JP6056230B2 - Cation exchanger for liquid chromatography - Google Patents

Cation exchanger for liquid chromatography Download PDF

Info

Publication number
JP6056230B2
JP6056230B2 JP2012157530A JP2012157530A JP6056230B2 JP 6056230 B2 JP6056230 B2 JP 6056230B2 JP 2012157530 A JP2012157530 A JP 2012157530A JP 2012157530 A JP2012157530 A JP 2012157530A JP 6056230 B2 JP6056230 B2 JP 6056230B2
Authority
JP
Japan
Prior art keywords
sulfonic acid
acid copolymer
cation exchanger
porous particles
vinyl sulfonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012157530A
Other languages
Japanese (ja)
Other versions
JP2014020829A (en
Inventor
和昭 村中
和昭 村中
好宏 榎本
好宏 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012157530A priority Critical patent/JP6056230B2/en
Publication of JP2014020829A publication Critical patent/JP2014020829A/en
Application granted granted Critical
Publication of JP6056230B2 publication Critical patent/JP6056230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、実質的に非多孔性粒子の表面に、ポリビニルスルホン酸共重合体が固定されていることを特徴とするカチオン交換体に関するものである。 The present invention relates to a cation exchanger characterized in that a polyvinyl sulfonic acid copolymer is fixed on the surface of substantially non-porous particles.

液体クロマトグラフィー用のカチオン交換体には、(1)試料中に含まれる塩濃度の影響を受けにくくするために、タンパク質等の対象物質(以下単に「対象」ということがある)に対して高い保持力を有すること、(2)微量成分の分離性能を保つために十分な対象の吸着容量を有すること、(3)分離・分析精度向上のために高い分離能を有すること、(4)分離・分析時間短縮のために速い操作流速で使用できること(速い操作流速に伴う高圧に耐えるための機械強度を有すること)、(5)操作流速の低下を招かないこと(低操作圧であること)、そして(6)交換体と対象との間で、カチオン交換以外の相互作用が小さいこと、が要求される。   Cation exchangers for liquid chromatography are (1) highly resistant to target substances such as proteins (hereinafter sometimes simply referred to as “targets”) in order to be less susceptible to the influence of the salt concentration contained in the sample. (2) have sufficient target adsorption capacity to maintain the separation performance of trace components, (3) have high resolution to improve separation and analysis accuracy, (4) separation・ Can be used at high operating flow rates to reduce analysis time (has mechanical strength to withstand high pressures associated with high operating flow rates), (5) Does not cause a decrease in operating flow rates (low operating pressure) And (6) It is required that the interaction between the exchanger and the subject is small except for cation exchange.

液体クロマトグラフィー用のカチオン交換体は、交換体を構成する粒子にカチオン交換基(リガンド)を導入したものである。粒子については、上記(3)の改善を目的として、粒子内拡散のない非多孔性の粒子を使用すること(非特許文献1)や粒径が10μm程度の粒子を使用することが提案されている。粒径については更なる微粒子化が進み、粒径5μm以下の粒子を使用することが近年では提案されている。そして、このような微粒子の使用に伴う分離・分析時間の長時間化を防止するためにより高い操作圧を負荷する必要が生じ、粒子に求められる上記(4)の機械的強度は100MPa程度になっている
一方、カチオン交換基としては、従来からスルホン酸基、カルボキシル基、リン酸基等が知られている。なかでもスルホン酸基は、pKaが小さく、対象をイオン解離する目的で溶離液のpHを低下した場合にそのpHの変動が生じたとしても対象を安定的に保持し得ることから、カチオン交換基として多用されており、スルホン酸基の粒子への導入方法として、スチレン共重合体粒子に対して三酸化硫黄、クロロ硫酸又は濃硫酸を作用させる方法、粒子に対してエポキシ基やアリル基を導入し更に亜硫酸を作用させる方法、そして水酸基を有する粒子にプロパンスルトン、ブタンスルトン又は三硫化硫黄を作用させる方法が使用されている。
The cation exchanger for liquid chromatography is obtained by introducing a cation exchange group (ligand) into particles constituting the exchanger. For the purpose of improving the above (3), it has been proposed to use non-porous particles having no intra-particle diffusion (Non-Patent Document 1) or to use particles having a particle size of about 10 μm. Yes. In recent years, it has been proposed to use particles having a particle diameter of 5 μm or less as the particle diameter is further reduced. Further, it is necessary to apply a higher operating pressure in order to prevent the separation / analysis time from being extended due to the use of such fine particles, and the mechanical strength (4) required for the particles is about 100 MPa. On the other hand, as the cation exchange group, a sulfonic acid group, a carboxyl group, a phosphoric acid group, and the like have been conventionally known. Among them, the sulfonic acid group has a small pKa, and when the pH of the eluent is lowered for the purpose of ion-dissociating the target, the target can be stably maintained even if the pH fluctuates. As a method of introducing sulfonic acid groups into particles, a method of allowing sulfur trioxide, chlorosulfuric acid or concentrated sulfuric acid to act on styrene copolymer particles, and introducing epoxy groups or allyl groups into particles Further, a method in which sulfurous acid is allowed to act and a method in which propane sultone, butane sultone or sulfur trisulfide is allowed to act on the particles having a hydroxyl group are used.

合成ポリマーを骨格とする非多孔性の粒子(合成ポリマー粒子)は、上記(3)とともに(4)をも達成し得るものである。そこで非多孔性のポリマー粒子に従来のようなカチオン交換基の導入方法を適用することが考えられるが、合成ポリマー粒子は、一般的に、後に粒子表面にカチオン交換基を導入するための官能基を有したモノマーと、粒子の機械的強度を高めるための多官能不飽和架橋性モノマーの共重合体を用いて製造するため、粒子の機械的強度を高くするために多官能不飽和架橋性モノマーを多く使用すると粒子表面の官能基量が減少し、粒子表面に十分な量のカチオン交換基を導入できずに粒子表面のカチオン交換基密度が下がる。この結果、対象の保持力が不十分となり(上記(1)が達成できない)、さらに非多孔性であるがゆえの小表面積に起因して対象、特にタンパク質等の生体高分子に対する吸着容量を大きくできず、上記(2)が損なわれ、対象の溶出ピークがブロード化してしまう。
このため、上記(1)や(2)の改善を目的として、カチオン交換能を有するビニルポリマー鎖を粒子表面にグラフトして固定する方法(特許文献1から4)、細孔内に水溶性ポリマーを固定化する方法(特許文献5)が提案されている。しかし、グラフトによってポリマー鎖を粒子表面に固定すると、操作圧が高くなり、上記(5)に反して操作流速の低下を招いてしまう。また細孔内に水溶性ポリマーを固定する方法は非多孔性粒子には適用することができない。
Non-porous particles (synthetic polymer particles) having a synthetic polymer as a skeleton can achieve (4) together with (3) above. Therefore, it is conceivable to apply a conventional method for introducing a cation exchange group to a non-porous polymer particle, but a synthetic polymer particle generally has a functional group for introducing a cation exchange group to the particle surface later. In order to increase the mechanical strength of the particles, the polyfunctional unsaturated crosslinkable monomer is used in order to increase the mechanical strength of the particles. When a large amount is used, the amount of functional groups on the particle surface decreases, and a sufficient amount of cation exchange groups cannot be introduced on the particle surface, resulting in a decrease in the cation exchange group density on the particle surface. As a result, the holding power of the target becomes insufficient (the above (1) cannot be achieved), and the adsorption capacity for the target, particularly biopolymers such as proteins, is increased due to the small surface area due to the non-porous property. The above (2) is impaired, and the target elution peak is broadened.
Therefore, for the purpose of improving the above (1) and (2), a method of grafting and fixing a vinyl polymer chain having a cation exchange capacity on the particle surface (Patent Documents 1 to 4), a water-soluble polymer in the pores There has been proposed a method (Patent Document 5) for immobilizing the above. However, when the polymer chain is fixed to the particle surface by grafting, the operating pressure becomes high, and the operating flow rate is lowered against the above (5). Also, the method of fixing the water-soluble polymer in the pores cannot be applied to non-porous particles.

上記(2)及び(5)の改善を目的として、スルホン酸基を有するモノマーとカルボン酸基を有するモノマーとの共重合体と、カルボン酸基と反応可能な官能基を有するポリマーを、粒子の表面に部分的架橋によって固定する方法も提案されている(特許文献6)。しかしこの方法では、粒子径が5μm程度の微粒子に適用すると上記(5)の要求に反して操作流速の低下を招いてしまう。またこの方法によって(1)及び(6)を改善するためには、部分架橋によって形成されるポリマーはスルホン酸基以外の主鎖及び側鎖の割合が少なく、カチオン交換基密度の高いこと、及び、対象との間で、カチオン交換以外の相互作用(例えば疎水相互作用)を起こしにくいことも要求される。   For the purpose of improving the above (2) and (5), a copolymer of a monomer having a sulfonic acid group and a monomer having a carboxylic acid group, and a polymer having a functional group capable of reacting with the carboxylic acid group, A method of fixing to the surface by partial cross-linking has also been proposed (Patent Document 6). However, in this method, when applied to fine particles having a particle diameter of about 5 μm, the operation flow rate is lowered against the requirement (5). In order to improve (1) and (6) by this method, the polymer formed by partial crosslinking has a small ratio of main chains and side chains other than sulfonic acid groups, and has a high cation exchange group density, and In addition, it is also required that an interaction other than cation exchange (for example, a hydrophobic interaction) is difficult to occur with the object.

上記方法において(1)及び(6)を改善し得るスルホン酸基を有するモノマーとカルボン酸基を有するモノマーとの共重合体として、ビニルスルホン酸重合体(特許文献6から10)の使用が考えられるが、ビニルスルホン酸の単独重合体ではこれを粒子表面に固定する方法が限られてしまう。例えば特許文献11では、ビニルスルホン酸を粒子表面の水酸基と反応させて導入することが記載されているが、粒子表面の水酸基1個に対し、1個のビニルスルホン酸を導入するに過ぎず、上記(2)が損なわれてしまう。またビニルスルホン酸は高分子のものを製造することが困難であり(非特許文献2、特許文献12)、分子量2万以上のものとしてわずかに特許文献13がポリビニルスルホン酸重合体(ホモポリマー)を開示しているにすぎず、ホモポリマーであるゆえ、上記したような粒子の表面に部分的架橋によって固定する方法には適用することができない。   In the above method, use of a vinyl sulfonic acid polymer (Patent Documents 6 to 10) is considered as a copolymer of a monomer having a sulfonic acid group and a monomer having a carboxylic acid group that can improve (1) and (6). However, in the case of a homopolymer of vinyl sulfonic acid, the method for fixing it to the particle surface is limited. For example, Patent Document 11 describes that vinyl sulfonic acid is introduced by reacting with a hydroxyl group on the particle surface, but only one vinyl sulfonic acid is introduced per one hydroxyl group on the particle surface, Said (2) will be impaired. Moreover, it is difficult to produce a vinyl sulfonic acid having a high molecular weight (Non-patent Documents 2 and 12), and as a molecular weight of 20,000 or more, Patent Document 13 is slightly disclosed as a polyvinyl sulfonic acid polymer (homopolymer). However, since it is a homopolymer, it cannot be applied to the method of fixing to the surface of the particle as described above by partial crosslinking.

米国特許5453186号公報US Pat. No. 5,453,186 米国特許3723306号公報U.S. Pat. No. 3,723,306 特公昭57−23694号公報Japanese Patent Publication No.57-23694 特公昭57−58373号公報Japanese Patent Publication No.57-58373 特開2008−232764号公報JP 2008-232764 A 特開2002−306974号公報JP 2002-306974 A 特表2003−512171号公報Special table 2003-512171 gazette 特許3474567号公報Japanese Patent No. 3474567 特表2006−519273号公報JP 2006-519273 A 特開平10−60142号公報Japanese Patent Laid-Open No. 10-60142 特表2009−506340号公報Special table 2009-506340 特開平7−173226号公報JP-A-7-173226 特開2009−227965号公報JP 2009-227965 A

High−performance ion−exchange chromatography of proteins on non−porous ionexchangers、 Jouranl of Chromatography A Volumn398、1987、Page 327−334High-performance ion-exchange chromatography of proteins on non-porous ionexchangers, Journal of Chromatography A Volume 398, 1987, Page 327-334 J.Am.Chem.Soc.,76、6399−6401(1954)J. et al. Am. Chem. Soc., 76, 6399-6401 (1954)

本発明の目的は、(1)から(6)の要請に応え、対象に対して高い保持力を有する、十分な対象の吸着容量を有する、高い分離能を有する、充分な機械強度を有する、低操作圧である、そしてカチオン交換以外の相互作用が小さい、という液体クロマトグラフィー用カチオン交換体を提供することにある。 The object of the present invention is to meet the demands of (1) to (6), have a high holding power for the target, have a sufficient target adsorption capacity, have a high resolution, and have a sufficient mechanical strength. An object of the present invention is to provide a cation exchanger for liquid chromatography having a low operating pressure and small interaction other than cation exchange.

前記課題を解決するためになされた本発明の液体クロマトグラフィー用カチオン交換体は、非多孔性粒子の表面に、ポリビニルスルホン酸共重合体が固定されていることを特徴とするものである。以下、本発明を詳細に説明する。   The cation exchanger for liquid chromatography of the present invention made to solve the above-mentioned problems is characterized in that a polyvinyl sulfonic acid copolymer is fixed on the surface of non-porous particles. Hereinafter, the present invention will be described in detail.

本発明のカチオン交換体は、上記(3)の分離能の向上のため、非多孔性粒子を基材とするものである。本発明における「非多孔性」とは、微孔が一切存在しない粒子はもちろんのこと、カチオン交換体を用いて分離等しようとする対象が入り込めないサイズの孔がある粒子であっても含まれる。なお、粒子の孔のサイズを制御する方法は、例えば米国特許第4382124号等、従来から公知である。   The cation exchanger of the present invention is based on non-porous particles for improving the separation ability of (3) above. The term “non-porous” in the present invention includes not only particles having no micropores but also particles having pores of a size into which an object to be separated using a cation exchanger cannot enter. It is. A method for controlling the pore size of the particles is conventionally known, for example, US Pat. No. 4,382,124.

非多孔性粒子は、(3)の改善を目的として、粒径を5μm以下とすることが好ましく、例えば無機基材(例えば、シリカ、ジルコニア、アルミナ等)や、有機基材(例えば、架橋多糖や、アクリルアミド、アクリルステル、スチレン等のビニルモノマー架橋体)であれば良い。これら粒子は、例えば特公昭58−58026号や特開昭53−90991号に開示されたような、単官能ビニルモノマー(グリシジルメタクリレート、ビニルベンジルグリシジルエーテル等)と、多官能ビニルモノマー(エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、グリセンポリメタクリレート、ジビニルベンゼン等)を組み合わせた混合液の懸濁重合により製造する方法、例えば特開2001−2716号に記載されたようなシード重合により製造する方法によって製造することができる。なお、有機基材の非多孔性粒子を使用する場合には、単官能ビニルモノマーと多官能ビニルモノマーの共重合体、特に単官能性ビニルモノマー由来の構造単位が下記式(1)で示されるものが好ましい(式中、R1は水素原子又はCH3を表す。R2は、ポリオキシアルキレン結合を介して、又は直接導入されたポリビニルスルホン酸共重合体を表す)。また(4)の改善の目的では、多官能ビニルモノマーの割合を5重量%以上としたものが好ましく、(1)から(3)の改善の目的では、充分な量のポリビニルスルホン酸共重合体を固定するための官能基を確保するために、多官能性ビニルモノマーの割合は50重量%以下とすることが好ましい。例えばグリシジルメタクリレート等のエポキシ基を有する単官能性ビニルモノマーと多官能ビニルモノマーとの共重合体であれば、エポキシ基を直接利用する、エポキシ基を加水分解して開環し水溶性の多価アルコール等で親水化を行うことにより水酸基化する、等が可能であり、また水酸基を有する粒子であれば、例えばエピクロルヒドリン、エチレングリコールジグリシジルエーテル等の多官能エポキシ化合物などを既知の方法でエポキシ基を導入することが可能である。   For the purpose of improving (3), the non-porous particles preferably have a particle size of 5 μm or less. For example, inorganic substrates (for example, silica, zirconia, alumina, etc.) and organic substrates (for example, crosslinked polysaccharides) Or a crosslinked vinyl monomer such as acrylamide, acrylic steal, or styrene). These particles include monofunctional vinyl monomers (glycidyl methacrylate, vinyl benzyl glycidyl ether, etc.) and polyfunctional vinyl monomers (ethylene glycol diester) as disclosed in, for example, JP-B-58-58026 and JP-A-53-90991. (Methacrylate, polyethylene glycol dimethacrylate, glycene polymethacrylate, divinylbenzene, etc.) produced by suspension polymerization of a mixed solution, for example, by seed polymerization as described in JP-A-2001-2716 Can be manufactured. When non-porous particles of an organic substrate are used, a copolymer of a monofunctional vinyl monomer and a polyfunctional vinyl monomer, particularly a structural unit derived from a monofunctional vinyl monomer is represented by the following formula (1). (In the formula, R1 represents a hydrogen atom or CH3. R2 represents a polyvinylsulfonic acid copolymer introduced via a polyoxyalkylene bond or directly). For the purpose of improving (4), the polyfunctional vinyl monomer content is preferably 5% by weight or more. For the purposes of improving (1) to (3), a sufficient amount of polyvinyl sulfonic acid copolymer In order to secure a functional group for fixing, the ratio of the polyfunctional vinyl monomer is preferably 50% by weight or less. For example, in the case of a copolymer of a monofunctional vinyl monomer having an epoxy group, such as glycidyl methacrylate, and a polyfunctional vinyl monomer, the epoxy group is directly used, the epoxy group is hydrolyzed and the ring is opened to form a water-soluble polyvalent monomer. Hydroxylation can be performed by hydrophilizing with alcohol or the like, and if it is a particle having a hydroxyl group, for example, a polyfunctional epoxy compound such as epichlorohydrin, ethylene glycol diglycidyl ether or the like can be obtained by a known method. Can be introduced.

Figure 0006056230
本発明のカチオン交換体は、カチオン交換基としてのスルホン酸基を有するポリビニルスルホン酸共重合体を固定したものであるが、ポリビニルスルホン酸共重合体としては、特に上記(1)〜(3)及び(5)を改善するために、その分子量が5000から40000の範囲のものが好ましい。分子量が小さいと(1)から(3)の改善効果が小さく、分子量が大すぎると操作圧が上昇して(5)の改善効果が小さくなるからである。
Figure 0006056230
The cation exchanger of the present invention is obtained by fixing a polyvinyl sulfonic acid copolymer having a sulfonic acid group as a cation exchange group. As the polyvinyl sulfonic acid copolymer, the above-mentioned (1) to (3) are particularly preferable. And in order to improve (5), the thing whose molecular weight is the range of 5000 to 40000 is preferable. This is because when the molecular weight is small, the improvement effects (1) to (3) are small, and when the molecular weight is too large, the operating pressure increases and the improvement effect (5) becomes small.

本発明のポリビニルスルホン酸共重合体は、ビニルスルホン酸と、粒子への固定化のため、粒子表面の官能基と結合し得る官能基を有するビニルモノマーとを共重合して得ることができる。例えば粒子表面にエポキシ基又はカルボキシル基が存在する場合には、これらと結合し得る水酸基、アミノ基、チオール基等を有するビニルモノマーをビニルスルホン酸と共重合すれば良い。中でもビニルスルホン酸との共重合が容易な水酸基を有するビニルモノマーが好適であり、具体的に、2−ヒドロキシエチル(メタ)アクリル酸エステル、ポリエチレングリコール(メタ)アクリル酸エステルやグリセロール(メタ)アクリルエステル等のポリオール化合物の(メタ)アクリル酸エステル、N−ヒドロキシメチル(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−(トリス(ヒドロキシメチル)メチル)(メタ)アクリルアミド等を例示することができる。   The polyvinyl sulfonic acid copolymer of the present invention can be obtained by copolymerizing vinyl sulfonic acid and a vinyl monomer having a functional group capable of binding to a functional group on the particle surface for immobilization on the particle. For example, when an epoxy group or a carboxyl group is present on the particle surface, a vinyl monomer having a hydroxyl group, an amino group, a thiol group or the like that can be bonded to these may be copolymerized with vinyl sulfonic acid. Among them, vinyl monomers having a hydroxyl group that can be easily copolymerized with vinyl sulfonic acid are preferable. Specifically, 2-hydroxyethyl (meth) acrylic acid ester, polyethylene glycol (meth) acrylic acid ester, and glycerol (meth) acrylic are used. Examples include (meth) acrylic acid esters of esters and other polyol compounds, N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N- (tris (hydroxymethyl) methyl) (meth) acrylamide, and the like. Can do.

ポリビニルスルホン酸共重合体を構成するビニルスルホン酸の構造単位は、(1)〜(3)及び(6)の改善を目的として、99.5から50モル%の範囲であることが好ましい。またポリビニルスルホン酸共重合体の粒子表面への固定量については、(5)の改善を目的として、カチオン交換体のカチオン交換容量が5から30meq/Lとなる範囲で調整することが好ましい。このような固定化量の制御により、低操作圧性を備えたカチオン交換体を実現できる。   The structural unit of vinyl sulfonic acid constituting the polyvinyl sulfonic acid copolymer is preferably in the range of 99.5 to 50 mol% for the purpose of improving (1) to (3) and (6). The amount of the polyvinyl sulfonic acid copolymer immobilized on the particle surface is preferably adjusted in the range where the cation exchange capacity of the cation exchanger is 5 to 30 meq / L for the purpose of improving (5). By controlling the amount of such immobilization, a cation exchanger having low operating pressure can be realized.

ポリビニルスルホン酸共重合体を粒子表面に固定する方法としては、例えば粒子表面にエポキシ基が存在する場合には、ビニルスルホン酸と水酸基を有するビニルモノマーを共重合してポリビニルスルホン酸共重合体を製造し、該共重合体を溶解した水溶液中に粒子を分散し、溶液を中性からアルカリ性にする、等を例示できる。この場合、ポリビニルスルホン酸共重合体の使用量として5〜50%濃度を選択し、溶液に0.1〜0.5モル濃度の水酸化ナトリウムを添加して30から60度で1から24時間加熱することを具体的に例示できる。また例えば粒子表面にエポキシ基又はカルボキシル基が存在する場合には、ビニルスルホン酸と水酸基を有するビニルモノマーを共重合してポリビニルスルホン酸共重合体を製造し、該共重合体を揮発性溶媒に溶解した状態でエポキシ基又はカルボキシル基を有する粒子を分散し、溶媒を留去した後、90から150度で1から5時間乾燥加熱する、等を例示することができる。この場合、ポリビニルスルホン酸共重合体の使用量としては、乾燥重量で粒子の5重量%以上とすることを具体的に例示できる。   As a method for fixing the polyvinyl sulfonic acid copolymer to the particle surface, for example, when an epoxy group is present on the particle surface, a vinyl sulfonic acid and a vinyl monomer having a hydroxyl group are copolymerized to form a polyvinyl sulfonic acid copolymer. For example, the particles can be dispersed in an aqueous solution in which the copolymer is dissolved to change the solution from neutral to alkaline. In this case, the concentration of 5 to 50% is selected as the usage amount of the polyvinyl sulfonic acid copolymer, and 0.1 to 0.5 molar sodium hydroxide is added to the solution at 30 to 60 degrees for 1 to 24 hours. A specific example is heating. Further, for example, when an epoxy group or a carboxyl group is present on the particle surface, a vinyl sulfonic acid and a vinyl monomer having a hydroxyl group are copolymerized to produce a polyvinyl sulfonic acid copolymer, and the copolymer is used as a volatile solvent. For example, the particles having an epoxy group or a carboxyl group are dispersed in a dissolved state and the solvent is distilled off, followed by drying and heating at 90 to 150 degrees for 1 to 5 hours. In this case, the amount of the polyvinyl sulfonic acid copolymer used can be specifically exemplified as 5% by weight or more of the particles by dry weight.

本発明のカチオン交換体は、例えば液体クロマトグラフィー用のカラムに充填して、グリコヘモグロビンを含む種々のタンパク質等の生体試料の分離、精製に使用することが可能である。   The cation exchanger of the present invention can be used for separation and purification of biological samples such as various proteins containing glycohemoglobin by packing in a column for liquid chromatography, for example.

本発明のカチオン交換体は、非多孔性粒子にカチオン交換基を固定したものであるから、(3)を改善することができ、特に5μm以下という微粒子を使用した場合には、大きく改善することできる。本発明において、ビニルモノマー共重合体(架橋体)を使用する場合には、100MPaに耐えうる機械強度を実現でき、(4)を改善することができる。また本発明のカチオン交換体は、スルホン酸基をカチオン交換基として使用し、かつ、充分な量のカチオン交換基を粒子に固定できるから、(1)から(3)及び(6)を改善することができ、しかもその固定量を制御することによって(5)をも改善し得るものである。   Since the cation exchanger of the present invention is obtained by fixing cation exchange groups to non-porous particles, (3) can be improved, particularly when fine particles of 5 μm or less are used. it can. In the present invention, when a vinyl monomer copolymer (crosslinked product) is used, mechanical strength that can withstand 100 MPa can be realized, and (4) can be improved. In addition, the cation exchanger of the present invention uses (1) to (3) and (6) because a sulfonic acid group is used as the cation exchange group and a sufficient amount of the cation exchange group can be fixed to the particles. In addition, (5) can be improved by controlling the fixed amount.

このように本発明のカチオン交換体は、(1)試料中に含まれる塩濃度の影響を受けにくくするために、対象に対して高い保持力を有し、(2)微量成分の分離性能を保つために十分な対象の吸着容量を有し、(3)分離・分析精度向上のために高い分離能を有し、(4)分離・分析時間短縮のために速い操作流速で使用でき(速い操作流速に伴う高圧に耐えるための機械強度を有し)、(5)操作流速の低下を招かず(低操作圧であり)、そして、(6)交換体と対象との間で、カチオン交換以外の相互作用が小さい(小さなカチオン交換以外の相互作用性)という、従来からの要求に応えることのできるカチオン交換体である。   As described above, the cation exchanger of the present invention (1) has a high holding power with respect to the target in order to make it less susceptible to the influence of the salt concentration contained in the sample, and (2) has the ability to separate trace components. Sufficient target adsorption capacity to maintain, (3) High resolution to improve separation / analysis accuracy, (4) High operating flow rate for fast separation / analysis time (fast (It has mechanical strength to withstand the high pressure associated with the operation flow rate), (5) Does not cause a decrease in the operation flow rate (is a low operation pressure), and (6) Cations exchange between the exchanger and the object It is a cation exchanger that can meet the conventional requirement that the interaction other than is small (interaction other than small cation exchange).

実施例1、比較例1及び比較例2の結果を示す図である。It is a figure which shows the result of Example 1, the comparative example 1, and the comparative example 2. FIG. 実施例1におけるタンパク質(グリコヘモグロビン)のクロマトグラムを示す図である。1 is a diagram showing a chromatogram of a protein (glycohemoglobin) in Example 1. FIG.

以下、実施例により本発明のカチオン交換体を更に詳細に説明するが、本発明はこれらに限定されるものではない。
[非多孔性基材の作成]
特許公開2001−2716号に記載された方法(シード重合法)により、非多孔性粒子を製造した。ベンジルメタクリレート20g及びメルカプト酢酸2−エチルヘキシル0.95gを500mL三つ口フラスコに入れて混合し、イオン交換水を200g投入した。マグネティック撹拌子を入れ、85度に設定したオイルバスに取り付け、窒素導入管を設置し、150rpmで撹拌した。これとは別に50mL容器に過硫酸カリウム0.6g及びイオン交換水20gを計り取り溶解した。30分経過後、三つ口フラスコに設置したゴム栓から、過硫酸カリウム水溶液を注射器で投入した。回転数を300rpmとしてソープフリー乳化重合を実施した。2時間重合を継続後、凝集分を取り除いてシード溶液を回収した。シード溶液の固形分含有率は、6.98%であり、粒子径は電子顕微鏡による測定で0.39μmであった。
メタクリル酸2,3エポキシプロピル64g、二メタクリル酸エチレン16g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)(商品名V−65、和光純薬(株)製)0.2g及びドデシル硫酸ナトリウム0.2gを300mLフラスコに計量し、撹拌子を入れ、マグネティックスタラーで混合した。イオン交換水を100mL加え、マグネティックスタラーで撹拌しながら超音波ホモジナイザーで乳化した。前記のように調整したシード溶液10.90g(固形分量0.760g)及び50mLの4%濃度のポリビニルアルコール水溶液を加え、1分間よく撹拌し、静置した。室温下で30分放置後、60度に設定した水浴に静置し、2時間重合を行った。得られた重合液をガラスフィルターでろ過し、温水、アセトン、温水の順で洗浄して、非多孔性粒子を得た。
Hereinafter, the cation exchanger of the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[Creation of non-porous substrate]
Non-porous particles were produced by the method (seed polymerization method) described in Japanese Patent Publication No. 2001-2716. 20 g of benzyl methacrylate and 0.95 g of 2-ethylhexyl mercaptoacetate were mixed in a 500 mL three-necked flask, and 200 g of ion-exchanged water was added. A magnetic stirrer was put in, attached to an oil bath set at 85 degrees, a nitrogen inlet tube was installed, and stirring was performed at 150 rpm. Separately, 0.6 g of potassium persulfate and 20 g of ion-exchanged water were measured and dissolved in a 50 mL container. After 30 minutes, an aqueous potassium persulfate solution was charged with a syringe from a rubber stopper installed in a three-necked flask. Soap-free emulsion polymerization was carried out at a rotation speed of 300 rpm. After continuing the polymerization for 2 hours, the agglomerate was removed and the seed solution was recovered. The solid content of the seed solution was 6.98%, and the particle size was 0.39 μm as measured by an electron microscope.
2,3 Epoxypropyl methacrylate 64 g, Ethylene dimethacrylate 16 g, 2,2′-azobis (2,4-dimethylvaleronitrile) (trade name V-65, manufactured by Wako Pure Chemical Industries, Ltd.) 0.2 g and dodecyl 0.2 g of sodium sulfate was weighed into a 300 mL flask, a stirring bar was added, and the mixture was mixed with a magnetic stirrer. 100 mL of ion-exchanged water was added and emulsified with an ultrasonic homogenizer while stirring with a magnetic stirrer. 10.90 g of seed solution prepared as described above (solid content 0.760 g) and 50 mL of 4% aqueous polyvinyl alcohol solution were added, and the mixture was stirred well for 1 minute and allowed to stand. After standing at room temperature for 30 minutes, the mixture was allowed to stand in a water bath set at 60 degrees and polymerized for 2 hours. The obtained polymerization solution was filtered through a glass filter, and washed with warm water, acetone, and warm water in this order to obtain non-porous particles.

得られた非多孔性粒子を500mLセパラブルフラスコに入れ、イオン交換水を300mL加え、90度に設定したオイルバスに設置し、撹拌しながら24時間加熱することによりエポキシ基の加水分解を行った。エポキシ基を加水分解した後の非多孔性粒子は、電子顕微鏡観察により観察したところ、1.8μmの粒子径の揃った粒子であった。   The obtained non-porous particles were put into a 500 mL separable flask, 300 mL of ion-exchanged water was added, placed in an oil bath set at 90 degrees, and heated for 24 hours with stirring to hydrolyze the epoxy group. . The non-porous particles after hydrolyzing the epoxy groups were particles having a uniform particle diameter of 1.8 μm as observed with an electron microscope.

得られた非多孔性粒子100g(水サクションドライ)、エピクロロヒドリン103g及びイオン交換水100gを500mLセパラブルフラスコに入れ、45度に設定した水浴に設置し撹拌した。これとは別に48%水酸化ナトリウム水溶液88gを計量し、ディスポーザブル注射器に入れ、シリンジポンプに設置し、0.5mL/分の速度でセパブルフラスコに撹拌しながら投入した。投入後反応を2時間継続し、反応物をガラスフィルターでろ過し、水、アセトンの順で洗浄し、通風乾燥し、エポキシ化非多孔性粒子を得た。
実施例1
ビニルスルホン酸ナトリウム(以下「VSNa」と略記する)25%水溶液(東京化成工業製)10.0g、2-ヒドロキシエチルメタクリル酸エステル(以下「HEMA」と略記する)0.216g(VSNaとの比率で10モル%)及び過硫酸カリウム0.026gを10mLガラス容器に入れ、65度に設定した水浴中で5時間重合した。重合液を少量サンプリングし、共重合体の分子量を下記の条件下、ゲルパーミエーションクロマトグラフィーにより測定した結果、重量平均分子量11700、ビニルスルホン酸の重合率は94%であった。
100 g of the obtained non-porous particles (water suction dry), 103 g of epichlorohydrin and 100 g of ion-exchanged water were placed in a 500 mL separable flask, and placed in a water bath set at 45 degrees and stirred. Separately, 88 g of 48% aqueous sodium hydroxide solution was weighed, placed in a disposable syringe, placed in a syringe pump, and charged into a separable flask with stirring at a rate of 0.5 mL / min. After the addition, the reaction was continued for 2 hours, and the reaction product was filtered through a glass filter, washed with water and acetone in this order, and dried by ventilation to obtain epoxidized non-porous particles.
Example 1
Sodium vinyl sulfonate (hereinafter abbreviated as “VSNa”) 25% aqueous solution (manufactured by Tokyo Chemical Industry) 10.0 g, 2-hydroxyethyl methacrylate (hereinafter abbreviated as “HEMA”) 0.216 g (ratio with VSNa) 10 mol%) and 0.026 g of potassium persulfate were placed in a 10 mL glass container and polymerized in a water bath set at 65 degrees for 5 hours. A small amount of the polymerization solution was sampled, and the molecular weight of the copolymer was measured by gel permeation chromatography under the following conditions. As a result, the weight average molecular weight was 11700, and the polymerization rate of vinyl sulfonic acid was 94%.

ゲルパーミエーションクロマトグラフィーの条件
カラム:TSKgel(登録商標) G4000PWXL及び同 G2500PWXL
溶離液:0.1mol/L 硝酸ナトリウム
流速:1.0mL/分
検出:屈折率計
サンプル:10倍希釈し、5uL注入
上記重合液を200mLのメタノールで再沈精製し、窒素気流下通風乾燥しビニルスルホン酸共重合体の白色粉体を得た。
エポキシ化非多孔性粒子5g(乾燥重量)に対し、ビニルスルホン酸共重合体1.0g(エポキシ化非多孔性粒子の乾燥重量あたり20重量%)及び20mLの純水を100mLナス型フラスコに入れ、超音波槽にてよく分散した。ナス型フラスコをエバポレータ―に取り付け、減圧下水を留去した。ナス型フラスコを150度に設定した温風過熱器に入れ、1時間加熱することにより、ビニルスルホン酸共重合体をエポキシ化非多孔性粒子の表面に固定した。ナス型フラスコを冷却後、水を入れ、よく分散し、ガラスフィルターを用いて、水、0.1N塩酸、0.1N水酸化ナトリウム、水の順で洗浄し、カチオン交換体を得た。得られたカチオン交換体は、10%のイオン交換水を分散液として、4.6mm内径x50mm長さの液体クロマトグラフィー用カラムにスラリー充填した。得られたカラムを使用して、下記条件下、液体クロマトグラフィーを実施してタンパク質の分離性能を測定した。カチオン交換体の操作圧は、溶離液Aを流速0.5mL/分で送液した時の操作圧とした。そしてカチオン交換体のカチオン交換容量は、カラムに25mmol/Lのクエン酸溶液を0.4mL/分の流速で10分間通液し、続いてイオン交換水を0.4mL/分の流速でカラム溶出液の電気伝導度が低下するまで通液し、カラムから抽出したカチオン交換体を200mLのビーカー中で0.5mol/Lの塩化ナトリウム水溶液で分散後、0.01mol/Lの水酸化ナトリウム水溶液でpH7を終点として自動滴定することで測定した。
Conditions for gel permeation chromatography Column: TSKgel (registered trademark) G4000PW XL and G2500PW XL
Eluent: 0.1 mol / L Sodium nitrate Flow rate: 1.0 mL / min Detection: Refractometer Sample: 10-fold dilution, 5 uL injection The above polymerization solution is purified by reprecipitation with 200 mL of methanol, and dried by ventilation under a nitrogen stream. A white powder of vinyl sulfonic acid copolymer was obtained.
To 5 g (dry weight) of epoxidized non-porous particles, 1.0 g of vinyl sulfonic acid copolymer (20 wt% per dry weight of epoxidized non-porous particles) and 20 mL of pure water are placed in a 100 mL eggplant-shaped flask. It was well dispersed in an ultrasonic bath. An eggplant-shaped flask was attached to the evaporator, and water was distilled off under reduced pressure. The eggplant-shaped flask was placed in a warm air superheater set at 150 degrees and heated for 1 hour to fix the vinyl sulfonic acid copolymer on the surface of the epoxidized non-porous particles. After cooling the eggplant-shaped flask, water was added, well dispersed, and washed with water, 0.1N hydrochloric acid, 0.1N sodium hydroxide, and water in this order using a glass filter to obtain a cation exchanger. The obtained cation exchanger was loaded into a liquid chromatography column having a diameter of 4.6 mm and a length of 50 mm as a dispersion with 10% ion-exchanged water as a dispersion. The obtained column was subjected to liquid chromatography under the following conditions to measure protein separation performance. The operating pressure of the cation exchanger was the operating pressure when the eluent A was fed at a flow rate of 0.5 mL / min. The cation exchange capacity of the cation exchanger is such that a 25 mmol / L citric acid solution is passed through the column for 10 minutes at a flow rate of 0.4 mL / min, followed by elution of ion-exchanged water at a flow rate of 0.4 mL / min. The cation exchanger extracted from the column was dispersed with a 0.5 mol / L sodium chloride aqueous solution in a 200 mL beaker, and then with a 0.01 mol / L sodium hydroxide aqueous solution. Measurement was performed by automatic titration with pH 7 as the end point.

液体クロマトグラフィー条件
溶離液A:10mmol/L リン酸ナトリウム緩衝液(pH6.5)
溶離液B:0.5mol/LのNaClを含む10mmol/L リン酸ナトリウム緩衝液(pH6.5)
グラジエント:5〜100%溶離液B直線グラジエント、9.5分
流速:0.4mL/分
対象:α−キモトリプシノーゲンA(1g/L)
リボヌクレアーゼA(1g/L)
リゾチウム(1g/L)
注入量:3、5、7、10、20、30及び50μL
対象を10μL注入したときのクロマトグラムは図1に示したとおりであり、3種類の対象が良好に分離されていること、及び、全対象について、本発明のカチオン交換体が十分な保持力を有していることが分かる。カチオン交換体の操作圧については26.8MPaと低操作圧であり、カチオン交換容量は、カチオン交換体1Lあたり16.6meqと十分なものであった。
また下記条件下、グリコヘモグロビンの分析を行った場合のクロマトグラムを図2に示す。グリコヘモグロビンを対象とした場合にも、本発明のカチオン交換体は良好な分離を示すことが分かる。
グリコヘモグロビンの分析条件
溶離液A:20mmol/L リン酸ナトリウム緩衝液(pH6.3)
溶離液B:0.2mol/LのNaClO4を含む20mmol/L リン酸ナトリウム緩衝液(pH6.3)
グラジエント:0〜100%溶離液B直線グラジエント、10分
流速:0.5mL/分
試料:HbA1cコントロール(1.0g/L)(東ソー(株)製)
注入量:5μL
実施例1で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例2
ビニルスルホン酸共重合体を製造するにあたり、HEMAに代えてVSNaとの比率で1モル%量のN−ヒドロキシエチルアクリルアミド(以下「HEAA」と略記する)(シグマ製)を使用し、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例2で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例3
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例2と同様の操作を行い、カチオン交換体を得た。実施例3で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例4
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とした以外は実施例2と同様の操作を行い、カチオン交換体を得た。実施例4で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例5
HEAAの使用量をVSNaとの比率で5モル%量とし、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例5で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例6
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例5と同様の操作を行い、カチオン交換体を得た。実施例6で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例7
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とした以外は実施例5と同様の操作を行い、カチオン交換体を得た。実施例6で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例8
HEAAの使用量をVSNaとの比率で10モル%量とし、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例8で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例9
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例8と同様の操作を行い、カチオン交換体を得た。実施例9で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例10
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とした以外は実施例8と同様の操作を行い、カチオン交換体を得た。実施例10で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例11
HEAAの使用量をVSNaとの比率で25モル%量とし、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり3重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例11で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Liquid chromatography conditions Eluent A: 10 mmol / L sodium phosphate buffer (pH 6.5)
Eluent B: 10 mmol / L sodium phosphate buffer (pH 6.5) containing 0.5 mol / L NaCl
Gradient: 5-100% eluent B linear gradient, 9.5 minutes Flow rate: 0.4 mL / min Target: α-chymotrypsinogen A (1 g / L)
Ribonuclease A (1 g / L)
Lysotium (1 g / L)
Injection volume: 3, 5, 7, 10, 20, 30, and 50 μL
The chromatogram when 10 μL of the target is injected is as shown in FIG. 1. The three types of target are well separated, and the cation exchanger of the present invention has sufficient holding power for all the targets. You can see that The operating pressure of the cation exchanger was as low as 26.8 MPa, and the cation exchange capacity was 16.6 meq per liter of cation exchanger.
Moreover, the chromatogram at the time of analyzing glycohemoglobin under the following conditions is shown in FIG. It can be seen that the cation exchanger of the present invention shows good separation even when glycated hemoglobin is targeted.
Analysis conditions for glycohemoglobin Eluent A: 20 mmol / L sodium phosphate buffer (pH 6.3)
Eluent B: 20 mmol / L sodium phosphate buffer (pH 6.3) containing 0.2 mol / L NaClO4
Gradient: 0 to 100% eluent B linear gradient, 10 minutes Flow rate: 0.5 mL / min Sample: HbA1c control (1.0 g / L) (manufactured by Tosoh Corporation)
Injection volume: 5 μL
For the cation exchanger produced in Example 1, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected It is shown in 1.
Example 2
In producing a vinyl sulfonic acid copolymer, instead of HEMA, 1 mol% of N-hydroxyethylacrylamide (hereinafter abbreviated as “HEAA”) (manufactured by Sigma) in a ratio with VSNa was used and obtained. In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same operation as in Example 1 was performed except that the amount used was 5% by weight per dry weight of the epoxidized non-porous particles. A cation exchanger was obtained. Regarding the cation exchanger produced in Example 2, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.
Example 3
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 2 was carried out except that the amount used was 10% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 3, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 4
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 2 was performed except that the amount used was 20% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 4, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.
Example 5
When the amount of HEAA used is 5 mol% in proportion to VSNa, and the obtained vinyl sulfonic acid copolymer is fixed to the epoxidized nonporous particles, the amount used is determined by drying the epoxidized nonporous particles. A cation exchanger was obtained in the same manner as in Example 1 except that the amount was 5% by weight. Regarding the cation exchanger produced in Example 5, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 6
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 5 was carried out except that the amount used was 10 wt% per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 6, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected It is shown in 1.
Example 7
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 5 was performed except that the amount used was 20% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 6, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected It is shown in 1.
Example 8
When the amount of HEAA used is 10 mol% in proportion to VSNa, and the obtained vinyl sulfonic acid copolymer is fixed to the epoxidized nonporous particles, the amount used is determined by drying the epoxidized nonporous particles. A cation exchanger was obtained in the same manner as in Example 1 except that the amount was 5% by weight. Regarding the cation exchanger produced in Example 8, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A is injected are shown. It is shown in 1.
Example 9
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 8 was carried out except that the amount used was 10% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 9, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 10
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 8 was performed except that the amount used was 20% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. For the cation exchanger produced in Example 10, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 11
When the amount of HEAA used is 25 mol% in proportion to VSNa, and the obtained vinyl sulfonic acid copolymer is fixed to the epoxidized nonporous particles, the amount used is determined by drying the epoxidized nonporous particles. A cation exchanger was obtained in the same manner as in Example 1 except that the amount was 3% by weight per weight. Regarding the cation exchanger produced in Example 11, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.

実施例12
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例11と同様の操作を行い、カチオン交換体を得た。実施例12で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 12
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 11 was carried out except that the amount used was 5 wt% per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 12, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.

実施例13
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例11と同様の操作を行い、カチオン交換体を得た。実施例13で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 13
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 11 was performed except that the amount used was 10% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 13, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected It is shown in 1.

実施例14
ビニルスルホン酸共重合体を製造するにあたり、VSNaとの比率で0.5モル%量のHEMAを使用し、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例14で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例15
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例14と同様の操作を行い、カチオン交換体を得た。実施例15で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 14
In producing a vinyl sulfonic acid copolymer, 0.5 mol% of HEMA was used in a ratio with VSNa, and in fixing the obtained vinyl sulfonic acid copolymer to epoxidized non-porous particles, A cation exchanger was obtained in the same manner as in Example 1 except that the amount used was 5 wt% per dry weight of the epoxidized non-porous particles. Regarding the cation exchanger produced in Example 14, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 15
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 14 was performed except that the amount used was 10% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 15, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.

実施例16
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とした以外は実施例14と同様の操作を行い、カチオン交換体を得た。実施例16で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 16
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 14 was carried out except that the amount used was 20% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 16, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.

実施例17
ビニルスルホン酸共重合体を製造するにあたり、VSNaとの比率で5モル%量のHEMAを使用し、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例17で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 17
In producing a vinyl sulfonic acid copolymer, 5 mol% of HEMA was used in a ratio with VSNa, and the obtained vinyl sulfonic acid copolymer was used for fixing to epoxidized non-porous particles. A cation exchanger was obtained in the same manner as in Example 1 except that the amount was 5% by weight per dry weight of the epoxidized non-porous particles. Regarding the cation exchanger produced in Example 17, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.

実施例18
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例17と同様の操作を行い、カチオン交換体を得た。実施例18で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 18
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 17 was carried out except that the amount used was 10% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 18, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.

実施例19
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とした以外は実施例17と同様の操作を行い、カチオン交換体を得た。実施例19で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 19
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 17 was carried out except that the amount used was 20% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 19, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.

実施例20
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とし、加熱時間を5時間とした以外は実施例17と同様の操作を行い、カチオン交換体を得た。実施例20で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例21
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり5重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例21で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例22
ビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり10重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。実施例22で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
実施例23
実施例1において、VSNa25%水溶液20.0g、N−[Tris(hydroxymethyl)methyl]acrylamide(シグマ製、Tris−AA)0.5g(VSNaとの比率で7.5モル%)を30mLガラス容器に入れ、直射日光下に3日間放置した以外は同様の操作を行って得たビニルスルホン酸共重合体を使用し、カチオン交換体を得た。実施例23で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
比較例1
市販のカラム(TSKgel(登録商標) SP−NPR)から粒子を取り出し、実施例1で使用したのと同一の4.6mm内径×50mm長さのカラムに充填し、実施例1と同一の条件でタンパク質の分離能を測定した。操作圧は6.2MPaと低操作圧であったが、保持力が弱く、溶出ピークの幅はブロードなものであった。結果を図1に示すとともに、操作圧とα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
比較例2
市販のカラム(TSKgel(登録商標) SP−STAT)から粒子を取り出し、実施例1で使用したのと同一の4.6mm内径×50mm長さのカラムに充填し、実施例1と同一の条件でタンパク質の分離能を測定した。操作圧は1.6MPaと低操作圧であったが、保持力が弱く、溶出ピークの幅はブロードなものであった。結果を図1に示すとともに、操作圧とα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示す。
Example 20
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the amount used was 20% by weight per dry weight of the epoxidized non-porous particles, and the heating time was 5 hours. The same operation was performed to obtain a cation exchanger. Regarding the cation exchanger produced in Example 20, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 21
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 1 was carried out except that the amount used was 5 wt% per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 21, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Example 22
In fixing the vinyl sulfonic acid copolymer to the epoxidized non-porous particles, the same procedure as in Example 1 was carried out except that the amount used was 10% by weight per dry weight of the epoxidized non-porous particles. An exchange was obtained. Regarding the cation exchanger produced in Example 22, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown. It is shown in 1.
Example 23
In Example 1, 20.0 g of 25% aqueous solution of VSNa, 0.5 g of N- [Tris (hydroxymethyl) methyl] acrylamide (Sigma, Tris-AA) (7.5 mol% with respect to VSNa) in a 30 mL glass container A cation exchanger was obtained using a vinyl sulfonic acid copolymer obtained by performing the same operation except that it was placed in direct sunlight for 3 days. Regarding the cation exchanger produced in Example 23, the molecular weight of the immobilized vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-value width when 10 μL of α-chymotrypsinogen A was injected are shown in the table. It is shown in 1.
Comparative Example 1
Particles were taken out from a commercially available column (TSKgel (registered trademark) SP-NPR), packed into the same 4.6 mm inner diameter × 50 mm length column used in Example 1, and under the same conditions as in Example 1. Protein separation was measured. The operating pressure was a low operating pressure of 6.2 MPa, but the holding power was weak and the width of the elution peak was broad. The results are shown in FIG. 1, and the peak half-value width when 10 μL of operating pressure and α-chymotrypsinogen A are injected are shown in Table 1.
Comparative Example 2
Particles were taken out from a commercially available column (TSKgel (registered trademark) SP-STAT), packed into the same 4.6 mm inner diameter × 50 mm length column used in Example 1, and under the same conditions as in Example 1. Protein separation was measured. The operating pressure was as low as 1.6 MPa, but the holding power was weak and the width of the elution peak was broad. The results are shown in FIG. 1, and the peak half-value width when 10 μL of operating pressure and α-chymotrypsinogen A are injected are shown in Table 1.

比較例3
ビニルスルホン酸共重合体を製造するにあたり、HEMAに代えてVSNaとの比率で30モル%量のHEAAを使用し、また得られたビニルスルホン酸共重合体をエポキシ化非多孔性粒子に固定するにあたり、その使用量をエポキシ化非多孔性粒子の乾燥重量あたり20重量%とした以外は実施例1と同様の操作を行い、カチオン交換体を得た。比較例3で製造したカチオン交換体に関し、固定したビニルスルホン酸共重合体の分子量とVSNaの重合率、カチオン交換容量、操作圧そしてα−キモトリプシノーゲンAを10μL注入したときのピーク半値幅を表1に示すが、操作圧が高く、測定は困難であった。
Comparative Example 3
In producing the vinyl sulfonic acid copolymer, 30 mol% of HEAA in proportion to VSNa is used instead of HEMA, and the obtained vinyl sulfonic acid copolymer is fixed to the epoxidized non-porous particles. At that time, a cation exchanger was obtained in the same manner as in Example 1 except that the amount used was 20% by weight per dry weight of the epoxidized non-porous particles. Regarding the cation exchanger produced in Comparative Example 3, the molecular weight of the fixed vinyl sulfonic acid copolymer, the polymerization rate of VSNa, the cation exchange capacity, the operating pressure, and the peak half-width when 10 μL of α-chymotrypsinogen A was injected are shown. As shown in Fig. 1, the operation pressure was high and measurement was difficult.

比較例4
実施例1で使用したエポキシ化非多孔性粒子4g、デキストラン(分子量60000)3g、イオン交換水7g及び水酸化ナトリウム60μLを容量40mLの遠心管にいれ、50度に設定した水浴中で16時間振盪した。得られた反応物を遠心して上澄を除去し、イオン交換水10mLを加えて分散後、更に遠心した。上澄の除去、イオン交換水の添加及び遠心からなる操作を合計3回繰り返し、上澄を除去後、遠心管にイオン交換水4.3g、1,3プロパンスルトン1.2g及び48%水酸化ナトリウム水溶液1.5gを加え、撹拌した。反応液をガラスフィルターでろ過し、水、0.1N塩酸、0.1N水酸化ナトリウム、水の順で洗浄し、カチオン交換体を得た。
Comparative Example 4
4 g of the epoxidized non-porous particles used in Example 1, 3 g of dextran (molecular weight 60000), 7 g of ion-exchanged water and 60 μL of sodium hydroxide were placed in a 40 mL capacity centrifuge tube and shaken in a water bath set at 50 degrees for 16 hours. did. The resulting reaction product was centrifuged to remove the supernatant, and 10 mL of ion exchange water was added and dispersed, followed by further centrifugation. The operation consisting of removal of the supernatant, addition of ion exchange water and centrifugation was repeated three times in total. After removing the supernatant, 4.3 g of ion exchange water, 1.2 g of 1,3 propane sultone and 48% hydroxylation were added to the centrifuge tube. A 1.5 g sodium aqueous solution was added and stirred. The reaction solution was filtered through a glass filter and washed with water, 0.1N hydrochloric acid, 0.1N sodium hydroxide and water in this order to obtain a cation exchanger.

得られたカチオン交換体を実施例1で使用したのと同一の4.6mm内径×50mm長さのカラムに充填し、実施例1と同一の条件でタンパク質の分離を試みたが、操作圧が60MPa以上となり、分離操作を実施することは困難であった。   The obtained cation exchanger was packed in the same 4.6 mm inner diameter × 50 mm length column used in Example 1, and protein separation was attempted under the same conditions as in Example 1. It was 60 MPa or more, and it was difficult to carry out the separation operation.

Figure 0006056230
Figure 0006056230

Claims (4)

単官能性ビニルモノマーと多官能性ビニルモノマーの共重合体からなり、その粒径が5μm以下である非多孔性粒子の表面に、ポリビニルスルホン酸共重合体が固定されていることを特徴とする液体クロマトグラフィー用カチオン交換体。 It is composed of a copolymer of a monofunctional vinyl monomer and a polyfunctional vinyl monomer, and a polyvinyl sulfonic acid copolymer is fixed on the surface of non-porous particles having a particle size of 5 μm or less. Cation exchanger for liquid chromatography. ポリビニルスルホン酸共重合体の分子量が5000以上40000以下であることを特徴とする請求項1記載の液体クロマトグラフィー用カチオン交換体。   The cation exchanger for liquid chromatography according to claim 1, wherein the molecular weight of the polyvinyl sulfonic acid copolymer is from 5,000 to 40,000. ポリビニルスルホン酸共重合体の導入量が、非多孔性粒子の30重量%以下であることを特徴とする請求項1又は2に記載の液体クロマトグラフィー用カチオン交換体。 The cation exchanger for liquid chromatography according to claim 1 or 2 , wherein the introduced amount of the polyvinyl sulfonic acid copolymer is 30% by weight or less of the non-porous particles. 請求項1乃至のいずれかに記載の液体クロマトグラフィー用カチオン交換体を充填して成る液体クロマトグラフィー用カラム。 A column for liquid chromatography comprising the cation exchanger for liquid chromatography according to any one of claims 1 to 3 .
JP2012157530A 2012-07-13 2012-07-13 Cation exchanger for liquid chromatography Expired - Fee Related JP6056230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157530A JP6056230B2 (en) 2012-07-13 2012-07-13 Cation exchanger for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157530A JP6056230B2 (en) 2012-07-13 2012-07-13 Cation exchanger for liquid chromatography

Publications (2)

Publication Number Publication Date
JP2014020829A JP2014020829A (en) 2014-02-03
JP6056230B2 true JP6056230B2 (en) 2017-01-11

Family

ID=50195895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157530A Expired - Fee Related JP6056230B2 (en) 2012-07-13 2012-07-13 Cation exchanger for liquid chromatography

Country Status (1)

Country Link
JP (1) JP6056230B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972662B2 (en) * 2001-01-29 2007-09-05 東ソー株式会社 Cation exchanger, method for producing the same, and use thereof
WO2012081727A1 (en) * 2010-12-17 2012-06-21 旭化成メディカル株式会社 Temperature-responsive adsorbent having strong cation exchange group, and method for producing same
EP2841177B1 (en) * 2012-04-25 2017-08-02 GE Healthcare BioProcess R&D AB Separation method and separation matrix

Also Published As

Publication number Publication date
JP2014020829A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
EP1889857B1 (en) Novel packing material with excellent hydrophilicity and process for producing the same
US20170043320A1 (en) Solid-phase carrier, production method for solid-phase carrier, carrier for affinity refining, production method for filler for affinity chromatography, filler for affinity chromatography, chromatography column, and refining method
TWI682936B (en) Support for affinity chromatography
CN110520216B (en) Multimodal chromatography media for protein separations
EP2295471A1 (en) Swellable particles
JP6790834B2 (en) Separator
JP5446001B2 (en) Method for measuring hemoglobin A1c and abnormal hemoglobins by liquid chromatography
JP6056231B2 (en) Cation exchanger for liquid chromatography
JPH0373848A (en) Packing material for liquid chromatography and production thereof
JP2006095516A (en) Surface-modified filler for liquid chromatography and manufacturing method for the same
JP6056230B2 (en) Cation exchanger for liquid chromatography
JP5294941B2 (en) Column filler for separating hemoglobins, method for measuring hemoglobin A1c and abnormal hemoglobin, and method for producing column filler for separating hemoglobins
JP2007057526A (en) Method for analyzing low-molecular-weight compound in sample containing water-soluble polymer and low-molecular-weight compound
JP6958334B2 (en) Method for manufacturing composite polymer
US9334353B2 (en) Method for producing polymer particles, polymer particles, filler for chromatography column, and chromatography column
JP6332267B2 (en) Cation exchanger for liquid chromatography, its production method and its use
JP2010236909A (en) COLUMN PACKING FOR SEPARATING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS, AND METHOD FOR MANUFACTURING COLUMN PACKING FOR SEPARATING HEMOGLOBINS
JP2011047859A (en) COLUMN PACKING FOR SEPARATING HEMOGLOBIN, METHOD FOR MEASURING HEMOGLOBIN A1c, METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBIN, AND METHOD FOR PRODUCING COLUMN PACKING FOR SEPARATING HEMOGLOBIN
JP2010100708A (en) Molecularly imprinted polymer and method for preparing the same
JP5522772B2 (en) Column filler and method for producing column filler
JP2004083561A (en) Ion-exchanger for lipoprotein separation, and method for separating lipoprotein using the same
JP5294942B2 (en) Column filler for liquid chromatography, method for measuring hemoglobin A1c and abnormal hemoglobin, and method for producing column filler for liquid chromatography
Bankston et al. Apolipoprotein A‐IMilano anion exchange chromatography: Mass transfer and adsorption kinetics
JP6939021B2 (en) Separator and column
JP5684331B2 (en) Column filler for separating hemoglobins, method for measuring hemoglobin A1c, and method for producing column filler for separating hemoglobins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R151 Written notification of patent or utility model registration

Ref document number: 6056230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees