the scanning direction of the housing, and the first provisional receiving portion and the second provisional receiving portion. A third provisional receiving portion that is higher than the height, and the scanning lens is provisionally received by the first provisional receiving portion, the second provisional receiving portion, and the third provisional receiving portion, The first contact portion is in contact with the first reference portion, and the second contact portion is in contact with the second reference portion, so that the optical axis direction of the scanning lens with respect to the housing is increased. An optical scanning device characterized in that a position is determined.

(2)感光体上に形成した潜像を現像して画像形成を行う画像形成装置であって、前記(1)に記載の光走査装置を備え、前記光走査装置により前記感光体上に潜像を形成することを特徴とする画像形成装置。   (2) An image forming apparatus for developing an image formed by developing a latent image formed on a photoconductor, comprising the optical scanning device according to (1), wherein the optical scanning device latently forms a latent image on the photoconductor. An image forming apparatus for forming an image.

本発明によれば、走査レンズの位置変動を低減し、画質の低下を低減することができる。   According to the present invention, it is possible to reduce the position variation of the scanning lens and reduce the image quality.

実施例のデジタルフルカラー複写機の概略図、光走査装置の概略図Schematic diagram of digital full-color copying machine of embodiment, schematic diagram of optical scanning device 実施例1の光走査装置の走査レンズ周辺構成を示す図FIG. 5 is a diagram illustrating a configuration around a scanning lens of the optical scanning device according to the first embodiment. 実施例1の光走査装置の走査レンズ周辺構成を示す図、光走査装置の効果を示す図The figure which shows the scanning lens periphery structure of the optical scanning device of Example 1, The figure which shows the effect of an optical scanning device 実施例2の光走査装置の走査レンズ周辺構成を示す図FIG. 6 is a diagram illustrating a peripheral configuration of a scanning lens of the optical scanning device according to the second embodiment. 実施例2の光走査装置の走査レンズ組立工程を示す図The figure which shows the scanning lens assembly process of the optical scanning device of Example 2. 実施例2の光走査装置の効果を示す図、実施例3の光走査装置の走査レンズ周辺構成を示す図The figure which shows the effect of the optical scanning device of Example 2, The figure which shows the scanning lens periphery structure of the optical scanning device of Example 3 従来例の光走査装置の走査レンズの支持構成を示す図The figure which shows the support structure of the scanning lens of the optical scanning device of a prior art example 従来例の光走査装置の走査レンズの支持構成を示す図The figure which shows the support structure of the scanning lens of the optical scanning device of a prior art example

以下、実施形態を、図を用いて説明する。   Hereinafter, embodiments will be described with reference to the drawings.

[画像形成装置]
図1(a)は、画像形成装置をデジタルフルカラー複写機に適用した場合の概略図を示す。画像読取装置8は、圧板86により圧接された原稿に光を当て、折り返しミラー83−1、83−2、83−3を介して読取レンズ82によりラインセンサ81上に集光し、ラインセンサ81により画像信号を読み取る。
[Image forming apparatus]
FIG. 1A is a schematic diagram when the image forming apparatus is applied to a digital full-color copying machine. The image reading device 8 shines light on the original pressed by the pressure plate 86, collects the light on the line sensor 81 by the reading lens 82 via the folding mirrors 83-1, 83-2, and 83-3. The image signal is read by.

画像形成部10は、イエロー色、マゼンタ色、シアン色、ブラック色の4色に分解した画像信号毎に、画像形成ステーションP(Pa、Pb、Pc、Pd)においてトナー画像を形成する。ここで、aはイエロー色、bはマゼンタ色、cはシアン色、dはブラック色を示す符号であり、以下必要な場合を除き省略する。画像形成ステーションPは、光走査装置1、感光ドラム(感光体)2、帯電器3、クリーニング装置4、現像器5により構成される。   The image forming unit 10 forms a toner image at the image forming station P (Pa, Pb, Pc, Pd) for each image signal separated into four colors of yellow, magenta, cyan, and black. Here, a is a code indicating yellow, b is magenta, c is cyan, and d is black. The image forming station P includes an optical scanning device 1, a photosensitive drum (photoconductor) 2, a charger 3, a cleaning device 4, and a developing device 5.

光走査装置1は、感光ドラム2上(感光体上)に光ビームを照射し潜像を形成する。現像器5は、感光ドラム2上に形成された潜像を現像し、トナー画像を形成する。感光ドラム2上に色毎に形成されたトナー画像は、転写装置6によって、中間転写ベルト61上に転写される。色毎のトナー画像は、中間転写ベルト61上に順次重ね合わせて転写されるため、中間転写ベルト61上では、4色重ねあったトナー画像が形成される。中間転写ベルト61は、駆動ローラ62と従動ローラ63によって張架されており、ベルトクリーニング装置64によって転写後に中間転写ベルト61上に残ったトナー(以下、残トナー)を清掃される。   The optical scanning device 1 irradiates a light beam on the photosensitive drum 2 (on the photosensitive member) to form a latent image. The developing device 5 develops the latent image formed on the photosensitive drum 2 to form a toner image. The toner image formed for each color on the photosensitive drum 2 is transferred onto the intermediate transfer belt 61 by the transfer device 6. Since the toner images for each color are sequentially superimposed and transferred onto the intermediate transfer belt 61, a toner image with four colors superimposed is formed on the intermediate transfer belt 61. The intermediate transfer belt 61 is stretched by a driving roller 62 and a driven roller 63, and toner remaining on the intermediate transfer belt 61 after transfer (hereinafter, residual toner) is cleaned by a belt cleaning device 64.

中間転写ベルト61上のトナー画像は、転写ローラ65、66によって、シート材S上に転写される。シート材Sは、手差し給紙カセット70又は給紙カセット78、79内から、シート材Sの位置と、中間転写ベルト61上のトナー画像の位置が合うよう、タイミングを合わせて搬送される。トナー画像が転写されたシート材Sは、定着ローラ74によって加熱定着され、フルカラー画像が形成されたシート材Sは、排紙トレー77上に排紙される。   The toner image on the intermediate transfer belt 61 is transferred onto the sheet material S by the transfer rollers 65 and 66. The sheet material S is conveyed from the manual sheet feeding cassette 70 or the sheet feeding cassettes 78 and 79 at the timing so that the position of the sheet material S and the position of the toner image on the intermediate transfer belt 61 are matched. The sheet material S to which the toner image is transferred is heated and fixed by the fixing roller 74, and the sheet material S on which the full-color image is formed is discharged onto a discharge tray 77.

尚、上述した画像形成装置の構成は一例であり、以下の実施例で説明する光走査装置を備える画像形成装置は、上述した画像形成装置に限定されるものではない。   Note that the configuration of the image forming apparatus described above is an example, and an image forming apparatus including an optical scanning device described in the following embodiments is not limited to the above-described image forming apparatus.

[光走査装置]
光走査装置1について、図1(b)の概略図を用いて説明する。光源ユニット19の電気基板19−3により駆動される、レーザホルダー19−1に圧入された不図示の光源から出射された光ビームは、コリメータレンズ19−2を通って平行な光ビームとなる。図1(b)の一点鎖線Bは、光ビームの1走査周期内の3つのタイミングにおける回転多面鏡11−1によって偏向された光ビームの光路を示している。コリメータレンズ19−2を通過した光ビームは、シリンドリカルレンズ18を通って、感光ドラム2のZ軸方向にのみ集光され、回転駆動モータ11−2によって一定の速度で回転制御される回転多面鏡11−1(偏向器)によって偏向される。偏向された光ビームは、第1の走査レンズ12a、第2の走査レンズ12b(以下、走査レンズ12という)を通過して、感光ドラム2上に結像される。11−3は光ビームの回転多面鏡11−1における偏向点、17は折り返しミラーである。光走査装置1を構成するこれらの部品が、筐体14に格納されている。尚、回転多面鏡11−1の回転軸方向をZ軸方向、光ビームの走査方向である主走査方向をY軸方向、Y軸及びZ軸に垂直な方向をX軸方向とする。
[Optical scanning device]
The optical scanning device 1 will be described with reference to the schematic diagram of FIG. The light beam emitted from a light source (not shown) that is driven by the electric substrate 19-3 of the light source unit 19 and press-fitted into the laser holder 19-1 becomes a parallel light beam through the collimator lens 19-2. A dotted line B in FIG. 1B indicates the optical path of the light beam deflected by the rotary polygon mirror 11-1 at three timings within one scanning period of the light beam. The light beam that has passed through the collimator lens 19-2 passes through the cylindrical lens 18, is condensed only in the Z-axis direction of the photosensitive drum 2, and is a rotary polygon mirror that is rotationally controlled at a constant speed by the rotational drive motor 11-2. It is deflected by 11-1 (deflector). The deflected light beam passes through the first scanning lens 12a and the second scanning lens 12b (hereinafter referred to as the scanning lens 12) and forms an image on the photosensitive drum 2. 11-3 is a deflection point of the rotating polygon mirror 11-1 for the light beam, and 17 is a folding mirror. These components constituting the optical scanning device 1 are stored in the housing 14. The rotation axis direction of the rotary polygon mirror 11-1 is defined as the Z-axis direction, the main scanning direction which is the scanning direction of the light beam is defined as the Y-axis direction, and the directions perpendicular to the Y-axis and Z-axis are defined as the X-axis direction.

図2は、光走査装置1内の走査レンズ12の周辺構成を示すもので、実施例1の走査レンズ12の支持構成を示している。図2(a)は走査レンズ12近傍の斜視図、図2(b)は各パーツを光軸方向(X軸方向)にずらした斜視図である。一点鎖線Bは、図1(b)で示したある1走査周期中の3つのタイミングにおける光ビームの光路を示す。   FIG. 2 shows a peripheral configuration of the scanning lens 12 in the optical scanning device 1 and shows a support configuration of the scanning lens 12 of the first embodiment. 2A is a perspective view in the vicinity of the scanning lens 12, and FIG. 2B is a perspective view in which each part is shifted in the optical axis direction (X-axis direction). An alternate long and short dash line B indicates the optical path of the light beam at three timings during a certain scanning period shown in FIG.

[走査レンズの平面と筐体の支持部]
走査レンズ12はfθ特性を有し、回転多面鏡11−1で偏向された光ビームを、不図示の感光ドラム2上に所定のスポット径で結像する働きを持つ。走査レンズ12は、光ビームが出射する側である出射面側に凸型となるアーチ形状であり、長尺方向(主走査方向、Y軸方向、以降レンズ長尺方向ともいう)両端の光ビーム走査領域外に、走査レンズ12を筐体14に取り付けるための外形部(当接部)を有する。この外形部は、長尺方向(走査方向)の一端側(一方の端部)において光ビームが出射する側に設けられた第1の平面12−1(第1の接触面、あるいは第1の接触部を有する。またこの外形部は、長尺方向の逆側の他端側(他方の端部)において光ビームが出射する側に設けられた第2の平面12−2(第2の接触面、あるいは第2の接触部)を有する。
[Scanning lens plane and housing support]
The scanning lens 12 has an fθ characteristic and has a function of forming an image of the light beam deflected by the rotary polygon mirror 11-1 on a photosensitive drum 2 (not shown) with a predetermined spot diameter. The scanning lens 12 has an arch shape that is convex on the exit surface side, which is the side from which the light beam exits, and light beams at both ends in the longitudinal direction (main scanning direction, Y-axis direction, hereinafter also referred to as the lens longitudinal direction). Outside the scanning area, there is an outer portion (contact portion) for attaching the scanning lens 12 to the housing 14. This outer portion is formed by a first plane 12-1 (first contact surface or first contact surface) provided on the side from which the light beam is emitted on one end side (one end portion) in the longitudinal direction (scanning direction). Contact portion ) . In addition, the outer shape portion includes a second flat surface 12-2 (a second contact surface or a second contact surface) provided on the side where the light beam is emitted on the other end side (the other end portion) opposite to the longitudinal direction. Contact portion).

筐体14には、第1の支持部15−1及び第2の支持部15−2が設けられている。第1の支持部15−1は、走査レンズ12の第1の平面12−1が接触する基準面15−5(第3の平面、あるいは第1の基準部)を備える。また、第2の支持部15−2は、走査レンズ12の第2の平面が接触する基準面15−6(第4の平面、あるいは第2の基準部)を備える。第1の平面12−1が第1の支持部15−1の基準面15−5に接触し、第2の平面12−2が第2の支持部15−2の基準面15−6に接触した状態で、走査レンズ12は、固定される。このように、第1の平面12−1を第1の支持部15−1の基準面15−5に接触させ、第2の平面12−2を第2の支持部15−2の基準面15−6に接触させた状態で走査レンズ12を固定することで、走査レンズ12の光軸方向の位置が決定される。   The housing 14 is provided with a first support portion 15-1 and a second support portion 15-2. The first support portion 15-1 includes a reference surface 15-5 (a third plane or a first reference portion) with which the first plane 12-1 of the scanning lens 12 contacts. The second support portion 15-2 includes a reference surface 15-6 (fourth plane or second reference portion) with which the second plane of the scanning lens 12 comes into contact. The first plane 12-1 is in contact with the reference plane 15-5 of the first support portion 15-1, and the second plane 12-2 is in contact with the reference plane 15-6 of the second support portion 15-2. In this state, the scanning lens 12 is fixed. In this way, the first plane 12-1 is brought into contact with the reference surface 15-5 of the first support portion 15-1, and the second plane 12-2 is contacted with the reference surface 15 of the second support portion 15-2. The position of the scanning lens 12 in the optical axis direction is determined by fixing the scanning lens 12 while being in contact with −6.

走査レンズ12を筐体14に固定するには、例えば接着剤又は板バネなどが用いられる。接着剤を用いて走査レンズ12を固定する場合、後述する走査レンズ12の位置調整をした後に、第1の平面12−1と第1の支持部15−1との間、及び第2の平面12−2と第2の支持部15−2との間に接着剤を塗布する。そして接着剤が塗布された状態で、第1及び第2の平面12−1、12−2と反対側の面即ち走査レンズ12における光ビームの入射側の面に対して、光軸方向に加圧力P1(図2(b)参照)を加える。接着剤が充分硬化した後、加圧力P1を開放する。尚、図3(a)に第1の支持部15−1の詳細を示す。第1の支持部15−1は、第1の支持部15−1の上部の第1の平面12−1に近い側に、上面から三角形状の切り込み部を有し、第1の平面12−1に対面する面である基準面15−5には切り込み部から下方に向かって続く複数の溝部(破線部)を有する。この切り込み部及び複数の溝部は、接着剤を流すためのものである。また、板バネを用いる場合には、第1及び第2の平面12−1、12−2と反対側の面に対して、板バネによる加圧力P1を加えて固定する。   In order to fix the scanning lens 12 to the housing 14, for example, an adhesive or a leaf spring is used. When fixing the scanning lens 12 using an adhesive, after adjusting the position of the scanning lens 12, which will be described later, between the first plane 12-1 and the first support portion 15-1, and the second plane. An adhesive is applied between 12-2 and the second support portion 15-2. Then, with the adhesive applied, it is applied in the optical axis direction to the surface opposite to the first and second planes 12-1 and 12-2, that is, the surface on the incident side of the light beam in the scanning lens 12. Pressure P1 (refer FIG.2 (b)) is applied. After the adhesive is fully cured, the pressure P1 is released. In addition, the detail of the 1st support part 15-1 is shown to Fig.3 (a). The first support portion 15-1 has a triangular cut from the upper surface on the side close to the first plane 12-1 above the first support portion 15-1, and the first plane 12- 1 has a plurality of groove portions (broken line portions) continuing downward from the cut portion. This cut | notch part and a some groove part are for flowing an adhesive agent. Moreover, when using a leaf | plate spring, the applied pressure P1 by a leaf | plate spring is applied and fixed to the surface on the opposite side to the 1st and 2nd planes 12-1 and 12-2.

[走査レンズの端部の詳細]
図3(a)、図3(b)を用いて走査レンズ12の長尺方向の一端について詳細な構成を示す。図3(a)は斜視図、図3(b)は図3(a)中記載のY方向からの走査レンズ12端部における断面図である。図3(a)、図3(b)に示すように、走査レンズ12は光ビームの出射側の面である第1の平面12−1(図3(b)中、実線部)を、第1の支持部15−1の基準面15−5(図3(b)中、破線部)に突き当てて固定されている。筐体14は、組立時に走査レンズ12を受けるための、第1の仮受け部15−3(図3(b)中、二点鎖線部)を有する。第1の仮受け部15−3は、第1の支持部15−1の基準面15−5と略垂直な位置に設けられる。走査レンズ12の逆側の他端側についても同様に、第2の支持部15−2の基準面15−6と略垂直な位置に、組立時に走査レンズ12を受けるための第2の仮受け部15−4が設けられる。
[Details of scanning lens end]
A detailed configuration of one end of the scanning lens 12 in the longitudinal direction will be described with reference to FIGS. 3A is a perspective view, and FIG. 3B is a cross-sectional view at the end of the scanning lens 12 from the Y direction shown in FIG. 3A. As shown in FIGS. 3A and 3B, the scanning lens 12 has a first flat surface 12-1 (solid line portion in FIG. 3B) that is a surface on the light beam emission side. The first support portion 15-1 is abutted against and fixed to a reference surface 15-5 (a broken line portion in FIG. 3B). The housing 14 has a first provisional receiving portion 15-3 (two-dot chain line portion in FIG. 3B) for receiving the scanning lens 12 during assembly. The first temporary receiving portion 15-3 is provided at a position substantially perpendicular to the reference surface 15-5 of the first support portion 15-1. Similarly, the second provisional receiver for receiving the scanning lens 12 at the time of assembling at the position substantially perpendicular to the reference surface 15-6 of the second support portion 15-2 is also applied to the other end on the opposite side of the scanning lens 12. Part 15-4 is provided.

従来は、図7−1、図7−2に示すように、走査レンズ12の光軸方向において走査レンズ12は、第1及び第2の平面12−1、12−2とは反対側の、光ビーム入射側の面である入射面を光軸方向の基準面としていた。このように、走査レンズ12の光ビームの入射側の面を基準面とすると、光ビーム出射側にある走査レンズ12の重心と基準面との距離が遠い。そのため自重により走査レンズ12に働くモーメントが大きく、走査レンズ12が変形したり、位置ずれしたりするという課題がある。本実施例は、走査レンズ12の光ビーム出射側の光ビーム通過領域であるレーザ光通過部の両端側に支持部の基準面に接触させる平面を設けることで、走査レンズ12を精度よく位置決めした状態で保持することができる。   Conventionally, as shown in FIGS. 7A and 7B, the scanning lens 12 in the optical axis direction of the scanning lens 12 is opposite to the first and second planes 12-1 and 12-2. The incident surface that is the surface on the light beam incident side is used as a reference surface in the optical axis direction. As described above, when the surface on the light beam incident side of the scanning lens 12 is a reference surface, the distance between the center of gravity of the scanning lens 12 on the light beam emitting side and the reference surface is long. Therefore, there is a problem that a moment acting on the scanning lens 12 due to its own weight is large and the scanning lens 12 is deformed or displaced. In this embodiment, the scanning lens 12 is accurately positioned by providing flat surfaces that are in contact with the reference surfaces of the support portions on both ends of the laser beam passage portion that is a light beam passage region on the light beam emission side of the scanning lens 12. Can be held in a state.

[走査レンズの設置手順]
次に、走査レンズ12の設置手順を説明する。まず、走査レンズ12を筐体14に仮置きする。図2等には不図示であるが、走査レンズ12の長尺方向略中央部近傍の筐体14には、走査レンズ12の長尺方向の仮位置決めと仮置き用の部材が設けられており、走査レンズ12の長尺方向の位置を仮決めする。走査レンズ12は、筐体14に設けられた長尺方向略中央部近傍の部材と、長尺方向両端部の第1及び第2の仮受け部15−3、15−4との3箇所で筐体14と接触し、3点支持された状態で安定して仮置きされる。この状態で接着剤を、上述した切り込み部から流し込む。
[Scanning lens installation procedure]
Next, the installation procedure of the scanning lens 12 will be described. First, the scanning lens 12 is temporarily placed on the housing 14. Although not shown in FIG. 2 and the like, the casing 14 in the vicinity of the central portion in the longitudinal direction of the scanning lens 12 is provided with a member for temporarily positioning and temporarily placing the scanning lens 12 in the longitudinal direction. The position of the scanning lens 12 in the longitudinal direction is provisionally determined. The scanning lens 12 is provided at three locations including a member in the vicinity of the central portion in the longitudinal direction provided on the casing 14 and first and second temporary receiving portions 15-3 and 15-4 at both ends in the longitudinal direction. It comes into contact with the housing 14 and is stably placed temporarily in a state where it is supported at three points. In this state, the adhesive is poured from the above-described cut portion.

次に、図2(b)に示すように、走査レンズ12の長尺方向両端に光軸方向に加圧力P1を加えて、走査レンズ12を筐体14の第1及び第2の支持部15−1、15−2に突き当てる。この段階で、走査レンズ12は、走査レンズ12の光軸方向に位置決めされる。   Next, as shown in FIG. 2B, a pressure P <b> 1 is applied to both ends of the scanning lens 12 in the longitudinal direction in the optical axis direction so that the scanning lens 12 is connected to the first and second support portions 15 of the housing 14. -1, 15-2. At this stage, the scanning lens 12 is positioned in the optical axis direction of the scanning lens 12.

次に、走査レンズ12の高さ方向の位置調整を行う。加圧力P1は加えたままで、走査レンズ12の光軸方向の位置決めはなされたまま、走査レンズ12の理想位置に光線が通過するように、走査レンズ12の高さ方向及び長尺方向の位置をそれぞれZ、Y方向に調整する。この調整を行うことによって、走査レンズ12は、第1及び第2の仮受け部15−3、15−4から離間する。   Next, the position of the scanning lens 12 in the height direction is adjusted. The position of the scanning lens 12 in the height direction and the longitudinal direction is set so that the light beam passes through the ideal position of the scanning lens 12 while the pressure P1 is applied and the scanning lens 12 is positioned in the optical axis direction. Adjust in the Z and Y directions, respectively. By performing this adjustment, the scanning lens 12 is separated from the first and second provisional receiving portions 15-3 and 15-4.

最後に、走査レンズ12の両端部に紫外線を一定時間、接着剤を固化するために照射する。走査レンズ12は、走査レンズ12の理想位置に光線が通過するように調整された姿勢を保持したまま、筐体14に対して固着される。接着剤が十分固化したのち、加圧力P1を開放し、走査レンズ12の組立工程は終了する。   Finally, both ends of the scanning lens 12 are irradiated with ultraviolet rays for a certain time in order to solidify the adhesive. The scanning lens 12 is fixed to the housing 14 while maintaining the posture adjusted so that the light beam passes through the ideal position of the scanning lens 12. After the adhesive is sufficiently solidified, the pressure P1 is released, and the assembly process of the scanning lens 12 is completed.

[本実施例の効果]
具体的に、図3(c)を用いて、第1及び第2の平面12−1、12−2が、光線が出射する側の面であることによる効果を示す。図3(c)は、走査レンズ12のY軸方向矢視図であり、一点鎖線Bは光ビームの光路を示す。走査レンズ12は光ビーム出射方向に凸形状であるため、走査レンズ12の重心は光ビーム出射側寄りにある。走査レンズ12の自重により働く力Gは、第1及び第2の平面12−1、12−2に対して、光ビーム出射側に位置する。光軸方向に関して、自重により働く力Gと第1の平面12−1との距離をL1と表すと、走査レンズ12に働くモーメントはG×L1となる。
[Effect of this embodiment]
Specifically, an effect obtained when the first and second planes 12-1 and 12-2 are surfaces on the side from which the light beam is emitted will be described with reference to FIG. FIG. 3C is a view taken in the Y-axis direction of the scanning lens 12, and the alternate long and short dash line B indicates the optical path of the light beam. Since the scanning lens 12 is convex in the light beam emission direction, the center of gravity of the scanning lens 12 is closer to the light beam emission side. The force G that acts due to the weight of the scanning lens 12 is located on the light beam emission side with respect to the first and second planes 12-1 and 12-2. With respect to the optical axis direction, if the distance between the force G acting by its own weight and the first plane 12-1 is represented as L1, the moment acting on the scanning lens 12 is G × L1.

次に、筐体14への突き当て面を、従来のように二点鎖線で示す光ビーム入射側の面とした場合を考える。自重により働く力Gと光ビーム入射側の面との距離をL2とすると、走査レンズ12に働くモーメントはG×L2となる。L1<L2であるため、光ビーム出射側の面12−1、12−2を突き当て面とすることで、自重により働く力Gによる走査レンズ12へのモーメントを低減することができる。これによって、走査レンズ12を筐体14の支持部に接着固定した後に、走査レンズ12の変形や、調整後の位置ずれを低減することができる。特に、長尺走査レンズは、レンズ高さ方向の位置精度を厳しく必要とするため、レンズ高さ方向に働く力Gによる影響を減らすことで、画質への影響を低減することができる。   Next, consider a case where the abutting surface to the housing 14 is a surface on the light beam incident side indicated by a two-dot chain line as in the prior art. If the distance between the force G acting due to its own weight and the surface on the light beam incident side is L2, the moment acting on the scanning lens 12 is G × L2. Since L1 <L2, by using the surfaces 12-1 and 12-2 on the light beam emission side as the butting surfaces, the moment to the scanning lens 12 due to the force G acting by its own weight can be reduced. Thereby, after the scanning lens 12 is bonded and fixed to the support portion of the housing 14, the deformation of the scanning lens 12 and the positional deviation after adjustment can be reduced. In particular, since the long scanning lens requires strict positional accuracy in the lens height direction, the influence on the image quality can be reduced by reducing the influence of the force G acting in the lens height direction.

また、走査レンズ12を筐体14に接着固定した後だけでなく、組み立て時においても次のような効果がある。第1の支持部15−1の第1の仮受け部15−3及び第2の支持部15−2の第2の仮受け部15−4に、走査レンズ12を仮置きしたとき、モーメントが作用する方向には第1の支持部15−1の基準面15−5及び第2の支持部15−2の基準面15−6がある。このため、本実施例では、第1の仮受け部15−3、第2の仮受け部15−4に走査レンズ12を安定して仮置きすることができ、走査レンズ12が、例えば図3(c)中、時計回り方向に回転することを防止することができる。このように、走査レンズ12を筐体14に接着固定すべく組み立てている過程において、走査レンズ12が転がったりすることがない。   The following effects can be obtained not only after the scanning lens 12 is bonded and fixed to the housing 14 but also at the time of assembly. When the scanning lens 12 is temporarily placed on the first temporary receiving portion 15-3 of the first supporting portion 15-1 and the second temporary receiving portion 15-4 of the second supporting portion 15-2, a moment is generated. In the acting direction, there is a reference surface 15-5 of the first support portion 15-1 and a reference surface 15-6 of the second support portion 15-2. For this reason, in the present embodiment, the scanning lens 12 can be stably placed temporarily on the first temporary receiving portion 15-3 and the second temporary receiving portion 15-4. In (c), it is possible to prevent rotation in the clockwise direction. In this way, the scanning lens 12 does not roll in the process of assembling the scanning lens 12 to be bonded and fixed to the housing 14.

このように、本実施例では、走査レンズ12を、走査レンズ12の長尺方向両端に設けた光ビームが出射する側の突き当て面12−1、12−2によって光走査装置1の筐体14に取り付ける構成とする。これにより、光軸方向について、突き当て面12−1、12−2部と走査レンズ12の重心部との距離(L1)を従来(L2)よりも短くする(L1<L2)ことができる。この距離L1を従来よりも短くすることで、走査レンズ12の自重により走査レンズ12に働くモーメントを従来よりも小さくすることができる(G×L1<G×L2)。以上、本実施例によれば、走査レンズの位置変動を低減し、画質の低下を低減することができる。   As described above, in the present embodiment, the scanning lens 12 is provided in the housing of the optical scanning device 1 by the abutting surfaces 12-1 and 12-2 on the side where the light beams are provided on both ends of the scanning lens 12 in the longitudinal direction. 14 to be attached. Thereby, in the optical axis direction, the distance (L1) between the abutting surfaces 12-1 and 12-2 and the center of gravity of the scanning lens 12 can be made shorter than the conventional (L2) (L1 <L2). By making this distance L1 shorter than before, the moment acting on the scanning lens 12 due to the weight of the scanning lens 12 can be made smaller than before (G × L1 <G × L2). As described above, according to this embodiment, it is possible to reduce the position variation of the scanning lens and reduce the deterioration of the image quality.

図4は、光走査装置1内の走査レンズ12の周辺構成を示すもので、実施例2の走査レンズ12の支持構成を示している。図4(a)は走査レンズ12周辺の斜視図、図4(b)は各パーツを光軸方向にずらした斜視図である。一点鎖線Bは、実施例1同様、1走査周期中の3つのタイミングにおける光ビームの光路を示す。走査レンズ12に起因する画像不良として、走査レンズ12に伝わる振動の固有振動数が、走査レンズ12の固有振動数と略一致した場合に、走査レンズ12が共振し、感光ドラム2上のスポットが変動して、画質が低下するという課題がある。この振動の振動源は、回転多面鏡11−1を回転させる駆動モータ11−2や、画像形成装置に含まれる駆動源である。   FIG. 4 shows a peripheral configuration of the scanning lens 12 in the optical scanning device 1, and shows a support configuration of the scanning lens 12 of the second embodiment. 4A is a perspective view around the scanning lens 12, and FIG. 4B is a perspective view in which each part is shifted in the optical axis direction. An alternate long and short dash line B indicates the optical path of the light beam at three timings during one scanning period, as in the first embodiment. As an image defect caused by the scanning lens 12, when the natural frequency of vibration transmitted to the scanning lens 12 substantially matches the natural frequency of the scanning lens 12, the scanning lens 12 resonates, and the spot on the photosensitive drum 2 becomes a spot. There is a problem that the image quality deteriorates due to fluctuations. The vibration source is a drive motor 11-2 for rotating the rotary polygon mirror 11-1 or a drive source included in the image forming apparatus.

この課題に対し、走査レンズ12の長尺方向略中央部において、走査レンズ12と光走査装置1の筐体14の間に、スタビライザー13と呼ばれる楔形状の振動対策部品を挟み込む対策がとられている。走査レンズ12と筐体14の間の隙間にスタビライザー13を挿入し、走査レンズ12とスタビライザー13、スタビライザー13と筐体14の間それぞれに接着剤を塗布し、固着する。それによって、長尺方向中央を腹として振動する走査レンズ12の梁の振動の1次モードを抑え、走査レンズ12の固有振動数を高くすることができる。本実施例では、長尺方向略中央部にスタビライザー13を挿入する構成においても、光ビーム出射側に光軸方向の基準面を設けることで、走査レンズ12の変形や位置ずれを低減することができる。   To solve this problem, a countermeasure is taken in which a wedge-shaped vibration countermeasure component called a stabilizer 13 is sandwiched between the scanning lens 12 and the housing 14 of the optical scanning device 1 at a substantially central portion in the longitudinal direction of the scanning lens 12. Yes. A stabilizer 13 is inserted into the gap between the scanning lens 12 and the housing 14, and an adhesive is applied between the scanning lens 12 and the stabilizer 13, and between the stabilizer 13 and the housing 14 and fixed. Thereby, the primary mode of the vibration of the beam of the scanning lens 12 that vibrates with the center in the longitudinal direction as an antinode can be suppressed, and the natural frequency of the scanning lens 12 can be increased. In the present embodiment, even in the configuration in which the stabilizer 13 is inserted in the substantially central portion in the longitudinal direction, the deformation and misalignment of the scanning lens 12 can be reduced by providing a reference surface in the optical axis direction on the light beam emission side. it can.

[スタビライザーを備える構成への適用]
図4(a)、図4(b)に示すように、走査レンズ12の長尺方向略中央には、走査レンズ12の振動を低減することができるスタビライザー13を取り付けている。スタビライザー13は楔形状をしており、筐体14に設けられた装着部16と走査レンズ12の間に、光軸方向に挿入力P2を加えて差し込まれる(図4(b)参照)。挿入力P2を加えて、スタビライザー13が走査レンズ12及び装着部16の両方と接触した状態で、スタビライザー13を接着剤によって固定する。本実施例では、装着部16は、走査レンズ12の長尺方向において第1及び第2の支持部15−1、15−2との間の中央部に設けられている。そのため、スタビライザー13は、走査レンズ12の長尺方向略中央を支持する。スタビライザー13が走査レンズ12の長尺方向略中央を支持するため、走査レンズ12の梁の振動の1次モードを抑えて固有振動数を高くし、走査レンズ12が共振しにくくする働きをする。
[Application to configurations with stabilizers]
As shown in FIG. 4A and FIG. 4B, a stabilizer 13 that can reduce vibration of the scanning lens 12 is attached to the center of the scanning lens 12 in the longitudinal direction. The stabilizer 13 has a wedge shape, and is inserted between the mounting portion 16 provided on the housing 14 and the scanning lens 12 with an insertion force P2 applied in the optical axis direction (see FIG. 4B). Applying the insertion force P2, the stabilizer 13 is fixed with an adhesive in a state where the stabilizer 13 is in contact with both the scanning lens 12 and the mounting portion 16. In the present embodiment, the mounting portion 16 is provided at a central portion between the first and second support portions 15-1 and 15-2 in the longitudinal direction of the scanning lens 12. Therefore, the stabilizer 13 supports the center of the scanning lens 12 in the longitudinal direction. Since the stabilizer 13 supports approximately the center of the scanning lens 12 in the longitudinal direction, the primary frequency of the vibration of the beam of the scanning lens 12 is suppressed to increase the natural frequency, thereby making the scanning lens 12 difficult to resonate.

図4(c)〜図4(e)を用いて走査レンズ12の長尺方向中央部について詳細な構成を示す。図4(c)は走査レンズ12の長尺方向中央部近傍の斜視図、図4(d)は図4(c)中記載のY軸方向矢視図、図4(e)は図4(c)中記載のX軸方向矢視図である。図4(c)〜図4(e)に示すように、走査レンズ12と、装着部16の間には、スタビライザー13が配置される。スタビライザー13は、図4(d)に示すように、装着部16と接触する面が斜面となる楔形状をしている。スタビライザー13の装着部16と接触する斜面には、図4(c)に破線で示すように、装着部16上面の斜面に設けられた櫛歯状の溝と嵌合するように櫛歯状の溝が設けられている。尚、スタビライザー13の走査レンズ12と接触する面には、接着剤を流し込むための溝部が設けられている(図4(c)破線部)。   A detailed configuration of the central portion in the longitudinal direction of the scanning lens 12 will be described with reference to FIGS. 4C is a perspective view of the vicinity of the central portion in the longitudinal direction of the scanning lens 12, FIG. 4D is a view as viewed in the Y-axis direction in FIG. 4C, and FIG. 4E is FIG. c) X-axis direction arrow view in the middle. As shown in FIGS. 4C to 4E, the stabilizer 13 is disposed between the scanning lens 12 and the mounting portion 16. As shown in FIG. 4D, the stabilizer 13 has a wedge shape in which the surface in contact with the mounting portion 16 is an inclined surface. As shown by a broken line in FIG. 4C, the inclined surface of the stabilizer 13 that contacts the mounting portion 16 is comb-shaped so as to be fitted with a comb-shaped groove provided on the upper surface of the mounting portion 16. Grooves are provided. Note that a groove portion for pouring the adhesive is provided on the surface of the stabilizer 13 that contacts the scanning lens 12 (a broken line portion in FIG. 4C).

スタビライザー13が走査レンズ12と装着部16の両方と接触した状態になるまで、光軸方向に挿入力P2を加えて差し込まれる。図4(e)に示すように、走査レンズ12の長尺方向略中央部には、長尺方向の仮位置決め基準となる凸部12−3が設けられており、装着部16に設けられた、相対する凹部16−1とはめあうことで、組立時に走査レンズ12の長尺方向の仮位置決めを行う。また、装着部16には、組立時に長尺方向略中央部、即ち、走査レンズ12の走査方向における中央部に対応する位置に、走査レンズ12を受ける第3の仮受け部16−2も設けられている。レンズ高さ方向に関して、第3の仮受け部16−2の方が、第1及び第2の仮受け部15−3、15−4よりも高い。   Until the stabilizer 13 comes into contact with both the scanning lens 12 and the mounting portion 16, it is inserted with an insertion force P2 applied in the optical axis direction. As shown in FIG. 4E, a convex portion 12-3 serving as a temporary positioning reference in the longitudinal direction is provided at a substantially central portion in the longitudinal direction of the scanning lens 12, and is provided on the mounting portion 16. The scanning lens 12 is temporarily positioned in the longitudinal direction at the time of assembly by fitting with the opposing concave portion 16-1. The mounting portion 16 is also provided with a third provisional receiving portion 16-2 for receiving the scanning lens 12 at a position corresponding to the central portion in the longitudinal direction, that is, the central portion in the scanning direction of the scanning lens 12 during assembly. It has been. Regarding the lens height direction, the third temporary holder 16-2 is higher than the first and second temporary holders 15-3 and 15-4.

[走査レンズの設置手順]
次に、走査レンズ12の設置手順を示す。図5は、走査レンズ12を、紫外線などを照射すると固化する接着剤を用いて筐体14に固着する場合の、走査レンズ12の設置手順を表したもので、図5(a)から図5(e)まで順に5つの設置手順を示している。
[Scanning lens installation procedure]
Next, the installation procedure of the scanning lens 12 is shown. FIG. 5 shows an installation procedure of the scanning lens 12 when the scanning lens 12 is fixed to the housing 14 using an adhesive that is solidified when irradiated with ultraviolet rays or the like. Five installation procedures are shown in order up to (e).

第1段階は、図5(a)に示すように、走査レンズ12を筐体14に仮置きし、接着剤を塗布する。仮置きの際、走査レンズ12の長尺方向略中央部に設けられた凸部12−3を、筐体14側の装着部16の相対する凹部16−1に対してはめ込むことで、走査レンズ12の長尺方向の位置を仮決めする。走査レンズ12は、アーチ形状をしているため、筐体14に設けられた長尺方向略中央部の第3の仮受け部16−2、長尺方向両端部の第1及び第2の仮受け部15−3、15−4の3箇所で筐体14と接触し、3点支持された状態で安定して仮置きされる。この状態で接着剤を、走査レンズ12の第1及び第2の平面12−1及び12−2に塗布する。   In the first stage, as shown in FIG. 5A, the scanning lens 12 is temporarily placed on the housing 14 and an adhesive is applied. At the time of temporary placement, the convex portion 12-3 provided at the substantially central portion in the longitudinal direction of the scanning lens 12 is fitted into the opposing concave portion 16-1 of the mounting portion 16 on the housing 14 side, whereby the scanning lens. Twelve longitudinal positions are provisionally determined. Since the scanning lens 12 has an arch shape, the third temporary receiving portion 16-2 at the substantially central portion in the longitudinal direction provided in the housing 14 and the first and second temporary portions at both longitudinal ends. The receiving unit 15-3 and 15-4 are in contact with the housing 14 at three locations, and are stably placed temporarily in a state where they are supported at three points. In this state, the adhesive is applied to the first and second planes 12-1 and 12-2 of the scanning lens 12.

第2段階は、図5(b)に示すように、走査レンズ12の長尺方向両端に光軸方向に加圧力P1を加えて、走査レンズ12を筐体14の第1及び第2の支持部15−1、15−2に突き当てる。この段階で、走査レンズ12の光軸方向の位置決めがされる。走査レンズ12は、第3の仮受け部16−2と接触したままであるが、第1及び第2の仮受け部15−3、15−4とは離間する。   In the second stage, as shown in FIG. 5B, a pressure P1 is applied in the optical axis direction to both ends of the scanning lens 12 in the longitudinal direction so that the scanning lens 12 is supported by the first and second supports of the housing 14. It strikes against parts 15-1 and 15-2. At this stage, the scanning lens 12 is positioned in the optical axis direction. The scanning lens 12 remains in contact with the third temporary holder 16-2, but is separated from the first and second temporary holders 15-3 and 15-4.

第3段階は、図5(c)に示すように、走査レンズ12の高さ方向の位置調整を行う。加圧力P1は加えたままで、走査レンズ12の光軸方向の位置決めはなされたまま、走査レンズ12の理想位置に光線が通過するように、走査レンズ12の高さ方向及び長尺方向の位置をそれぞれZ、Y軸方向に調整する。位置調整後、走査レンズ12は、長尺方向略中央部の第3の仮受け部16−2とも離間し、筐体14に対して、第1及び第2の支持部15−1、15−2のみで接触する。   In the third stage, as shown in FIG. 5C, the position of the scanning lens 12 in the height direction is adjusted. The position of the scanning lens 12 in the height direction and the longitudinal direction is set so that the light beam passes through the ideal position of the scanning lens 12 while the pressure P1 is applied and the scanning lens 12 is positioned in the optical axis direction. Adjust in the Z and Y axis directions, respectively. After the position adjustment, the scanning lens 12 is also separated from the third provisional receiving portion 16-2 at the substantially central portion in the longitudinal direction, and the first and second support portions 15-1 and 15- Contact with 2 only.

第4段階は、図5(d)に示すように、スタビライザー13を挿入し、光軸方向に挿入力P2を加えた状態で保持する。スタビライザー13は、走査レンズ12と装着部16との間の隙間に差し込まれる。スタビライザー13には、あらかじめ接着剤が塗布されている。挿入力P2は、できるだけ走査レンズ12を変形させない程度の弱い力であるが、スタビライザー13が少なくとも走査レンズ12と装着部16とに接触した状態を保持しなければならないため、挿入力P2をゼロとすることは難しい。一例として、約25gの走査レンズ12を取り付ける場合、挿入力P2は、加圧力P1に対しておよそ7分の1以下の弱い力を用いる。   In the fourth stage, as shown in FIG. 5D, the stabilizer 13 is inserted and held in a state where the insertion force P2 is applied in the optical axis direction. The stabilizer 13 is inserted into the gap between the scanning lens 12 and the mounting portion 16. An adhesive is applied to the stabilizer 13 in advance. The insertion force P2 is a weak force that does not deform the scanning lens 12 as much as possible. However, since the stabilizer 13 must keep at least the state in contact with the scanning lens 12 and the mounting portion 16, the insertion force P2 is set to zero. Difficult to do. As an example, when the scanning lens 12 of about 25 g is attached, the insertion force P2 is a weak force of about 1/7 or less with respect to the applied pressure P1.

第5段階は、図5(e)に示すように、走査レンズ12の両端に加圧力P1、スタビライザー13に挿入力P2を加えたままの状態で、走査レンズ12の両端部と中央部に紫外線を一定時間照射する。走査レンズ12は、第3段階で調整された姿勢を保持したまま、筐体14に対して固着される。接着剤が十分固化したのち、加圧力P1と挿入力P2を開放し、走査レンズ12の組立工程は終了する。   In the fifth stage, as shown in FIG. 5E, ultraviolet light is applied to both ends and the center of the scanning lens 12 with the pressure P1 applied to both ends of the scanning lens 12 and the insertion force P2 applied to the stabilizer 13. For a certain period of time. The scanning lens 12 is fixed to the housing 14 while maintaining the posture adjusted in the third stage. After the adhesive is sufficiently solidified, the pressure P1 and the insertion force P2 are released, and the assembly process of the scanning lens 12 is completed.

[本実施例の効果]
図6(a)を用いて、第1及び第2の平面12−1、12−2が、光線が出射する側の面であることによる効果を示す。図6(a)は、走査レンズ12のY軸方向矢視図であり、一点鎖線Bは光ビームの光路を示す。スタビライザー13は、光軸方向に挿入力P2を加えて、走査レンズ12と装着部16の間に挿入される。この挿入力P2は、スタビライザー13を介して、走査レンズ12に対してレンズ高さ方向の反力Fを生じる。走査レンズ12は、光ビーム出射側に凸形状であるため、走査レンズ12の略中央部に働く反力Fの作用点は、第1及び第2の平面12−1、12−2に対して、光ビーム出射側に位置する。光軸方向に関して、反力Fの作用点と第1の平面12−1との距離をL1と表すと、走査レンズ12に働くモーメントはF×L1となる。
[Effect of this embodiment]
With reference to FIG. 6A, an effect obtained when the first and second planes 12-1 and 12-2 are surfaces on the side from which light rays are emitted will be described. FIG. 6A is a view of the scanning lens 12 as viewed in the Y-axis direction, and an alternate long and short dash line B indicates an optical path of the light beam. The stabilizer 13 is inserted between the scanning lens 12 and the mounting portion 16 by applying an insertion force P2 in the optical axis direction. This insertion force P <b> 2 generates a reaction force F in the lens height direction with respect to the scanning lens 12 via the stabilizer 13. Since the scanning lens 12 has a convex shape on the light beam emission side, the point of action of the reaction force F acting on the substantially central portion of the scanning lens 12 is relative to the first and second planes 12-1 and 12-2. , Located on the light beam exit side. When the distance between the point of application of the reaction force F and the first plane 12-1 is expressed as L1 in the optical axis direction, the moment acting on the scanning lens 12 is F × L1.

次に、筐体14への突き当て面を、従来のように二点鎖線で示す光ビーム入射側の面とした場合を考える。反力Fの作用点と光ビーム入射側の面との距離をL2とすると、走査レンズ12に働くモーメントはF×L2となる。L1<L2であるため、光ビーム出射側の面12−1、12−2を突き当て面とすることで、スタビライザー13の挿入力P2から働く、走査レンズ12へのモーメント(図6(a)中、反時計回り方向)を低減することができる。これによって、走査レンズ12の変形や、調整後の位置ずれを低減することができる(F×L1<F×L2)。特に、長尺走査レンズは、レンズ高さ方向の位置精度を厳しく必要とするため、レンズ高さ方向に働く反力Fによる影響を減らすことで、画質への影響を低減することができる。   Next, consider a case where the abutting surface to the housing 14 is a surface on the light beam incident side indicated by a two-dot chain line as in the prior art. When the distance between the reaction point of the reaction force F and the surface on the light beam incident side is L2, the moment acting on the scanning lens 12 is F × L2. Since L1 <L2, the surfaces 12-1 and 12-2 on the light beam emission side are used as the butting surfaces, and the moment acting on the scanning lens 12 acting from the insertion force P2 of the stabilizer 13 (FIG. 6A) (Counterclockwise direction) can be reduced. Thereby, the deformation of the scanning lens 12 and the positional deviation after the adjustment can be reduced (F × L1 <F × L2). In particular, since the long scanning lens requires strict positional accuracy in the lens height direction, the influence on the image quality can be reduced by reducing the influence of the reaction force F acting in the lens height direction.

次に、レンズ高さ方向に関して、第3の仮受け部16−2が、第1及び第2の仮受け部15−3、15−4よりも高いことによる効果を示す。第3の仮受け部16−2が第1及び第2の仮受け部15−3、15−4よりも高い構成とすることにより、設置手順第1段階において、接着剤を塗布しやすくなり、作業性が向上するという効果を有する。まず、走査レンズ12は、光ビームの出射側に凸形状であるため、重心位置は光軸方向に関して光ビームの出射側に位置する。そのため、走査レンズ12を平面に置いた場合、自重で光ビーム出射側に首を振って回転して倒れやすい。そうすると、接着剤を塗布する面である、第1及び第2の平面12−1、12−2が上方から見えない状態となる。塗布面が見えない状態で接着剤を塗布しようとすることは作業性を低下させる。また、接着剤も垂れ落ちやすい。   Next, with respect to the lens height direction, the effect of the third provisional receiving portion 16-2 being higher than the first and second provisional receiving portions 15-3 and 15-4 will be described. By making the third provisional receiving part 16-2 higher than the first and second provisional receiving parts 15-3, 15-4, it becomes easier to apply the adhesive in the first stage of the installation procedure, There is an effect that workability is improved. First, since the scanning lens 12 has a convex shape on the light beam emission side, the position of the center of gravity is located on the light beam emission side in the optical axis direction. Therefore, when the scanning lens 12 is placed on a flat surface, the scanning lens 12 is easily rotated by swinging its head toward the light beam emission side by its own weight. If it does so, it will be in the state which cannot see the 1st and 2nd planes 12-1 and 12-2 which are the fields which apply an adhesive from above. Attempting to apply the adhesive while the application surface is not visible reduces workability. Also, the adhesive tends to sag.

一方、第3の仮受け部16−2を仮受け部15−3、15−4よりも高くすると、レンズ重心に近い中央部を高く支持するため、第1及び第2の平面12−1、12−2が見える状態で、レンズを3点支持できる。これによって、塗布面が見える状態で接着剤を塗布できるとともに、接着剤が垂れ落ちにくく、作業性が向上する。   On the other hand, when the third provisional receiving portion 16-2 is made higher than the provisional receiving portions 15-3 and 15-4, the first and second planes 12-1 and 12-1 are supported in order to support the central portion close to the lens center of gravity. The lens can be supported at three points with 12-2 visible. As a result, the adhesive can be applied in a state where the application surface is visible, and the adhesive is less likely to sag, improving workability.

以上、本実施例によれば、走査レンズの位置変動を低減し、画質の低下を低減することができる。   As described above, according to this embodiment, it is possible to reduce the position variation of the scanning lens and reduce the deterioration of the image quality.

実施例2では、走査レンズ12は、第1及び第2の仮受け部15−3、15−4に対して稜線で接しており、光軸方向に関して走査レンズ12に加わる外力を受ける面がない。このため、接着剤を塗布する際などに走査レンズ12に触れると、位置がずれてしまうおそれがある。そして、大きく位置がずれた場合、走査レンズ12の凸部12−3が、装着部16の凹部16−1から外れてしまうおそれもある。走査レンズ12の凸部12−3が装着部16の凹部16−1から外れてしまうということは、即ちレンズ長尺方向の仮位置決めが外れるということである。このように、レンズ長尺方向の位置が大きくずれたまま第3段階の位置調整を行うと、加圧力P1を加えたまま走査レンズ12を長尺方向に大きくずらすことになる。走査レンズ12は長尺方向に変形しやすいため、大きく位置調整をすることで走査レンズ12が変形し、画質が低下するという課題が生じる。本実施例では、このような状況を防止するための構成を説明する。   In the second embodiment, the scanning lens 12 is in contact with the first and second provisional receiving portions 15-3 and 15-4 at a ridge line, and there is no surface that receives an external force applied to the scanning lens 12 in the optical axis direction. . For this reason, if the scanning lens 12 is touched when an adhesive is applied, the position may be shifted. If the position is greatly displaced, the convex portion 12-3 of the scanning lens 12 may be detached from the concave portion 16-1 of the mounting portion 16. The fact that the convex portion 12-3 of the scanning lens 12 is disengaged from the concave portion 16-1 of the mounting portion 16 means that provisional positioning in the lens longitudinal direction is disengaged. As described above, when the third stage position adjustment is performed while the position in the lens length direction is largely shifted, the scanning lens 12 is largely shifted in the length direction while the pressure P1 is applied. Since the scanning lens 12 is easily deformed in the longitudinal direction, there is a problem that the scanning lens 12 is deformed and the image quality is deteriorated by adjusting the position largely. In the present embodiment, a configuration for preventing such a situation will be described.

[本実施例の構成と効果]
図6(b)、図6(c)は、実施例2で説明した設置手順第1段階の仮置き状態での、本実施例における走査レンズ12の一端側の構成を示している。筐体14には、走査レンズ12が傾いた状態で、第1の平面12−1と反対側の面、即ち走査レンズ12の光ビーム入射側の面を支持する、第1の斜面仮受け部15−7(第1の仮受け面)が設けられている。第1の斜面仮受け部15−7は、レンズ長尺方向に関して、第1の支持部15−1と重ならない位置、即ち走査方向における異なる位置に設けられる。即ち、第1の斜面仮受け部15−7は、主走査方向(Y軸方向)について、第1の支持部15−1とはずらして設置する。逆側の他端側も同様に、第2の斜面仮受け部15−8(第2の仮受け面)が、第2の支持部15−2とレンズ長尺方向に関して重ならない位置、即ち走査方向における異なる位置に設けられている。
[Configuration and effect of this embodiment]
FIGS. 6B and 6C show the configuration of one end side of the scanning lens 12 in the present embodiment in the temporary placement state in the first stage of the installation procedure described in the second embodiment. The housing 14 supports a surface on the opposite side of the first flat surface 12-1, that is, a surface on the light beam incident side of the scanning lens 12, with the scanning lens 12 tilted. 15-7 (first provisional receiving surface) is provided. The first slope provisional receiving portion 15-7 is provided at a position that does not overlap with the first support portion 15-1, that is, at a different position in the scanning direction with respect to the lens longitudinal direction. In other words, the first slope provisional receiving portion 15-7 is installed so as to be shifted from the first support portion 15-1 in the main scanning direction (Y-axis direction). Similarly, at the other end on the opposite side, the second inclined surface temporary receiving portion 15-8 (second temporary receiving surface) does not overlap with the second support portion 15-2 in the lens longitudinal direction, that is, scanning. It is provided at different positions in the direction.

走査レンズ12は、第1の支持部15−1と第1の斜面仮受け部15−7の間、及び、第2の支持部15−2と第2の斜面仮受け部15−8の間に、走査レンズ12の両端部の外形部を差し込むことにより仮置き状態となる。第1段階の仮置き状態では、図6(c)に示すように、走査レンズ12は、第3の仮受け部16−2、第1及び第2の斜面仮受け部15−7、15−8の3箇所で安定して支持される。両端部は面と面で接触しており、例えば接着剤を塗布する際等に、光軸方向に走査レンズ12に加わる外力を第1及び第2の斜面仮受け部15−7、15−8が受けることとなる。このため、本実施例では、仮置き状態において、走査レンズ12の位置がずれにくく、長尺方向仮位置決めをする凹凸部がはずれにくいという効果がある。   The scanning lens 12 is between the first support portion 15-1 and the first inclined surface temporary receiving portion 15-7, and between the second support portion 15-2 and the second inclined surface temporary receiving portion 15-8. In addition, by inserting the outer portions of both ends of the scanning lens 12, a temporary placement state is obtained. In the temporary placement state in the first stage, as shown in FIG. 6C, the scanning lens 12 includes the third temporary receiving portion 16-2, the first and second inclined surface temporary receiving portions 15-7, 15-. 8 is stably supported at three locations. Both end portions are in surface contact with each other. For example, when applying an adhesive, external force applied to the scanning lens 12 in the optical axis direction is applied to the first and second inclined surface temporary receiving portions 15-7 and 15-8. Will receive. For this reason, in this embodiment, there is an effect that the position of the scanning lens 12 is not easily displaced in the temporary placement state, and the concavo-convex portion for temporary positioning in the longitudinal direction is difficult to be removed.

以上、本実施例によれば、走査レンズの位置変動を低減し、画質の低下を低減することができる。   As described above, according to this embodiment, it is possible to reduce the position variation of the scanning lens and reduce the deterioration of the image quality.

12 走査レンズ
12−1 第1の平面
12−2 第2の平面
15−1 第1の支持部
15−2 第2の支持部
12 Scanning Lens 12-1 First Plane 12-2 Second Plane 15-1 First Support Unit 15-2 Second Support Unit

Claims (7)

光ビームを出射する光源と、
前記光源から出射された光ビームが感光体上を走査方向に走査するように前記光ビームを偏向する偏向器と、
前記偏向器により偏向された光ビームが入射し、入射した光ビームを前記感光体に導く走査レンズであって、前記光ビームの走査方向において前記入射した光ビームが出射する出射面側に凸型となる形状を備える走査レンズと、
前記光源、前記偏向器及び前記走査レンズを格納する筐体と、
を備える光走査装置であって、
前記走査レンズは、前記走査方向における一方の端部の前記出射面側に設けられた第1の接触部と、前記走査レンズの前記走査方向における他方の端部の前記出射面側に設けられた第2の接触部と、を備え、
前記筐体は、第1の基準部を有する第1の支持部及び第2の基準部を有する第2の支持部と、前記第1の支持部の前記第1の基準部に垂直に設けられた第1の仮受け部と、前記第2の支持部の前記第2の基準部に垂直に設けられた第2の仮受け部と、前記筐体の前記走査レンズの前記走査方向における中央部に対応する位置に設けられ、前記第1の仮受け部及び前記第2の仮受け部の高さに比べて高い第3の仮受け部と、を備え、
前記走査レンズは、前記第1の仮受け部、前記第2の仮受け部及び前記第3の仮受け部に仮受けされ、前記第1の接触部が前記第1の基準部に接触し、前記第2の接触部が前記第2の基準部に接触することによって、前記筐体に対して前記走査レンズの光軸方向の位置が決定されることを特徴とする光走査装置。
A light source that emits a light beam;
A deflector for deflecting the light beam so that the light beam emitted from the light source scans on a photosensitive member in a scanning direction;
A scanning lens that receives the light beam deflected by the deflector and guides the incident light beam to the photosensitive member, and is convex toward the exit surface from which the incident light beam exits in the scanning direction of the light beam; A scanning lens having a shape to be
A housing for storing the light source, the deflector, and the scanning lens;
An optical scanning device comprising:
The scanning lens is provided on a first contact portion provided on the emission surface side of one end portion in the scanning direction and on the emission surface side of the other end portion in the scanning direction of the scanning lens. A second contact portion,
The casing is provided perpendicular to the first support part having the first reference part, the second support part having the second reference part, and the first reference part of the first support part. A first provisional receiving portion; a second provisional receiving portion provided perpendicular to the second reference portion of the second support portion; and a central portion of the casing in the scanning direction of the scanning lens. And a third provisional receiving part that is higher than the height of the first provisional receiving part and the second provisional receiving part ,
The scanning lens is provisionally received by the first provisional receiving portion, the second provisional receiving portion, and the third provisional receiving portion, and the first contact portion is in contact with the first reference portion, The position of the scanning lens in the optical axis direction with respect to the housing is determined by contacting the second contact portion with the second reference portion.
前記走査レンズの光ビームの入射側の面を前記第1の支持部が設けられた側で支持する第1の仮受け面と、
前記走査レンズの光ビームの入射側の面を前記第2の支持部が設けられた側で支持する第2の仮受け面と、
を備え、
前記第1の仮受け面は、前記走査方向における前記第1の支持部が設けられた位置と異なる位置に設けられ、
前記第2の仮受け面は、前記走査方向における前記第2の支持部が設けられた位置と異なる位置に設けられることを特徴とする請求項に記載の光走査装置。
A first provisional receiving surface that supports a light beam incident surface of the scanning lens on a side where the first support portion is provided;
A second provisional receiving surface for supporting the light beam incident side surface of the scanning lens on the side where the second support portion is provided;
With
The first provisional receiving surface is provided at a position different from a position where the first support portion is provided in the scanning direction;
The optical scanning device according to claim 1 , wherein the second provisional receiving surface is provided at a position different from a position where the second support portion is provided in the scanning direction.
前記第1の基準部及び前記第2の基準部は、平面であることを特徴とする請求項1又は2に記載の光走査装置。 The first reference portion and the second reference portion includes an optical scanning device according to claim 1 or 2, characterized in that a plane. 前記第1の接触部及び前記第2の接触部は、平面であることを特徴とする請求項1乃至のいずれか1項に記載の光走査装置。 The first contact portion and the second contact portion includes an optical scanning apparatus according to any one of claims 1 to 3, characterized in that a plane. 前記一方の端部及び前記他方の端部は、前記走査方向において前記走査レンズの光ビーム通過領域の両端側であることを特徴とする請求項1乃至のいずれか1項に記載の光走査装置。 End of the one and the other end portion includes an optical scanning according to any one of claims 1 to 4, characterized in that in the scanning direction which is the opposite ends of the light beam passing area of the scanning lens apparatus. 前記走査レンズは、前記第1の支持部及び前記第2の支持部に、接着剤により接着されていることを特徴とする請求項1乃至のいずれか1項に記載の光走査装置。 It said scanning lens, the the first support portion and the second supporting portion, the optical scanning apparatus according to any one of claims 1 to 5, characterized in that it is bonded by an adhesive. 感光体上に形成した潜像を現像して画像形成を行う画像形成装置であって、
請求項1乃至のいずれか1項に記載の光走査装置を備え、
前記光走査装置により前記感光体上に潜像を形成することを特徴とする画像形成装置。
An image forming apparatus that forms an image by developing a latent image formed on a photoreceptor,
An optical scanning device according to any one of claims 1 to 6 , comprising:
An image forming apparatus, wherein a latent image is formed on the photosensitive member by the optical scanning device.
JP2012192101A 2012-08-31 2012-08-31 Optical scanning apparatus and image forming apparatus Active JP6061567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012192101A JP6061567B2 (en) 2012-08-31 2012-08-31 Optical scanning apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192101A JP6061567B2 (en) 2012-08-31 2012-08-31 Optical scanning apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2014048512A JP2014048512A (en) 2014-03-17
JP6061567B2 true JP6061567B2 (en) 2017-01-18

Family

ID=50608239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192101A Active JP6061567B2 (en) 2012-08-31 2012-08-31 Optical scanning apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6061567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206832A (en) * 2014-04-17 2015-11-19 キヤノン株式会社 Optical scanning device and image formation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536408U (en) * 1991-03-22 1993-05-18 株式会社光電子工業研究所 fθ lens holding structure
JPH10268221A (en) * 1997-03-28 1998-10-09 Ricoh Co Ltd Optical scanning device
JP2003279876A (en) * 2002-03-27 2003-10-02 Ricoh Co Ltd Light beam scanner and image forming apparatus
JP2005181501A (en) * 2003-12-17 2005-07-07 Kyocera Mita Corp Optical scanner
KR101239967B1 (en) * 2007-03-28 2013-03-06 삼성전자주식회사 Optical unit, image forming apparatus including the same and optical element thereof

Also Published As

Publication number Publication date
JP2014048512A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
US10274860B2 (en) Method for manufacturing light scanning apparatus, and image forming apparatus
US7697182B2 (en) Scanning optical apparatus and image forming apparatus wherein a route of the second laser beam reflected by the first rotating polygon mirror and a route of the third laser beam reflected by the second rotating polygon mirror cross each other in the optical box
US8754919B2 (en) Optical writing unit and image forming apparatus including same
JP2007156092A (en) Image forming apparatus and adjusting method for same
JP5218503B2 (en) Optical scanning apparatus and image forming apparatus
EP2602650B1 (en) Optical Scanning Device And Image Forming Apparatus Using Same
US7450142B2 (en) Scanning optical device with post-deflection diffraction element supported by an end-side swing member to suppress vibration
WO2007129771A1 (en) Optical scanning device
JP2008046548A (en) Scanning optical apparatus and image forming apparatus
JP6061567B2 (en) Optical scanning apparatus and image forming apparatus
JP2010008760A (en) Optical scanner and image-forming device
JP6029358B2 (en) Light beam emitting device and image forming apparatus
JP6184285B2 (en) Optical scanning device and image forming apparatus including the optical scanning device
JPH09230222A (en) Optical scanner
JP5721002B2 (en) Optical scanning apparatus, image forming apparatus, and optical element assembling method
JP4579260B2 (en) Optical scanning apparatus and image forming apparatus
JP2006337515A (en) Optical scanner and image forming apparatus
JP4732279B2 (en) Scanning optical apparatus and image forming apparatus
JP5924957B2 (en) Optical scanning apparatus and image forming apparatus
JP6752644B2 (en) Optical scanning device
JP5264337B2 (en) Optical scanning apparatus and image forming apparatus having the same
JP2020187323A (en) Image forming apparatus
JP5084488B2 (en) Optical scanning apparatus and image forming apparatus
JP2004101906A (en) Light scanning apparatus and image forming apparatus
JP2013231755A (en) Light source apparatus and optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150819

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R151 Written notification of patent or utility model registration

Ref document number: 6061567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151