JP6057573B2 - Dehumidifying air conditioning method and apparatus - Google Patents

Dehumidifying air conditioning method and apparatus Download PDF

Info

Publication number
JP6057573B2
JP6057573B2 JP2012153513A JP2012153513A JP6057573B2 JP 6057573 B2 JP6057573 B2 JP 6057573B2 JP 2012153513 A JP2012153513 A JP 2012153513A JP 2012153513 A JP2012153513 A JP 2012153513A JP 6057573 B2 JP6057573 B2 JP 6057573B2
Authority
JP
Japan
Prior art keywords
air
compressor
set value
discharge pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012153513A
Other languages
Japanese (ja)
Other versions
JP2014016090A (en
Inventor
仁隆 門脇
仁隆 門脇
富士夫 小松
富士夫 小松
野口 武史
武史 野口
正芳 清水
正芳 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2012153513A priority Critical patent/JP6057573B2/en
Publication of JP2014016090A publication Critical patent/JP2014016090A/en
Application granted granted Critical
Publication of JP6057573B2 publication Critical patent/JP6057573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、デシカントロータとヒートポンプ装置とを併用して室内空気の除湿及び空調を行う除湿空調装置及び方法に関する。   The present invention relates to a dehumidifying air-conditioning apparatus and method for dehumidifying and air-conditioning indoor air using a desiccant rotor and a heat pump device in combination.

空気中の水蒸気を吸着し除湿する手段として、扁平円筒体に吸着剤を担持させたデシカントロータが用いられている。水蒸気を吸着させた後、加熱した低湿度の再生空気に吸着領域を晒し、再生空気の保有熱で水蒸気を放出させる必要がある。そのため、吸着工程と再生とを交互に行う必要がある。水蒸気の吸着時、吸着熱が発生し、被処理空気が昇温するので、被処理空気を冷却する手段が必要になると共に、再生空気を予熱する手段が必要になる。   As a means for adsorbing water vapor in the air and dehumidifying, a desiccant rotor in which an adsorbent is supported on a flat cylindrical body is used. After the water vapor is adsorbed, it is necessary to expose the adsorption region to heated low-humidity regeneration air and release the water vapor with the heat retained in the regeneration air. Therefore, it is necessary to alternately perform the adsorption process and the regeneration. At the time of adsorption of water vapor, heat of adsorption is generated and the temperature of the air to be treated rises, so that a means for cooling the air to be treated is required and a means for preheating the regenerated air is necessary.

そのため、デシカントロータとヒートポンプ装置とを組み合わせた空調装置が用いられている。この空調装置は、吸着工程で昇温した被処理空気をヒートポンプ装置の一部を構成するエアクーラで行い、吸着した水蒸気を放出させる再生空気の予熱をヒートポンプ装置の一部を構成するエアヒータで行っている。かかる空調装置は、例えば、特許文献1に開示されているように公知である。 Therefore, an air conditioner in which a desiccant rotor and a heat pump device are combined is used. In this air conditioner, the air to be treated that has been heated in the adsorption process is performed by an air cooler that constitutes a part of the heat pump apparatus, and the regeneration air that releases the adsorbed water vapor is preheated by an air heater that constitutes a part of the heat pump apparatus. Yes. Such an air conditioner is known, for example, as disclosed in Patent Document 1.

他方、このヒートポンプ装置では、運転効率向上を目的として、圧縮機の吐出圧力を制御することが行われている。この制御は、例えば、膨張タンクを用い、冷媒循環路を流れる冷媒量を増減させることで行っている。そこで、冷媒循環路に設けられた膨張弁を挟んで冷媒循環路と膨張タンクとを2本の分岐路で接続し、これらの分岐路に夫々電磁開閉弁を設け、これらの電磁開閉弁を開閉することで冷媒量を増減している。   On the other hand, in this heat pump device, the discharge pressure of the compressor is controlled for the purpose of improving the operation efficiency. This control is performed, for example, by using an expansion tank and increasing or decreasing the amount of refrigerant flowing through the refrigerant circulation path. Therefore, the refrigerant circulation path and the expansion tank are connected by two branch paths across the expansion valve provided in the refrigerant circulation path, and electromagnetic switching valves are provided in these branch paths, and these electromagnetic switching valves are opened and closed. The amount of refrigerant is increased or decreased.

特開2001−241693号公報JP 2001-241893 A

デシカントロータとヒートポンプ装置とを組み合わせた空調装置では、圧縮機が、例えば45Hz前後の低回転の時、冷媒が不足する問題が生じていた。これは、エアクーラの冷却負荷が多く、エアヒータの加熱負荷が小さい運転条件のとき、しばしば発生している。加熱負荷が小さいとき、即ち、エアヒータの出口空気温度設定値が低いとき、圧縮機の回転数を減少させて、出口空気温度を調整している。このとき冷却負荷が大きいと、エアクーラの冷却能力を確保する必要があるが、圧縮機が低回転であるため、膨張弁を開いて冷媒循環量を増加させる操作を行う。しかし、もともと低回転で吐出圧力が低い上に、膨張弁を開くことで、圧縮機の吐出圧力がさらに低下する。   In an air conditioner that combines a desiccant rotor and a heat pump device, there has been a problem that the refrigerant is insufficient when the compressor rotates at a low speed of around 45 Hz, for example. This often occurs under operating conditions where the cooling load of the air cooler is large and the heating load of the air heater is small. When the heating load is small, that is, when the outlet air temperature set value of the air heater is low, the outlet air temperature is adjusted by decreasing the rotational speed of the compressor. If the cooling load is large at this time, it is necessary to ensure the cooling capacity of the air cooler. However, since the compressor is running at a low speed, an operation for opening the expansion valve and increasing the refrigerant circulation amount is performed. However, the discharge pressure of the compressor is further lowered by opening the expansion valve in addition to the low rotation pressure originally being low.

ここで、圧縮機の吐出圧力を設定値に戻すため、通常より多くの冷媒量が必要となり、この状態を解消するため、膨張タンクから冷媒を補充することになる。これによって、電磁開閉弁が開きっぱなしとなったり、あるいは電磁開閉弁の開閉動作が頻繁に行われ、運転状態が不安定になる。そのため、運転効率が低下すると共に、電磁開閉弁の摩耗や寿命低下が起るという問題がある。   Here, in order to return the discharge pressure of the compressor to the set value, a larger amount of refrigerant is required than usual, and in order to eliminate this state, the refrigerant is replenished from the expansion tank. As a result, the electromagnetic on-off valve remains open or the electromagnetic on-off valve is frequently opened and closed, resulting in an unstable operation state. For this reason, there is a problem in that the operating efficiency is lowered, and the electromagnetic on-off valve is worn and the life is shortened.

本発明は、かかる従来技術の課題に鑑み、デシカントロータとヒートポンプ装置とを併用した除湿空調装置において、加熱負荷と冷却負荷とがアンバランスなときでも、安定運転を保持し、運転効率の低下を防止すると共に、電磁開閉弁の摩耗や寿命低下を防止することを目的とする。   In view of the problems of the prior art, the present invention provides a dehumidifying air conditioner that uses a desiccant rotor and a heat pump device in combination, maintaining stable operation and reducing operating efficiency even when the heating load and the cooling load are unbalanced. The purpose is to prevent wear and decrease of the life of the electromagnetic on-off valve.

かかる目的を達成するため、本発明の除湿空調方法は、デシカントロータで被処理空気中の水分を吸着し被処理空気を除湿する除湿工程と、該除湿工程において吸着時に発生した熱で昇温した被処理空気を、ヒートポンプ装置の一部を構成するエアクーラで冷却した後、被空調室に供給する被処理空気供給工程と、ヒートポンプ装置の一部を構成するエアヒータで加熱した再生空気でデシカントロータを再生する再生工程とを行うことを前提とする。   In order to achieve this object, the dehumidifying air-conditioning method of the present invention uses a desiccant rotor to adsorb moisture in the air to be treated and dehumidify the air to be treated, and the temperature is raised by heat generated during adsorption in the dehumidifying step. After the air to be treated is cooled by an air cooler that constitutes a part of the heat pump device, the desiccant rotor is supplied with the air to be treated that is supplied to the air-conditioned room, and the regenerated air heated by the air heater that constitutes a part of the heat pump device. It is assumed that a reproduction process for reproduction is performed.

本発明方法は、ヒートポンプ装置の冷媒循環路に連通した膨張タンクの冷媒貯留量を調整することで圧縮機の吐出圧力を調整する第1工程と、デシカントロータ入口の再生空気の相対湿度又は温度の少なくとも一方を検出し、エアクーラ出口の被処理空気温度が設定値となるように、かつ相対湿度又は温度の少なくとも一方が設定値となるように、ヒートポンプ装置を構成する圧縮機の回転数を制御する第2工程と、圧縮機の回転数が下限閾値に達せず、かつ圧縮機の吐出圧力が設定値に達しない状態が設定時間を超えたとき、圧縮機の吐出圧力設定値を低減する第3工程と、圧縮機の回転数が上限閾値を超えた状態が設定時間を超えたとき、圧縮機の吐出圧力設定値を増加する第4工程とからなる。   The method of the present invention includes a first step of adjusting the discharge pressure of the compressor by adjusting the refrigerant storage amount of the expansion tank communicating with the refrigerant circulation path of the heat pump device, and the relative humidity or temperature of the regenerated air at the desiccant rotor inlet. At least one is detected, and the rotational speed of the compressor constituting the heat pump device is controlled so that the temperature of the air to be treated at the outlet of the air cooler becomes a set value and at least one of the relative humidity or temperature becomes the set value. A second step of reducing the compressor discharge pressure set value when the compressor rotation speed does not reach the lower limit threshold and the compressor discharge pressure does not reach the set value exceeds a set time; And a fourth step of increasing the discharge pressure set value of the compressor when the state in which the rotational speed of the compressor exceeds the upper limit threshold exceeds the set time.

再生空気によるデシカントロータの再生効果は、再生空気の相対湿度と温度とで決まる。再生空気の相対湿度が低ければ、デシカントロータに吸着された水蒸気の放出効果は大きい。また、再生空気の温度が高ければ、吸着している水蒸気に大きな放出エネルギを与えることができる。冬期など、外気を使用した再生空気の相対湿度が低ければ、再生空気の温度が高くなくても、放出効果を大きくすることができる。   The regeneration effect of the desiccant rotor by the regeneration air is determined by the relative humidity and temperature of the regeneration air. If the relative humidity of the regeneration air is low, the effect of releasing water vapor adsorbed on the desiccant rotor is large. Further, if the temperature of the regeneration air is high, a large release energy can be given to the adsorbed water vapor. If the relative humidity of the regeneration air using outside air is low, such as in winter, the release effect can be increased even if the temperature of the regeneration air is not high.

本発明では、膨張タンクの冷媒貯留量を調整することで、冷媒循環路を循環する冷媒量を調整し、これによって、圧縮機の吐出圧力を調整する。また、エアクーラ出口の被処理空気温度が設定値となるように、かつ相対湿度又は温度の少なくとも一方が設定値となるように、ヒートポンプ装置を構成する圧縮機の回転数を制御する。これによって、被空調室に供給する被処理空気の温度を適正にすることができると共に、デシカントロータの再生効果を高く維持できる。   In the present invention, the amount of refrigerant circulating in the refrigerant circulation path is adjusted by adjusting the amount of refrigerant stored in the expansion tank, thereby adjusting the discharge pressure of the compressor. Moreover, the rotation speed of the compressor which comprises a heat pump apparatus is controlled so that the to-be-processed air temperature of an air cooler exit may become a set value, and at least one of relative humidity or temperature may become a set value. As a result, the temperature of the air to be treated supplied to the air-conditioned room can be made appropriate, and the regeneration effect of the desiccant rotor can be kept high.

前記問題が起る原因は、冷却負荷と加熱負荷とのバランスが崩れていることに起因する。エアヒータの加熱負荷が小さい時、エアヒータでは、本来、圧縮機の吐出圧力をこれ以上上昇させる必要はない。本発明は、かかる観点から、第2工程の運転制御下で、圧縮機の回転数が下限閾値に達せず、かつ圧縮機の吐出圧力が設定値に達しないとしても、これを異常と捉えず、この状態が設定時間を超えて持続したとき、逆に、圧縮機の吐出圧力設定値を低減するようにしている。この場合、エアクーラの冷却能力が確保されていることを前提とする。   The cause of the problem is that the balance between the cooling load and the heating load is broken. When the heating load of the air heater is small, the air heater originally does not need to increase the discharge pressure of the compressor any more. From this point of view, the present invention does not regard this as abnormal even if the rotation speed of the compressor does not reach the lower limit threshold and the discharge pressure of the compressor does not reach the set value under the operation control in the second step. When this state lasts beyond the set time, the discharge pressure set value of the compressor is reduced. In this case, it is assumed that the cooling capacity of the air cooler is secured.

また、圧縮機の回転数が上限閾値を超えた状態が設定時間を超えたとき、圧縮機の吐出圧力設定値を増加する操作を行うようにする。これらの操作を順次繰り返すことで、安定した運転状態を保持できる。そのため、冷媒循環路と膨張タンクとを連通する分岐路に設けられた開閉弁の摩耗や寿命低下を防止できると共に、冷媒循環路を流れる冷媒量を無用に増加させる必要がなくなるため、冷媒量を削減できる。さらに、圧縮機の低回転運転時に吐出圧力を低減するので、ヒートポンプ装置のCOPを向上できる。   Further, when the state where the rotation speed of the compressor exceeds the upper limit threshold exceeds the set time, an operation for increasing the discharge pressure set value of the compressor is performed. By repeating these operations sequentially, a stable operating state can be maintained. Therefore, it is possible to prevent the opening / closing valve provided in the branch passage communicating with the refrigerant circulation path and the expansion tank from being worn and to reduce the life, and it is not necessary to unnecessarily increase the amount of refrigerant flowing through the refrigerant circulation path. Can be reduced. Furthermore, since the discharge pressure is reduced during the low rotation operation of the compressor, the COP of the heat pump device can be improved.

前記第2工程において、エアヒータ入口の再生空気の温度及び相対湿度を検出する第1ステップと、第1ステップで検出した再生空気の温度及び相対湿度から該再生空気の絶対湿度を演算する第2ステップと、第2ステップで演算した絶対湿度とデシカントロータ入口の再生空気の相対湿度設定値とから、デシカントロータ入口の再生空気の設定温度を求める第3ステップとを行い、デシカントロータ入口の再生空気の温度が設定温度となるように、圧縮機の回転数及び吐出圧力を制御するとよい。   In the second step, a first step of detecting the temperature and relative humidity of the regeneration air at the inlet of the air heater, and a second step of calculating the absolute humidity of the regeneration air from the temperature and relative humidity of the regeneration air detected in the first step. And a third step for determining the set temperature of the regeneration air at the desiccant rotor inlet from the absolute humidity calculated in the second step and the relative humidity set value of the regeneration air at the desiccant rotor inlet, The rotation speed and discharge pressure of the compressor may be controlled so that the temperature becomes the set temperature.

これによって、デシカントロータ入口の再生空気の相対湿度及び温度を設定値に保持でき、デシカントロータの再生に最適な条件とすることができる。また、デシカントロータ入口の再生空気の相対湿度を検出する必要がなくなり、エアクーラ入口にセンサを設ければよいため、再生空気の相対湿度の検出が容易になる。   As a result, the relative humidity and temperature of the regeneration air at the inlet of the desiccant rotor can be maintained at the set values, and the optimum conditions for regeneration of the desiccant rotor can be achieved. In addition, since it is not necessary to detect the relative humidity of the regeneration air at the desiccant rotor inlet, and it is sufficient to provide a sensor at the air cooler inlet, it is easy to detect the relative humidity of the regeneration air.

また、本発明方法の実施に直接使用可能な本発明の除湿空調装置は、被処理空気中の水分を吸着し被処理空気を除湿するデシカントロータと、ヒートポンプサイクル構成機器を有するヒートポンプ装置とを備え、ヒートポンプサイクル構成機器は、冷媒循環路に設けられた圧縮機、膨張弁、吸着時に昇温した被処理空気を冷却するエアクーラ、及びデシカントロータを再生する再生空気を加熱するエアヒータを有することを前提とする。   The dehumidifying air conditioner of the present invention that can be directly used for carrying out the method of the present invention includes a desiccant rotor that adsorbs moisture in the air to be treated and dehumidifies the air to be treated, and a heat pump device having a heat pump cycle component device. It is assumed that the heat pump cycle component device has a compressor provided in the refrigerant circuit, an expansion valve, an air cooler that cools the air to be treated that has been heated during adsorption, and an air heater that heats the regenerated air that regenerates the desiccant rotor. And

本発明装置は、さらに、ヒートポンプ装置の冷媒循環路に開閉弁付き分岐路を介して接続され、冷媒を貯留する膨張タンクと、エアクーラ出口の被処理空気温度を検出する第1の温度センサと、デシカントロータ入口の再生空気の相対湿度を検出する検出手段又は該再生空気の温度を検出する第2の温度センサの少なくとも一方と、圧縮機の回転数を制御する回転数制御装置と、圧縮機の回転数が下限閾値に達せず、かつ圧縮機の吐出圧力が設定値に達しない状態の持続時間を計測すると共に、圧縮機の吐出圧力が上限閾値を超えた状態の持続時間を計測するタイマを有し、エアクーラ出口の被処理空気温度が設定値となるように、かつデシカントロータを再生する再生空気の相対湿度又は温度の少なくとも一方が設定値となるように圧縮機の回転数を制御すると共に、タイマが計測した前記持続時間が設定時間を超えたとき、圧縮機の吐出圧力設定値を低減又は増加する制御装置とを備えている。   The apparatus of the present invention is further connected to a refrigerant circulation path of the heat pump apparatus via a branch path with an on-off valve, and stores an expansion tank that stores the refrigerant, a first temperature sensor that detects a temperature of air to be treated at the outlet of the air cooler, At least one of detection means for detecting the relative humidity of the regeneration air at the inlet of the desiccant rotor or a second temperature sensor for detecting the temperature of the regeneration air, a rotation speed control device for controlling the rotation speed of the compressor, A timer that measures the duration of the state where the rotation speed does not reach the lower limit threshold and the discharge pressure of the compressor does not reach the set value, and measures the duration of the state where the discharge pressure of the compressor exceeds the upper limit threshold And a compressor so that the temperature of the air to be treated at the outlet of the air cooler becomes a set value, and at least one of the relative humidity or the temperature of the regenerated air for regenerating the desiccant rotor becomes the set value. It controls the rotational speed, when the duration timer has measured exceeds a set time, and a control device for reducing or increasing the discharge pressure setpoint of the compressor.

本発明装置では、膨張タンクの冷媒貯留量を調整することで圧縮機の吐出圧力を調整しつつ、エアクーラ出口の被処理空気温度が設定値となるように、かつ相対湿度又は温度の少なくとも一方が設定値となるように、ヒートポンプ装置を構成する圧縮機の回転数を制御する。また、制御装置により、圧縮機の回転数が下限閾値に達せず、かつ圧縮機の吐出圧力が設定値に達しない状態が設定時間を超えたとき、圧縮機の吐出圧力設定値を低減すると共に、圧縮機の回転数が上限閾値を超えた状態が設定時間を超えたとき、圧縮機の吐出圧力設定値を増加させる。   In the apparatus of the present invention, while adjusting the discharge pressure of the compressor by adjusting the refrigerant storage amount of the expansion tank, the temperature of the air to be treated at the outlet of the air cooler becomes a set value, and at least one of relative humidity or temperature is The number of rotations of the compressor constituting the heat pump device is controlled so that the set value is obtained. In addition, when the controller does not reach the lower limit threshold value and the compressor discharge pressure does not reach the set value, the compressor discharge pressure set value is reduced when the set time is exceeded. When the state where the rotation speed of the compressor exceeds the upper limit threshold exceeds the set time, the discharge pressure set value of the compressor is increased.

これらの操作を順次繰り返すことで、安定運転を確保でき、冷媒循環路と膨張タンクとを接続する分岐路に設けられた開閉弁の動作を正常に維持できる。そのため、該開閉弁の摩耗や寿命低下を防止できると共に、冷媒循環路を流れる冷媒量を無用に増加させる必要がなくなるため、冷媒量の削減が可能になる。さらに、圧縮機の低回転運転時に吐出圧力を低減できるので、ヒートポンプ装置のCOPを向上できる。さらに、タイマにより設定時間をもうけているので、瞬間的な外乱に左右されない安定制御が可能になる。   By repeating these operations sequentially, stable operation can be ensured, and the operation of the on-off valve provided in the branch path connecting the refrigerant circulation path and the expansion tank can be maintained normally. Therefore, it is possible to prevent the opening / closing valve from being worn out and to reduce its life, and it is not necessary to unnecessarily increase the amount of refrigerant flowing through the refrigerant circulation path, so that the amount of refrigerant can be reduced. Furthermore, since the discharge pressure can be reduced during the low-speed operation of the compressor, the COP of the heat pump device can be improved. Furthermore, since the set time is provided by the timer, stable control that is not affected by instantaneous disturbances becomes possible.

本発明装置において、制御装置は、エアクーラ出口の被処理空気温度が設定値となり、かつデシカントロータを再生する再生空気の相対湿度又は温度の少なくとも一方が設定値となる圧縮機の回転数を演算する回転数演算器と、前記タイマが計測した持続時間が設定値を超えたとき、圧縮機の吐出圧力設定値を低減又は増加する吐出圧力設定値増減器と、圧縮機の回転数検出値と吐出圧力設定値増減器の出力とから圧縮機の吐出圧力設定値を演算する吐出圧力設定値演算器と、吐出圧力設定値演算器で演算された吐出圧力設定値に基づいて開閉弁を操作し、圧縮機の吐出圧力を制御する吐出圧力調整器とを有するとよい。   In the device of the present invention, the control device calculates the rotation speed of the compressor in which the temperature of the air to be treated at the outlet of the air cooler becomes a set value and at least one of the relative humidity or the temperature of the regeneration air that regenerates the desiccant rotor becomes the set value. A rotation number calculator, a discharge pressure set value increase / decrease unit that reduces or increases the discharge pressure set value of the compressor when the duration time measured by the timer exceeds a set value, and a rotation speed detection value and discharge of the compressor A discharge pressure set value calculator that calculates the discharge pressure set value of the compressor from the output of the pressure set value increase / decrease unit, and operates the on-off valve based on the discharge pressure set value calculated by the discharge pressure set value calculator, A discharge pressure regulator for controlling the discharge pressure of the compressor may be provided.

前記回転数演算器を設けたことで、エアクーラ出口の被処理空気温度及びデシカントロータ入口の再生空気の相対湿度又は温度を確実に設定値に保持できる。また、前記吐出圧力設定値増減器及び吐出圧力設定値演算器を有することで、圧縮機の低回転運転に連動させて、圧縮機の吐出圧力を確実に低減できる。   By providing the rotation speed calculator, the temperature of the air to be treated at the outlet of the air cooler and the relative humidity or temperature of the regeneration air at the inlet of the desiccant rotor can be reliably maintained at the set values. In addition, by having the discharge pressure set value increase / decrease unit and the discharge pressure set value calculator, the discharge pressure of the compressor can be reliably reduced in conjunction with the low rotation operation of the compressor.

本発明によれば、エアクーラの冷却負荷が大きく、かつエアヒータの加熱負荷が小さい時でも、ヒートポンプ装置の安定運転を可能とし、冷媒循環路と膨張タンクとを接続する分岐路に設けられた開閉弁の動作を正常に維持でき、該開閉弁の摩耗や寿命低下を防止できる。また、圧縮機の吐出圧力を低減できるので、冷媒量の削減が可能になると共に、ヒートポンプ装置のCOPを向上できる。   According to the present invention, even when the cooling load of the air cooler is large and the heating load of the air heater is small, the heat pump device can be stably operated, and the on-off valve provided in the branch path connecting the refrigerant circulation path and the expansion tank Can be maintained normally, and wear of the on-off valve and a reduction in the service life can be prevented. Further, since the discharge pressure of the compressor can be reduced, the amount of refrigerant can be reduced and the COP of the heat pump device can be improved.

本発明方法及び装置の一実施形態に係る除湿空調装置の全体構成図である。1 is an overall configuration diagram of a dehumidifying air conditioner according to an embodiment of the method and apparatus of the present invention. 前記実施形態に係る除湿空調装置の制御系のブロック線図である。It is a block diagram of the control system of the dehumidification air conditioner which concerns on the said embodiment. 前記実施形態に係る除湿空調装置の操作手順を示すフロー図である。It is a flowchart which shows the operation procedure of the dehumidification air conditioner which concerns on the said embodiment. 相対湿度、絶対湿度及び乾球温度の関係を示す湿り空気線図である。It is a humid air diagram which shows the relationship between relative humidity, absolute humidity, and dry bulb temperature.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明方法及び装置の一実施形態を図1〜図4に基づいて説明する。図1に本実施形態の除湿空調装置10を示す。空調室12と再生室14とが隔壁16を介して並設されている。空調室12には供給ファン24が設けられ、再生室14には再生ファン36が設けられている。これらのファンによって、空調室12及び再生室14には互いに逆方向の空気流が形成されている。   An embodiment of the method and apparatus of the present invention will be described with reference to FIGS. FIG. 1 shows a dehumidifying air conditioner 10 according to this embodiment. The air conditioning chamber 12 and the regeneration chamber 14 are juxtaposed via a partition wall 16. The air conditioning chamber 12 is provided with a supply fan 24, and the regeneration chamber 14 is provided with a regeneration fan 36. By these fans, airflows in opposite directions are formed in the air conditioning chamber 12 and the regeneration chamber 14.

空調室12では、供給ファン24によって外気OAを取り込み、取り込んだ外気OAの温度及び湿度を調整し、被処理空気SAとして被空調室18に供給する。再生室14では外気OA又は被空調室18の室内空気RAを取り入れ、それらの温度及び湿度を調整し、デシカントロータ20を再生するための再生空気DAとする。被空調室18は、室内を低温度雰囲気に保持する必要がある空間、例えば、冷凍食品等を冷凍保管する冷凍倉庫に隣接された荷捌き室や、食肉用家畜屠体の解体処理室などに用いられる。   In the air conditioning room 12, the outside air OA is taken in by the supply fan 24, the temperature and humidity of the taken outside air OA are adjusted, and supplied to the air-conditioned room 18 as the air to be treated SA. In the regeneration chamber 14, the outside air OA or the room air RA of the air-conditioned room 18 is taken, the temperature and humidity thereof are adjusted, and the regeneration air DA for regenerating the desiccant rotor 20 is obtained. The air-conditioned room 18 is a space that needs to be kept in a low temperature atmosphere, such as a cargo handling room adjacent to a freezing warehouse for storing frozen foods, a meat carcass demolition processing room, and the like. Used.

デシカントロータ20は空調室12と再生室14に跨って配置され、回転軸20aを中心に回転する。デシカントロータ20の表面には、例えば、シリカゲルやゼオライト等の無機系吸着剤や高分子系吸着剤が含浸されている。空調室12内では、デシカントロータ20で被処理空気SAに含まれる水蒸気を吸着して除去する。水蒸気を吸着した領域は、再生室14に移動し、再生室14では再生空気DAの保有熱を吸収することで吸着した水蒸気を放出する。水蒸気を取り込んだ再生空気DAは、外部へ放出される。デシカントロータ20は、駆動モータ(図示省略)により1時間に数十回転という低速で回転し、連続的に吸着と再生とを繰り返している。   The desiccant rotor 20 is disposed across the air conditioning chamber 12 and the regeneration chamber 14, and rotates around the rotation shaft 20a. The surface of the desiccant rotor 20 is impregnated with, for example, an inorganic adsorbent such as silica gel or zeolite, or a polymer adsorbent. In the air conditioning chamber 12, the desiccant rotor 20 adsorbs and removes water vapor contained in the air SA to be treated. The area where the water vapor has been adsorbed moves to the regeneration chamber 14 where the adsorbed water vapor is released by absorbing the heat retained in the regeneration air DA. The regeneration air DA that has taken in water vapor is discharged to the outside. The desiccant rotor 20 rotates at a low speed of several tens of revolutions per hour by a drive motor (not shown), and continuously repeats adsorption and regeneration.

空調室12には、供給ファン24によって外気OAが取り込まれる。外気OAは、空調室12に取り込まれる前に、プレクーラ22で予冷され、露点以下の温度になって除湿される。プレクーラ22を出た被処理空気SAは、デシカントロータ20で水蒸気を除去され除湿される。デシカントロータ20で水蒸気が吸着されるとき吸着熱が放出されるため、被処理空気SAは昇温する。そのため、被処理空気SAは、デシカントロータ20の下流側で、エアクーラ50で冷却された後、被空調室18に供給される。エアクーラ50の出口側空間には温度センサ26が設けられている。   Outside air OA is taken into the air conditioning chamber 12 by the supply fan 24. The outside air OA is pre-cooled by the precooler 22 before being taken into the air-conditioning chamber 12, and is dehumidified at a temperature equal to or lower than the dew point. The to-be-processed air SA exiting the precooler 22 is dehumidified by removing water vapor by the desiccant rotor 20. Since heat of adsorption is released when water vapor is adsorbed by the desiccant rotor 20, the air to be treated SA rises in temperature. Therefore, the air to be treated SA is supplied to the air-conditioned room 18 after being cooled by the air cooler 50 on the downstream side of the desiccant rotor 20. A temperature sensor 26 is provided in the outlet side space of the air cooler 50.

再生室14には、被空調室18の室内空気RA又は外気OAが再生空気として導入される。通常、外気OAより被空調室18の室内空気RAのほうが低湿度であるので、再生空気として好適である。再生室14に導入された再生空気DAは、エアヒータ46で加熱され、相対湿度が調整される。エアヒータ46の入口側空間に温度センサ30及び再生空気DAの相対湿度を検出する湿度センサ32が設けられ、エアヒータ46の出口側空間に温度センサ34が設けられている。   In the regeneration chamber 14, the indoor air RA or the outside air OA of the air-conditioned room 18 is introduced as regeneration air. Usually, the indoor air RA in the air-conditioned room 18 has a lower humidity than the outside air OA, and thus is suitable as the regeneration air. The regeneration air DA introduced into the regeneration chamber 14 is heated by the air heater 46, and the relative humidity is adjusted. A humidity sensor 32 that detects the relative humidity of the temperature sensor 30 and the regeneration air DA is provided in the inlet side space of the air heater 46, and a temperature sensor 34 is provided in the outlet side space of the air heater 46.

デシカントロータ20に吸着された水蒸気を放出させる能力は、再生空気DAの温度と相対湿度で決まる。そのため、再生空気DAをエアヒータ46で加熱し、再生空気DAを昇温させ、相対湿度を低下させる。デシカントロータ20に含浸された吸着剤は、吸熱しながら水蒸気を放出するため、デシカントロータ通過後の再生空気DAは、温度が下がった湿り空気として外部へ放出される。   The ability to release the water vapor adsorbed by the desiccant rotor 20 is determined by the temperature and relative humidity of the regeneration air DA. Therefore, the regeneration air DA is heated by the air heater 46 to raise the temperature of the regeneration air DA and reduce the relative humidity. Since the adsorbent impregnated in the desiccant rotor 20 absorbs heat and releases water vapor, the regenerated air DA that has passed through the desiccant rotor is released to the outside as humid air having a lowered temperature.

除湿空調装置10には、ヒートポンプサイクルを構成するヒートポンプ装置40が設けられている。ヒートポンプ装置40の構成は、冷媒循環路42に、圧縮機44、エアヒータ46、膨張弁48、及びエアクーラ50等のヒートポンプサイクル構成機器が介設されている。冷媒として、高圧域で超臨界状態となり、エアヒータ46で再生空気DAを80℃以上の高温に加熱できるCO2を用いている。膨張弁48の入口側部位及び出口側部位の冷媒循環路42から分岐路52及び54が分岐し、分岐路52及び54は膨張タンク60に接続されている。分岐路52、54には夫々電磁開閉弁56,58が介設されている。   The dehumidifying air conditioner 10 is provided with a heat pump device 40 constituting a heat pump cycle. In the configuration of the heat pump device 40, heat pump cycle components such as a compressor 44, an air heater 46, an expansion valve 48, and an air cooler 50 are interposed in the refrigerant circulation path 42. As the refrigerant, CO2 that is in a supercritical state in a high-pressure region and that can heat the regenerated air DA to a high temperature of 80 ° C. or higher by the air heater 46 is used. The branch paths 52 and 54 branch from the refrigerant circulation path 42 at the inlet side portion and the outlet side portion of the expansion valve 48, and the branch paths 52 and 54 are connected to the expansion tank 60. Electromagnetic switching valves 56 and 58 are interposed in the branch paths 52 and 54, respectively.

圧縮機44には、駆動モータ44aと、駆動モータ44aの回転数を制御するインバータ装置62と、駆動モータ44aの回転数を検出する回転数センサ64と、圧縮機44の吐出圧力を検出する吐出圧力センサ65が設けられている。コントローラ70には、温度センサ26,30及び34、湿度センサ32、回転数センサ64及び吐出圧力センサ65の検出値が入力される。コントローラ70は、これらの検出値に基づいて、エアクーラ出口側被処理空気SA及びデシカントロータ入口側再生空気の相対湿度及び温度が設定値となるように、圧縮機44の回転数を制御する。また、コントローラ70は、電磁開閉弁56,58の開閉動作を制御して、膨張タンク60に貯留する冷媒量を制御することで、圧縮機44の吐出圧力を制御する。   The compressor 44 includes a drive motor 44a, an inverter device 62 that controls the rotation speed of the drive motor 44a, a rotation speed sensor 64 that detects the rotation speed of the drive motor 44a, and a discharge that detects the discharge pressure of the compressor 44. A pressure sensor 65 is provided. Detection values of the temperature sensors 26, 30 and 34, the humidity sensor 32, the rotation speed sensor 64 and the discharge pressure sensor 65 are input to the controller 70. Based on these detection values, the controller 70 controls the rotation speed of the compressor 44 so that the relative humidity and temperature of the air cooler outlet side treated air SA and the desiccant rotor inlet side regeneration air become set values. In addition, the controller 70 controls the discharge pressure of the compressor 44 by controlling the opening / closing operation of the electromagnetic opening / closing valves 56, 58 and controlling the amount of refrigerant stored in the expansion tank 60.

次に、コントローラ70の構成を図2により説明する。図2において、比較器700で、圧縮機44の吐出圧力設定値Pasと吐出圧力センサ65で検出された吐出圧力検出値Padとの差分ΔPadを求める。この差分ΔPadをタイマ702を経て吐出圧力設定値増減器704に送る。吐出圧力設定値増減器704では、差分ΔPadの値及びタイマ702の計測時間に基づいて、吐出圧力設定値Pasに対する増減量ΔPasを求める。吐出圧力設定値演算器706で、この増減量ΔPas及び圧縮機44の回転数検出値を入力し、新たな吐出圧力設定値Pasを設定する。吐出圧力調整器708では、圧縮機44の吐出圧力が新たな吐出圧力設定値Pasとなるように、電磁開閉弁56及び58を操作する。   Next, the configuration of the controller 70 will be described with reference to FIG. In FIG. 2, a comparator 700 obtains a difference ΔPad between the discharge pressure set value Pas of the compressor 44 and the discharge pressure detection value Pad detected by the discharge pressure sensor 65. This difference ΔPad is sent to the discharge pressure set value increase / decrease unit 704 via the timer 702. The discharge pressure set value increase / decrease unit 704 calculates an increase / decrease amount ΔPas with respect to the discharge pressure set value Pas based on the value of the difference ΔPad and the measurement time of the timer 702. The discharge pressure set value calculator 706 inputs the increase / decrease amount ΔPas and the rotation speed detection value of the compressor 44, and sets a new discharge pressure set value Pas. In the discharge pressure regulator 708, the electromagnetic on-off valves 56 and 58 are operated so that the discharge pressure of the compressor 44 becomes a new discharge pressure set value Pas.

一方、絶対湿度演算器710に温度センサ30及び湿度センサ32の検出値が入力される。絶対湿度演算器710では、エアヒータ46の入口側再生空気の温度及び相対湿度Hrdから絶対湿度Hadを演算する。図4に示す湿り空気線図から、乾球温度及び相対湿度から絶対湿度を求めることができる。相対湿度・温度演算器712では、絶対湿度演算器710で求めた絶対湿度Hadと、デシカントロータ20の入口における再生空気DAの相対湿度設定値Hrsとから、デシカントロータ20の入口における再生空気DAの最適な温度設定値Tasを求める。   On the other hand, detection values of the temperature sensor 30 and the humidity sensor 32 are input to the absolute humidity calculator 710. The absolute humidity calculator 710 calculates an absolute humidity Had from the temperature of the inlet side regeneration air of the air heater 46 and the relative humidity Hrd. From the wet air diagram shown in FIG. 4, the absolute humidity can be determined from the dry bulb temperature and relative humidity. The relative humidity / temperature calculator 712 calculates the regeneration air DA at the inlet of the desiccant rotor 20 from the absolute humidity Had obtained by the absolute humidity calculator 710 and the relative humidity set value Hrs of the regeneration air DA at the inlet of the desiccant rotor 20. The optimum temperature setting value Tas is obtained.

比較器714でこの温度設定値Tasと温度センサ34の検出値Tadとの差分を求め、この差分及び温度センサ26の検出値を圧縮機回転数演算器716に入力する。圧縮機回転数演算器716では、これらの入力値から圧縮機44の回転数操作量Rcaを演算し、演算した回転数操作量Rcaとなるように駆動モータ44aを駆動する。一方、回転数センサ64で検出した圧縮機44の回転数検出値Rcdは、比較器718で回転数閾値Rcsと比較され、これらの差分は吐出圧力設定値演算器706に入力される。   The comparator 714 obtains a difference between the temperature set value Tas and the detected value Tad of the temperature sensor 34, and inputs this difference and the detected value of the temperature sensor 26 to the compressor rotational speed calculator 716. The compressor rotational speed calculator 716 calculates the rotational speed manipulated variable Rca of the compressor 44 from these input values, and drives the drive motor 44a so as to obtain the computed rotational speed manipulated variable Rca. On the other hand, the rotation speed detection value Rcd of the compressor 44 detected by the rotation speed sensor 64 is compared with the rotation speed threshold value Rcs by the comparator 718, and these differences are input to the discharge pressure set value calculator 706.

次に、除湿空調装置10の運転手順を図3等に基づいて説明する。まず、運転指令により除湿空調装置10の運転が開始される(S10)。比較器718で、回転数センサ64で検出した圧縮機44の回転数検出値Rcdと、回転数閾値Rcsのうちの上限閾値RHとを比較する(S12)。RH<Rcdでないとき、次に、Rcdと回転数閾値Rcsのうちの下限閾値RLと比較する(S14)。RL>Rcdのとき、次に、比較器700で、圧縮機44の吐出圧力設定値Pasと吐出圧力検出値Padとを比較すると共に、タイマ702で、Pas>Padの状態が持続する時間を計測する(S16)。   Next, the operation procedure of the dehumidifying air conditioner 10 will be described based on FIG. First, the operation of the dehumidifying air conditioner 10 is started by the operation command (S10). The comparator 718 compares the rotation speed detection value Rcd of the compressor 44 detected by the rotation speed sensor 64 with the upper limit threshold RH of the rotation speed threshold Rcs (S12). If RH <Rcd does not hold, then Rcd is compared with the lower limit threshold value RL of the rotation speed threshold value Rcs (S14). When RL> Rcd, next, the comparator 700 compares the discharge pressure set value Pas of the compressor 44 with the discharge pressure detection value Pad, and the timer 702 measures the time during which the state of Pas> Pad continues. (S16).

この持続時間が設定時間t1秒(例えば、t1=100〜300秒)を超えたとき、吐出圧力設定値増減器704で、圧縮機44の吐出圧力設定値Pasを圧力増減設定値ΔPだけ減少させる指令を発する(S18)。この指令に基づいて、吐出圧力設定値演算器706では、現吐出圧力設定値Pasに圧力増減設定値ΔPを減じた新吐出圧力設定値Pasを設定する。この新吐出圧力設定値Pasで圧力制限運転が開始される(S20)。吐出圧力調整器708では、圧縮機44の吐出圧力が新たな吐出圧力設定値Pasとなるように、電磁開閉弁56及び58を操作する。ここで、吐出圧力設定値Pasは、例えば10.5MPaであり、圧力増減設定値ΔPは、例えば0.1〜0.2MPaである。   When this duration exceeds a set time t1 seconds (for example, t1 = 100 to 300 seconds), the discharge pressure set value increase / decrease unit 704 decreases the discharge pressure set value Pas of the compressor 44 by the pressure increase / decrease set value ΔP. A command is issued (S18). Based on this command, the discharge pressure set value calculator 706 sets a new discharge pressure set value Pas obtained by subtracting the pressure increase / decrease set value ΔP from the current discharge pressure set value Pas. Pressure limiting operation is started at this new discharge pressure set value Pas (S20). In the discharge pressure regulator 708, the electromagnetic on-off valves 56 and 58 are operated so that the discharge pressure of the compressor 44 becomes a new discharge pressure set value Pas. Here, the discharge pressure set value Pas is 10.5 MPa, for example, and the pressure increase / decrease set value ΔP is 0.1 to 0.2 MPa, for example.

また、S12でRH<Rcdであって、かつ圧力制限運転中であり(S22)、かつRH<Rcdの状態がt2(例えば、t2=100〜300秒)以上継続したことをタイマ702が計測したとき(S24)、吐出圧力設定値増減器704では、吐出圧力設定値Pasを圧力増減設定値ΔPだけ増加させる指令を発する(S26)。この指令に基づいて、吐出圧力設定値演算器706では、現吐出圧力設定値Pasに圧力増減設定値ΔPを加えた新吐出圧力設定値Pasを設定する。この新吐出圧力設定値Pasで運転が開始される。次に、吐出圧力設定値Pasを初期圧力設定値Pdと比較し、Pd<Pasであるなら(S28)、吐出圧力設定値Pasを初期圧力設定値Pdに戻し(Pas=Pd)、圧力制限運転を終了する(S30)。S28でPd<Pasでないなら、S12に戻り、前記と同じ操作を繰り返す。   In S12, the timer 702 measures that RH <Rcd and pressure-limiting operation is being performed (S22) and that the state of RH <Rcd has continued for t2 (for example, t2 = 100 to 300 seconds) or longer. When (S24), the discharge pressure set value increase / decrease unit 704 issues a command to increase the discharge pressure set value Pas by the pressure increase / decrease set value ΔP (S26). Based on this command, the discharge pressure set value calculator 706 sets a new discharge pressure set value Pas obtained by adding the pressure increase / decrease set value ΔP to the current discharge pressure set value Pas. The operation is started at this new discharge pressure set value Pas. Next, the discharge pressure set value Pas is compared with the initial pressure set value Pd. If Pd <Pas (S28), the discharge pressure set value Pas is returned to the initial pressure set value Pd (Pas = Pd), and the pressure limiting operation is performed. Is finished (S30). If Pd <Pas is not satisfied in S28, the process returns to S12 and the same operation as described above is repeated.

本実施形態によれば、前記操作を順次繰り返すことで、安定運転を保持でき、電磁弁56,58の動作を正常に維持できる。そのため、冷媒循環路42を流れる冷媒量を無用に増加させる必要がなくなり、冷媒量の削減が可能になると共に、圧縮機44の低回転運転時に吐出圧力を低減できるので、ヒートポンプ装置40のCOPを向上できる。また、電磁開閉弁56,58の摩耗や寿命低下を防止できる。   According to the present embodiment, stable operation can be maintained by sequentially repeating the above operations, and the operation of the solenoid valves 56 and 58 can be maintained normally. Therefore, it is not necessary to unnecessarily increase the amount of refrigerant flowing through the refrigerant circulation path 42, and the amount of refrigerant can be reduced, and the discharge pressure can be reduced during the low rotation operation of the compressor 44. Therefore, the COP of the heat pump device 40 can be reduced. It can be improved. Further, it is possible to prevent the electromagnetic opening / closing valves 56 and 58 from being worn and their life from being shortened.

また、エアヒータ入口側再生空気の相対湿度及び温度を検出し、これらの検出値から、デシカントロータ入口側再生空気の相対湿度を演算しているので、該相対湿度を正確に求めることができると共に、再生空気の相対湿度の検出が容易になる。また、圧縮機44の回転数検出値Rcaと上限閾値RH又は下限閾値RLとの大小関係と、圧縮機44の吐出圧力検出値Padと吐出圧力設定値Pasとの大小関係とから圧縮機44の吐出圧力設定値Pasの増減を設定しているので、木目細かい制御が可能になる。さらに、タイマ702により設定時間t1及びt2をもうけているので、瞬間的な外乱に左右されない安定制御が可能になる。   Moreover, since the relative humidity and temperature of the air heater inlet side regeneration air are detected and the relative humidity of the desiccant rotor inlet side regeneration air is calculated from these detected values, the relative humidity can be accurately obtained, It becomes easy to detect the relative humidity of the regeneration air. Further, the compressor 44 has a magnitude relationship between the rotation speed detection value Rca of the compressor 44 and the upper limit threshold value RH or the lower limit threshold value RL, and a magnitude relationship between the discharge pressure detection value Pad of the compressor 44 and the discharge pressure set value Pas. Since the increase / decrease of the discharge pressure set value Pas is set, fine control is possible. Further, since the set times t1 and t2 are provided by the timer 702, stable control that is not affected by instantaneous disturbance can be performed.

本発明によれば、冷却負荷と加熱負荷とがアンバランスな時でも、安定運転できる除湿空調装置を実現できる。   According to the present invention, it is possible to realize a dehumidifying air conditioner capable of stable operation even when the cooling load and the heating load are unbalanced.

10 除湿空調装置
12 空調室
14 再生室
16 隔壁
18 被空調室
20 デシカントロータ
20a 回転軸
22 プレクーラ
24 供給ファン
26 温度センサ(第1の温度センサ)
30 温度センサ
32 湿度センサ
34 温度センサ(第2の温度センサ)
36 再生ファン
40 ヒートポンプ装置
42 冷媒循環路
44 圧縮機
46 エアヒータ
48 膨張弁
50 エアクーラ
52,54 分岐路
56,58 電磁開閉弁
60 膨張タンク
62 インバータ装置
64 回転数センサ
65 吐出圧力センサ
70 コントローラ
700,714,718 比較器
702 タイマ
704 吐出圧力設定値増減器
706 吐出圧力設定値演算器
708 吐出圧力調整器
710 絶対湿度演算器
712 相対湿度・温度演算器
716 圧縮機回転数演算器
DA 再生空気
OA 外気
RA 室内空気
SA 被処理空気
Had エアヒータ入口絶対湿度
Hrd エアヒータ入口相対湿度検出値
Hrs デシカントロータ入口相対湿度設定値
Pas 吐出圧力設定値
Pad 吐出圧力検出値
Pd 初期圧力設定値
ΔP 吐出圧力増減設定値
ΔPad 差分
ΔP 圧力増減設定値
Tas デシカントロータ入口温度演算値
Tad デシカントロータ入口温度検出値
Rca 回転数操作量
Rcd 回転数検出値
DESCRIPTION OF SYMBOLS 10 Dehumidification air conditioner 12 Air conditioning room 14 Reproduction | regeneration room 16 Partition 18 Air-conditioned room 20 Desiccant rotor 20a Rotating shaft 22 Precooler 24 Supply fan 26 Temperature sensor (1st temperature sensor)
30 Temperature sensor 32 Humidity sensor 34 Temperature sensor (second temperature sensor)
36 Regenerative Fan 40 Heat Pump Device 42 Refrigerant Circulation Path 44 Compressor 46 Air Heater 48 Expansion Valve 50 Air Cooler 52, 54 Branch Path 56, 58 Electromagnetic On / Off Valve 60 Expansion Tank 62 Inverter Device 64 Rotation Speed Sensor 65 Discharge Pressure Sensor 70 Controller 700, 714 , 718 Comparator 702 Timer 704 Discharge pressure set value increase / decrease unit 706 Discharge pressure set value calculator 708 Discharge pressure adjuster 710 Absolute humidity calculator 712 Relative humidity / temperature calculator 716 Compressor rotation speed calculator DA Regenerative air OA Outside air RA Indoor air SA Processed air Had Air heater inlet absolute humidity Hrd Air heater inlet relative humidity detection value Hrs Desiccant rotor inlet relative humidity setting value Pas Discharge pressure setting value Pad Discharge pressure detection value Pd Initial pressure setting value ΔP Discharge pressure increase / decrease set value ΔPad Difference Δ Pressure increasing or decreasing the set value Tas desiccant rotor inlet temperature calculation value Tad desiccant rotor inlet temperature detection value Rca rotational speed operating amount Rcd rotation speed detection value

Claims (4)

デシカントロータで被処理空気中の水分を吸着し被処理空気を除湿する除湿工程と、
前記除湿工程において吸着時に発生した熱で昇温した被処理空気を、ヒートポンプ装置の一部を構成するエアクーラで冷却した後、被空調室に供給する被処理空気供給工程と、
前記ヒートポンプ装置の一部を構成するエアヒータで加熱した再生空気で前記デシカントロータを再生する再生工程とを行う除湿空調方法において、
前記ヒートポンプ装置の冷媒循環路に連通した膨張タンクの冷媒貯留量を調整し、圧縮機の吐出圧力を調整する第1工程と、
前記デシカントロータ入口の再生空気の相対湿度又は温度の少なくとも一方を検出し、前記エアクーラ出口の被処理空気温度が設定値となるように、かつ前記相対湿度又は温度の少なくとも一方が設定値となるように、前記ヒートポンプ装置を構成する圧縮機の回転数を制御する第2工程と、
前記圧縮機の回転数が下限閾値に達せず、かつ圧縮機の吐出圧力が設定値に達しない状態が設定時間を超えたとき、前記圧縮機の吐出圧力設定値を低減する第3工程と、
前記圧縮機の回転数が上限閾値を超えた状態が設定時間を超えたとき、前記圧縮機の吐出圧力設定値を増加する第4工程とからなり、
前記第3工程と前記第4工程とを順次繰り返すことを特徴とする除湿空調方法。
A dehumidifying step of dehumidifying the air to be treated by adsorbing moisture in the air to be treated with a desiccant rotor;
An air to be treated which is heated by the heat generated at the time of adsorption in the dehumidifying step, is cooled by an air cooler constituting a part of the heat pump device, and then supplied to the air-conditioned room; and
In the dehumidification air conditioning method of performing a regeneration step of regenerating the desiccant rotor with regeneration air heated by an air heater that constitutes a part of the heat pump device,
A first step of adjusting a refrigerant storage amount of an expansion tank communicating with a refrigerant circulation path of the heat pump device, and adjusting a discharge pressure of the compressor ;
At least one of the relative humidity or temperature of the regeneration air at the inlet of the desiccant rotor is detected so that the temperature of the air to be treated at the outlet of the air cooler becomes a set value, and at least one of the relative humidity or temperature becomes a set value. And a second step of controlling the rotational speed of the compressor constituting the heat pump device,
A third step of reducing the discharge pressure set value of the compressor when the rotation speed of the compressor does not reach the lower limit threshold and the state where the discharge pressure of the compressor does not reach the set value exceeds a set time;
When the state in which the rotation speed of the compressor exceeds the upper limit threshold exceeds a set time, the fourth step of increasing the discharge pressure set value of the compressor,
The dehumidifying air conditioning method characterized by sequentially repeating the third step and the fourth step.
前記第2工程において、
前記エアヒータ入口の再生空気の温度及び相対湿度を検出する第1ステップと、
該第1ステップで検出した再生空気の温度及び相対湿度から該再生空気の絶対湿度を演算する第2ステップと、
該第2ステップで演算した絶対湿度と前記デシカントロータ入口の再生空気の相対湿度設定値とから、前記デシカントロータ入口の再生空気の設定温度を求める第3ステップとを行い、
前記デシカントロータ入口の再生空気の温度が前記設定温度となるように、圧縮機の回転数及び吐出圧力を制御することを特徴とする請求項1に記載の除湿空調方法。
In the second step,
A first step of detecting the temperature and relative humidity of the regeneration air at the air heater inlet;
A second step of calculating the absolute humidity of the regeneration air from the temperature and relative humidity of the regeneration air detected in the first step;
Performing a third step of determining a set temperature of the regeneration air at the inlet of the desiccant rotor from the absolute humidity calculated in the second step and a relative humidity setting value of the regeneration air at the desiccant rotor inlet;
The dehumidifying air-conditioning method according to claim 1, wherein the rotational speed and discharge pressure of the compressor are controlled so that the temperature of the regenerated air at the inlet of the desiccant rotor becomes the set temperature.
被処理空気中の水分を吸着し被処理空気を除湿するデシカントロータと、ヒートポンプサイクル構成機器を有するヒートポンプ装置とを備え、
前記ヒートポンプサイクル構成機器は、冷媒循環路に設けられた圧縮機、膨張弁、吸着時に昇温した被処理空気を冷却するエアクーラ、及び前記デシカントロータを再生する再生空気を加熱するエアヒータを有する除湿空調装置において、
前記ヒートポンプ装置の冷媒循環路に開閉弁付き分岐路を介して接続され、冷媒を貯留する膨張タンクと、
前記エアクーラ出口の被処理空気温度を検出する第1の温度センサと、
前記デシカントロータ入口の再生空気の相対湿度を検出する検出手段又は該再生空気の温度を検出する第2の温度センサの少なくとも一方と、
前記圧縮機の回転数を制御する回転数制御装置と、
前記圧縮機の回転数が下限閾値に達せず、かつ圧縮機の吐出圧力が設定値に達しない状態の持続時間を計測すると共に、圧縮機の吐出圧力が上限閾値を超えた状態の持続時間を計測するタイマを有し、前記エアクーラ出口の被処理空気温度が設定値となるように、かつ前記デシカントロータを再生する再生空気の相対湿度又は温度の少なくとも一方が設定値となるように前記圧縮機の回転数を制御すると共に、前記タイマが計測した前記持続時間が設定時間を超えたとき、前記圧縮機の吐出圧力設定値を低減又は増加する制御装置とを備えていることを特徴とする除湿空調装置。
A desiccant rotor that adsorbs moisture in the air to be treated and dehumidifies the air to be treated, and a heat pump device having a heat pump cycle component device,
The heat pump cycle component device includes a compressor provided in a refrigerant circuit, an expansion valve, an air cooler that cools air to be treated that has been heated during adsorption, and an air heater that heats regenerated air that regenerates the desiccant rotor. In the device
An expansion tank that is connected to the refrigerant circulation path of the heat pump device via a branch path with an on-off valve, and stores the refrigerant;
A first temperature sensor for detecting the temperature of the air to be treated at the outlet of the air cooler;
At least one of detection means for detecting the relative humidity of the regeneration air at the inlet of the desiccant rotor or a second temperature sensor for detecting the temperature of the regeneration air;
A rotational speed control device for controlling the rotational speed of the compressor;
Measure the duration of the state where the rotation speed of the compressor does not reach the lower limit threshold and the discharge pressure of the compressor does not reach the set value, and the duration of the state where the discharge pressure of the compressor exceeds the upper limit threshold A compressor for measuring, the compressor so that the temperature of the air to be treated at the outlet of the air cooler becomes a set value, and at least one of the relative humidity or temperature of the regenerated air for regenerating the desiccant rotor becomes a set value And a controller for reducing or increasing the discharge pressure set value of the compressor when the duration measured by the timer exceeds a set time. Air conditioner.
前記制御装置は、
前記エアクーラ出口の被処理空気温度が設定値となり、かつ前記デシカントロータを再生する再生空気の相対湿度又は温度の少なくとも一方が設定値となる前記圧縮機の回転数を演算する回転数演算器と、
前記タイマが計測した前記持続時間が設定値を超えたとき、前記圧縮機の吐出圧力設定値を低減又は増加する吐出圧力設定値増減器と、
前記圧縮機の回転数検出値と前記吐出圧力設定値増減器の出力とから前記圧縮機の吐出圧力設定値を演算する吐出圧力設定値演算器と、
前記吐出圧力設定値演算器で演算された吐出圧力設定値に基づいて前記開閉弁を操作し、前記圧縮機の吐出圧力を制御する吐出圧力調整器とを有することを特徴とする請求項3に記載の除湿空調装置。
The controller is
A rotational speed calculator for calculating the rotational speed of the compressor at which the temperature of the air to be treated at the outlet of the air cooler is a set value and at least one of the relative humidity or temperature of the regenerated air for regenerating the desiccant rotor is a set value;
A discharge pressure set value increase / decrease unit that reduces or increases the discharge pressure set value of the compressor when the duration measured by the timer exceeds a set value;
A discharge pressure set value calculator for calculating the discharge pressure set value of the compressor from the rotation speed detection value of the compressor and the output of the discharge pressure set value increase / decrease unit;
4. A discharge pressure regulator that operates the on-off valve based on a discharge pressure set value calculated by the discharge pressure set value calculator to control a discharge pressure of the compressor. Dehumidification air conditioner of description.
JP2012153513A 2012-07-09 2012-07-09 Dehumidifying air conditioning method and apparatus Active JP6057573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153513A JP6057573B2 (en) 2012-07-09 2012-07-09 Dehumidifying air conditioning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153513A JP6057573B2 (en) 2012-07-09 2012-07-09 Dehumidifying air conditioning method and apparatus

Publications (2)

Publication Number Publication Date
JP2014016090A JP2014016090A (en) 2014-01-30
JP6057573B2 true JP6057573B2 (en) 2017-01-11

Family

ID=50110941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153513A Active JP6057573B2 (en) 2012-07-09 2012-07-09 Dehumidifying air conditioning method and apparatus

Country Status (1)

Country Link
JP (1) JP6057573B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560823B1 (en) * 2014-04-21 2015-10-16 주식회사 경동나비엔 Hybrid type heat pump device
CN105042716B (en) * 2015-08-28 2017-11-10 广东美的制冷设备有限公司 Dehumidifier and its control method
US11262096B2 (en) 2016-04-07 2022-03-01 Carrier Corporation Air cooled chiller hydronic kit
CN110057038B (en) * 2019-04-18 2021-04-02 宁波奥克斯电气股份有限公司 Air conditioner dehumidification control method and air conditioner
KR102559533B1 (en) * 2021-05-31 2023-07-26 주식회사 휴마스터 Thermo hygrostat and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308229A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Air conditioner
EP2304345A4 (en) * 2008-05-14 2014-10-15 Carrier Corp Charge management in refrigerant vapor compression systems
JP4870843B1 (en) * 2011-02-10 2012-02-08 株式会社前川製作所 Air conditioning method and air conditioner using desiccant rotor

Also Published As

Publication number Publication date
JP2014016090A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
KR101252407B1 (en) Desiccant air conditioning system and method for operating the same
JP4169747B2 (en) Air conditioner
JP6057573B2 (en) Dehumidifying air conditioning method and apparatus
JP4870843B1 (en) Air conditioning method and air conditioner using desiccant rotor
JP4798492B2 (en) Dehumidifier
KR20120019469A (en) Desiccant unit control system and method
WO2015163304A1 (en) Dehumidifying air conditioning method and device
JP5401121B2 (en) Dehumidifying and drying equipment for granular materials
JP2008111631A (en) Dehumidifying air conditioner
JP5894417B2 (en) Desiccant air conditioning system and operation method thereof
JP4844498B2 (en) Dehumidifying air conditioner
JP5587571B2 (en) Operation method of dry dehumidifier
JP5686311B2 (en) Gas removal system
JP7442984B2 (en) dehumidifier
JP2023509129A (en) Method for drying compressed gas
JP5843635B2 (en) Static desiccant air conditioner and method of operation
JP5879469B2 (en) Dehumidifier
KR101483628B1 (en) Absorptive dehumidifier and control method thereof
JP5570717B2 (en) Operation method of dry dehumidifier
JP5923018B2 (en) Desiccant air conditioning system and operation method thereof
JP5327636B2 (en) Temperature and humidity control device
CA2811835A1 (en) Reverse cooling desiccant regeneration
JP6085455B2 (en) Dehumidifier
JP2007071501A (en) Dehumidifying air-conditioner
US20140260978A1 (en) Reverse cooling desiccant regeneration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250