JP6059919B2 - Sample transport device - Google Patents

Sample transport device Download PDF

Info

Publication number
JP6059919B2
JP6059919B2 JP2012189416A JP2012189416A JP6059919B2 JP 6059919 B2 JP6059919 B2 JP 6059919B2 JP 2012189416 A JP2012189416 A JP 2012189416A JP 2012189416 A JP2012189416 A JP 2012189416A JP 6059919 B2 JP6059919 B2 JP 6059919B2
Authority
JP
Japan
Prior art keywords
sample
fixing
transport device
exhaust chamber
preliminary exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012189416A
Other languages
Japanese (ja)
Other versions
JP2014049213A (en
Inventor
尚平 寺田
尚平 寺田
悠香 腰越
悠香 腰越
博光 清野
博光 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012189416A priority Critical patent/JP6059919B2/en
Priority to PCT/JP2013/068589 priority patent/WO2014034276A1/en
Publication of JP2014049213A publication Critical patent/JP2014049213A/en
Application granted granted Critical
Publication of JP6059919B2 publication Critical patent/JP6059919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、集束イオンビーム装置、走査電子顕微鏡等の試料の搬送装置に関し、特に、不活性雰囲気下中のグローブボックスから試料を取り出し、不活性雰囲気もしくは真空状態で大気に曝露する時間を最小限に抑えたまま、集束イオンビーム装置、走査電子顕微鏡等の本体内に挿入することを可能にするための試料搬送装置に関する。 The present invention relates to a sample transport apparatus such as a focused ion beam apparatus and a scanning electron microscope, and in particular, takes out a sample from a glove box in an inert atmosphere and minimizes the time for exposure to the atmosphere in an inert atmosphere or a vacuum state. The present invention relates to a sample transport device for enabling insertion into a main body of a focused ion beam device, a scanning electron microscope, or the like while suppressing the pressure.

半導体デバイスや磁気デバイス等の加工寸法が微細化し、高集積化するとともに、これまで以上にデバイス特性の劣化や信頼性の低下が重要な問題となっている。近年では、新規プロセスの開発や量産過程で、ナノメータ領域の半導体デバイスの不良の原因を根本的に突き止め、解決するために、走査透過電子顕微鏡(Scanning Transmission Electron Microscopy:STEM)や透過電子顕微鏡(Transmission Electron Microscopy: TEM)と電子エネルギー損失分光法(Electron Energy Loss Spectroscopy:EELS)、エネルギー分散型X線分光法(Energy Dispersive X-ray spectroscopy:EDX)等を用いたスペクトル分析や二次元での元素分布分析が必須の分析手段となっている。
また近年では、リチウムイオン電池の正極用材材料、負極用材料等のエネルギー環境材料において、従来以上の飛躍的な材料特性の向上が望まれている。材料特性を向上させるためには、ナノレベルでの構造、化学結合状態の制御が重要な鍵を握る。そのため、上述の分析技術へのニーズが増加している。
従来、半導体デバイスや磁気デバイス等の場合、電気特性等において不良箇所と判断された箇所を(走査)透過型電子顕微鏡で観察したい場合、集束イオンビーム装置(Focused Ion Beam:FIB)にデバイスを挿入し、挿入したデバイス内から観察近傍の領域のみを抽出した後、試料メッシュと呼ばれる透過電子顕微鏡用の試料台にタングステンガスにより固定させる。試料メッシュにタングステンガスにより固定した後は、集束イオンビーム装置のイオンビームにより、透過電子顕微鏡で観察可能な試料膜厚まで薄片化される。
リチウムイオン電池においても、電池特性の試験において、容量劣化、内部抵抗上昇等の特性劣化を判断する。電池特性の試験後、容量劣化、内部抵抗上昇等が発生した電池については、特性劣化要因を調査するため、リチウムイオン電池を解体し、正極、負極等に対して種々の分析が実施される。リチウムイオン電池の正極、負極は、大気中の水分や酸素と反応しやすいため、通常グローブボックスといわれるアルゴンガスの不活性ガス雰囲気下で取り扱われる。
解体後のリチウムイオン電池の正極、負極において、走査透過電子顕微鏡や透過電子顕微鏡用の試料を作製する場合、半導体デバイスや磁気デバイスと同様に集束イオンビーム装置において所望の観察位置を抽出し、試料メッシュにタングステンガスにより試料を固定した後、イオンビームにより薄片化する。
上述の場合、グローブボックスで解体した電極の一部は、グローブボックスから集束イオンビーム装置へ大気中を搬送される。しかしリチウムイオン電池の正極、負極は大気中の水分や酸素と反応しやすいため、集束イオンビーム装置で走査透過電子顕微鏡や透過電子顕微鏡用の試料を作製する前に搬送時に大気に曝露した場合、試料の変質や、酸化が進行する可能性がある。
これまで、集束イオンビーム装置や走査電子顕微鏡用の加工・測定用試料を大気に曝露する時間を最小限に抑えて、装置本体内へ挿入する技術について開示されている。
特許文献1では、試料台を収容する気密室と、気密室に連接して設けたゲートバルブと、前記試料台の位置を3次元方向に移動可能とする手段とを備えていることを特徴とする試料搬送容器に関する技術が開示されており、試料上の配線の切断や接続を行う装置間を真空状態のまま搬送可能としている。
また、特許文献2では、収束イオンビーム装置を用いて断面試料を作製した際に、試料を大気に曝す時間を最小限に抑えるため、真空排気装置によって排気される真空排気部に連通する真空排気可能な空間を有するメインケースと試料保管のための内部空間を有する脱着型ケースを備え、断面試料等を行った試料を簡易に真空環境下で保管したまま搬送可能な試料保存装置が開示されている。
さらに特許文献3では、化学気相成長法(Chemical Vapor Deposition:CVD)、分子線エピタキシー法(Molecular Beam Epitaxy:MBE)、スパッタ等の各種プロセス装置や、透過電子顕微鏡、2次イオン質量分析装置、光電子分光装置等の各種の評価装置をはじめ、各種処理装置間で試料を環境制御しながら搬送し、結晶構造、元素組成、結合状態等を試料作製直後の状態を保持したまま観察、測定下可能とする装置が開示されている。
その結果、いずれの開示技術においても、電子顕微鏡や試料作製装置間の試料の搬送において、大気に曝す時間を最小限に抑えて、試料を電子顕微鏡や試料作製装置内に挿入可能となる。
As processing dimensions of semiconductor devices, magnetic devices, and the like are miniaturized and highly integrated, device characteristics and reliability are more important than ever. In recent years, Scanning Transmission Electron Microscopy (STEM) and Transmission Electron Microscope (Transmission Electron Microscope) have been used to fundamentally identify and resolve the causes of defects in semiconductor devices in the nanometer range during the development and mass production of new processes. Electron Microscopy (TEM), Electron Energy Loss Spectroscopy (EELS), Energy Dispersive X-ray Spectroscopy (EDX), etc. for spectral analysis and two-dimensional element distribution Analysis has become an essential analytical tool.
In recent years, there has been a demand for dramatic improvements in material properties over conventional materials for energy environment materials such as positive electrode materials and negative electrode materials for lithium ion batteries. In order to improve material properties, control of the structure and chemical bonding state at the nano level is an important key. For this reason, the need for the above-described analysis technology is increasing.
Conventionally, in the case of semiconductor devices, magnetic devices, etc., if you want to observe a part that is judged to be defective in terms of electrical characteristics (scanning) with a transmission electron microscope, insert the device into a focused ion beam (FIB) And after extracting only the area | region near observation from the inserted device, it fixes to the sample stand for transmission electron microscopes called a sample mesh with tungsten gas. After fixing to the sample mesh with tungsten gas, the sample film is thinned to an observable film thickness with a transmission electron microscope by the ion beam of the focused ion beam device.
Also in the lithium ion battery, characteristic deterioration such as capacity deterioration and internal resistance increase is judged in the battery characteristic test. After a battery characteristic test, for a battery in which capacity deterioration, internal resistance increase, etc. occur, in order to investigate the characteristic deterioration factor, the lithium ion battery is disassembled and various analyzes are performed on the positive electrode, the negative electrode, and the like. Since the positive electrode and the negative electrode of a lithium ion battery easily react with moisture and oxygen in the atmosphere, they are usually handled in an inert gas atmosphere of argon gas called a glove box.
When preparing a sample for a scanning transmission electron microscope or a transmission electron microscope at the positive electrode and negative electrode of a lithium ion battery after disassembly, the sample is extracted from the desired observation position in the focused ion beam device in the same manner as a semiconductor device or a magnetic device. A sample is fixed to the mesh with tungsten gas, and then sliced with an ion beam.
In the above case, a part of the electrodes disassembled in the glove box is transported from the glove box to the focused ion beam device in the atmosphere. However, since the positive and negative electrodes of lithium-ion batteries are likely to react with moisture and oxygen in the atmosphere, if they are exposed to the atmosphere during transportation before preparing a sample for a scanning transmission electron microscope or transmission electron microscope with a focused ion beam device, There is a possibility of sample deterioration and oxidation.
So far, a technique for inserting a processing / measurement sample for a focused ion beam apparatus or a scanning electron microscope into the apparatus main body while minimizing the exposure time to the atmosphere has been disclosed.
Patent Document 1 includes an airtight chamber that houses a sample stage, a gate valve that is connected to the hermetic chamber, and a means that allows the position of the sample stage to move in a three-dimensional direction. A technique related to a sample transport container is disclosed, and it can be transported in a vacuum state between apparatuses for cutting and connecting wires on the sample.
Further, in Patent Document 2, when a cross-sectional sample is prepared using a focused ion beam device, a vacuum exhaust connected to a vacuum exhaust unit exhausted by a vacuum exhaust device in order to minimize the time for exposing the sample to the atmosphere Disclosed is a sample storage device that includes a main case having a space capable of being removed and a detachable case having an internal space for sample storage, and capable of transporting a cross-sectional sample or the like while being stored in a vacuum environment. Yes.
Furthermore, in Patent Document 3, various process devices such as chemical vapor deposition (CVD), molecular beam epitaxy (MBE), sputtering, transmission electron microscope, secondary ion mass spectrometer, Samples can be transported between various processing devices, including various evaluation devices such as photoelectron spectrometers, and the crystal structure, element composition, bonding state, etc. can be observed and measured while maintaining the state immediately after sample preparation. An apparatus is disclosed.
As a result, in any of the disclosed technologies, the sample can be inserted into the electron microscope or the sample preparation apparatus while minimizing the time of exposure to the atmosphere during the transfer of the sample between the electron microscope and the sample preparation apparatus.

特開昭63-287032号公報JP 63-287032 A 特開2009-80005号公報JP 2009-80005 特開平6-232238号公報JP-A-6-232238

特許文献1の試料搬送容器は、大気に曝す時間を最小限にして装置間の試料搬送を可能としているが、試料を配置するための気密室と大気とを分離するためのゲートバルブを有し、また試料台の位置を三次元方向に移動可能な手段を備えているため、試料搬送装置の体積が大きくなるとともに、更には重量も増加してしまう。
特許文献2に開示される試料保存装置においては、試料加工装置による試料加工前後において、試料を真空内に保持しながら搬送することは可能である。しかし、試料を本装置から試料加工装置内に挿入する際や、試料加工装置から本装置にて保管する際には、装置内の保管室を大気開放し蓋を開ける必要があるため、試料が大気中を曝露してしまう。また本装置においても、装置内に真空仕切り弁、真空仕切り弁を開閉するための開閉つまみ等が必要となる。
特許文献3に開示される試料処理装置は、大気に曝露することなく環境制御しながら試料搬送が可能であるものの、試料作製装置、試料評価装置間の搬送にはトランスファロッドの先端に試料を配置し、トランスファロッドを移動することにより各装置間の搬送を可能としている。そのため、試料作製装置、試料評価装置は、トランスファーチャンバを介して接続されている必要があり、全体の装置構成が大型になってしまう。
本発明の目的は、荷電粒子線を照射して観察及び分析する試料を、大気に曝露する時間を最小限に抑えて、荷電粒子装置へ挿入可能な試料搬送装置を提供することにある。特に、荷電粒子装置に付随した予備排気室の空間が狭小の場合においても、対象試料を大気に曝露せず装置本体内へ挿入可能とする装置を提供することを目的とする。
The sample transfer container of Patent Document 1 enables sample transfer between apparatuses with a minimum exposure time to the atmosphere, but has a gate valve for separating the airtight chamber for placing the sample from the atmosphere. In addition, since the means for moving the position of the sample stage in the three-dimensional direction is provided, the volume of the sample transport device increases and the weight also increases.
In the sample storage device disclosed in Patent Document 2, the sample can be transported while being held in a vacuum before and after sample processing by the sample processing device. However, when a sample is inserted into the sample processing apparatus from the apparatus or stored in the apparatus from the sample processing apparatus, it is necessary to open the storage chamber in the apparatus to open the cover and open the lid. Exposure to the atmosphere. Also in this apparatus, a vacuum gate valve, an opening / closing knob for opening and closing the vacuum gate valve, and the like are required in the device.
Although the sample processing device disclosed in Patent Document 3 can transport samples while controlling the environment without exposure to the atmosphere, the sample is placed at the tip of the transfer rod for transport between the sample preparation device and the sample evaluation device. In addition, the transfer rod can be moved so as to be transferred between the devices. Therefore, the sample preparation device and the sample evaluation device need to be connected via the transfer chamber, and the entire device configuration becomes large.
An object of the present invention is to provide a sample transport device that can insert a sample to be observed and analyzed by irradiating a charged particle beam into the charged particle device while minimizing the exposure time to the atmosphere. In particular, an object of the present invention is to provide an apparatus that allows a target sample to be inserted into the apparatus main body without being exposed to the atmosphere even when the space of the preliminary exhaust chamber associated with the charged particle apparatus is small.

上記課題を解決する手段として、本発明は、以下の構成を備える。予備排気室を備えた荷電粒子線装置に試料を搬送するための試料搬送装置において、試料を固定するための試料固定台と、前記試料固定台が内部に配置される試料挿入用台と、前記試料固定台が配置される空間を包囲する大気非曝露ケースと、前記大気暴露ケースと前記試料挿入用台を密着して前記固定台が配置される空間を真空もしくは不活性雰囲気状態に維持する密封用部材と、前記試料固定台の高さを調整するための高さ調整ネジを備えることを特徴とする試料搬送装置。
また、予備排気室を備えた荷電粒子線装置に試料を搬送する試料搬送方法であって、大気非曝露ケースおよび大気非曝露ケースにより真空もしくは不活性雰囲気状態を維持した試料固定台を設置した試料挿入用台を予備排気室内に設置し、前記予備排気室内を真空排気した後、試料固定台を設置した試料挿入用台を装置本体に挿入することを特徴とする試料搬送方法を提供する。
As means for solving the above problems, the present invention comprises the following arrangement. In a sample transport device for transporting a sample to a charged particle beam device having a preliminary exhaust chamber, a sample fixing base for fixing a sample, a sample insertion base in which the sample fixing base is disposed, A non-exposed case surrounding the space in which the sample fixing base is disposed, and a seal that maintains the space in which the fixing base is disposed in a vacuum or an inert atmosphere by closely contacting the atmospheric exposure case and the sample insertion base. A sample transport device comprising: a member for use and a height adjusting screw for adjusting the height of the sample fixing base.
Also, a sample transport method for transporting a sample to a charged particle beam apparatus equipped with a preliminary exhaust chamber, in which a sample fixing base that maintains a vacuum or an inert atmosphere state in an air non-exposed case and an air non-exposed case is installed. There is provided a sample transporting method characterized in that an insertion table is installed in a preliminary exhaust chamber, and after the vacuum chamber is evacuated, a sample insertion table on which a sample fixing table is installed is inserted into the apparatus main body.

本発明の試料搬送装置によれば、集束イオンビーム装置、走査電子顕微鏡等の荷電粒子線装置で試料加工、観察される試料を真空もしくは所望のガス雰囲気内で搬送可能であり、試料の搬送中に大気に曝す時間を最小限に抑えることが出来るため、試料の酸化、変質を抑えることが可能である。また、大気非開放ケース内に試料を格納し、密封用部品で大気を遮断することで、狭小空間の荷電粒子線装置の予備排気室内に設置可能とした試料搬送装置を提供できる。
According to the sample transport device of the present invention, a sample to be processed and observed by a charged particle beam device such as a focused ion beam device or a scanning electron microscope can be transported in a vacuum or in a desired gas atmosphere. Since the time for exposure to the atmosphere can be minimized, it is possible to suppress oxidation and alteration of the sample. Further, it is possible to provide a sample transport device that can be installed in a preliminary exhaust chamber of a charged particle beam device in a narrow space by storing a sample in a non-atmospheric case and blocking the atmosphere with a sealing component.

本発明の試料搬送装置の一例を示す概略断面構成図。1 is a schematic cross-sectional configuration diagram illustrating an example of a sample transport device of the present invention. 従来の集束イオンビーム装置の一例を示す概略構成図。The schematic block diagram which shows an example of the conventional focused ion beam apparatus. 従来の集束イオンビーム装置の一例を示す概略構成図。The schematic block diagram which shows an example of the conventional focused ion beam apparatus. 本発明の試料搬送装置の一例を示す概略断面構成図。1 is a schematic cross-sectional configuration diagram illustrating an example of a sample transport device of the present invention. 本発明の試料搬送装置の一例を示す概略上面図。The schematic top view which shows an example of the sample conveyance apparatus of this invention. 本発明の試料搬送装置の一例を示す概略前面図。The schematic front view which shows an example of the sample conveyance apparatus of this invention. 本発明の試料搬送装置を集束イオンビーム装置の予備排気室に設置した際の概略前面図。The schematic front view at the time of installing the sample conveyance apparatus of this invention in the preliminary | backup exhaust chamber of a focused ion beam apparatus. 本発明における一実施例の試料搬送装置の動作説明図。FIG. 3 is an operation explanatory diagram of a sample transport device according to an embodiment of the present invention. 本発明における一実施例の試料搬送装置の動作説明図。FIG. 3 is an operation explanatory diagram of a sample transport device according to an embodiment of the present invention. 本発明における一実施例の試料搬送装置の動作説明図。FIG. 3 is an operation explanatory diagram of a sample transport device according to an embodiment of the present invention. 本発明における集束イオンビーム装置の一例を示す概略断面図。1 is a schematic cross-sectional view showing an example of a focused ion beam apparatus according to the present invention. 本発明における集束イオンビーム装置の一例を示す概略断面図。1 is a schematic cross-sectional view showing an example of a focused ion beam apparatus according to the present invention. 本発明の試料搬送装置の使用手順を示したフローチャート。The flowchart which showed the use procedure of the sample conveyance apparatus of this invention. 本発明の試料搬送装置の試料固定台の別の一例を示す概略断面図。The schematic sectional drawing which shows another example of the sample fixing stand of the sample conveyance apparatus of this invention. 本発明の試料搬送装置を集束イオンビーム装置の予備排気室に設置した際の概略前面図。The schematic front view at the time of installing the sample conveyance apparatus of this invention in the preliminary | backup exhaust chamber of a focused ion beam apparatus. 本発明の試料搬送装置の別の一例を示す概略図。Schematic which shows another example of the sample conveyance apparatus of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符合を付し、その繰り返しの説明は省略する。また、荷電粒子線装置として集束イオンビーム装置を一例として以下説明する。
図2は、従来の集束イオンビーム装置の一例を示す概略構成図である。集束イオンビーム装置21は、イオン源22、集束レンズ23、ビーム偏向器24、対物レンズ25、探針26、二次電子検出器27、タングステン源28、制御装置31、ゲートバルブ15、予備排気室13、試料挿入棒14を備えている。
集束イオンビーム装置21内に試料を挿入する場合、試料10を配置した試料挿入用台3を試料挿入棒14の先端に固定した後、予備排気室13にて予備排気室13全体を十分に排気した後、ゲートバルブ15を開放し、図3に示すように試料10を固定した試料挿入用台3を集束イオンビーム装置21に設置し、試料挿入棒14を予備排気室13まで退避させた後、ゲートバルブ15を閉じる。なお、試料挿入用台3上には高さ調整ネジ5、試料固定台4が配置され、試料固定台4上に試料10が固定される。
試料10が集束イオンビーム装置21内に配置された後、イオン源31より発生したイオンビーム29は、集束レンズ33により集束され、試料固定台4に固定された試料10に照射される。イオンビーム29の試料10への照射位置は、ビーム偏向器24により指定される。また、試料10の一部を電子顕微鏡用試料として作製する場合、探針26により所望の位置から試料を抽出し、別の試料台へタングステン源28により発せられるタングステンガスにより固定される。
試料10からの抽出位置や、探針26の位置確認には、イオンビーム29がそれぞれにし照射される際に発生する二次電子を検出する二次電子検出器27を用いる。また、照射位置、探針位置等の制御は、制御装置31により制御される。
図1は、本発明の試料搬送装置の一例を示す概略断面構成図である。
図1において、試料搬送装置1は、大気非曝露ケース2、試料挿入用台3、試料固定台4、高さ調整ネジ5、上部密封用部品6、下部密封用部品7等から構成されている。
試料固定台4上には試料10が固定され、高さ調整ネジ5を介して試料挿入用台3と接続される。試料固定台4は、試料10の厚みに対応して高さ調整ネジ5により高さの調整が可能である。試料固定台4と高さ調整ネジ5は分離してある必要は無く、一体であっても特に問題は無い。
また、試料挿入用台3には、試料挿入棒固定用穴8があり、集束イオンビーム装置21の予備排気室13に配置された試料挿入棒14と接続される。また、試料挿入用台3の上下方向には、上部密封用部品6、下部密封用部品7が配置され、大気非曝露ケース2と接触している。真空容器内もしくは不活性ガス雰囲気内で大気非曝露ケース2内に試料挿入用台3が設置された際には、この上下の密封用部品6,7により試料固定台4上の試料10は大気と遮断されることとなる。試料10の高さは、大気非曝露ケース2内に収納可能な位置であれば高さ調整ネジ5により調整しどこに位置しても良い。また、上部密封用部品6、下部密封用部品7はオーリング等で良い。
図4は本発明の試料搬送装置の一例を示す概略断面構成図であり、図4に示すように、高さ調整ネジ5により試料固定台4すなわち試料10の高さを調整した後、高さ調整ネジ固定ネジ9により高さ調整ネジ5を強固に固定し、集束イオンビーム装置21等での試料加工、試料観察における試料ドリフトを低減することも可能である。
図5は、本発明の試料搬送装置の一例を示す概略上面図である。図5に示すように試料挿入用台3は大気非曝露ケース2内に格納され、また試料10を固定するための試料固定台3は、上部密封用部品6の内部に配置させる。この配置により、試料10は真空もしくは不活性ガス雰囲気中に配置可能となり試料10が大気に曝露されることはない。大気非曝露ケース2には、試料搬送装置固定用ネジ11が配置され、試料搬送装置1を集束イオンビーム装置1の予備排気室13に固定可能となる。
図6は、本発明の試料搬送装置の一例を示す概略前面図である。本前面図とは、図2に示す集束イオンビーム装置21のゲートバルブ15方向からの図である。試料挿入用台3は、大気非曝露ケース2に格納されており、また、大気非曝露ケース2には試料搬送装置固定用ネジ11が付属される。
図7は、本発明の試料搬送装置を集束イオンビーム装置の予備排気室に設置した際の概略前面図である。図6と同様に図7は集束イオンビーム装置21のゲートバルブ15方向から図示している。
予備排気室13内には、試料搬送装置固定棒12が配備され、試料搬送装置1は試料搬送装置固定用ネジ11により試料搬送装置固定棒12に固定される。予備排気室13における試料搬送装置1の固定方法はこれに限ることは無く、例えば図15のように予備排気室13内に試料搬送装置固定用ネジ61を配置しておき、大気非曝露ケース2に前記固定ネジを挿入可能なネジ穴を準備し、試料搬送装置固定用ネジ61をネジ穴に固定することとしても良い。また、この場合試料搬送装置固定用ネジ61は、予備排気室13内の上下左右のどの位置でも良い。
図8は、本発明における一実施例における試料搬送装置の動作説明図であり、予備排気室13内に試料搬送装置1を設置した直後の概略断面図である。試料搬送装置1は試料挿入棒14に固定されており、予備排気室13内に配置されて予備排気室13内を真空排気している際は、ゲートバルブ15は閉まっている。
予備排気室13が十分に真空排気された後、ゲートバルブ15が開放され(図9)、試料挿入棒14先端に固定された試料挿入用台3が集束イオンビーム装置21内に挿入される(図10)。
図11、12は本発明における集束イオンビーム装置の一例を示す概略断面図である。図11は予備排気室13内に試料搬送装置1が設置された直後の説明図であり、図12は集束イオンビーム装置21の本体内に試料挿入用台3が挿入されている状態の説明図である。
図13は、集束イオンビーム装置21で透過電子顕微鏡用の試料を作製するため、試料10を試料搬送装置1により、グローブボックスから集束イオンビーム装置21本体へ挿入する手順を示したフローチャートである。なお、グローブボックス内は、アルゴンガスで置換されている。
まず、グローブボックス内に試料搬送装置1を導入する。また、充放電試験を実施したリチウムイオン電池をグローブボックス内で解体する。(S101〜103)
グローブボックス内に挿入する際は、大気非曝露ケース2、試料挿入用固定台3、高さ調整ネジ5、試料固定台4等は別々に挿入しても良い。
グローブボックス内にて試料搬送装置1の試料挿入用台3と大気非曝露ケース2を分離し、試料固定台4に試料10が固定出来るようにする。本発明では、試料10はリチウムイオン電池の部材である負極材とした。リチウムイオン電池の負極材の一部を試料固定台4に固定した後、試料固定台4に載せた試料10の高さが上部密封用部品6よりも下となるよう高さ調整ネジ5により高さを調整する。試料10の高さを高さ調整ネジ5により調整した後、高さ調整ネジ用固定ネジ9により高さ調整ネジ5を強固に固定する(S104〜107)
グローブボックス内で大気非曝露ケース2の中に試料挿入台3を固定し、上部密封用部品6、下部密封用部品7と大気非曝露ケース2が十分に接触していることを確認した後、グローブボックスから試料搬送装置1を取り出す(S108)。
試料搬送装置1によりグローブボックスと集束イオンビーム装置21間すなわち大気中を搬送した後、集束イオンビーム装置21の予備排気室13に試料搬送装置1を固定し、また試料挿入用台3に設けられた試料挿入棒固定用穴8に試料挿入棒14をセットした後、予備排気室13を十分に真空排気する(S109,S110)。
予備排気室13が十分に真空排気された後、集束イオンビーム装置21のゲートバルブ15を開放した後、試料挿入棒14に固定された試料挿入用台3を集束イオンビーム装置21の本体内へ導入する。導入後、試料挿入棒14のみを取り出しゲートバルブ15を閉じる。ゲートバルブ15を閉じている間は、イオンビーム29はイオン源22から放出され二次電子検出器27により二次電子像の観察が可能となる(S111〜112)。
上記手順において、二次電子像の観察や、集束イオンビーム装置21中の探針26がリチウムイオン電池の部材を抽出する際に、大気非曝露ケース2は予備排気室13内に残存することになるが、予備排気室13と集束イオンビーム装置21本体は、ゲートバルブ15により真空状態が分離されているため、特に大きく真空度が悪くならない場合は、外さなくても良い。
図14は本発明の試料搬送装置の試料固定台の別の一例を示す概略断面図である。試料10の厚みに特に大きな変化が無く、試料10に対応して試料固定台4の高さを調整する必要が無い場合は、高さ調整ネジ5や試料固定台4を設ける必要が無く、試料挿入用台3に試料固定箇所51が設けられていれば良い。また、この場合下部密封用部品7は不要となる。
図16は、本発明の試料搬送装置の別の一例を示す概略図である。図16(a)は、試料搬送装置の上面図、図16(b)は図16(a)中に示したA-A′断面図、図16(c)は図16(a)中に示したB-B′断面図である。
図16に示した試料搬送装置1において、大気非曝露ケース2は中空円筒型の形状であり、試料挿入用台3は円柱状の形状である。また試料挿入用台3には、前方部密封用部品62、後方部密封用部品63を備え、大気非曝露ケース2内に試料挿入用台3が挿入された際に試料固定台4は真空もしくは不活性ガス雰囲気下で大気中を搬送可能である。
上記説明は、試料搬送装置を集束イオンビーム装置に適用した例を示したが、本発明は、上記装置への適用のみに限定されるものではなく、荷電粒子装置の予備排気室から試料挿入棒を用いて本体側面から試料を挿入する装置全てに適応可能である。
前記、装置本体側面から試料挿入棒により試料を挿入する方式の荷電粒子装置とは、例えば、集束イオンビーム装置、走査型電子顕微鏡、ヘリウム顕微鏡、オージェ電子分光装置等が挙げられる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
本発明において、試料の観察および分析を荷電粒子線装置に特化して記載したが、予備排気室を有する装置であれば、特に限定されるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. Further, a focused ion beam apparatus will be described below as an example of the charged particle beam apparatus.
FIG. 2 is a schematic configuration diagram showing an example of a conventional focused ion beam apparatus. The focused ion beam device 21 includes an ion source 22, a focusing lens 23, a beam deflector 24, an objective lens 25, a probe 26, a secondary electron detector 27, a tungsten source 28, a control device 31, a gate valve 15, and a preliminary exhaust chamber. 13. A sample insertion rod 14 is provided.
When inserting the sample into the focused ion beam device 21, the sample insertion base 3 on which the sample 10 is placed is fixed to the tip of the sample insertion rod 14, and then the entire preliminary exhaust chamber 13 is exhausted sufficiently in the preliminary exhaust chamber 13. After the gate valve 15 is opened, the sample insertion base 3 with the sample 10 fixed thereon is installed in the focused ion beam device 21 as shown in FIG. 3, and the sample insertion rod 14 is retracted to the preliminary exhaust chamber 13. Close the gate valve 15. A height adjusting screw 5 and a sample fixing table 4 are arranged on the sample insertion table 3, and the sample 10 is fixed on the sample fixing table 4.
After the sample 10 is placed in the focused ion beam device 21, the ion beam 29 generated from the ion source 31 is focused by the focusing lens 33 and irradiated onto the sample 10 fixed to the sample fixing base 4. The irradiation position of the ion beam 29 on the sample 10 is designated by the beam deflector 24. When a part of the sample 10 is produced as a sample for an electron microscope, the sample is extracted from a desired position by the probe 26 and fixed to another sample stage by tungsten gas emitted from the tungsten source 28.
In order to confirm the extraction position from the sample 10 and the position of the probe 26, a secondary electron detector 27 is used to detect secondary electrons generated when the ion beam 29 is irradiated. Control of the irradiation position, probe position, etc. is controlled by the control device 31.
FIG. 1 is a schematic cross-sectional configuration diagram showing an example of a sample transport device of the present invention.
In FIG. 1, the sample transport apparatus 1 includes an air non-exposed case 2, a sample insertion table 3, a sample fixing table 4, a height adjusting screw 5, an upper sealing component 6, a lower sealing component 7, and the like. .
A sample 10 is fixed on the sample fixing base 4 and connected to the sample insertion base 3 via a height adjusting screw 5. The height of the sample fixing base 4 can be adjusted by a height adjusting screw 5 corresponding to the thickness of the sample 10. The sample fixing base 4 and the height adjusting screw 5 do not need to be separated from each other, and there is no particular problem even if they are integrated.
Further, the sample insertion table 3 has a sample insertion rod fixing hole 8 and is connected to the sample insertion rod 14 disposed in the preliminary exhaust chamber 13 of the focused ion beam device 21. In addition, an upper sealing part 6 and a lower sealing part 7 are arranged in the vertical direction of the sample insertion table 3 and are in contact with the non-atmospheric case 2. When the sample insertion table 3 is installed in the air non-exposed case 2 in a vacuum vessel or in an inert gas atmosphere, the sample 10 on the sample fixing table 4 is moved to the atmosphere by the upper and lower sealing parts 6 and 7. Will be cut off. The height of the sample 10 may be adjusted by the height adjusting screw 5 as long as it can be stored in the non-atmosphere exposed case 2 and located anywhere. The upper sealing part 6 and the lower sealing part 7 may be O-rings or the like.
FIG. 4 is a schematic cross-sectional configuration diagram showing an example of the sample transport device of the present invention. As shown in FIG. 4, after adjusting the height of the sample fixing base 4, that is, the sample 10 with the height adjusting screw 5, the height The height adjusting screw 5 can be firmly fixed by the adjusting screw fixing screw 9 to reduce sample drift in sample processing and sample observation by the focused ion beam device 21 or the like.
FIG. 5 is a schematic top view showing an example of the sample transport device of the present invention. As shown in FIG. 5, the sample insertion table 3 is stored in the air non-exposed case 2, and the sample fixing table 3 for fixing the sample 10 is arranged inside the upper sealing part 6. With this arrangement, the sample 10 can be placed in a vacuum or an inert gas atmosphere, and the sample 10 is not exposed to the atmosphere. In the air non-exposed case 2, a sample transport device fixing screw 11 is arranged, and the sample transport device 1 can be fixed to the preliminary exhaust chamber 13 of the focused ion beam device 1.
FIG. 6 is a schematic front view showing an example of the sample transport device of the present invention. This front view is a view from the direction of the gate valve 15 of the focused ion beam device 21 shown in FIG. The sample insertion table 3 is stored in the air non-exposed case 2, and the sample conveying device fixing screw 11 is attached to the air non-exposed case 2.
FIG. 7 is a schematic front view when the sample transport device of the present invention is installed in the preliminary exhaust chamber of the focused ion beam device. Similar to FIG. 6, FIG. 7 illustrates the focused ion beam device 21 from the direction of the gate valve 15.
A sample transport device fixing rod 12 is provided in the preliminary exhaust chamber 13, and the sample transport device 1 is fixed to the sample transport device fixing rod 12 by a sample transport device fixing screw 11. The method of fixing the sample transport device 1 in the preliminary exhaust chamber 13 is not limited to this. For example, as shown in FIG. 15, a sample transport device fixing screw 61 is arranged in the preliminary exhaust chamber 13 so that the case 2 is not exposed to the atmosphere. Alternatively, a screw hole into which the fixing screw can be inserted may be prepared, and the sample transport device fixing screw 61 may be fixed to the screw hole. In this case, the sample transport device fixing screw 61 may be located at any position in the preliminary exhaust chamber 13 in the vertical and horizontal directions.
FIG. 8 is an explanatory view of the operation of the sample transport device in one embodiment of the present invention, and is a schematic cross-sectional view immediately after the sample transport device 1 is installed in the preliminary exhaust chamber 13. The sample transport device 1 is fixed to the sample insertion rod 14, and the gate valve 15 is closed when the preliminary exhaust chamber 13 is evacuated while being disposed in the preliminary exhaust chamber 13.
After the preliminary exhaust chamber 13 is sufficiently evacuated, the gate valve 15 is opened (FIG. 9), and the sample insertion table 3 fixed to the tip of the sample insertion rod 14 is inserted into the focused ion beam device 21 ( Figure 10).
11 and 12 are schematic sectional views showing an example of the focused ion beam apparatus according to the present invention. FIG. 11 is an explanatory diagram immediately after the sample transport device 1 is installed in the preliminary exhaust chamber 13, and FIG. 12 is an explanatory diagram of a state in which the sample insertion table 3 is inserted in the main body of the focused ion beam device 21. It is.
FIG. 13 is a flowchart showing a procedure for inserting the sample 10 from the glove box into the main body of the focused ion beam device 21 by the sample transport device 1 in order to produce a sample for the transmission electron microscope with the focused ion beam device 21. The inside of the glove box is replaced with argon gas.
First, the sample transport device 1 is introduced into the glove box. Moreover, the lithium ion battery which performed the charging / discharging test is disassembled in a glove box. (S101-103)
When inserted into the glove box, the non-atmospheric exposure case 2, the sample insertion fixing base 3, the height adjusting screw 5, the sample fixing base 4, etc. may be inserted separately.
In the glove box, the sample insertion table 3 of the sample transport device 1 and the air non-exposed case 2 are separated so that the sample 10 can be fixed to the sample fixing table 4. In the present invention, the sample 10 is a negative electrode material that is a member of a lithium ion battery. After a part of the negative electrode material of the lithium ion battery is fixed to the sample fixing base 4, the height of the sample 10 placed on the sample fixing base 4 is increased by the height adjusting screw 5 so that it is lower than the upper sealing part 6. Adjust the height. After adjusting the height of the sample 10 with the height adjustment screw 5, the height adjustment screw 5 is firmly fixed with the height adjustment screw fixing screw 9 (S104 to 107).
After fixing the sample insertion table 3 in the air non-exposed case 2 in the glove box and confirming that the upper sealing part 6, the lower sealing part 7 and the air non-exposed case 2 are in sufficient contact, The sample transport apparatus 1 is taken out from the glove box (S108).
After the sample transport device 1 transports between the glove box and the focused ion beam device 21, that is, in the atmosphere, the sample transport device 1 is fixed to the preliminary exhaust chamber 13 of the focused ion beam device 21, and is provided on the sample insertion table 3. After the sample insertion rod 14 is set in the sample insertion rod fixing hole 8, the preliminary exhaust chamber 13 is sufficiently evacuated (S109, S110).
After the preliminary evacuation chamber 13 is sufficiently evacuated, the gate valve 15 of the focused ion beam device 21 is opened, and the sample insertion table 3 fixed to the sample insertion rod 14 is moved into the main body of the focused ion beam device 21. Introduce. After the introduction, only the sample insertion rod 14 is taken out and the gate valve 15 is closed. While the gate valve 15 is closed, the ion beam 29 is emitted from the ion source 22 and a secondary electron image can be observed by the secondary electron detector 27 (S111 to 112).
In the above procedure, when the secondary electron image is observed or when the probe 26 in the focused ion beam device 21 extracts a member of the lithium ion battery, the non-atmospheric case 2 remains in the preliminary exhaust chamber 13. However, since the vacuum state is separated from the preliminary exhaust chamber 13 and the focused ion beam apparatus 21 by the gate valve 15, it is not necessary to remove the vacuum chamber if the degree of vacuum is not particularly large.
FIG. 14 is a schematic cross-sectional view showing another example of the sample fixing base of the sample transport device of the present invention. When there is no significant change in the thickness of the sample 10 and there is no need to adjust the height of the sample fixing base 4 corresponding to the sample 10, there is no need to provide the height adjusting screw 5 or the sample fixing base 4, and the sample It is only necessary that the sample fixing portion 51 is provided on the insertion table 3. In this case, the lower sealing part 7 is not necessary.
FIG. 16 is a schematic view showing another example of the sample transport device of the present invention. 16 (a) is a top view of the sample transport device, FIG. 16 (b) is a cross-sectional view along AA ′ shown in FIG. 16 (a), and FIG. 16 (c) is a BB shown in FIG. 16 (a). It is a cross-sectional view.
In the sample transport device 1 shown in FIG. 16, the air non-exposed case 2 has a hollow cylindrical shape, and the sample insertion table 3 has a columnar shape. Further, the sample insertion table 3 includes a front sealing part 62 and a rear sealing part 63. When the sample insertion table 3 is inserted into the non-atmospheric exposure case 2, the sample fixing table 4 is vacuum or It can be transported in the air under an inert gas atmosphere.
The above description shows an example in which the sample transport device is applied to a focused ion beam device. However, the present invention is not limited to the application to the above device, and a sample insertion rod is provided from a preliminary exhaust chamber of a charged particle device. It can be applied to all devices for inserting a sample from the side surface of the main body using.
Examples of the charged particle device in which a sample is inserted from the side surface of the device main body with a sample insertion rod include a focused ion beam device, a scanning electron microscope, a helium microscope, and an Auger electron spectrometer.
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
In the present invention, the observation and analysis of the sample are described specifically for the charged particle beam apparatus, but the apparatus is not particularly limited as long as the apparatus has a preliminary exhaust chamber.

1 試料搬送装置
2 大気非曝露ケース
3 試料挿入用台
4 試料固定台
5 高さ調整ネジ
6 上部密封用部品
7 下部密封用部品
8 試料挿入棒固定用穴
9 高さ調整ネジ用固定ネジ
10 試料
11 試料搬送装置固定用ネジ
12 試料搬送装置固定棒
13 予備排気室
14 試料挿入棒
15 ゲートバルブ
21 集束イオンビーム装置
22 イオン源
23 集束レンズ
24 ビーム偏向器
25 対物レンズ
26 探針
27 二次電子検出器
28 タングステン源
29 イオンビーム
31 制御装置
41 試料台回転用穴
51 試料固定箇所
61 試料搬送装置固定用ネジ
62 前方部密封用部品
63 後方部密封用部品
1 Sample transport device
2 Cases without exposure to air
3 Sample insertion table
4 Sample holder
5 Height adjustment screw
6 Upper sealing parts
7 Lower sealing parts
8 Hole for fixing sample insertion rod
9 Height adjusting screw fixing screw
10 samples
11 Fixing screw for sample transport device
12 Sample transport device fixing rod
13 Pre-exhaust chamber
14 Sample insertion rod
15 Gate valve
21 Focused ion beam system
22 Ion source
23 Focusing lens
24 beam deflector
25 Objective lens
26 Probe
27 Secondary electron detector
28 Tungsten source
29 Ion beam
31 Control unit
41 Sample stage rotation hole
51 Sample fixing point
61 Specimen transfer device fixing screw
62 Front sealing parts
63 Rear sealing parts

Claims (8)

予備排気室を備えた荷電粒子線装置に試料を搬送するための試料搬送装置において、
試料を固定するための試料固定台と、
前記試料固定台が内部に配置される試料挿入用台と、
前記試料固定台が配置される空間を包囲する大気非曝露ケースと、
前記大気非曝露ケースと前記試料挿入用台を密着して前記固定台が配置される空間を真空もしくは不活性雰囲気状態に維持する密封用部材と、
前記試料固定台の高さを調整するための高さ調整ネジを備えることを特徴とする試料搬送装置。
In a sample transport device for transporting a sample to a charged particle beam device having a preliminary exhaust chamber,
A sample fixing base for fixing the sample;
A sample insertion table in which the sample fixing table is disposed;
A non-atmospheric exposure case surrounding the space in which the sample fixing base is disposed;
A sealing member that maintains a space in which the fixed base is placed in close contact with the non- exposed case and the sample insertion table in a vacuum or an inert atmosphere state,
A sample transport apparatus comprising a height adjusting screw for adjusting the height of the sample fixing base.
請求項1の試料搬送装置において、
前記密封用部材はオーリングであることを特徴とする試料搬送装置。
In the sample transport device of claim 1,
The sample transporting device, wherein the sealing member is an O-ring.
請求項1の試料搬送装置において、
前記高さ調整ネジを固定するための高さ調整ネジ用固定ネジを有することを特徴とする試料搬送装置。
In the sample transport device of claim 1,
A sample transport apparatus comprising a height adjusting screw fixing screw for fixing the height adjusting screw.
請求項1の試料搬送装置において、
予備排気室内に試料搬送装置を固定するための試料搬送装置用固定用ネジを備えることを特徴とする試料搬送装置。
In the sample transport device of claim 1,
A sample transport device comprising a sample transport device fixing screw for fixing the sample transport device in the preliminary exhaust chamber.
請求項1の試料搬送装置において、
真空もしくは不活性雰囲気状態を維持するための密封用部材は、試料挿入用台の上下方向に配置されることを特徴とする試料搬送装置。
In the sample transport device of claim 1,
A sample transporting device, wherein a sealing member for maintaining a vacuum or an inert atmosphere is arranged in a vertical direction of a sample insertion table.
予備排気室を備えた荷電粒子線装置において、
試料を固定するための試料固定台と、
前記試料固定台が内部に配置される試料挿入用台と、
前記試料固定台が配置される空間を包囲する大気非曝露ケースと、
前記大気非曝露ケースと前記試料挿入用台を密着して前記固定台が配置される空間を真空もしくは不活性雰囲気状態に維持する密封用部材と、
前記試料固定台の高さを調整するための高さ調整ネジを備えた試料搬送装置が配置され、
前記予備排気室内に試料挿入用台を装置本体に挿入するための試料挿入棒および試料搬送装置を固定するための試料搬送装置固定棒を備えることを特徴とする荷電粒子線装置。
In a charged particle beam device equipped with a preliminary exhaust chamber,
A sample fixing base for fixing the sample;
A sample insertion table in which the sample fixing table is disposed;
A non-atmospheric exposure case surrounding the space in which the sample fixing base is disposed;
A sealing member that maintains a space in which the fixed base is placed in close contact with the non- exposed case and the sample insertion table in a vacuum or an inert atmosphere state,
A sample transport device provided with a height adjusting screw for adjusting the height of the sample fixing base is arranged,
A charged particle beam apparatus comprising: a sample insertion rod for inserting a sample insertion table into the apparatus main body and a sample conveyance device fixing rod for fixing a sample conveyance device in the preliminary exhaust chamber.
請求項6の荷電粒子線装置において、
大気非曝露ケースおよび大気非曝露ケースにより真空もしくは不活性雰囲気状態を維持した試料固定台を設置した試料挿入用台を予備排気室内に設置し、
前記予備排気室内を真空排気した後、試料固定台を設置した試料挿入用台を装置本体に挿入することを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 6,
A sample insertion table with a sample fixing table that has been maintained in a vacuum or inert atmosphere by an air non-exposed case and an air non-exposed case is installed in the preliminary exhaust chamber,
A charged particle beam apparatus characterized by inserting a sample insertion table on which a sample fixing table is installed into the apparatus main body after evacuating the preliminary exhaust chamber.
予備排気室を備えた荷電粒子線装置に試料を搬送する試料搬送方法であって、
試料を固定するための試料固定台と、前記試料固定台が内部に配置される試料挿入用台と、前記試料固定台が配置される空間を包囲する大気非曝露ケースと、前記大気非曝露ケースと前記試料挿入用台を密着して前記固定台が配置される空間を真空もしくは不活性雰囲気状態に維持する密封用部材と、前記試料固定台の高さを調整するための高さ調整ネジを備える試料搬送装置を使用し、
前記試料挿入用台を予備排気室内に設置し、
前記予備排気室内を真空排気した後、前記試料挿入用台を装置本体に挿入することを特徴とする試料搬送方法。
A sample transport method for transporting a sample to a charged particle beam apparatus provided with a preliminary exhaust chamber,
A sample fixing base for fixing a sample, a sample insertion base in which the sample fixing base is disposed, an air non-exposed case surrounding a space in which the sample fixing base is disposed, and the air non- exposed case A sealing member that keeps the space for placing the fixing table in a vacuum or an inert atmosphere in close contact with the sample insertion table, and a height adjusting screw for adjusting the height of the sample fixing table Use the sample transport device provided,
The sample insertion table is installed in a preliminary exhaust chamber,
A sample transporting method, comprising: evacuating the preliminary exhaust chamber and then inserting the sample insertion table into an apparatus main body.
JP2012189416A 2012-08-30 2012-08-30 Sample transport device Expired - Fee Related JP6059919B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012189416A JP6059919B2 (en) 2012-08-30 2012-08-30 Sample transport device
PCT/JP2013/068589 WO2014034276A1 (en) 2012-08-30 2013-07-08 Sample transport apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189416A JP6059919B2 (en) 2012-08-30 2012-08-30 Sample transport device

Publications (2)

Publication Number Publication Date
JP2014049213A JP2014049213A (en) 2014-03-17
JP6059919B2 true JP6059919B2 (en) 2017-01-11

Family

ID=50183098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189416A Expired - Fee Related JP6059919B2 (en) 2012-08-30 2012-08-30 Sample transport device

Country Status (2)

Country Link
JP (1) JP6059919B2 (en)
WO (1) WO2014034276A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527183B2 (en) * 1987-05-20 1996-08-21 株式会社日立製作所 Processing method and wiring correction method for semiconductor device
JPH06232238A (en) * 1993-02-05 1994-08-19 Hitachi Ltd Method and apparatus for sample processing
JP2001153760A (en) * 1999-11-30 2001-06-08 Shimadzu Corp Conveying sample container
JP2007108149A (en) * 2005-10-17 2007-04-26 Central Res Inst Of Electric Power Ind Sample transfer and analysis kit
JP4874912B2 (en) * 2007-09-26 2012-02-15 日本電子株式会社 Sample storage device
JP2011237292A (en) * 2010-05-11 2011-11-24 Sumitomo Electric Ind Ltd Sample introducing holder for introducing sample into a vacuum analyzer
TW201222617A (en) * 2010-10-07 2012-06-01 Hitachi High Tech Corp Sample device for charged particle beam

Also Published As

Publication number Publication date
WO2014034276A1 (en) 2014-03-06
JP2014049213A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
US8410457B2 (en) Sample transfer device and sample transferring method
US8168948B2 (en) Method of machining a work piece with a focused particle beam
US8087309B2 (en) Hermetic sample holder and method for performing microanalysis under controlled atmosphere environment
US7592606B2 (en) Manufacturing equipment using ION beam or electron beam
US10475629B2 (en) Charged-particle microscope with in situ deposition functionality
JP6711655B2 (en) Focused ion beam device
EP2610891B1 (en) Charged particle beam device and sample observation method
US8716683B2 (en) Ion beam processing system and sample processing method
US11728146B2 (en) Retractable ion guide, grid holder, and technology for removal of cryogenic sample from vacuum
US20150075972A1 (en) Detaching Probe from TEM Sample during Sample Preparation
JP6059919B2 (en) Sample transport device
US8604445B2 (en) Method of evacuating sample holder, pumping system, and electron microscope
US12020895B2 (en) Systems and apparatuses for contamination-free vacuum transfer of samples
EP4027367A9 (en) Sample loading method and charged particle beam apparatus
JP5192411B2 (en) Ion beam processing apparatus and sample processing method
US20050054115A1 (en) Method of expeditiously using a focused-beam apparatus to extract samples for analysis from workpieces
CN113267517A (en) Object receiving container, object fixing system, and radiation apparatus
JP5530917B2 (en) Sample holder exhaust method and apparatus
WO2017111361A1 (en) Sample transfer container for analysis without exposure to atmosphere and sample transfer method
Zuo et al. Sample preparation
JP2018091687A (en) Analysis method
JPS61102740A (en) Reactive ion etching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R151 Written notification of patent or utility model registration

Ref document number: 6059919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees