JP6061321B2 - Plant activator - Google Patents

Plant activator Download PDF

Info

Publication number
JP6061321B2
JP6061321B2 JP2012036947A JP2012036947A JP6061321B2 JP 6061321 B2 JP6061321 B2 JP 6061321B2 JP 2012036947 A JP2012036947 A JP 2012036947A JP 2012036947 A JP2012036947 A JP 2012036947A JP 6061321 B2 JP6061321 B2 JP 6061321B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
straight
salt
alkanoyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012036947A
Other languages
Japanese (ja)
Other versions
JP2013082661A (en
Inventor
忠男 浅見
忠男 浅見
政志 彦坂
政志 彦坂
昌樹 森
昌樹 森
哲 前田
哲 前田
史生 松田
史生 松田
斉藤 和季
和季 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
University of Tokyo NUC
RIKEN Institute of Physical and Chemical Research
Original Assignee
National Agriculture and Food Research Organization
University of Tokyo NUC
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, University of Tokyo NUC, RIKEN Institute of Physical and Chemical Research filed Critical National Agriculture and Food Research Organization
Priority to JP2012036947A priority Critical patent/JP6061321B2/en
Publication of JP2013082661A publication Critical patent/JP2013082661A/en
Application granted granted Critical
Publication of JP6061321B2 publication Critical patent/JP6061321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、植物が持つ内在性の防御システムを活性化して病害を防除するプラントアクティベーターに関するものである。   The present invention relates to a plant activator that activates an endogenous defense system of a plant to control disease.

作物の病害は収量低下の大きな原因であり、この対策として殺菌剤などの農薬と病害抵抗性品種とを組み合わせた作物保護が広く行われているが、殺菌剤の使用により殺菌剤に対して植物病原菌が抵抗性を持つようになることが大きな問題となっている。この問題点の解決のために作用機作の異なる殺菌剤を複数組み合わせて使う方法が広く採用されているが、殺菌剤を中心に据えた現行の戦略は環境への影響が懸念されることから、環境に配慮した新しい病害防除法の開発が求められている。   Crops disease is a major cause of yield loss, and as a countermeasure against this, crop protection using a combination of agricultural chemicals such as fungicides and disease resistant varieties is widely carried out. A major problem is that pathogens become resistant. In order to solve this problem, a method using a combination of several fungicides with different mechanisms of action is widely adopted, but the current strategy centered on fungicides is concerned about the impact on the environment. Therefore, the development of new disease control methods with consideration for the environment is required.

このような状況下にあって、植物が持つ内在性の防御システムを活性化して病害を防除するプラントアクティベーター(植物活力剤や病害抵抗性誘導物質とも呼ばれる)が注目されている。プラントアクティベーターは植物病原菌に対して耐性を形成する問題がなく、生態系自体への直接の影響が少ないことから、環境に対する負荷を大幅に軽減する作物保護手段となるものと期待されている。   Under such circumstances, a plant activator (also called a plant vital agent or a disease resistance inducer) that activates an endogenous defense system of a plant to control a disease has attracted attention. The plant activator has no problem of forming resistance against phytopathogenic fungi and has little direct impact on the ecosystem itself. Therefore, the plant activator is expected to serve as a crop protection means that greatly reduces the burden on the environment.

植物は病原菌の侵入を察知すると感染部位周囲の細胞を自発的に死に至らしめる過敏感細胞死とよばれる防御機構を発動させ、特徴的な壊死病斑を形成することで感染拡大を阻止する。過敏感細胞死の成立過程の解明は植物の病害抵抗反応活性化メカニズムの理解につながると期待されているが、その詳細は未だ明らかではない。   When a plant detects the invasion of a pathogen, it activates a defense mechanism called hypersensitive cell death that spontaneously kills cells around the site of infection, and prevents the spread of infection by forming a characteristic necrotic lesion. Elucidation of the formation process of hypersensitive cell death is expected to lead to an understanding of plant disease resistance reaction activation mechanism, but the details are not yet clear.

最近、イネの物質生合成に関与する遺伝子としてアシル転移酵素(OsAT1)が同定されており(Plant Mol. Biol., 63, pp.847-860, 2007)、OsAT1の高発現株では全身獲得抵抗マーカー遺伝子PBZ1、PR1の発現誘導、イネファイトアレキシンの蓄積、およびいもち病に対する抵抗性の向上が起きることが報告されている(日本農薬学会第33回大会、松田ら、演題番号:C312、2008年4月1日)。OsAT1が触媒する反応の生成物が一連の病害抵抗反応の誘導のトリガーになっているものと推測されることから、松田らはOsAT1過剰発現時に含量が常に増加する6成分を見いだし、MS/MS解析からそのうちの1つ(UK1)について含アミノ化合物とヒドロキシラウリン酸とのアミド化合物であると推測できることを報告している。しかしながら、この物質の化学構造は完全には特定されていない。   Recently, acyltransferase (OsAT1) has been identified as a gene involved in the biosynthesis of rice (Plant Mol. Biol., 63, pp.847-860, 2007). Induction of marker gene PBZ1, PR1 expression, accumulation of rice phytoalexin, and improved resistance to blast have been reported (The 33rd Annual Meeting of the Japanese Pesticide Society, Matsuda et al., Title: C312, 2008) April 1 of the year). Since it is speculated that the product of the reaction catalyzed by OsAT1 triggers the induction of a series of disease resistance reactions, Matsuda et al. Found six components whose content always increases when OsAT1 is overexpressed, and MS / MS From the analysis, one of them (UK1) is reported to be an amide compound of amino-containing compound and hydroxylauric acid. However, the chemical structure of this material has not been fully specified.

一方、スペルミジンは代表的なポリアミンのひとつであり、過酸化水素の産生を介してHR(Hypersensitive Response)などの細胞死誘導に関与していることが知られている(Plant Mol. Biol., 70(1-2), pp.896-876, 2003; Plant Physiol. 132(4), pp.1973-1981, 2009) また、HR にとって重要なシグナルである過酸化水素などの活性酸素種や一酸化窒素はその他の病害抵抗反応においても重要なシグナルであることから、HR以外の病害抵抗性にも関与している可能性があるものと考えられる。   On the other hand, spermidine is one of representative polyamines, and is known to be involved in cell death induction such as HR (Hypersensitive Response) through the production of hydrogen peroxide (Plant Mol. Biol., 70 (1-2), pp. 896-876, 2003; Plant Physiol. 132 (4), pp. 1973-1981, 2009) Also, reactive oxygen species such as hydrogen peroxide and monoxide, which are important signals for HR Since nitrogen is an important signal in other disease resistance reactions, it may be involved in disease resistance other than HR.

従来、スペルミジンの誘導体の植物に対する作用については4N-ヘキサノイルスペルミジンがエンドウの老化に伴って植物体に蓄積すること(Plant Physiol. 10(4):1177-86, 1996) が知られているが、スペルミジン誘導体が植物病害に対する抵抗性を誘導することについては報告がない。また、スペルミジンの桂皮酸誘導体がいくつか知られており、シロイヌナズナ中に存在する病害誘導性のヒドロキシ桂皮酸誘導体(The Plant Cell, 21, pp.318-333, 2009)、殺虫性などを有するヒドロキシ桂皮酸誘導体(Phytochemistry, 63, pp.315-334, 2003)、及びポリアミン誘導体(Nat. Prod. Rep., 22, pp.647-658, 2005)が報告されているが、これらのスペルミジン桂皮酸誘導体について植物病害に対する抵抗性誘導作用は報告されていない。   Conventionally, it has been known that 4N-hexanoylspermidine accumulates in plants as peas age (Plant Physiol. 10 (4): 1177-86, 1996). There is no report that spermidine derivatives induce resistance to plant diseases. In addition, several cinnamic acid derivatives of spermidine are known. Disease-inducing hydroxycinnamic acid derivatives existing in Arabidopsis (The Plant Cell, 21, pp.318-333, 2009), and insecticidal hydroxy derivatives. Cinnamic acid derivatives (Phytochemistry, 63, pp.315-334, 2003) and polyamine derivatives (Nat. Prod. Rep., 22, pp.647-658, 2005) have been reported. There has been no report on the resistance-inducing action of plant derivatives against plant diseases.

Plant Mol. Biol., 63, pp.847-860, 2007Plant Mol. Biol., 63, pp.847-860, 2007 日本農薬学会第33回大会、演題番号:C312、2008年4月1日)(The 33rd Annual Meeting of the Japanese Pesticide Science Society, presentation number: C312, April 1, 2008) Plant Mol. Biol., 70(1-2), pp.896-876, 2003Plant Mol. Biol., 70 (1-2), pp.896-876, 2003 Plant Physiol. 132(4), pp.1973-1981, 2009Plant Physiol. 132 (4), pp.1973-1981, 2009 Plant Physiol. 10(4):1177-86, 1996Plant Physiol. 10 (4): 1177-86, 1996 The Plant Cell, 21, pp.318-333, 2009The Plant Cell, 21, pp.318-333, 2009 Phytochemistry, 63, pp.315-334, 2003Phytochemistry, 63, pp.315-334, 2003 Nat. Prod. Rep., 22, pp.647-658, 2005Nat. Prod. Rep., 22, pp.647-658, 2005

本発明の課題は、植物が持つ内在性の防御システムを活性化して病害を防除するプラントアクティベーターとして有用な化合物を提供することにある。   The subject of this invention is providing the compound useful as a plant activator which activates the endogenous defense system which a plant has, and controls disease.

本発明者らは上記の課題を解決すべく鋭意研究を行った結果、アシル化スペルミジン誘導体がイネに対して病害抵抗性反応を惹起することができ、プラントアクティベーターとして利用できることを見出した。また、アシル基として直鎖アルカノイル基で置換されたスペルミジンがプラントアクティベーターとして強い作用を有していること、及び直鎖アルカノイル基に水酸基を導入した化合物がさらに強い作用を有していることを見出した。本発明は上記の知見を基にして完成されたものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that acylated spermidine derivatives can induce disease-resistant reaction against rice and can be used as plant activators. In addition, it has been found that spermidine substituted with a linear alkanoyl group as an acyl group has a strong action as a plant activator, and that a compound having a hydroxyl group introduced into a linear alkanoyl group has a stronger action. It was. The present invention has been completed based on the above findings.

すなわち、本発明により下記の一般式(I):
(R3)NH-(CH2)4-N(R1)-(CH2)3-NH(R2)
(式中、R1及びR2のいずれか一方は炭素原子数6個から18個の直鎖アルカノイル基又は直鎖アルケノイル基(該直鎖アルカノイル基又は該直鎖アルケノイル基は1から3個の水酸基及び/又は炭素原子数1個から4個のアルキル基を1から3個有していてもよい)であり、他方は水素原子又はアミノ基の保護基を示し;R3は水素原子又はアミノ基の保護基を示す)で表される化合物又はその塩が提供される。
That is, according to the present invention, the following general formula (I):
(R 3 ) NH- (CH 2 ) 4 -N (R 1 )-(CH 2 ) 3 -NH (R 2 )
(In the formula, any one of R 1 and R 2 is a straight chain alkanoyl group or straight chain alkenoyl group having 6 to 18 carbon atoms (the straight chain alkanoyl group or straight chain alkenoyl group is 1 to 3 carbon atoms) A hydroxyl group and / or an alkyl group having 1 to 4 carbon atoms (which may have 1 to 3 carbon atoms), the other represents a protecting group for a hydrogen atom or an amino group; R 3 represents a hydrogen atom or an amino group Or a salt thereof is provided.

上記発明の好ましい態様によれば、R1及びR2のいずれか一方が炭素原子数8個から13個の直鎖アルカノイル基又は直鎖アルケノイル基(該直鎖アルカノイル基又は該直鎖アルケノイル基は1から3個の水酸基を有していてもよい)であり、他方が水素原子又はアミノ基の保護基であり、R3が水素原子又はアミノ基の保護基である上記の化合物又はその塩;R1及びR2のいずれか一方が炭素原子数8個から13個の直鎖アルカノイル基(該直鎖アルカノイル基は1から3個の水酸基を有していてもよい)であり、他方が水素原子又はアミノ基の保護基であり、R3が水素原子又はアミノ基の保護基である上記の化合物又はその塩;該直鎖アルカノイル基が、炭素原子数が9から12個の直鎖アルカノイル基(該直鎖アルカノイル基は1から2個の水酸基を有していてもよい)である上記の化合物又はその塩;該直鎖アルカノイル基が、炭素原子数が9から12個の直鎖アルカノイル基(該直鎖アルカノイル基は1個の水酸基を有する)である上記の化合物又はその塩;及び該直鎖アルカノイル基が、炭素原子数が9から12個の直鎖アルカノイル基(該直鎖アルカノイル基は末端に1個の水酸基を有する)である上記の化合物又はその塩が提供される。アミノ基の保護基としては、例えば炭素原子数2から6個の直鎖又は分枝鎖アルカノイル基又は炭素原子数2から6個の直鎖又は分枝鎖アルコキシカルボニル基などが好ましい。 According to a preferred embodiment of the above invention, either one of R 1 and R 2 is a straight chain alkanoyl group or straight chain alkenoyl group having 8 to 13 carbon atoms (the straight chain alkanoyl group or straight chain alkenoyl group is 1 to 3 hydroxyl groups), the other is a hydrogen atom or an amino group protecting group, and R 3 is a hydrogen atom or an amino group protecting group, or a salt thereof; One of R 1 and R 2 is a straight chain alkanoyl group having 8 to 13 carbon atoms (the straight chain alkanoyl group may have 1 to 3 hydroxyl groups), and the other is hydrogen The above compound or a salt thereof, which is an atom or amino protecting group and R 3 is a hydrogen atom or amino protecting group; the linear alkanoyl group is a linear alkanoyl group having 9 to 12 carbon atoms (The linear alkanoyl group may have 1 to 2 hydroxyl groups) Or a salt thereof; wherein the linear alkanoyl group is a linear alkanoyl group having 9 to 12 carbon atoms (the linear alkanoyl group has one hydroxyl group); And the above-mentioned compound or a salt thereof, wherein the straight-chain alkanoyl group is a straight-chain alkanoyl group having 9 to 12 carbon atoms (the straight-chain alkanoyl group has one hydroxyl group at the end); . As the amino-protecting group, for example, a linear or branched alkanoyl group having 2 to 6 carbon atoms or a linear or branched alkoxycarbonyl group having 2 to 6 carbon atoms is preferable.

別の観点からは、本発明により上記の一般式(I)で表される化合物又はその塩を有効成分として含むプラントアクティベーターが提供される。好ましい態様によれば、植物における病害の防除のために用いる上記のプラントアクティベーターが提供される。また、上記の一般式(I)で表される化合物又はその塩を有効成分として含む植物内在性防御システムの活性化剤;上記の一般式(I)で表される化合物又はその塩を有効成分として含む植物の病害抵抗性の誘導剤;上記の一般式(I)で表される化合物又はその塩を有効成分として含む植物過敏感細胞死の活性化剤;上記の一般式(I)で表される化合物又はその塩を有効成分として含む植物体内におけるファイトアレキシン産生の亢進剤;及び上記の一般式(I)で表される化合物又はその塩を有効成分として含む植物体内における病害抵抗性遺伝子の発現促進剤が提供される。上記の一般式(I)で表される化合物又はその塩とともにポリアミンオキシゲナーゼ(PAO)阻害剤を組み合わせて用いることにより病害抵抗性遺伝子の発現促進をさらに高めることができる。   From another aspect, the present invention provides a plant activator comprising the compound represented by the above general formula (I) or a salt thereof as an active ingredient. According to a preferred embodiment, the above-mentioned plant activator used for controlling diseases in plants is provided. Further, an activator of a plant endogenous defense system comprising the compound represented by the above general formula (I) or a salt thereof as an active ingredient; the compound represented by the above general formula (I) or a salt thereof as an active ingredient A plant disease resistance inducer comprising: a compound represented by the above general formula (I) or a salt thereof as an active ingredient an activator of plant hypersensitive cell death; represented by the above general formula (I) A phytoalexin production enhancer in a plant containing the compound or salt thereof as an active ingredient; and a disease resistance gene in the plant containing the compound represented by the above general formula (I) or a salt thereof as an active ingredient Is provided. By using a compound represented by the above general formula (I) or a salt thereof in combination with a polyamine oxygenase (PAO) inhibitor, the promotion of the expression of a disease resistance gene can be further enhanced.

さらに別の観点からは、本発明により、植物における病害の防除方法であって、上記の一般式(I)で表される化合物又はその塩を防除有効量を植物に施用する工程を含む方法;植物の内在性防御システムの活性化方法であって、上記の一般式(I)で表される化合物又はその塩を防除有効量を植物に施用する工程を含む方法;植物の病害抵抗性を誘導する方法であって、上記の一般式(I)で表される化合物又はその塩を防除有効量を植物に施用する工程を含む方法;植物において病原菌の侵入後の過敏感細胞死を活性化させる方法であって、上記の一般式(I)で表される化合物又はその塩を防除有効量を植物に施用する工程を含む方法;植物中での病害抵抗反応において産生されるファイトアレキシンの産生量を増加させる方法であって、上記の一般式(I)で表される化合物又はその塩を防除有効量を植物に施用する工程を含む方法;植物において病害抵抗性遺伝子の発現を促進する方法であって、上記の一般式(I)で表される化合物又はその塩を防除有効量を植物に施用する工程を含む方法;及び植物において病害抵抗性遺伝子の発現を促進する方法であって、上記の一般式(I)で表される化合物又はその塩とともにポリアミンオキシゲナーゼ(PAO)阻害剤を植物に施用する工程を含む方法が提供される。   From another aspect, according to the present invention, there is provided a method for controlling a disease in a plant, which comprises a step of applying to the plant an effective amount of the compound represented by the general formula (I) or a salt thereof; A method for activating an endogenous defense system of a plant, comprising a step of applying to the plant an effective amount of the compound represented by the above general formula (I) or a salt thereof; A method comprising the step of applying an effective amount of the compound represented by the above general formula (I) or a salt thereof to a plant; activating hypersensitive cell death after invasion of pathogenic bacteria in the plant A method comprising the step of applying to a plant an effective amount of the compound represented by the above general formula (I) or a salt thereof; production of phytoalexin produced in a disease resistance reaction in the plant A method for increasing the amount, wherein the above general formula ( A method comprising a step of applying an effective amount of a compound represented by I) or a salt thereof to a plant; a method for promoting the expression of a disease resistance gene in a plant, which is represented by the above general formula (I) A method comprising applying an effective amount of a compound or a salt thereof to a plant; and a method for promoting the expression of a disease resistance gene in a plant, comprising the compound represented by the above general formula (I) or a compound thereof A method is provided comprising the step of applying a polyamine oxygenase (PAO) inhibitor with a salt to a plant.

上記の一般式(I)で表される化合物又はその塩は植物が持つ内在性の防御システムを活性化する作用を有しており、プラントアクティベーターとして、例えば植物の病害抵抗性を誘導し、植物の病害を防除するために用いることができる。上記の一般式(I)で表される化合物のうち、例えばR1として末端に1個の水酸基を有するラウロイル基を有する化合物は植物生体内において存在が確認されていることから、上記の一般式(I)で表される化合物又はその塩を有効成分として含むプラントアクティベーターは、生態系への影響を最小限にとどめることができ、環境に対する負荷を軽減した作物保護手段として有用である。 The compound represented by the above general formula (I) or a salt thereof has an action of activating the endogenous defense system of the plant, and as a plant activator, for example, induces disease resistance of the plant, It can be used to control diseases. Among the compounds represented by the above general formula (I), for example, a compound having a lauroyl group having one hydroxyl group at the terminal as R 1 has been confirmed to exist in a plant body. The plant activator containing the compound represented by (I) or a salt thereof as an active ingredient can minimize the influence on the ecosystem and is useful as a crop protection means that reduces the burden on the environment.

スペルミジン誘導体を適用した後に観察された細胞死スポットの様子を示した図である。It is the figure which showed the mode of the cell death spot observed after applying a spermidine derivative. スペルミジン誘導体を適用した後に引き起こされた細胞死の強度を示した図である。It is the figure which showed the intensity | strength of the cell death caused after applying a spermidine derivative. スペルミジン又はスペルミジン誘導体(Lau)の水溶液で72時間処理した後のリーフディスクの様子を示した図である。It is the figure which showed the mode of the leaf disk after processing for 72 hours with the aqueous solution of spermidine or a spermidine derivative (Lau). スペルミジン又はスペルミジン誘導体(Lau)の水溶液で72時間処理した後のファイトアレキシン産生量を示した図である。右図は左図の部分拡大図である。It is the figure which showed the phytoalexin production amount after treating for 72 hours with the aqueous solution of spermidine or a spermidine derivative (Lau). The right figure is a partially enlarged view of the left figure. スペルミジン誘導体で処理したイネ葉身における抵抗性遺伝子発現量を示した図である。It is the figure which showed the resistance gene expression level in the rice leaf blade processed with the spermidine derivative. YIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)で処理したイネ葉身における抵抗性遺伝子発現量を示した図である。mockは被験化合物を含まない溶液で処理した結果を示す。It is the figure which showed the resistance gene expression level in the rice leaf blade processed by YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau). mock indicates the result of treatment with a solution containing no test compound. 5葉期のイネにYIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)を噴霧処理した後にいもち病菌を接種して感染させ、接種後6日の病斑数を測定した結果を示した図である。mockは被験化合物を含まない溶液を噴霧処理した結果を示す。図中、**及び***はそれぞれ1%および0.1%水準で有意差があることを示す。It is the figure which showed the result of having measured the number of lesion spots on the 6th day after inoculation after inoculating and infecting blast fungus after spraying YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) to rice at the 5th leaf stage. mock shows the result of spraying a solution containing no test compound. In the figure, ** and *** indicate significant differences at the 1% and 0.1% levels, respectively. 5葉期のイネにYIS12OH1N又はYIS12OH4Nを噴霧処理した後にいもち病菌を接種して感染させ、接種後6日の様子を観察した結果を示した図である。It is the figure which showed the result of having inoculated and infected the blast fungus after spraying YIS12OH1N or YIS12OH4N to the rice of the 5th leaf stage, and observing the state 6 days after inoculation. 5葉期のイネにYIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)を噴霧処理した後にいもち病菌を接種して感染させ、接種後6日の病斑数を測定した結果を示した図である。mockは被験化合物を含まない溶液を噴霧処理した結果を示す。It is the figure which showed the result of having measured the number of lesion spots on the 6th day after inoculation after inoculating and infecting blast fungus after spraying YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) to rice at the 5th leaf stage. mock shows the result of spraying a solution containing no test compound. いもち菌に対してYIS12OH1N又はYIS12OH4Nの抗菌作用を阻止円の形成の有無により判定した結果を示した図である。It is the figure which showed the result of having determined the antibacterial effect of YIS12OH1N or YIS12OH4N with respect to the blast fungus by the presence or absence of formation of a prevention circle. OsAT1を過剰発現しているイネ中に存在する天然型のYIS12OH4Nを合成標品を用いて同定した結果を示した図である。It is the figure which showed the result of having identified the natural type YIS12OH4N which exists in the rice which overexpresses OsAT1 using the synthetic sample. ラウロイル基に水酸基を導入した化合物を適用した後に引き起こされた細胞死の強度を示した図である。図中、HydLau:YIS12OH4N、1NHydLau:YIS12OH1Nを示す。It is the figure which showed the intensity | strength of the cell death caused after applying the compound which introduce | transduced the hydroxyl group into the lauroyl group. In the figure, HydLau: YIS12OH4N, 1NHydLau: YIS12OH1N are shown. ウロイル基に水酸基を導入した化合物を適用した後に観察された細胞死スポットの様子を示した図である。(A)はHydLau:YIS12OH4N、(B)は1NHydLau:YIS12OH1Nの結果を示す。It is the figure which showed the mode of the cell death spot observed after applying the compound which introduce | transduced the hydroxyl group into the uroyl group. (A) shows the results for HydLau: YIS12OH4N, and (B) shows the results for 1NHydLau: YIS12OH1N. YIS12OH4N(HydLau)(3 mM)による抵抗性遺伝子誘導作用をポリアミンオキシゲナーゼ阻害剤であるグアザチンの存在下で調べた結果を示した図である。図中、mockは被験化合物を含まない溶液で処理した結果を示し、ABAはアブシジン酸を示す。ABAは全身獲得抵抗性による病害抵抗性に対して阻害効果を示すことが報告されているが、本発明の化合物が引き起こす病害抵抗性に対しても阻害効果を示した。It is the figure which showed the result of having investigated the resistance gene induction effect by YIS12OH4N (HydLau) (3 mM) in presence of the polyamine oxygenase inhibitor guazatine. In the figure, mock indicates the result of treatment with a solution containing no test compound, and ABA indicates abscisic acid. Although ABA has been reported to show an inhibitory effect on disease resistance due to resistance to systemic acquisition, it has also shown an inhibitory effect on disease resistance caused by the compounds of the present invention. シロイヌナズナに対してスペルミジン誘導体を適用した後に引き起こされた細胞死の強度を示した図である。3dは3日後、7dは7日後の結果を示す。It is the figure which showed the intensity | strength of the cell death caused after applying a spermidine derivative with respect to Arabidopsis thaliana. 3d shows the result after 3 days and 7d shows the result after 7 days. シロイヌナズナに対してYIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)によるPR1遺伝子発現作用を検討した結果を示した図である。左図は24時間後、右図は72時間後の結果を示す。It is the figure which showed the result of having examined the PR1 gene expression effect by YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) with respect to Arabidopsis thaliana. The left figure shows the result after 24 hours and the right figure shows the result after 72 hours.

一般式(I)において、R1及びR2のいずれか一方は炭素原子数6個から18個の直鎖アルカノイル基又は炭素原子数6個から18個の直鎖アルケノイル基(炭素原子数はカルボニル炭素原子を含む)を示し、他方は水素原子又はアミノ基の保護基を示す。R3は水素原子又はアミノ基の保護基を示す。R1及びR2のいずれか一方が示す該直鎖アルカノイル基又は該直鎖アルケノイル基は1から3個の水酸基及び/又は炭素原子数1個から4個のアルキル基を1から3個有していてもよい。該アルケノイル基に含まれる二重結合の数は例えば1〜3個程度であり、好ましくは2個、さらに好ましくは1個である。該直鎖アルカノイル基又は該直鎖アルケノイル基上に存在可能な炭素原子数1から4個のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、シクロプロピル基、又はシクロブチル基などが挙げられる。 In general formula (I), one of R 1 and R 2 is a straight chain alkanoyl group having 6 to 18 carbon atoms or a straight chain alkenoyl group having 6 to 18 carbon atoms (the number of carbon atoms is carbonyl). The other is a hydrogen atom or an amino-protecting group. R 3 represents a hydrogen atom or an amino-protecting group. The straight-chain alkanoyl group or the straight-chain alkenoyl group represented by any one of R 1 and R 2 has 1 to 3 hydroxyl groups and / or 1 to 3 alkyl groups having 1 to 4 carbon atoms It may be. The number of double bonds contained in the alkenoyl group is, for example, about 1 to 3, preferably 2, and more preferably 1. Examples of the linear alkanoyl group or the alkyl group having 1 to 4 carbon atoms that can exist on the linear alkenoyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, sec -A butyl group, an isobutyl group, a cyclopropyl group, a cyclobutyl group, etc. are mentioned.

R1及びR2のいずれか一方は好ましくは炭素原子数が8から13個の直鎖アルカノイル基又は直鎖アルケノイル基を示し、他方は水素原子又はアミノ基の保護基を示す。この場合においてR3が水素原子又はアミノ基の保護基のいずれかであることが好ましい。直鎖アルカノイル基又は直鎖アルケノイル基としては、炭素原子数が9から12個の直鎖アルカノイル基又は直鎖アルケノイル基が好ましい。直鎖アルカノイル基又は直鎖アルケノイル基が水酸基を有する場合には、水酸基の個数は1〜3個であり、好ましくは1又は2個、さらに好ましくは1個の水酸基を有することができる。直鎖アルカノイル基又は直鎖アルケノイル基として好ましくは末端に1個の水酸基を有する炭素原子数が9から12個の直鎖アルカノイル基又は直鎖アルケノイル基を用いることができる。より好ましくはR1及びR2のいずれか一方が素原子数が9から12個の直鎖アルカノイル基の場合であり、該直鎖アルカノイル基上には1個の水酸基が置換していてもよい。特に好ましくはR1又はR2が示す直鎖アルカノイル基が末端に1個の水酸基を有する場合であり、最も好ましいのは炭素原子数が11個又は12個の直鎖アルカノイル基が末端に1個の水酸基を有する場合である。 One of R 1 and R 2 is preferably a straight chain alkanoyl group or straight chain alkenoyl group having 8 to 13 carbon atoms, and the other is a hydrogen atom or a protective group for an amino group. In this case, it is preferable that R 3 is either a hydrogen atom or an amino-protecting group. The linear alkanoyl group or linear alkenoyl group is preferably a linear alkanoyl group or linear alkenoyl group having 9 to 12 carbon atoms. When the straight-chain alkanoyl group or straight-chain alkenoyl group has a hydroxyl group, the number of hydroxyl groups is 1 to 3, preferably 1 or 2, and more preferably 1 hydroxyl group. As the straight-chain alkanoyl group or straight-chain alkenoyl group, preferably a straight-chain alkanoyl group or straight-chain alkenoyl group having 9 to 12 carbon atoms having one hydroxyl group at the terminal can be used. More preferably, one of R 1 and R 2 is a linear alkanoyl group having 9 to 12 elementary atoms, and one hydroxyl group may be substituted on the linear alkanoyl group . Particularly preferred is a case where the straight-chain alkanoyl group represented by R 1 or R 2 has one hydroxyl group at the end, and most preferred is a straight-chain alkanoyl group having 11 or 12 carbon atoms at the end. This is the case of having a hydroxyl group.

アミノ基の保護基の種類は特に限定されず、適宜の保護基を選択して使用することができる。例えば、アセチル基などの炭素原子数2から6個の直鎖又は分枝鎖アルカノイル基、tert-ブトキシカルボニル基や2,2,2-トリクロロエトキシカルボニル基などの炭素原子数2から6個の直鎖又は分枝鎖アルコキシカルボニル基、ベンジルオキシカルボニル基などのアラルキルオキシカルボニル基、ベンジル基やp-メトキシベンジル基などのアラルキル基、9-フルオレニルメチルオキシカルボニル基、又はアリルオキシカルボニル基など、アミノ基の保護基として当業界で周知のものを好適に使用することができるが、これらに限定されることはない。アミノ基の保護基については、例えば、Greenら、Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc.などの成書を参照することができる。特に好ましい保護基はtert-ブトキシカルボニル(Boc)基である。一般式(I)で表される化合物に複数のアミノ基の保護基が存在する場合には、それらは同一でも異なっていてもよいが、複数のアミノ基の保護基が同一の保護基であることが好ましい。   The kind of the protecting group for the amino group is not particularly limited, and an appropriate protecting group can be selected and used. For example, a straight or branched alkanoyl group having 2 to 6 carbon atoms such as an acetyl group, a straight chain having 2 to 6 carbon atoms such as a tert-butoxycarbonyl group or a 2,2,2-trichloroethoxycarbonyl group. Chain or branched alkoxycarbonyl groups, aralkyloxycarbonyl groups such as benzyloxycarbonyl groups, aralkyl groups such as benzyl groups and p-methoxybenzyl groups, 9-fluorenylmethyloxycarbonyl groups, or allyloxycarbonyl groups, etc. As amino-protecting groups, those well known in the art can be preferably used, but are not limited thereto. For the amino-protecting group, reference can be made to, for example, Green et al., Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc. A particularly preferred protecting group is the tert-butoxycarbonyl (Boc) group. When a plurality of amino protecting groups are present in the compound represented by the general formula (I), they may be the same or different, but the plurality of amino protecting groups are the same protecting group. It is preferable.

上記一般式(I)で表される化合物においてR1又はR2が末端以外に水酸基を有する直鎖アルカノイル基又は直鎖アルケノイル基である場合には、上記一般式(I)で表される化合物は1個以上の不斉炭素を有するが、1個又は2個以上の不斉炭素に基づく純粋な形態の光学活性体又はジアステレオ異性体のほか、任意の異性体混合物(例えば、2種以上のジアステレオ異性体の混合物)又はラセミ体などはいずれも本発明の範囲に包含される。また、R1又はR2が直鎖アルケノイル基である場合にはE又はZの幾何異性体が存在するが、純粋な形態の幾何異性体のほかこれらの混合物も本発明の範囲に包含される。 In the compound represented by the general formula (I), when R 1 or R 2 is a linear alkanoyl group or a linear alkenoyl group having a hydroxyl group other than the terminal, the compound represented by the general formula (I) Has one or more asymmetric carbons, but is in a pure form of an optically active or diastereoisomer based on one or more asymmetric carbons, as well as any mixture of isomers (eg, two or more Any mixture of diastereoisomers) or racemates is included within the scope of the present invention. In addition, when R 1 or R 2 is a straight-chain alkenoyl group, E or Z geometric isomers are present, but pure forms of geometric isomers and mixtures thereof are also included in the scope of the present invention. .

上記一般式(I)で表される化合物は酸付加塩を形成することができる。塩の種類は特に限定されず、塩酸、硫酸などの鉱酸類との塩、p-トルエンスルホン酸、メタンスルホン酸、酒石酸などの有機酸類との塩などのほか、グリシンなどのアミノ酸との塩を挙げることができる。さらに、上記式(I)で表される化合物又はその塩は水和物又は溶媒和物として存在することもあるが、これらの物質も本発明の範囲に包含される。   The compound represented by the general formula (I) can form an acid addition salt. There are no particular restrictions on the type of salt, such as salts with mineral acids such as hydrochloric acid and sulfuric acid, salts with organic acids such as p-toluenesulfonic acid, methanesulfonic acid, and tartaric acid, and salts with amino acids such as glycine. Can be mentioned. Furthermore, the compound represented by the above formula (I) or a salt thereof may exist as a hydrate or a solvate, and these substances are also included in the scope of the present invention.

上記一般式(I)で表される化合物は、スペルミジンにおいてアシル化すべきアミノ基以外のアミノ基をtert-ブトキシカルボニル基(Boc基)などのアミノ基の保護基で適宜保護した後、導入するアシル基に対応するカルボン酸の酸ハライドなどを用いて未保護のアミノ基をアシル化することにより製造することができ、必要に応じてアミノ基の保護基を適宜の条件で脱保護することにより保護基を有しない化合物を収率よく得ることができる。水酸基を有するアルカノイル基又はアルケノイル基を導入する場合には水酸基を適宜保護しておいてもよい。水酸基の保護基の種類、保護基の導入条件、及び保護基の脱離条件は、例えばGreenら、Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc.などの成書を参照することにより適宜選択することができる。   In the compound represented by the general formula (I), an amino group other than the amino group to be acylated in spermidine is appropriately protected with an amino-protecting group such as a tert-butoxycarbonyl group (Boc group), and then introduced into the acyl group. It can be produced by acylating an unprotected amino group using an acid halide of a carboxylic acid corresponding to the group, and protected by deprotecting the protecting group of the amino group under appropriate conditions as necessary. A compound having no group can be obtained with high yield. In the case of introducing an alkanoyl group or alkenoyl group having a hydroxyl group, the hydroxyl group may be appropriately protected. For the types of protecting groups for hydroxyl groups, the conditions for introducing protecting groups, and the conditions for removing protecting groups, see, for example, Green et al., Protective Groups in Organic Synthesis, 3rd Edition, 1999, John Wiley & Sons, Inc. This can be selected as appropriate.

上記一般式(I)で表される化合物又はその塩は、植物が持つ内在性の防御システムを活性化する作用を有しており、植物の病害に対する抵抗性を高めることができる。例えば、上記一般式(I)で表される化合物又はその塩は、植物において病原菌の侵入後に感染部位周囲の細胞を自発的に死に至らしめる過敏感細胞死を活性化させ、感染防御システムを活性化させることができる。また、植物中で生じる病害抵抗反応において産生されるファイトアレキシン(例えばファイトカサンA〜EやモミラクトンA及びBなど)の産生量を増加させることもでき、植物体内において病害抵抗性に関与する遺伝子の発現を活性化することもできる。病害抵抗性遺伝子としては、例えばOsPR1b(Biochem. Biophys. Res. Commun., 278, pp.290-298, 2000)、PBZ1(Plant Cell Physiol., 37, pp.9-18, 1996)、WRKY45(Plant Cell, 19, pp.2064-2076, 2007)、OsNPR1(Mol. Plant-Microbe Interact., 18, pp.511-520, 2005)などが挙げられる。また、Mol. Geneti. Genomics 279(4), pp.415-427, 2008; Biosci. Biotechnol. Biochem., 65(1), pp.205-208, 2001も参照することができる。   The compound represented by the above general formula (I) or a salt thereof has an action of activating an endogenous defense system of a plant, and can increase resistance to plant diseases. For example, the compound represented by the above general formula (I) or a salt thereof activates a hypersensitive cell death that spontaneously causes death of cells around the infected site after invasion of pathogenic bacteria in a plant, and activates an infection protection system. It can be made. It is also possible to increase the production of phytoalexins (for example, phytocasans A to E and momilactone A and B) produced in disease resistance reactions that occur in plants, and genes involved in disease resistance in plants Can also be activated. Examples of the disease resistance gene include OsPR1b (Biochem. Biophys. Res. Commun., 278, pp. 290-298, 2000), PBZ1 (Plant Cell Physiol., 37, pp. 9-18, 1996), WRKY45 ( Plant Cell, 19, pp. 2064-2076, 2007), OsNPR1 (Mol. Plant-Microbe Interact., 18, pp. 511-520, 2005). Reference can also be made to Mol. Geneti. Genomics 279 (4), pp. 415-427, 2008; Biosci. Biotechnol. Biochem., 65 (1), pp. 205-208, 2001.

上記の作用に基づいて、上記一般式(I)で表される化合物又はその塩をプラントアクティベーターとして使用することができる。植物の病害の種類は特に限定されないが、例えばカビ類、ウイルス類、又は細菌などによる感染症、好ましくはカビ類による感染症により惹起される病害を防除の対象とすることができるが、この特定の病害に限定されるわけではない。   Based on the above action, the compound represented by the above general formula (I) or a salt thereof can be used as a plant activator. The type of plant disease is not particularly limited. For example, it is possible to control diseases caused by fungi, viruses, bacteria, etc., preferably diseases caused by fungi. It is not limited to the disease.

本発明のプラントアクティベーターは、例えば、当業界で周知の製剤用添加物を用いて、農薬用組成物として調製することができる。農薬用組成物の形態は特に限定されず、当業界で利用可能な形態であればいかなる形態を採用してもよい。例えば、乳剤、液剤、油剤、水溶剤、水和剤、フロアブル、粉剤、微粒剤、粒剤、エアゾール、くん蒸剤、又はペースト剤などの形態の組成物を用いることができる。農薬用組成物の製造方法も特に限定されず、当業者に利用可能な方法を適宜採用することができる。一般式(I)で表される化合物におけるアミン部分の酸化を防止するために塩酸塩などの塩の形態の有効成分を用いることが好ましい場合がある。また、農薬用組成物における有効成分の酸化防止手段として利用可能な手段を適宜採用することもできる。   The plant activator of the present invention can be prepared as an agrochemical composition using, for example, pharmaceutical additives well known in the art. The form of the composition for agricultural chemicals is not particularly limited, and any form may be adopted as long as it is a form that can be used in the art. For example, a composition in the form of an emulsion, solution, oil, water solvent, wettable powder, flowable, powder, fine granule, granule, aerosol, fumigant, or paste can be used. A method for producing the composition for agricultural chemicals is not particularly limited, and any method available to those skilled in the art can be appropriately employed. In order to prevent oxidation of the amine moiety in the compound represented by the general formula (I), it may be preferable to use an active ingredient in the form of a salt such as hydrochloride. In addition, a means that can be used as an antioxidant means for an active ingredient in an agrochemical composition can be appropriately employed.

本発明のプラントアクティベーターの有効成分としては、上記一般式(I)で表される化合物またはその塩の2種以上を組み合わせて用いてもよい。また、適用目的に応じて、殺虫剤、殺菌剤、殺虫殺菌剤、除草剤などの他の農薬の有効成分を配合してもよい。上記の一般式(I)で表される化合物又はその塩とともに例えばグアザチン(GAZ)などのポリアミンオキシゲナーゼ(PAO)阻害剤を植物に施用することにより病害抵抗性遺伝子の発現促進をさらに高めることができる場合がある。本発明のプラントアクティベーターの適用方法及び適用量は、適用目的、剤型、適用場所などの条件に応じて当業者が適宜選択可能である。例えばイネなどに対しては1〜5 mM程度を選択することができるが、適用量は上記の特定の範囲に限定されることはない。   As an active ingredient of the plant activator of the present invention, two or more compounds represented by the above general formula (I) or a salt thereof may be used in combination. Moreover, you may mix | blend the active ingredient of other agricultural chemicals, such as an insecticide, a fungicide, an insecticide fungicide, and a herbicide, according to the application purpose. By applying a polyamine oxygenase (PAO) inhibitor such as guazatine (GAZ) to a plant together with the compound represented by the above general formula (I) or a salt thereof, it is possible to further enhance the expression of a disease resistance gene. There is a case. The application method and application amount of the plant activator of the present invention can be appropriately selected by those skilled in the art according to conditions such as application purpose, dosage form, application location, and the like. For example, about 1 to 5 mM can be selected for rice and the like, but the application amount is not limited to the above specific range.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1
スペルミジン(Spd, 4.48 g, 22.7 mmol)を脱水テトラヒドロフラン(THF, 50 ml)に溶解し、トリエチルアミン(9.75 ml, 68.1 mmol )を加え、0℃に保ったところにBoc-ON(13.9 g, 56.5 mmol)を脱水THF(50 ml)に溶かした溶液を激しく攪拌しながら滴下し、0℃で一晩攪拌した。THFを減圧下留去したのち残渣に1M NaOH (50 ml)を加えてジクロロメタン(50 ml × 3)で抽出し、有機層を合わせて食塩水(50 ml)、H2O(50 ml×2)で洗浄した。硫酸ナトリウムを加えて脱水した後、濾過して取り除きジクロロメタン/n-ヘキサン中で再結晶した。生じた結晶をn-ヘキサンで洗浄し、白色非晶質の結晶としてN1,N8-bis-Boc-Spd(6.68 g, 85.4%)を得た。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
Example 1
Spermidine (Spd, 4.48 g, 22.7 mmol) was dissolved in dehydrated tetrahydrofuran (THF, 50 ml), triethylamine (9.75 ml, 68.1 mmol) was added, and Boc-ON (13.9 g, 56.5 mmol) was kept at 0 ° C. ) In dehydrated THF (50 ml) was added dropwise with vigorous stirring and stirred at 0 ° C. overnight. After THF was distilled off under reduced pressure, 1M NaOH (50 ml) was added to the residue and extracted with dichloromethane (50 ml × 3) .The organic layers were combined, brine (50 ml), H 2 O (50 ml × 2). ). Sodium sulfate was added for dehydration, followed by filtration and recrystallization in dichloromethane / n-hexane. The resulting crystals were washed with n-hexane to obtain N 1 , N 8 -bis-Boc-Spd (6.68 g, 85.4%) as white amorphous crystals.

得られたN1,N8-bis-Boc-Spdのうち 83 mg(0.234 mmol)をトリエチルアミン2%(v/v)を含んだジクロロメタン 10 ml に溶解し、ラウリル酸クロリド(200 μl, excess) を加えて室温で2時間攪拌した。ジクロロメタンを減圧留去して除いたのち、残渣にH2O 10 ml を加えて酢酸エチル(10 ml×3)抽出し、食塩水(10 ml)、H2O(10 ml×2)で洗浄した。硫酸ナトリウムで脱水した後溶媒を減圧留去し、シリカゲルカラムによって精製した(酢酸エチル:n-ヘキサン= 1:1 , v/v )。精製した化合物全量に対してトリフルオロ酢酸(TFA) 2 ml を加え、室温で 30分攪拌してから溶媒を減圧留去し、残渣にメタノールを少量入れてから再び真空中で十分に減圧留去した。残渣をn-ヘキサンによって数回洗い、1M NaOH 5 mlを加えて分液ロートに移し、ジクロロメタン(5 ml×4 )抽出し、食塩水(5 ml)、H2O(10 ml×2)で洗浄し硫酸ナトリウムを加えて脱水した後、濾過して黄色オイル状の N4-lauroyl-Spd( 62 mg, 81.0% )を得た。
他の4N-アルカノイルスペルミジンも上記と同様の方法によって合成した。
83 mg (0.234 mmol) of the obtained N 1 , N 8 -bis-Boc-Spd was dissolved in 10 ml of dichloromethane containing 2% (v / v) of triethylamine, and lauryl chloride (200 μl, excess) was dissolved. And stirred at room temperature for 2 hours. Dichloromethane was distilled off under reduced pressure, 10 ml of H 2 O was added to the residue, and the mixture was extracted with ethyl acetate (10 ml × 3), washed with brine (10 ml) and H 2 O (10 ml × 2). did. After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column (ethyl acetate: n-hexane = 1: 1, v / v). Add 2 ml of trifluoroacetic acid (TFA) to the total amount of the purified compound, stir at room temperature for 30 minutes, and then distill off the solvent under reduced pressure. did. Wash the residue several times with n-hexane, add 5 ml of 1M NaOH, transfer to a separatory funnel, extract with dichloromethane (5 ml × 4), extract with brine (5 ml) and H 2 O (10 ml × 2). After washing and dehydrating by adding sodium sulfate, the mixture was filtered to obtain N 4 -lauroyl-Spd (62 mg, 81.0%) as a yellow oil.
Other 4 N-alkanoyl spermidines were also synthesized by the same method as described above.

例2
ジアミノブタン(1.2 g, 13 mmol)をトリエチルアミン 10%(v/v)含有メタノール 10 ml に溶解し、0℃に保ったところに Boc2O( 1.0 g, 4.6 mmol )をメタノール 2 ml に溶かした溶液を激しく攪拌しながら滴下し、0℃で30分攪拌してから室温にて一晩攪拌した。溶媒を減圧下留去してほぼ取り除いてからジクロロメタン( 20 ml )に再び溶解し、1M NaOH(20 ml)、H2O(20 ml×2)洗浄した。硫酸ナトリウムを加えて脱水した後濾過し、黄色オイル状のN-Boc-ジアミノブタン (589 mg, 69.6%) を得た。
Example 2
Diaminobutane (1.2 g, 13 mmol) was dissolved in 10 ml of methanol containing 10% (v / v) of triethylamine, and Boc 2 O (1.0 g, 4.6 mmol) was dissolved in 2 ml of methanol at 0 ° C. The solution was added dropwise with vigorous stirring and stirred at 0 ° C. for 30 minutes and then at room temperature overnight. The solvent was distilled off under reduced pressure, almost removed, and then dissolved again in dichloromethane (20 ml), and washed with 1M NaOH (20 ml) and H 2 O (20 ml × 2). Sodium sulfate was added for dehydration, followed by filtration to obtain yellow oily N-Boc-diaminobutane (589 mg, 69.6%).

得られたN-Boc-ジアミノブタンをアセトニトリル (20 ml)に溶解し、そこに炭酸カリウム(800 mg)を加えて攪拌しながらブロモプロピルフタルイミド(838 mg, 3.13 mmol)を加えた。その後、室温で15分攪拌してから45℃で一晩攪拌した。アセトニトリルを減圧下留去してから残渣にH2O(20 ml)を加えてジクロロメタン(20 ml×2)抽出し、食塩水(10 ml)、H2O(20 ml×2)洗浄してから硫酸ナトリウムによって脱水した後、濾過してから濃縮して無色オイル状の粗生成物を得た。シリカゲルカラムクロマトグラフィーによって精製し(ジクロロメタン:メタノール=9:1, v/v)、無色オイル状のN8-Boc-N1-phtal-Spd ( 695 mg, 59.2% ) を得た。 The obtained N-Boc-diaminobutane was dissolved in acetonitrile (20 ml), potassium carbonate (800 mg) was added thereto, and bromopropylphthalimide (838 mg, 3.13 mmol) was added with stirring. Thereafter, the mixture was stirred at room temperature for 15 minutes and then stirred at 45 ° C. overnight. Acetonitrile was distilled off under reduced pressure, H 2 O (20 ml) was added to the residue, and the mixture was extracted with dichloromethane (20 ml × 2), washed with brine (10 ml) and H 2 O (20 ml × 2). The product was dehydrated with sodium sulfate, filtered, and concentrated to give a crude product as a colorless oil. Purification by silica gel column chromatography (dichloromethane: methanol = 9: 1, v / v) gave colorless oily N 8 -Boc-N 1 -phtal-Spd (695 mg, 59.2%).

得られたN8-Boc-N1-phtal-Spdをトリエチルアミン 10% (v/v)含有メタノール 5 ml に溶解し、攪拌しているところに Boc2O(0.56 g, 2.52 mmol)を加え、室温で一晩攪拌した。溶媒を減圧留去でほぼ取り除いてからH2O(10 ml)を加えて酢酸エチル(10 ml×2)抽出し、有機層を合わせて食塩水(10 ml)、H2O(10 ml×2)洗浄した。硫酸ナトリウムを加え脱水した後濾過し、シリカゲルカラムクロマトグラフィーによって精製することで(酢酸エチル:n-ヘキサン = 1:3, v/v)、無色オイル状のN4,N8-bis-Boc-N1-phtal-Spd(332 mg, 81.2%)を得た。 The obtained N 8 -Boc-N 1 -phtal-Spd was dissolved in 5 ml of methanol containing 10% (v / v) of triethylamine, and Boc 2 O (0.56 g, 2.52 mmol) was added to the stirring place, Stir overnight at room temperature. The solvent was almost removed by distillation under reduced pressure, H 2 O (10 ml) was added, and the mixture was extracted with ethyl acetate (10 ml × 2) .The organic layers were combined, brine (10 ml), H 2 O (10 ml × 2) Washed. After dehydrating by adding sodium sulfate, filtration and purification by silica gel column chromatography (ethyl acetate: n-hexane = 1: 3, v / v), colorless oily N 4 , N 8 -bis-Boc- N 1 -phtal-Spd (332 mg, 81.2%) was obtained.

得られたN4,N8-bis-Boc-N1-phtal-Spdをエタノール(1 ml)に溶かし、ヒドラジン一水和物(0.2 ml)を加えて室温にて一晩攪拌した。H2O(10 ml)を加えてジクロロメタン(10 ml)抽出し、H2O(5 ml× 2)洗浄した。硫酸ナトリウムを加えて脱水してから濾過し、溶媒を減圧下留去して無色オイル状のN4,N8-bis-Boc-Spd (225 mg, 93.4%)を得た。 The obtained N 4 , N 8 -bis-Boc-N 1 -phtal-Spd was dissolved in ethanol (1 ml), hydrazine monohydrate (0.2 ml) was added, and the mixture was stirred overnight at room temperature. H 2 O (10 ml) was added and the mixture was extracted with dichloromethane (10 ml) and washed with H 2 O (5 ml × 2). Sodium sulfate was added for dehydration, followed by filtration, and the solvent was distilled off under reduced pressure to obtain colorless oily N 4 , N 8 -bis-Boc-Spd (225 mg, 93.4%).

83 mg(0,234 mmol)の N4,N8-bis-Boc-Spdをトリエチルアミン2%(v/v)含有ジクロロメタン 10 ml に溶解し、ラウリル酸クロリド(200 μl, excess )を加えて室温で2時間攪拌した。ジクロロメタンを減圧留去して除いたのち、残渣にH2O 10 ml を加えて酢酸エチルで抽出し(10 ml×3)、食塩水(10 ml)、H2O(10 ml×2回)によって洗浄した。硫酸ナトリウムで脱水した後溶媒を減圧留去し、シリカゲルカラムによって精製した(酢酸エチル:n-ヘキサン= 1:1 ,v/v)。精製した化合物全量に対してTFA 2 ml を加え、室温で 30分攪拌してから溶媒を減圧留去し、残渣にメタノールを少量入れてから再び真空中で十分に減圧留去した。残渣をn-ヘキサンによって数回洗い、1M NaOH 5 mlを加えて分液ロートに移し、ジクロロメタン(5ml × 4)抽出し、食塩水(5 ml)、H2O(10 ml × 2)洗浄し硫酸ナトリウムを加えて脱水した後、濾過して黄色オイル状の 1N-lauroyl-Spd( 62 mg, 81.0% )を得た。
他の1N-アルカノイルスペルミジンも上記と同様の方法によって合成した。
Dissolve 83 mg (0,234 mmol) N 4 , N 8 -bis-Boc-Spd in 10 ml dichloromethane containing 2% (v / v) triethylamine, add lauryl chloride (200 μl, excess) and add 2 Stir for hours. Dichloromethane was distilled off under reduced pressure, 10 ml of H 2 O was added to the residue and extracted with ethyl acetate (10 ml × 3), brine (10 ml), H 2 O (10 ml × 2) Washed with After dehydration with sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column (ethyl acetate: n-hexane = 1: 1, v / v). 2 ml of TFA was added to the total amount of the purified compound, and the mixture was stirred at room temperature for 30 minutes, and then the solvent was distilled off under reduced pressure. Wash the residue several times with n-hexane, add 5 ml of 1M NaOH, transfer to a separatory funnel, extract with dichloromethane (5 ml × 4), wash with brine (5 ml) and H 2 O (10 ml × 2). Sodium sulfate was added for dehydration, followed by filtration to obtain 1 N-lauroyl-Spd (62 mg, 81.0%) as a yellow oil.
Other 1 N-alkanoyl spermidines were also synthesized by the same method as above.

4N-hexanoylspermidine
1H NMR (500MHz CDCl3), δ 0.90 (3H, t, JH,H = 7.0 Hz, H2-6'), 1.26-1.49 (6H, m, H2-3'〜5'), 1.54-1.73 (6H, m, H2-2,6,7), 2.29 (2H, m, H2-2'), 2.64-2.77 (4H, m, H2-1,8), 3.21-3.46 (4H, m, H2-3,5)
4N-nonanoylspermidine
1H NMR (500MHz CDCl3), δ 0.88 (3H, t, JH,H = 6.5 Hz, H2-9'), 1.22-1.36 (10 H, m, H2-4'〜8'), 1.45 (2H, m, H2-3'), 1.53-1.73 (6H, m, H2-2,6,7), 2.29 (2H, m, H2-2'), 2.64-2.76 (4H, m, H2-1,8), 3.21-3.44 (4H, m, H2-3,5)
4N-lauroylspermidine
1H NMR (500MHz CDCl3), δ 0.88 (3H, t, JH,H = 6.8 Hz, H2-12'), 1.26-1.30 (16H, m, H2-4'〜11'), 1.45 (2H, m, H2-3'), 1.50-1.73 (6H, m, H2-2,6,7), 2.29 (2H, m, H2-2'), 2.64-2.76 (4H, m, H2-1,8), 3.24-2.42 (4H, m, H2-3,5)
4 N-hexanoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.90 (3H, t, J H, H = 7.0 Hz, H 2 -6 '), 1.26-1.49 (6H, m, H 2 -3' to 5 '), 1.54 -1.73 (6H, m, H 2 -2,6,7), 2.29 (2H, m, H 2 -2 '), 2.64-2.77 (4H, m, H 2 -1,8), 3.21-3.46 ( (4H, m, H 2 -3, 5)
4 N-nonanoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.88 (3H, t, J H, H = 6.5 Hz, H 2 -9 '), 1.22-1.36 (10 H, m, H 2 -4' to 8 '), 1.45 (2H, m, H 2 -3 '), 1.53-1.73 (6H, m, H 2 -2,6,7), 2.29 (2H, m, H 2 -2'), 2.64-2.76 (4H, m, H 2 -1,8), 3.21-3.44 (4H, m, H 2 -3,5)
4 N-lauroylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.88 (3H, t, J H, H = 6.8 Hz, H 2 -12 '), 1.26-1.30 (16H, m, H 2 -4' to 11 '), 1.45 (2H, m, H 2 -3 '), 1.50-1.73 (6H, m, H 2 -2,6,7), 2.29 (2H, m, H 2 -2'), 2.64-2.76 (4H, m , H 2 -1,8), 3.24-2.42 (4H, m, H 2 -3,5)

4N-stearoylspermidine
1H NMR (500MHz CDCl3), δ 0.88 (3H, t, JH,H = 7.0 Hz, H2-18'), 1.20-1.35 (28H, m, H2-4'〜17'), 1.46 (2H, m, H2-3'), 1.54-1.74 (6H, m, H2-2,6,7), 2.29 (2H, m, H2-2'), 2.66-2.76 (4H, m, H2-1,8), 3.23-3.45 (4H, m, H2-3,5)
4N-benzoylspermidine
1H NMR (500MHz CDCl3), δ 1.45-1.86 (6H, m, H2-2,6,7), 2.48-2.73 (4H, m, H2-1,8), 3.18-3.63 (4H, m, H2-3,5), 7.32-7.44 (5H, m, Ph)
4N-cinnamoylspermidine
1H NMR (500MHz CDCl3), δ 1.47-1.79 (6H, m, H2-2,6,7), 2.71-2.80 (4H, m, H2-1,8), 3.41-3.57 (4H, m, H2-3,5), 6.84-7.00 (1H, dd, JH,H = 68.1 Hz, 15.6 Hz, CHPh), 7.21-7.52 (5H, m, Ph), 7.68-7.72 (1H, dd, JH,H = 15.3 Hz, 5.5 Hz, CHCO)
4 N-stearoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.88 (3H, t, J H, H = 7.0 Hz, H 2 -18 '), 1.20-1.35 (28H, m, H 2 -4' to 17 '), 1.46 (2H, m, H 2 -3 '), 1.54-1.74 (6H, m, H 2 -2,6,7), 2.29 (2H, m, H 2 -2'), 2.66-2.76 (4H, m , H 2 -1,8), 3.23-3.45 (4H, m, H 2 -3,5)
4 N-benzoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 1.45-1.86 (6H, m, H 2 -2,6,7), 2.48-2.73 (4H, m, H 2 -1,8), 3.18-3.63 (4H, m, H 2 -3,5), 7.32-7.44 (5H, m, Ph)
4 N-cinnamoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 1.47-1.79 (6H, m, H 2 -2,6,7), 2.71-2.80 (4H, m, H 2 -1,8), 3.41-3.57 (4H, m, H 2 -3,5), 6.84-7.00 (1H, dd, J H, H = 68.1 Hz, 15.6 Hz, CHPh), 7.21-7.52 (5H, m, Ph), 7.68-7.72 (1H, dd , J H, H = 15.3 Hz, 5.5 Hz, CHCO)

1N-hexanoylspermidine
1H NMR (500MHz CDCl3), δ 0.89 (3H, t, JH,H = 6.8 Hz, H2-6'), 1.31 (4H, m, H2-4',5'), 1.48-1.70 (8H, m, H2-2,6,7,3'), 2.15 (2H, t, JH,H =7.6 Hz, H2-2'), 2.62 (2H, t, JH,H =6.8 Hz, H2-8), 2.72 (4H, m, H2-3.5), 3.34 (2H, dt, JH,H =6.1 Hz, 6.1 Hz, H2-1), 6.88 (1H, s, -NHCO-)
1N-nonanoylspermidine
1H NMR (500MHz CDCl3), δ 0.88 (3H, t, JH,H = 6.9 Hz, H2-9'), 1.21-1.34 (10H, m, H2-4'-8'), 1.44-1.69 (8H, m, H2-2,6,7,3'), 2.14 (2H, t, JH,H =7.6 Hz, H2-2'), 2.61 (2H, t, JH,H =6.9 Hz, H2-8), 2.71 (4H, m, H2-3.5), 3.34 (2H, dt, JH,H =6.1 Hz, 6.1 Hz, H2-1), 6.69 (1H, s, -NHCO)
1N-lauroylspermidine
1H NMR (500MHz CDCl3), δ 0.88 (3H, t, JH,H = 6.9 Hz, H2-12'), 1.22-1.33 (16H, m, H2-4'-11'), 1.46-1.70 (8H, m, H2-2,6,7,3'), 2.15 (2H, t, JH,H =7.6 Hz, H2-2'), 2.62 (2H, t, JH,H =6.9 Hz, H2-8), 2.72 (4H, m, H2-3,5), 3.35 (2H, dt, JH,H =6.1 Hz, 6.1 Hz, H2-1), 6.70 (1H, s, -NHCO)
1 N-hexanoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.89 (3H, t, J H, H = 6.8 Hz, H 2 -6 '), 1.31 (4H, m, H 2 -4', 5 '), 1.48-1.70 (8H, m, H 2 -2,6,7,3 '), 2.15 (2H, t, J H, H = 7.6 Hz, H 2 -2'), 2.62 (2H, t, J H, H = 6.8 Hz, H 2 -8), 2.72 (4H, m, H 2 -3.5), 3.34 (2H, dt, J H, H = 6.1 Hz, 6.1 Hz, H 2 -1), 6.88 (1H, s, -NHCO-)
1 N-nonanoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.88 (3H, t, J H, H = 6.9 Hz, H 2 -9 '), 1.21-1.34 (10H, m, H 2 -4'-8'), 1.44 -1.69 (8H, m, H 2 -2,6,7,3 '), 2.14 (2H, t, J H, H = 7.6 Hz, H 2 -2'), 2.61 (2H, t, J H, H = 6.9 Hz, H 2 -8), 2.71 (4H, m, H 2 -3.5), 3.34 (2H, dt, J H, H = 6.1 Hz, 6.1 Hz, H 2 -1), 6.69 (1H, s, -NHCO)
1 N-lauroylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.88 (3H, t, J H, H = 6.9 Hz, H 2 -12 '), 1.22-1.33 (16H, m, H 2 -4'-11'), 1.46 -1.70 (8H, m, H 2 -2,6,7,3 '), 2.15 (2H, t, J H, H = 7.6 Hz, H 2 -2'), 2.62 (2H, t, J H, H = 6.9 Hz, H 2 -8), 2.72 (4H, m, H 2 -3,5), 3.35 (2H, dt, J H, H = 6.1 Hz, 6.1 Hz, H 2 -1), 6.70 ( 1H, s, -NHCO)

1N-stearoylspermidine
1H NMR (500MHz CDCl3), δ 0.88 (3H, t, JH,H = 7.0 Hz, H2-18'), 1.20-1.32 (28H, m, H2-4'-17'), 1.46-1.69 (8H, m, H2-2,6,7,3'), 2.14 (2H, t, JH,H =7.6 Hz, H2-2'), 2.61 (2H, t, JH,H =6.9 Hz, H2-8), 2.72 (4H, m, H2-3,5), 3.34 (2H, dt, JH,H =6.0 Hz, 6.0 Hz, H2-1), 6.68 (1H, s, -NHCO)
1N-benzoylspermidine
1H NMR (500MHz CDCl3), 1.43-1.58 (4H, m, H2-6,7), 1.78 (2H, qi, H2-2), 2.65 (2H, t, JH,H =7.0 Hz, H2-8), 2.69 (2H, t, JH,H =6.9 Hz, H2-5), 2.83 (2H, t, JH,H =5.8 Hz, H2- 3), 3.58 (2H, dt, JH,H =5.7 Hz, 5.7Hz, H2-1), 7.41 (2H, m, Hph-3,5), 7.48 (1H, m, Hph-4), 7.80 (2H, m, Hph-2,6), 8.20 (1H, s, -NHCO)
1N-cinnamoylspermidine
1H NMR (500MHz CDCl3), δ 1.48-1.59 (4H, m, H2-6,7), 1.74 (2H, qi, JH,H = 6.3 Hz, H2-6), 2.64 (2H, t, JH,H =7.0 Hz, H2-5), 2.72 (2H, t, JH,H =6.5 Hz, H2- 3), 2.77 (2H, dt, JH,H =6.0 Hz, 6.0 Hz, H2- 3), 3.48 (2H, m, H2-1), 6.38 (1H, dd, JH,H = 15.5 Hz, CHPh), 7.22-7.51 (5H, m, Ph), 7.59 (1H, dd, JH,H = 15.5 Hz, CHCO)
1 N-stearoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 0.88 (3H, t, J H, H = 7.0 Hz, H 2 -18 '), 1.20-1.32 (28H, m, H 2 -4'-17'), 1.46 -1.69 (8H, m, H 2 -2,6,7,3 '), 2.14 (2H, t, J H, H = 7.6 Hz, H 2 -2'), 2.61 (2H, t, J H, H = 6.9 Hz, H 2 -8), 2.72 (4H, m, H 2 -3,5), 3.34 (2H, dt, J H, H = 6.0 Hz, 6.0 Hz, H 2 -1), 6.68 ( 1H, s, -NHCO)
1 N-benzoylspermidine
1 H NMR (500MHz CDCl 3 ), 1.43-1.58 (4H, m, H 2 -6,7), 1.78 (2H, qi, H 2 -2), 2.65 (2H, t, J H, H = 7.0 Hz , H 2 -8), 2.69 ( 2H, t, J H, H = 6.9 Hz, H 2 -5), 2.83 (2H, t, J H, H = 5.8 Hz, H 2 - 3), 3.58 (2H , dt, J H, H = 5.7 Hz, 5.7 Hz, H 2 -1), 7.41 (2H, m, H ph -3,5), 7.48 (1H, m, H ph -4), 7.80 (2H, m, H ph -2,6), 8.20 (1H, s, -NHCO)
1 N-cinnamoylspermidine
1 H NMR (500MHz CDCl 3 ), δ 1.48-1.59 (4H, m, H 2 -6,7), 1.74 (2H, qi, J H, H = 6.3 Hz, H 2 -6), 2.64 (2H, t, J H, H = 7.0 Hz, H 2 -5), 2.72 (2H, t, J H, H = 6.5 Hz, H 2 - 3), 2.77 (2H, dt, J H, H = 6.0 Hz, 6.0 Hz, H 2 - 3) , 3.48 (2H, m, H 2 -1), 6.38 (1H, dd, J H, H = 15.5 Hz, CHPh), 7.22-7.51 (5H, m, Ph), 7.59 (1H, dd, J H, H = 15.5 Hz, CHCO)

例3
末端に水酸基を1個導入したラウロイル基を1位又は4位に結合させた化合物を下記のように合成した。
Example 3
A compound in which a lauroyl group having one hydroxyl group introduced at the end was bonded to the 1-position or 4-position was synthesized as follows.

12-hydoroxylauric acid(225 mg, 1.04 mmol)にジクロロメタン10 ml を加え、窒素ガス雰囲気下においてEDCI(200 mg, 1.04 mmol), DMAP(127 mg, 1.04 mmol)を入れて全体が溶けるまで攪拌した。そこに1N,8N-diBoc-spermidine(300 mg, 0.870 mmol)をジクロロメタン 5 ml に溶解して加えて窒素ガス雰囲気下に室温で3d攪拌した。 10 ml of dichloromethane was added to 12-hydoroxylauric acid (225 mg, 1.04 mmol), and EDCI (200 mg, 1.04 mmol) and DMAP (127 mg, 1.04 mmol) were added under a nitrogen gas atmosphere and stirred until the whole was dissolved. 1 N, 8 N-diBoc-spermidine (300 mg, 0.870 mmol) was dissolved in 5 ml of dichloromethane and added thereto, and the mixture was stirred at room temperature for 3d in a nitrogen gas atmosphere.

攪拌終了後、10 ml のクエン酸水溶液(10%, w/w)を反応溶液に加えて5分間攪拌して反応を停止してからジクロロメタン(10ml×3)で抽出し、硫酸ナトリウムで脱水後に溶媒を減圧留去して無色オイル状の粗生成物 0.62 g を得た。シリカゲルカラムクロマトグラフィーで精製(酢酸エチル:n-ヘキサン = 4:1)して無色オイル状の 1N,8N-diBoc-4N-(12-hydoroxylauroyl)-spermidine(155 mg, 32.8%)を得た。
1H NMR (500MHz, CDCl3), δ 1.28 (16H, s, H2-4'-11'), 1.44 (20H, m, 2 x Boc, H2-3'), 1.56-1.69 (6H, m,H2-2, 6, 7), 2.34 (2H, t, JH,H = 7.5 Hz, H2-2'),3.07-3.40 (9H, m, H2-1, 3, 5, 8, -OH), 3.62 (2H, t, JH,H = 6.5 Hz, H2-12')
After completion of the stirring, 10 ml of citric acid aqueous solution (10%, w / w) was added to the reaction solution and stirred for 5 minutes to stop the reaction, followed by extraction with dichloromethane (10 ml × 3) and dehydration with sodium sulfate. The solvent was distilled off under reduced pressure to obtain 0.62 g of a colorless oily crude product. Purification by silica gel column chromatography (ethyl acetate: n-hexane = 4: 1) gave 1 N, 8 N-diBoc- 4 N- (12-hydoroxylauroyl) -spermidine (155 mg, 32.8%) as a colorless oil. Obtained.
1 H NMR (500MHz, CDCl 3 ), δ 1.28 (16H, s, H 2 -4'-11 '), 1.44 (20H, m, 2 x Boc, H 2 -3'), 1.56-1.69 (6H, m, H 2 -2, 6, 7), 2.34 (2H, t, J H, H = 7.5 Hz, H 2 -2 '), 3.07-3.40 (9H, m, H 2 -1, 3, 5, 8, -OH), 3.62 (2H, t, J H, H = 6.5 Hz, H 2 -12 ')

これをトリフルオロ酢酸/ジクロロメタン(20% v/v)10 ml 中で1時間攪拌し、トリフルオロ酢酸をメタノールと共沸させて減圧留去した後 1M NaOH 5 ml を加えて分液ロートに移し、ジクロロメタン(5ml×4)で抽出し、蒸留水(5 ml)で洗浄し、硫酸ナトリウムで脱水後に溶媒を減圧留去して白色非晶質の結晶として4N-(12-hydoroxylauroyl)-spermidine( 73 mg, 24.5% ) を得た。 This was stirred in 10 ml of trifluoroacetic acid / dichloromethane (20% v / v) for 1 hour, trifluoroacetic acid was azeotroped with methanol and evaporated under reduced pressure, 5 ml of 1M NaOH was added, and the mixture was transferred to a separatory funnel. Extracted with dichloromethane (5 ml × 4), washed with distilled water (5 ml), dehydrated with sodium sulfate and evaporated under reduced pressure to give 4 N- (12-hydoroxylauroyl) -spermidine as white amorphous crystals (73 mg, 24.5%) was obtained.

12-hydoroxylauric acid(300 mg, 1.39 mmol)にジクロロメタン15 ml を加え、窒素ガス雰囲気下においてEDCI(275 mg, 1.39 mmol), DMAP(170 mg, 1.39 mmol)を入れて全体が溶けるまで攪拌した。そこに4N,8N-diBoc-spermidine(400 mg, 1.16 mmol)をジクロロメタン 5 ml に溶解して加えて窒素ガス雰囲気下に室温で3日間攪拌した。 To 12-hydoroxylauric acid (300 mg, 1.39 mmol) was added 15 ml of dichloromethane, and EDCI (275 mg, 1.39 mmol) and DMAP (170 mg, 1.39 mmol) were added under a nitrogen gas atmosphere and stirred until the whole was dissolved. 4 N, 8 N-diBoc-spermidine (400 mg, 1.16 mmol) was dissolved and added to 5 ml of dichloromethane, and the mixture was stirred at room temperature for 3 days in a nitrogen gas atmosphere.

攪拌終了後、10 ml のクエン酸水溶液(10%, w/w)を反応溶液に加えて5分間攪拌して反応を停止してからジクロロメタン(10ml×3)で抽出し、硫酸ナトリウムで脱水後溶媒を減圧留去して無色オイル状の粗生成物 0.68 g を得た。シリカゲルカラムクロマトグラフィーで精製し(酢酸エチル:n-ヘキサン = 4:1 )、無色オイル状の 4N,8N-diBoc-1N-(12-hydoroxylauroyl)-spermidine( 311 mg, 49.3% )を得た。
1H NMR (500MHz, CDCl3), δ1.27 (16H, s, H2-4'-11'), 1.44 (20H, m, 2 x Boc, H2-3'), 1.51-1.64 (6H, m,H2-2, 6, 7), 2.18 (2H, t, JH,H = 7.8 Hz, H2-2'), 3.13-3.28 (9H, m, H2-1, 3, 5, 8, -OH), 3.63 (2H, m, H2-12')
After completion of stirring, 10 ml of citric acid aqueous solution (10%, w / w) was added to the reaction solution and stirred for 5 minutes to stop the reaction, followed by extraction with dichloromethane (10 ml × 3), and dehydration with sodium sulfate. The solvent was distilled off under reduced pressure to obtain 0.68 g of a colorless oily crude product. Purification by silica gel column chromatography (ethyl acetate: n-hexane = 4: 1) and colorless oily 4 N, 8 N-diBoc- 1 N- (12-hydoroxylauroyl) -spermidine (311 mg, 49.3%) Obtained.
1H NMR (500MHz, CDCl 3 ), δ1.27 (16H, s, H 2 -4'-11 '), 1.44 (20H, m, 2 x Boc, H 2 -3'), 1.51-1.64 (6H, m, H 2 -2, 6, 7), 2.18 (2H, t, J H, H = 7.8 Hz, H 2 -2 '), 3.13-3.28 (9H, m, H 2 -1, 3, 5, 8, -OH), 3.63 (2H, m, H 2 -12 ')

これをトリフルオロ酢酸/CH2Cl2 (20% v/v) 10 ml 中で1時間攪拌し、トリフルオロ酢酸をメタノールと共沸させて減圧留去した後 1M NaOH 5 ml を加えて分液ロートに移し、ジクロロメタン(5ml×4)によって抽出し、蒸留水(5 ml)で洗浄して、硫酸ナトリウムで脱水後に溶媒を減圧留去して白色非晶質の結晶として1N-(12-hydoroxylauroyl)-spermidine (160 mg, 40.2%) を得た。 This was stirred in 10 ml of trifluoroacetic acid / CH 2 Cl 2 (20% v / v) for 1 hour, trifluoroacetic acid was azeotroped with methanol and evaporated under reduced pressure, and 5 ml of 1M NaOH was added to separate the layers. Transfer to a funnel, extract with dichloromethane (5 ml × 4), wash with distilled water (5 ml), dehydrate with sodium sulfate and evaporate the solvent under reduced pressure to give 1 N- (12- hydoroxylauroyl) -spermidine (160 mg, 40.2%) was obtained.

YIS12OH1N(スペルミジンの1位アミノ基に-CO-(CH2)10CH2-OHを結合させた化合物)
1H NMR (500MHz, CDCl3), δ 1.28 (16H, m, H2-4'-11'), 1.44-1.67 (9H, m, H2-2,6,7,3',-OH), 2.30 (2H, m, H2-2'), 2.64-2.76 (4H, m, H2-1,8), 3.00-3.47 (4H , m, H2-3,5), 3.62 (2H, t, JH,H = 6.5 Hz, H2-1')
YIS12OH4N(スペルミジンの4位アミノ基に-CO-(CH2)10CH2-OHを結合させた化合物)
1H NMR (500MHz CDCl3) δ 1.28 (16H, m, H2-4'-11'), 1.50-1.67 (9H , m, H2-2,6,7,3',-OH), 2.14 (2H, t, JH,H =7.5 Hz, H2-2'), 2.61 (2H, t, JH,H =6.8 Hz, H2-8), 2.71 (4H, m, H2-3,5), 3.35 (2H, dt, JH,H =6.0 Hz, 6.0 Hz, H2-1), 3.63 (2H, t, JH,H =6.5 Hz, H2-12), 6.73 (1H, s, -NHCO)
YIS12OH1N (compound in which -CO- (CH 2 ) 10 CH 2 -OH is bound to the 1-position amino group of spermidine)
1 H NMR (500MHz, CDCl 3 ), δ 1.28 (16H, m, H 2 -4'-11 '), 1.44-1.67 (9H, m, H 2 -2,6,7,3',-OH) , 2.30 (2H, m, H 2 -2 '), 2.64-2.76 (4H, m, H 2 -1,8), 3.00-3.47 (4H, m, H 2 -3,5), 3.62 (2H, t, J H, H = 6.5 Hz, H 2 -1 ')
YIS12OH4N (compound in which -CO- (CH 2 ) 10 CH 2 -OH is bound to the 4-position amino group of spermidine)
1 H NMR (500MHz CDCl 3 ) δ 1.28 (16H, m, H 2 -4'-11 '), 1.50-1.67 (9H, m, H 2 -2,6,7,3',-OH), 2.14 (2H, t, J H, H = 7.5 Hz, H 2 -2 '), 2.61 (2H, t, J H, H = 6.8 Hz, H 2 -8), 2.71 (4H, m, H 2 -3 , 5), 3.35 (2H, dt, J H, H = 6.0 Hz, 6.0 Hz, H 2 -1), 3.63 (2H, t, J H, H = 6.5 Hz, H 2 -12), 6.73 (1H , s, -NHCO)

例4
スペルミジンは葉身に対する処理でHR(Hypersensitive Response)様の細胞死斑を形成することが様々な植物種において知られている(Plant Physiol. 132(4), pp.1973-1981, 2009)。例1で得られたスペルミジン誘導体を1 mMの水溶液(Tween 20 を終濃度 0.1 %となるように添加)として播種後1月程度のイネ(日本晴)の葉身に 5μl ずつ滴下し、そのまま風乾してその後の細胞死の強度(Severity)を細胞死の重症度及び滴下部位に対する割合を指標として目視によって評価した(図1及び2)。その結果、スペルミジン(Spd)自体とは異なる細かな細胞死斑の形成がNon、Lau、1N Non、及び1N Lau 等で認められた。また、Spd による細胞死が一部の処理葉のみで認められたのに対して、これらのスペルミジン誘導体ではスペルミジンよりも早い時期に多くの処理葉で細胞死斑を与えた。
Example 4
It is known that spermidine forms HR (Hypersensitive Response) -like cell dead spots in the treatment of leaf blades in various plant species (Plant Physiol. 132 (4), pp.1973-1981, 2009). Add 5 μl each of the spermidine derivative obtained in Example 1 as a 1 mM aqueous solution (with Tween 20 added to a final concentration of 0.1%) on the leaves of rice (Nipponbare) about 1 month after seeding, and let it air dry. Thereafter, the intensity of cell death (Severity) was evaluated visually using the severity of cell death and the ratio to the dropping site as an index (FIGS. 1 and 2). As a result, formation of fine cell death spots different from spermidine (Spd) itself was observed in Non, Lau, 1 N Non, 1 N Lau and the like. In addition, while cell death due to Spd was observed only in some treated leaves, these spermidine derivatives gave cell death spots in many treated leaves earlier than spermidine.

例5
ファイトアレキシンは植物の病害抵抗反応において産生される抗菌物質であり、ファイトカサンA〜E(PA〜PE)、モミラクトンA, B(MA, MB)などが知られている。イネ葉身よりリーフディスクを切り出し、スペルミジン又は例2において強い細胞死誘導効果を認めた Lau の0.5 mM水溶液を調製し、リーフディスクをこの水溶液に浸漬して 72時間後のファイトアレキシン産生量を測定した。その結果、ファイトアレキシン産生を誘導する物質として知られている塩化銅に比べると弱いもののLau 処理によって塩化銅特異的な反応であるリーフディスクの褐変及び明らかなファイトアレキシンの蓄積が認められた(図3及び4)。
Example 5
Phytoalexin is an antibacterial substance produced in the disease resistance reaction of plants, and phytocasan A to E (PA to PE), momilactone A, B (MA, MB) and the like are known. Cut out leaf discs from rice leaves, prepare 0.5 mM aqueous solution of spermidine or Lau that showed strong cell death inducing effect in Example 2, and soak leaf discs in this aqueous solution to determine the amount of phytoalexin produced 72 hours later. It was measured. As a result, although it was weaker than copper chloride, which is known as a substance that induces phytoalexin production, browning of leaf disk and clear accumulation of phytoalexin, which are specific to copper chloride, were recognized by Lau treatment. (Figures 3 and 4).

例6
各スペルミジン誘導体を1 mM の水溶液とし、終濃度 0.01%のTween 20 を加えた。水耕で1週間育てたイネの葉身に対してこの水溶液をスプレーし、24時間後にRNAを抽出した。各サンプルにおけるイネ病害抵抗性マーカー遺伝子である OsPR1b、PBZ1、及びWRKY45 の発現をリアルタイムPCRを用いて測定した。その結果、これらのスペルミジン誘導体には抵抗性マーカー遺伝子の発現を誘導する傾向が認められた(図5)。
Example 6
Each spermidine derivative was made into a 1 mM aqueous solution, and Tween 20 having a final concentration of 0.01% was added. This aqueous solution was sprayed on the leaf blades of rice grown for 1 week in hydroponics, and RNA was extracted 24 hours later. The expression of rice disease resistance marker genes OsPR1b, PBZ1, and WRKY45 in each sample was measured using real-time PCR. As a result, these spermidine derivatives tended to induce the expression of resistance marker genes (FIG. 5).

YIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)を1 mM の水溶液とし、終濃度 0.01%のTween 20 を加えた。水耕で1週間育てたイネの葉身に対してこの水溶液をスプレーし、24時間後にRNAを抽出した。各サンプルにおけるイネ病害抵抗性マーカー遺伝子である OsPR1b、PBZ1、及びWRKY45 の発現をリアルタイムPCRを用いて測定した。その結果、これらのスペルミジン誘導体には抵抗性マーカー遺伝子の発現を誘導する傾向が認められた(図6)。   YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) was made into a 1 mM aqueous solution, and Tween 20 having a final concentration of 0.01% was added. This aqueous solution was sprayed on the leaf blades of rice grown for 1 week in hydroponics, and RNA was extracted 24 hours later. The expression of rice disease resistance marker genes OsPR1b, PBZ1, and WRKY45 in each sample was measured using real-time PCR. As a result, these spermidine derivatives tended to induce the expression of resistance marker genes (FIG. 6).

例7
5葉期のイネにYIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)を1 mM又は5 mMの濃度で噴霧処理し、その翌日にいもち病菌(Kyu89-246, MAFF101506, race 003.0, 3.4x105 spores/ml)を接種して感染させた。接種後6日の病斑数を測定した結果を図7及び図8に示す。被験化合物無しでの噴霧処理(mock)ではいもち病に感染し多くの病斑が出現しているのに対して、5 mMの濃度でYIS12OH1N又はYIS12OH4Nを処理すると、いもち病抵抗性を示した。YIS12OH1Nは1mM処理でも抵抗性を示した。なお、被験化合物の噴霧のみ(5 mM)では細胞死斑は認められなかった。同様にして5葉期のイネにYIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)を1 mMの濃度で噴霧処理し、その翌日にいもち病菌(Kyu89-246, MAFF101506, race 003.0, 3.4x105 spores/ml)を接種して感染させた。接種後6日の病斑数を測定した結果を図9に示す。
Example 7
Five-leaf rice is sprayed with YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) at a concentration of 1 mM or 5 mM, and the next day the blast fungus (Kyu89-246, MAFF101506, race 003.0, 3.4x10 5 spores / ml) Was inoculated. The results of measuring the number of lesions on the 6th day after inoculation are shown in FIG. 7 and FIG. In the spray treatment (mock) without the test compound, blast was infected and many lesions appeared, but when YIS12OH1N or YIS12OH4N was treated at a concentration of 5 mM, blast resistance was shown. YIS12OH1N was resistant to 1 mM treatment. Cell necrosis was not observed only by spraying the test compound (5 mM). Similarly, YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) was sprayed at a concentration of 1 mM to rice at the 5th leaf stage, and the rice blast fungus (Kyu89-246, MAFF101506, race 003.0, 3.4x10 5 spores / ml) the next day Was inoculated. The results of measuring the number of lesions on the 6th day after inoculation are shown in FIG.

例8
直径6 mmのろ紙にYIS12OH1N(1NHydLau)又はYIS12OH4N(HydLau)の水溶液(1 mM、5 mM、又は10 mM)20μlを染みこませて風乾し、このろ紙を用いていもち病菌(Kyu89-246, MAFF101506, race 003.0)に対しての阻止円の形成を評価した。28℃で遮光下に5-6日培養した後に阻止円の形成は認められなかったことから(図10)、これらの化合物自体は10 mM濃度においてもいもち菌に対する抗菌活性を有しないことが確認された。
Example 8
Infiltrate 20 μl of an aqueous solution (1 mM, 5 mM, or 10 mM) of YIS12OH1N (1NHydLau) or YIS12OH4N (HydLau) into a 6 mm diameter filter paper, air-dry, and use this filter paper to blast fungus (Kyu89-246, MAFF101506 , race 003.0) was evaluated. No inhibition circles were observed after 5-6 days of incubation at 28 ° C in the dark (Figure 10), confirming that these compounds themselves have no antibacterial activity against blast at 10 mM concentration It was done.

例9
OsAT1過剰発現体のイネからLN2で凍結粉砕した葉身をメタノール抽出し1M NaOH-CH2Cl2で溶媒分画後、1M HClで有機層から回収してOasis(登録商標)カラムによって精製して試料を調製し、LC/MSMSにより合成標品のYIS12OH4Nを用いてイネ中に存在する天然型のYIS12OH4Nを同定した。結果を図11に示す。OsAT1を過剰発現しているイネ中にYIS12OH4Nが存在することが確認された。LC/MSの測定条件は以下のとおりである。
Waters Acquity UPLC
カラム:AQUITIY C18BEH 1.7 μm 2.1×50 mm column
流速:0.2 mL/min
移動相 A:0.1%ギ酸水溶液 / B:0.1%ギ酸メタノール
グラジエント条件
min flow A B
0 0.2 70 30
1 0.2 70 30
10 0.2 0 100
Example 9
The leaf blades freeze-pulverized with LN 2 from rice with OsAT1 overexpression were extracted with methanol, fractionated with 1M NaOH-CH 2 Cl 2 , and then recovered from the organic layer with 1M HCl and purified by Oasis® column. Samples were prepared, and the natural YIS12OH4N present in rice was identified by LC / MSMS using the synthetic YIS12OH4N. The results are shown in FIG. It was confirmed that YIS12OH4N is present in rice overexpressing OsAT1. The measurement conditions for LC / MS are as follows.
Waters Acquity UPLC
Column: AQUITIY C18BEH 1.7 μm 2.1 × 50 mm column
Flow rate: 0.2 mL / min
Mobile phase A: 0.1% formic acid aqueous solution / B: 0.1% formic acid methanol gradient conditions
min flow AB
0 0.2 70 30
1 0.2 70 30
10 0.2 0 100

Waters Xevo(登録商標) TQ MS
キャピラリー電圧:3.0 kV
コーン電圧:34 V
ソース温度:150℃
デソルベーション温度:400℃
コーンガス流量:50 L/Hr
デソルベーションガス流量:800 L/Hr
検出モード:MRMモード(positive)
コリジョン電圧:22/16 V (Ch1/Ch2)
チャンネル条件:344.46>256.30 / 344.46>273.34 (CH1/Ch2)
データ解析:MassLynx(登録商標)
Waters Xevo (R) TQ MS
Capillary voltage: 3.0 kV
Cone voltage: 34 V
Source temperature: 150 ° C
Desolvation temperature: 400 ℃
Cone gas flow rate: 50 L / Hr
Desolvation gas flow rate: 800 L / Hr
Detection mode: MRM mode (positive)
Collision voltage: 22/16 V (Ch1 / Ch2)
Channel condition: 344.46> 256.30 / 344.46> 273.34 (CH1 / Ch2)
Data analysis: MassLynx (registered trademark)

例8
例4と同様の方法でYIS12OH1N又はYIS12OH4Nを用いて細胞死斑の形成及び細胞死の強度を調べた。細胞死強度の結果を図12、細胞死斑の形成を図13に示す。ラウロイル基の末端炭素原子に水酸基を1個導入した化合物(HydLau:YIS12OH4N、1NHydLau:YIS12OH1N)は水酸基を導入していない化合物(Lau又は1N Lau)に比べて細胞死の強度がそれぞれ増強されていた。
Example 8
In the same manner as in Example 4, YIS12OH1N or YIS12OH4N was used to examine the formation of cell dead spots and the intensity of cell death. The results of cell death intensity are shown in FIG. 12, and the formation of cell dead spots is shown in FIG. Compounds with one hydroxyl group introduced into the terminal carbon atom of the lauroyl group (HydLau: YIS12OH4N, 1NHydLau: YIS12OH1N) have enhanced cell death strength compared to compounds without a hydroxyl group (Lau or 1 N Lau). It was.

例9
例6と同様の方法でYIS12OH4N(HydLau) 3 mMによるイネ病害抵抗性マーカー遺伝子 OsPR1b、PBZ1、WRKY45、及びOsNPR1 の発現をポリアミンオキシゲナーゼ(PA)阻害剤であるグアザチン(GAZ) 5 mMの共存下で検討した。結果を図14に示す。グアザチンの共存下においてYIS12OH4N(HydLau)によるイネ病害抵抗性マーカー遺伝子の発現促進がさらに高められた。
Example 9
In the same manner as in Example 6, YIS12OH4N (HydLau) 3 mM rice disease resistance marker genes OsPR1b, PBZ1, WRKY45, and OsNPR1 were expressed in the presence of 5 mM polyamine oxygenase (PA) inhibitor guazatine (GAZ). investigated. The results are shown in FIG. The expression promotion of rice disease resistance marker gene by YIS12OH4N (HydLau) was further enhanced in the presence of guazatine.

例10
例4と同様の方法により双子葉類であるシロイヌナズナに対してYIS12OH1N(1NHydLau)、YIS12OH4N(HydLau)、1N Non、Bnz、及びスペルミジン(Spd)による処理を行ない、肉眼により細胞死の観察を行った。結果を図15に示す。シロイヌナズナに対しても1NHydLau、HydLau、及び1N Nonは強い細胞死を惹起した。YIS12OH1N(1NHydLau)とYIS12OH4N(HydLau)を用いてPR1遺伝子発現促進作用を検討した結果を図16に示す。24時間後及び82時間後においてHydLauは1NHydLauに比べて3倍程度のPR1遺伝子促進作用を発揮した。
Example 10
The dicotyledon Arabidopsis thaliana was treated with YIS12OH1N (1NHydLau), YIS12OH4N (HydLau), 1N Non, Bnz, and spermidine (Spd) in the same manner as in Example 4, and cell death was observed with the naked eye. . The results are shown in FIG. Also in Arabidopsis thaliana, 1NHydLau, HydLau, and 1N Non caused strong cell death. The results of examining the PR1 gene expression promoting action using YIS12OH1N (1NHydLau) and YIS12OH4N (HydLau) are shown in FIG. After 24 hours and 82 hours, HydLau exerted a PR1 gene promoting action about 3 times that of 1NHydLau.

なお、本明細書に記載の引用文献に記載の内容は全て本明細書中に参照として取り込まれるものとする。   In addition, all the content described in the cited reference described in this specification shall be taken in as reference in this specification.

Claims (9)

下記の一般式(I):
(R3)NH-(CH2)4-N(R1)-(CH2)3-NH(R2)
(式中、R1及びR2のいずれか一方は炭素原子数8個から13個の直鎖アルカノイル基又は直鎖アルケノイル基(該直鎖アルカノイル基又は該直鎖アルケノイル基は1から3個の水酸基及び/又は炭素原子数1個から4個のアルキル基を1から3個有していてもよい)であり、他方は水素原子又はアミノ基の保護基を示し;R3は水素原子又はアミノ基の保護基を示す)で表される化合物又はその塩であって、アミノ基の保護基が、炭素原子数2から6個の直鎖又は分枝鎖アルカノイル基、炭素原子数2から6個の直鎖又は分枝鎖アルコキシカルボニル基、ベンジルオキシカルボニル基、ベンジル基、p-メトキシベンジル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、及びtert-ブトキシカルボニル(Boc)基からなる群より選択されるいずれかである化合物又はその塩(但し、R 1 が水素原子であり、R 2 が炭素原子数12個の直鎖アルカノイル基であり、R 3 が水素原子である化合物;R 1 が炭素原子数12個の直鎖アルカノイル基であり、R 2 及びR 3 がBoc基である化合物;並びにR 1 が炭素原子数12個の直鎖アルカノイル基であり、R 2 及びR 3 が水素原子である化合物及びその二塩酸塩を除く。)
The following general formula (I):
(R 3 ) NH- (CH 2 ) 4 -N (R 1 )-(CH 2 ) 3 -NH (R 2 )
(In the formula, any one of R 1 and R 2 is a straight chain alkanoyl group or straight chain alkenoyl group having 8 to 13 carbon atoms ( the straight chain alkanoyl group or straight chain alkenoyl group is 1 to 3 carbon atoms) A hydroxyl group and / or an alkyl group having 1 to 4 carbon atoms (which may have 1 to 3 carbon atoms), the other represents a protecting group for a hydrogen atom or an amino group; R 3 represents a hydrogen atom or an amino group Or a salt thereof , wherein the amino-protecting group is a linear or branched alkanoyl group having 2 to 6 carbon atoms, or 2 to 6 carbon atoms. From a linear or branched alkoxycarbonyl group, benzyloxycarbonyl group, benzyl group, p-methoxybenzyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, and tert-butoxycarbonyl (Boc) group. Any one selected from the group Or a salt thereof (provided that R 1 is a hydrogen atom, R 2 is a linear alkanoyl group having 12 carbon atoms, and R 3 is a hydrogen atom; R 1 is a carbon atom having 12 carbon atoms ; A compound in which R 2 and R 3 are Boc groups, and a compound in which R 1 is a linear alkanoyl group having 12 carbon atoms and R 2 and R 3 are hydrogen atoms, Excluding hydrochloride) .
R1及びR2のいずれか一方が炭素原子数8個から13個の直鎖アルカノイル基(該直鎖アルカノイル基は1から3個の水酸基を有していてもよい)であり、他方が水素原子又はアミノ基の保護基であり、R3が水素原子又はアミノ基の保護基である請求項1に記載の化合物又はその塩。 One of R 1 and R 2 is a straight chain alkanoyl group having 8 to 13 carbon atoms (the straight chain alkanoyl group may have 1 to 3 hydroxyl groups), and the other is hydrogen The compound or a salt thereof according to claim 1, which is a protecting group for an atom or an amino group, and R 3 is a protecting group for a hydrogen atom or an amino group. 該直鎖アルカノイル基が、炭素原子数が9から12個の直鎖アルカノイル基(該直鎖アルカノイル基は1から2個の水酸基を有していてもよい)である請求項1又は2に記載の化合物又はその塩。 Straight-chain alkanoyl groups, according to claim 1 or 2 carbon atoms is 9-12 straight-chain alkanoyl group (straight-chain alkanoyl group may have two hydroxyl groups from 1) Or a salt thereof. 該直鎖アルカノイル基が、炭素原子数が9から12個の直鎖アルカノイル基(該直鎖アルカノイル基は1個の水酸基を有する)である請求項1又は2に記載の化合物又はその塩。 The compound or a salt thereof according to claim 1 or 2 , wherein the straight-chain alkanoyl group is a straight-chain alkanoyl group having 9 to 12 carbon atoms (the straight-chain alkanoyl group has one hydroxyl group). 該直鎖アルカノイル基が、炭素原子数が9から12個の直鎖アルカノイル基(該直鎖アルカノイル基は末端に1個の水酸基を有する)である請求項1又は2に記載の化合物又はその塩。 The compound or a salt thereof according to claim 1 or 2 , wherein the linear alkanoyl group is a linear alkanoyl group having 9 to 12 carbon atoms (the linear alkanoyl group has one hydroxyl group at the terminal). . アミノ基の保護基が炭素原子数2から6個の直鎖又は分枝鎖アルカノイル基又は炭素原子数2から6個の直鎖又は分枝鎖アルコキシカルボニル基である請求項1ないしのいずれか1項に記載の化合物又はその塩。 Any one of the protective group of the amino groups claims 1 to 6 straight-chain or branched-chain alkoxycarbonyl group number of 2 linear or branched alkanoyl group or a carbon atom from 2 carbon atoms of six 5 2. The compound according to item 1 or a salt thereof. 下記の一般式(I):
(R 3 )NH-(CH 2 ) 4 -N(R 1 )-(CH 2 ) 3 -NH(R 2 )
(式中、R 1 及びR 2 のいずれか一方は炭素原子数6個から18個の直鎖アルカノイル基又は直鎖アルケノイル基(該直鎖アルカノイル基又は該直鎖アルケノイル基は1から3個の水酸基及び/又は炭素原子数1個から4個のアルキル基を1から3個有していてもよい)であり、他方は水素原子又はアミノ基の保護基を示し;R 3 は水素原子又はアミノ基の保護基を示す)で表される化合物又はその塩であって、アミノ基の保護基が、炭素原子数2から6個の直鎖又は分枝鎖アルカノイル基、炭素原子数2から6個の直鎖又は分枝鎖アルコキシカルボニル基、ベンジルオキシカルボニル基、ベンジル基、p-メトキシベンジル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、及びtert-ブトキシカルボニル(Boc)基からなる群より選択されるいずれかである化合物又はその塩を有効成分として含むプラントアクティベーター。
The following general formula (I):
(R 3 ) NH- (CH 2 ) 4 -N (R 1 )-(CH 2 ) 3 -NH (R 2 )
(In the formula, any one of R 1 and R 2 is a straight chain alkanoyl group or straight chain alkenoyl group having 6 to 18 carbon atoms (the straight chain alkanoyl group or straight chain alkenoyl group is 1 to 3 carbon atoms) A hydroxyl group and / or an alkyl group having 1 to 4 carbon atoms (which may have 1 to 3 carbon atoms), the other represents a protecting group for a hydrogen atom or an amino group; R 3 represents a hydrogen atom or an amino group a group or a salt thereof with a protecting a group), the protecting group of amino group is, six straight or branched chain alkanoyl group having 2 carbon atoms of six, from 2 carbon atoms From a linear or branched alkoxycarbonyl group, benzyloxycarbonyl group, benzyl group, p-methoxybenzyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, and tert-butoxycarbonyl (Boc) group. Any one selected from the group A plant activator comprising a compound or a salt thereof as an active ingredient.
植物における病害の防除のために用いる請求項に記載のプラントアクティベーター。 The plant activator according to claim 7 , which is used for controlling diseases in plants. 植物における病害の防除方法であって、下記の一般式(I):
(R 3 )NH-(CH 2 ) 4 -N(R 1 )-(CH 2 ) 3 -NH(R 2 )
(式中、R 1 及びR 2 のいずれか一方は炭素原子数6個から18個の直鎖アルカノイル基又は直鎖アルケノイル基(該直鎖アルカノイル基又は該直鎖アルケノイル基は1から3個の水酸基及び/又は炭素原子数1個から4個のアルキル基を1から3個有していてもよい)であり、他方は水素原子又はアミノ基の保護基を示し;R 3 は水素原子又はアミノ基の保護基を示す)で表される化合物又はその塩であって、アミノ基の保護基が、炭素原子数2から6個の直鎖又は分枝鎖アルカノイル基、炭素原子数2から6個の直鎖又は分枝鎖アルコキシカルボニル基、ベンジルオキシカルボニル基、ベンジル基、p-メトキシベンジル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、及びtert-ブトキシカルボニル(Boc)基からなる群より選択されるいずれかである化合物又はその塩の防除有効量を植物に施用する工程を含む方法。
A method for controlling diseases in plants, the following general formula (I):
(R 3 ) NH- (CH 2 ) 4 -N (R 1 )-(CH 2 ) 3 -NH (R 2 )
(In the formula, any one of R 1 and R 2 is a straight chain alkanoyl group or straight chain alkenoyl group having 6 to 18 carbon atoms (the straight chain alkanoyl group or straight chain alkenoyl group is 1 to 3 carbon atoms) A hydroxyl group and / or an alkyl group having 1 to 4 carbon atoms (which may have 1 to 3 carbon atoms), the other represents a protecting group for a hydrogen atom or an amino group; R 3 represents a hydrogen atom or an amino group a group or a salt thereof with a protecting a group), the protecting group of amino group is, six straight or branched chain alkanoyl group having 2 carbon atoms of six, from 2 carbon atoms From a linear or branched alkoxycarbonyl group, benzyloxycarbonyl group, benzyl group, p-methoxybenzyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, and tert-butoxycarbonyl (Boc) group. Any one selected from the group And a step of applying to the plant an effective amount of the compound or salt thereof .
JP2012036947A 2011-02-24 2012-02-23 Plant activator Expired - Fee Related JP6061321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036947A JP6061321B2 (en) 2011-02-24 2012-02-23 Plant activator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011038545 2011-02-24
JP2011038545 2011-02-24
JP2011215860 2011-09-30
JP2011215860 2011-09-30
JP2012036947A JP6061321B2 (en) 2011-02-24 2012-02-23 Plant activator

Publications (2)

Publication Number Publication Date
JP2013082661A JP2013082661A (en) 2013-05-09
JP6061321B2 true JP6061321B2 (en) 2017-01-18

Family

ID=48528247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036947A Expired - Fee Related JP6061321B2 (en) 2011-02-24 2012-02-23 Plant activator

Country Status (1)

Country Link
JP (1) JP6061321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248690A1 (en) * 2022-06-20 2023-12-28 パナソニックIpマネジメント株式会社 Agent for inducing plant disease resistance, method for inducing plant disease resistance, and method for producing agent for inducing plant disease resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2153160A1 (en) * 1971-10-26 1973-05-03 Huels Chemische Werke Ag ANTI-ELECTROSTATIC MOLDS AND MOLDED BODIES MADE OF POLYOLEFINES
JPS6153250A (en) * 1984-08-21 1986-03-17 Fujisawa Pharmaceut Co Ltd Spermidine derivative
IT1313594B1 (en) * 1999-08-03 2002-09-09 Novuspharma Spa BISPLATIN ORAL ACTIVITIES.

Also Published As

Publication number Publication date
JP2013082661A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
FI63567C (en) SUBSTITUTES FURAN-2-CARBONSYRA ANILID WITH FUNGICIDIC VERKAN OCH DESS ANVAENDNING
KR0167336B1 (en) Fungicidal substituted amino acid amide derivatives, their preparation and use thereof
HRP20020908A2 (en) Novel phenyl-propargylether derivatives
JPH04230652A (en) Substituted valinamide derivative
MX2007000737A (en) Diamine derivative, process for producing the same and fungicide containing the derivative as active ingredient.
JP6139033B2 (en) Pyrazolylamide compound and use thereof
KR101182334B1 (en) Method of Synthesizing Ramalin
FI61476B (en) SAOSOM VAEXTFUNGICIDER ANVAENDBARA HALOGENACETANILIDER
KR0185970B1 (en) Substituted amino acid amide derivatives, their preparation and use
US20150119251A1 (en) Agricultural plant-protecting agents containing dipeptide derivative as active ingredient
FI61478C (en) VAEXTFUNGICIDA N- (1'-METOXY- OCH ETOXICARBONYL-ETHYL) -N-ACYL-ANILIN DERIVATIVES
JP6061321B2 (en) Plant activator
CS209549B2 (en) Mixture of the stereoisomeres alpha-kyan-3-phenoxy-benzyl-2-(4-chlorphenyl)isovalerate and method of preparation of the same
KR100473534B1 (en) Agricultural fungicide composition containing (S) -N-acetonylbenzamide compound, method for controlling plant pathogenic fungi using the same, and method for preparing (S) -N-acetonylbenzamide compound
US8741807B2 (en) Plant activator
SU1228774A3 (en) Method of fighting phytopathogenic fungi
ES2536973T3 (en) Phenethylamide derivatives of alpha-oxygenated carboxylic acid
WO2015040061A1 (en) Compounds and their use as antagonists of jasmonate perception
WO2024010005A1 (en) Method for preventing insect damage to plants
JPH04230653A (en) Amino acid amide derivative, process for preparing same and control of noxious organism by using same
RU2067832C1 (en) Method of struggle against fungal infection in plants
DE102009022619B4 (en) Antioomycotica
WO1997014673A1 (en) Iminoacetic acid amides and their use as pest control agents
Srinivasulu et al. Synthesis and Bioactivity of Some New 2‐(Alkoxy carbonyl alkyl)‐6‐bromo‐3, 4‐dihydro‐3‐(α‐methyl benzyl)‐2‐oxo‐benzo [e][2H‐1, 3, 2‐oxazaphosphinine] Derivatives
CN100488954C (en) Aryl-substituted iso-oxazoline compounds used as bactericide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6061321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees