JP6054934B2 - 二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置 - Google Patents

二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置 Download PDF

Info

Publication number
JP6054934B2
JP6054934B2 JP2014232789A JP2014232789A JP6054934B2 JP 6054934 B2 JP6054934 B2 JP 6054934B2 JP 2014232789 A JP2014232789 A JP 2014232789A JP 2014232789 A JP2014232789 A JP 2014232789A JP 6054934 B2 JP6054934 B2 JP 6054934B2
Authority
JP
Japan
Prior art keywords
charging
electricity
secondary battery
voltage
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014232789A
Other languages
English (en)
Other versions
JP2016096696A (ja
Inventor
重文 織田大原
重文 織田大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo Singapore Pte Ltd
Original Assignee
Lenovo Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo Singapore Pte Ltd filed Critical Lenovo Singapore Pte Ltd
Priority to JP2014232789A priority Critical patent/JP6054934B2/ja
Publication of JP2016096696A publication Critical patent/JP2016096696A/ja
Application granted granted Critical
Publication of JP6054934B2 publication Critical patent/JP6054934B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は二次電池の寿命期間を延長する技術に関し、さらには所定の電気量を維持しながら寿命期間を正確に判断する技術に関する。
商用電源が利用できないときに負荷に電力を供給する二次電池は、携帯式電子機器や自動車などに実装される。このような二次電池は使用期間中の電池電圧、環境温度、および充放電サイクルなどで容量劣化の進行程度が変わる。二次電池の一例であるリチウム・イオン電池の劣化モードは2つに大別することができる。1つは、リチウム・イオン電池の充放電サイクルを繰り返す間に生ずる電気化学的変化および物理的変化に起因するサイクル劣化で、他の1つはリチウム・イオン電池が一定の電気量を蓄積する間に生ずる電気化学的変化に起因するストレージ劣化またはカレンダー劣化である。
特許文献1は、電気自動車に搭載するリチウム・イオン電池の交換サイクルを長くする充電方法を開示する。同文献には充電電圧を高く設定するほど大きな容量を得られることを利用して、使用開始初期の充電電圧を低めに設定し、使用期間が経過してくるに従って徐々に充電電圧を増加させることを記載している。具体例として、70%以上の電気量を充電できる充電電圧で充電し、充放電の繰り返しによってその充電電圧では70%以上の電気量を充電できなくなったときに充電電圧を1段高く設定することが記載されている。また、充放電時に電池の内部抵抗を測定し、内部抵抗に関連付けた劣化率テーブルを用意して充電電圧を増加させることを記載している。
特許文献2は、電子機器や自動車に搭載する二次電池の劣化の進行を小さくする充電方式を開示する。同文献には、使用初期の二次電池の総容量よりも小さい値に設定した目標容量を一定にするように充電し、結果として劣化の進行に伴って充電電圧が上昇していくことを記載している。特許文献3は、リチウム・イオン電池のサイクル寿命を長くする発明を開示する。同文献の発明は、使用するリチウム電池の充放電可能容量が大きいうちは実際の充電電圧を上限より低くしかつ放電電圧を下限より高くする。また、充放電可能容量が小さくなるにつれて充電電圧を上限に近くしていきかつ放電電圧を下限に近くしていく。そして、寿命の末期は充電電圧を上限に設定しかつ放電電圧を下限に設定することで充放電可能容量の低下を少なくして寿命を長くしている。
特開2000−270491号公報 特開2009−199774号公報 特開平9−120843号公報
まず、本明細書において使用する用語を定義する。その時点で二次電池が蓄積できる最大の電気量を絶対容量Cということにする。絶対容量は、使用年数が経過するとサイクル劣化や容量劣化により低下する。定格容量C0は、電池の使用開始時点での絶対容量をいい容量劣化により変化しない値である。蓄積電気量Pは、ある時点で電池に残留している電気量をいい、絶対容量以下の値に相当する。容量劣化率ηは、(定格容量−絶対容量)/定格容量で計算した値で容量劣化が進行するに従って大きくなる。
リチウム・イオン電池では通常、定電流充電と定電圧充電で充電する定電流定電圧(CCCV)方式を採用する。CCCV方式では、定電流充電のときに最大電流を一定値以下にするように充電電圧を制御する。充電が進行するに伴って充電電圧が所定値に到達すると定電圧充電に入る。定電圧充電を継続すると充電電流が次第に減少する。そして充電電流が放電終止電流に到達した時点で充電を終了する。安全面から定電流充電では充電電流の最大値を規定し、定電圧充電では最大の充電電圧(たとえば4.2V/セル)を規定する。
定電圧充電の間に充電電流が一定の値まで減少したときに充電を終了させる。最大の充電電圧で充電を終了しときの蓄積電気量を満充電容量という。使用開始時の満充電容量は定格容量に一致し、その後の満充電容量はその時点で蓄積できる最大の電気量で絶対容量に一致する。本明細書では、満充電容量を主として最大充電電圧で充電したときの蓄積電気量に着目するときに使用し、絶対容量を蓄積できる能力に着目するときに使用する。
絶対容量または満充電容量まで充電する電圧を満充電電圧という。これに対して、定電流充電の間または定電圧充電で放電終止電流に到達する前に充電を終了したときと、満充電容量まで充電した状態から放電したあとの蓄積電気量は絶対容量よりも少ない。セル電圧が放電終止電圧に到達するまで放電させることを完全放電という。定格容量比(SOC)は、定格容量に対する蓄積電気量の割合をいう。
ところで二次電池は、利用のタイミングと動作時間の保証の要否によって2種類に分類することができる。1つは、自動車や携帯式電子機器に搭載する二次電池のように、利用するタイミングをあらかじめ予想しておくことができ、それに合わせて充電することができるタイプでこのような二次電池を以後予定利用型の二次電池ということにする。予定利用型の二次電池は利用のために放電したときに、完全放電させたときの電気量や、完全放電状態から満充電までの電気量を測定して絶対容量を計算することができる。
また、完全放電状態から充電電気量を計算して所定の蓄積電気量まで充電することができる。これに対して、サーバに搭載するNVDIMM(Non-Volatile Dual In-line Memory Module)用のバッテリィやRAID記憶装置に搭載するバッテリィは、装置が予期しないタイミングで停電した時に、揮発性メモリのデータを不揮発性メモリに退避するまでの短い一定の時間だけ電力を供給するタイプで、このような二次電池を以後突然利用型の二次電池ということにする。
特許文献1および特許文献2に記載する二次電池は予定利用型に分類することができる。予定利用型も突然利用型も、特許文献1および特許文献2に記載するように、蓄積電気量を少なくしながら徐々に充電電圧を増加させることで寿命期間を延長することができる。しかし、突然利用型の二次電池は、放電のタイミングを予想することができないため、つねに所定の蓄積電気量を確保して負荷の動作時間を保証する必要がある。このとき蓄積電気量を保証電気量Psということにする。
予定利用型の二次電池では、特許文献1に記載するように完全放電をしてから所定の充電電圧で充電したときの蓄積電気量を計測したり内部抵抗を測定したりして、所定の電気量を蓄積するために必要な充電電圧を計算して徐々に上昇させることができる。また、特許文献2に記載するように完全放電してから充電中の充電電気量を計測し、あらかじめ設定した目標容量に充電するための充電電圧が所定値を越えたときに充電電圧を上昇させることで目標容量を維持しながら徐々に充電電圧を上昇させることができる。
しかし、突然利用型の二次電池では、常に保証電気量Psを確保する必要があるため完全放電をすることができず、かつ保証電気量Psを維持する間の放電電流は微量であるため放電した電気量を計測することができない。したがって、特許文献1または特許文献2と同様の方法で保証電気量を維持するための充電電圧および充電開始の電圧と、充電電圧を上昇させるタイミングを取得することができない。また、リチウム・イオン電池は絶対容量が定格容量の40%程度を下回ると急激に絶対容量が低下するため、できるだけ長い期間二次電池を使用するためには絶対容量を頻繁に推定して更新時期を適切に判断する必要がある。
そこで本発明の目的は、二次電池の寿命期間を延長するバックアップ・システムを提供することにある。さらに本発明の目的は、二次電池の寿命を判断するバックアップ・システムを提供することにある。さらに本発明の目的は、二次電池のサイクル劣化を抑制するバックアップ・システムを提供することにある。さらに本発明の目的は、突然利用型の二次電池の寿命期間を延長しながら、保証電気量を維持するバックアップ・システムを提供することにある。さらに本発明の目的は、そのようなバックアップ・システムにおける二次電池の管理方法を提供することにある。さらに本発明の目的は、そのようなバックアップ・システムを搭載した情報処理装置を提供することにある。
本発明の第1の態様は、交流電力源が停止したときに所定の時間だけ負荷に電力を供給することが可能な突然利用型の二次電池を使用開始後にバックアップ・システムが管理する方法を提供する。二次電池の絶対容量より小さい保証電気量を設定する。保証電気量を維持しながら複数の所定のタイミングで計測放電をして二次電池の直流抵抗を測定する。直流抵抗を利用して取得した充電開始電圧と充電電圧で二次電池の充電を制御し保証電気量を維持する。
上記構成によれば、絶対量より小さい保証電気量を維持するため、ストレージ劣化を抑制することができる。またサイクル劣化のない計測放電で直流抵抗を取得して保証電気量を維持することができる。所定のタイミングは一定の周期としたり、時間の経過とともに短くなる周期としたりすることができる。保証電気量を維持する際は、二次電池の絶対容量より小さくかつ保証電気量より大きい目標電気量を設定し、直流抵抗を利用して取得した目標電気量に対応する第1の充電電圧で充電することができる。ここに二次電池の電圧はセル電圧とすることができる。
さらに、保証電気量を維持する際に、二次電池の電圧が直流抵抗を利用して取得した保証電気量に相当する値まで低下したときに第1の充電電圧で充電を開始することができる。このとき第1の充電電圧に対応する蓄積電気量が所定値より小さくなったときに第1の充電電圧よりも高い第2の充電電圧で充電することができる。所定値は保証電気量とすることができる。その結果、保証電気量を維持するために充電電圧を徐々に増加させることができる。
交流電力源が停止したときに二次電池から負荷に電力を供給し、完全放電させてから満充電をすることで測定した二次電池の絶対容量に基づいて直流抵抗と第1の充電電圧の関係を修正することができる。満充電電圧で充電を終了した時の蓄積電気量が所定値よりも小さくなったときに、完全放電して絶対容量を計算し、絶対容量が所定値よりも小さいときにバックアップ・システムが二次電池の寿命が到来したことを認識することができる。このときの所定値は保証電気量とすることができる。また、直流抵抗が所定値を越えたときにバックアップ・システムが二次電池の寿命が到来したことを認識することができる。
本発明の第2の態様は、交流電力源が停止したときに負荷に電力を供給することが可能な二次電池を充電システムが使用開始後に管理する方法を提供する。複数の所定のタイミングで計測放電をして二次電池の直流抵抗を測定する。直流抵抗が所定値を越えたときに二次電池を所定のタイミングで完全放電する。完全放電のタイミングで絶対容量を測定する。絶対容量が所定値よりも低下したときに充電システムが二次電池の寿命が到来したことを認識する。このとき完全放電の周期を徐々に短くすることができる。
本発明の第3の態様は、交流電力源が停止したときに負荷に電力を供給することが可能な二次電池を充電システムが使用開始後に管理する他の方法を提供する。複数の所定のタイミングで計測放電をして二次電池の直流抵抗を測定する。直流抵抗が所定値よりも増加したときに充電システムが二次電池の寿命が到来したことを認識する。あるいは直流抵抗から推定した絶対容量が所定値よりも低下したときに寿命が到来したことを認識する。
本発明により、二次電池の寿命期間を延長するバックアップ・システムを提供することができた。さらに本発明により、二次電池の寿命を判断するバックアップ・システムを提供することができた。さらに本発明により、二次電池のサイクル劣化を抑制するバックアップ・システムを提供することができた。さらに本発明により、突然利用型の二次電池の寿命期間を延長しながら、保証電気量を維持するバックアップ・システムを提供することができた。さらに本発明により、そのようなバックアップ・システムにおける二次電池の管理方法を提供することができた。さらに本発明により、そのようなバックアップ・システムを搭載した情報処理装置を提供することができた。
バックアップ・システム100の構成を示す概略の機能ブロック図である。 セル電圧をパラメータとしたときの、二次電池の経過年数と容量劣化率の関係を説明するための図である。 二次電池を管理する方法の概要を説明するための図である。 直流抵抗と絶対容量の関係を説明するための図である。 容量劣化率をパラメータとしたときのセル電圧と蓄積電気量の関係を説明するための図である。 バックアップ・システム100の動作を説明するための機能ブロック図である。 参照テーブルの一例を説明するための図である。
[本発明の概要]
図1は、情報処理装置に搭載することが可能なバックアップ・システム100の構成を示す概略の機能ブロック図である。実線は電力ラインを示している。バックアップ・システム100は、コントローラ101、参照テーブル103、充電器105、電圧調整器(VR)107、スイッチ111、113、電池ユニット117および計測回路115を含んでいる。コントローラ101は、バックアップ・システム100を搭載する情報処理装置のプロセッサとは独立してファームウェアを実行するプロセッサを含むマイクロ・コントローラとすることができる。参照テーブル103は、電池ユニット117の保証電気量Psの維持および寿命時期の判断をするためにコントローラ101が参照可能なデータを格納する不揮発性メモリとすることができる。
スイッチ111、113はMOS−FETで構成することができる。電池ユニット117は、複数の電池セルを直列および並列に接続したリチウム・イオン電池とすることができるが、本発明はリチウム・イオン電池以外の二次電池に適用することもできる。充電器105は、電池ユニット117をCCCV方式で充電する。VR107は、電池ユニット117の出力電圧を負荷109に適した電圧に変換する。計測回路115は、電池ユニット117の出力電圧、出力電流およびセル電圧などを測定する。
コントローラ101は、負荷109に電力が供給されている間電池ユニット117を構成する電池セルの直流抵抗(内部抵抗)DCRを測定するために、極短時間だけ交流電力源119を停止し、VR107を動作させて、スッチ113をオン状態にする。計測回路115は、スイッチ111、113がオフ状態のときのセル電圧と負荷109に電力を供給するときの放電電流およびセル電圧から直流抵抗DCRを計算する。直流抵抗DCRを測定するための負荷は、システムを構成する負荷109とは別に設けた擬似負荷としてもよい。
直流抵抗DCRの測定を目的として、電池ユニット117を放電させることを計測放電ということにする。これに対して交流電力源119が動作を停止したときに負荷109に電力を供給することを目的とて電池ユニット117を放電させることを実用放電ということにする。コントローラ101は計測回路115から直流抵抗DCRの計算に必要なデータを受け取ると、再び交流電力源119から負荷109に電力を供給し、スイッチ113をオフ状態にしてVR107を停止する。
計測放電において電池ユニット117から負荷109に電力を供給する時間は計測回路115が直流抵抗DCRを測定するのに必要な時間で数秒程度である。したがって、計測放電の前後では電池ユニット117の蓄積電気量はほとんど減らない。後に詳細に説明するように、コントローラ101は、計測放電で取得した直流抵抗DCRと参照テーブル103に基づいて充電器105の動作を制御して、電池ユニット117の保証電気量Psを維持しながら、充電電圧を徐々に上昇させるとともに寿命が到来したことを判断する。
負荷109は、一例においてサーバに搭載する複数のNVDIMMとすることができる。一般的なNVDIMMは、印刷回路基板に複数のDRAMチップと複数のフラッシュ・メモリ・チップとNVDIMMロジックを実装したメモリ・モジュールが、電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)またはリチウム・イオン電池をバックアップ電源として備える。これに対して、電池ユニット117をバックアップ電源とする負荷109は、サーバが搭載するすべてのNVDIMMとなる。
NVDIMMロジックは、交流電力源119が突然停止したときに、一定の時間以内にDRAMチップのデータをフラッシュ・メモリ・チップに退避し、交流電力源119が復帰したときにフラッシュ・メモリ・チップのデータをDRAMチップに復帰する。このときフラッシュ・メモリ・チップにデータを退避するために必要な電力を電池ユニット117が供給する。
このようにバックアップ電源を必要とするタイミングが確定せず、かつ、一定の動作時間を保証する必要がある負荷109に対して電力を供給する電池ユニット117は、突然利用型の二次電池としての機能が要求される。突然利用型の電池ユニット117を要求する負荷109はまた、RAID(Redundant Arrays of Inexpensive Disks)を採用した記憶装置とすることもできる。なお、本発明は、予定利用型の電池ユニットの管理に適用することもできる。
図2は、セル電圧をパラメータとしたときの、リチウム・イオン電池の経過年数と容量劣化率ηの関係を説明するための図である。リチウム・イオン電池は、セル電圧、環境温度および充放電サイクル数により容量劣化の進行の程度が変わる。図2は、環境温度と充放電サイクル数を同じ条件にして、セル電圧をV1、V2、V3(V1<V2<V3)に維持したときの容量劣化率の時間的な変化を示している。図はセル電圧が高いほど容量劣化率ηが上昇する割合が大きくなることを示している。容量劣化率が60%、すなわち、絶対容量が定格容量の40%程度の限界容量Cmまで小さくなると、絶対容量が急激に低下するため安定した電力を得ることができなくなる。
リチウム・イオン電池の寿命期間を延長するには、セル電圧をできるだけ小さくして時間的に容量劣化率が低下する割合を小さくすること、および絶対容量Cが限界容量Cmに到達したことを正確に判断することが必要である。さらに、突然利用型のリチウム・イオン電池では、常時保証電気量Psを維持する必要があるために容量劣化率ηの測定を目的とした完全放電は避ける必要がある。
図3は、突然利用型のリチウム・イオン電池の管理方法の概要を説明するための図である。横軸は、リチウム・イオン電池の使用を開始してからの経過時間で縦軸は蓄積電気量Pを示している。保証電気量Psを、限界絶対容量Cmに対して所定のマージンを加えた値として、たとえば定格容量C0の45%といった蓄積電気量Pとして設定する。
保証電気量Psは、負荷109に電力供給する交流電力源119が停止したときに、電池ユニット117が所定の動作時間だけ負荷109に電力供給するために必要な最低の電気量に相当する。充電システム100は、経過時間t0で電池ユニット117の使用を開始し経過時間t5で寿命と判断する。充電システム100は、充電電圧をV1、V2、V3、V4、V5と1ステップずつ上昇させる。たとえば、経過時間t0からt1までは、充電電圧をV1に設定する。
経過時間t0では容量劣化率ηを0%と推定する。このとき充電電圧V1で充電すると蓄積電気量がP0(P0>Ps)になる。交流電力源119が電力を供給する間は、電池ユニット117は計測回路115に対して極わずかだけ放電するが、負荷109に対しては放電しない。経過時間t1に到達する前に蓄積電気量Pが保証電気量Psまで低下したときは充電電圧V1で再充電する。
このとき時間が経過するに伴って容量劣化率ηが徐々に大きくなるため、同じ充電電圧V1で充電をすると蓄積電気量Pが徐々に低下する。経過時間t1では、蓄積電気量Pが保証電気量Psまで低下して充電電圧V1で充電すると保証電気量Psを維持できないため充電電圧をV2に上昇させる。充電が終了したとき蓄積電気量はP1まで増加する。蓄積電気量P0とP1は異なってもよいが、後に説明する目標電気量Ptとほぼ同じ値になるように、直流抵抗DCRに対して充電電圧および充電電圧を増加させるタイミングを選択することが望ましい。
以後同様にして経過時間t4で充電電圧V5が満充電電圧まで上昇する。このときの蓄積電気量P4はその時点での満充電容量に相当する。満充電電圧に到達すると、それ以降において蓄積電気量Pが保証電気量Psまで低下したときに満充電電圧で再充電しても、経過時間t4での充電終了時のP4以上の蓄積電気量を蓄積することはできず、再充電のたびに充電終了時の蓄積電気量は徐々に低下する。一例において絶対容量Cが限界容量Cmに到達する直前の経過時間t5で電池ユニット117を寿命と判断することができる。
経過時間t0から経過時間t4までは、交流電力源119が停止しない限り電池ユニット117は負荷109に対して実用放電をしないが、所定のタイミングで直流抵抗DCRを測定するための計測放電をする。経過時間t0からt4までの期間を計測放電期間という。直流抵抗DCRを測定するタイミングは一定の周期でもよいが、充電電圧が低い間は周期を長くして、充電電圧が上昇するに従って周期を短くすることができる。経過時間t4以降では、一時的に保証電気量Psを維持できなくなることよりも、正確な寿命を判断してできるだけ長く利用することを重要視して、絶対容量Cを測定するために所定のタイミングで完全放電をすることができる。この期間を寿命判定期間という。
寿命判定期間における完全放電のタイミングは一定の周期でもよいが、直流抵抗DCRが大きくなるに従って短くすることができる。バックアップ・システム100は図3で説明した管理を行うために、計測放電期間中は交流電力源119が動作を停止しない限り保証電気量Cmを連続して維持する。以下において、充電システム100が、保証電気量Psを維持しながら、セル電圧をできるだけ低くして、充電を開始するセル電圧、充電電圧、および充電電圧の増加のタイミングを適切に判断する方法を説明する。
図4は、リチウム・イオン電池の直流抵抗DCRと絶対容量Cの関係を示す図である。使用開始直後は絶対容量Cが定格容量C0に等しい。直流抵抗DCRと絶対容量Cは反比例の関係になることが知られている。したがって、直流抵抗DCRを測定することで、絶対容量Cの推定値を得ることができ、絶対容量Cの推定値から、容量劣化率ηをη=(C0−C)/C0で計算することができる。容量劣化が進行して絶対容量が小さくなるほど容量劣化率ηは大きくなる。ライン11は、あらかじめ工場で実測した特性を示し、ライン13、15は、使用を開始したあとに完全放電をして実測した絶対容量Cと直流抵抗DCRxの関係からライン11を修正した特性を示している。限界容量Cmに対応する直流抵抗DCRを限界抵抗DCRmということにする。
図5(A)は、計測放電期間に、保証電気量Psを維持するための充電電圧の決定方法、充電開始のタイミングの決定方法および充電電圧を上昇させるタイミングを決定する方法を説明するための図である。図5(B)は、図5(A)を部分的に拡大して説明するための図である。横軸は定格容量C0に対する蓄積電気量Pの割合(SOC)を示し、縦軸はセル電圧を示している。各ラインはη0からη6までの各容量劣化率について、セル電圧とSOCの関係を示しておりあらかじめ実験で求めておくことができる。η0は容量劣化率が0%に相当し、番号が大きくなるに従ってηが大きくなることを示している。
SOCに対して保証電気量Psと目標電気量Ptを設定している。目標電気量Ptはセル電圧をできるだけ低くするために、充電の頻度が問題にならない程度まで保証電気量Psに接近させることが望ましい。一例において、保証電気量PsをSOC45%とし、目標電気量PtをSOC55%とすることができる。図5は、説明のために模式的に作成したもので、現実に実測する特性は図5の傾向と異なる場合がある。図5で特徴的な第1の傾向として、容量劣化率ηが大きくなるに従って満充電電圧で充電したときのSOC(満充電容量C1〜C6)が低下することを挙げることができる。
第2の傾向として同じセル電圧のときには、容量劣化率ηが大きいほどSOCが小さくなることを挙げることができる。さらに、第3の傾向として同じSOCのときは、容量劣化率ηが大きいほど、セル電圧が高いことを挙げることができる。すなわち、図は同じ蓄積電気量Pに充電するためには、容量劣化率ηが大きいほど高い充電電圧が必要になることを示している。
図6は、充電システム100の動作を説明するためのフローチャートである。ブロック201でコントローラ101に対して、定格容量C0、限界容量Cm、限界抵抗DCRm、目標電気量Pt、および保証電気量Psなどのパラメータを設定する。コントローラ101は、図4のライン11に相当するデータを保有し、直流抵抗DCRから絶対容量Cを計算することができる。参照テーブル103には、一例として図5の特性から取得した図7に示すデータを格納している。参照テーブル103は、直流抵抗DCRの所定の範囲をレコードとし、容量劣化率η、充電電圧、充電開始のセル電圧、および満充電容量をフィールドとするデータ・ベースである。参照テーブル103は、これらのデータを関数として保有してもよい。
充電電圧V0t〜V5tは、対応するそれぞれの容量劣化率η0〜η5のときに、目標電気量Ptを充電することができる定電圧充電の電圧に相当する。充電開始のセル電圧は、対応するそれぞれの容量劣化率η0〜η5のときに、保証電気量Psを蓄積している電圧に相当する。満充電容量C0〜C5は、対応するそれぞれの容量劣化率η0〜η5のときに、満充電電圧で充電したときのSOCに相当する。ここでは満充電容量を、容量劣化率がη0のときに100%とし、容量劣化率がη5のときに目標電気量Ptとなるように設定しているが、各レコードにおける直流抵抗DCRの範囲やレコードの数は本発明を限定するものではない。
ブロック203で電池ユニット117の使用を開始すると、コントローラ101は、VR107、スイッチ111、113、および交流電力源119を制御して所定のタイミングで負荷109に対して電池ユニット117から計測放電をする。計測放電で放電する電気量は微量であるため計測放電の周期は1日に1回程度としてもよいし、当初は1ヶ月に1回として容量劣化が進行するに従って短くしてもよい。また、計測放電は、サイクル劣化をもたらすことがないため頻度を高くしても容量劣化に影響はでない。
コントローラ101は、計測放電のタイミングで計測回路115から放電電流と放電の前後のセル電圧を取得して直流抵抗DCRを計算し、図4のライン11から絶対容量Cを計算する。さらに、定格容量C0と計算した絶対容量Cから現在の容量劣化率ηを計算する。ブロック205でコントローラ101は計算した容量劣化率ηに対して最も近いレコードを参照テーブル103から選択する。この場合、最も容量劣化の小さいη0を選択するものと想定する。
コントローラ101は、参照テーブル103のη0を含むレコードから充電開始のセル電圧V0sと充電電圧V0tを取得する。本実施の形態では、SOCを目標電気量Ptと保証電気量Psの間に維持することでセル電圧を必要以上に高くしないようにする。コントローラ101は、使用を開始した直後の電池ユニット117が満充電状態のときは、セル電圧が充電電圧V0tまで低下するように負荷109に放電することができる。充電器105は充電電圧V0tで充電するときに、充電電流が一定の放電終止電流以下になると充電を停止する。セル電圧は充電を停止する直前の充電電圧V0tに支配される。充電を停止する直前と直後のセル電圧は多少変化するがここでは誤差として扱うことにする。
ブロック207でコントローラ101は、今回測定した直流抵抗DCRが、限界抵抗DCRm(図4)より大きい場合は、寿命と判断してブロック231に移行する。この手順は、コントローラ101が電池ユニット117の寿命の到来を認識するまで実行する。ブロック209でコントローラ101は、自然放電や計測回路115に対する放電でSOCが保証電気量Psに到達したか否かを判断するが、計測放電期間の放電量は微量であるため、実用放電がない限り放電電気量を計測することは困難である。
コントローラ101は、定期的に計測回路115から受け取ったセル電圧を監視し、セル電圧が参照テーブル103に示す充電開始のセル電圧V0sまで低下したときにSOCが保証電気量Psに到達したと判断する。計測放電期間の放電量は微量であるため、SOCが保証電気量Psに到達するまでは数ヶ月を費やす場合があり、この間も、容量劣化率ηは大きくなる。
容量劣化率がη0よりも大きくなると、セル電圧が、容量劣化率がη0のときの充電開始のセル電圧V0sに到達したタイミングで充電を開始するとSOCが保証電気量Psより小さくなる。これを補うために、図5(B)に示すように、直流抵抗DCRから計算したその時点の容量劣化率をηx1としたときに、η1とη0の差およびV1sとV0sの差から、補完法でηx1に対応するVxsを求め、セル電圧がV0sより高いVxsに到達したときにSOCが保証電気量Psに到達したと判断することができる。あるいは、容量劣化率がη0の間は、充電開始のセル電圧V0sで充電しても負荷109の動作時間を保証できるように保証電気量Psに余裕を持たせておくことができる。

ブロック211で充電開始のタイミングを認識したコントローラ101は充電電圧V0tで再充電する。再充電のタイミングでは容量劣化率ηが初期の容量劣化率η0よりも大きくなってηx1になっているため、充電終了時のSOCは同じ充電電圧V0tで充電したブロック205のときよりも小さくなってSOC1になるが保証電気量Psよりは大きい。以後、充電電圧V0tで再充電したときには、容量劣化率ηの増加に伴ってSOCは小さくなる。
ブロック213でコントローラ101は、充電電圧V0tで充電したときのSOCが、その時点での直流抵抗DCR、すなわち容量劣化率ηにおいて、保証電気量Psより大きいか否かを判断する。図5(B)に示すように、現在の容量劣化率がηx2まで増加すると、充電電圧V0tで充電すると充電終了時のSOCが保証電気量Ps以下になる。コントローラ101は、η1、η0、V1s、V0sから補完法で求めた容量劣化率がηx2のときの充電開始のセル電圧が、V0tより小さいときは保証電気量Psを維持できると判断してブロック209に戻り再充電が必要なときは充電電圧V0tで充電する。
コントローラ101は、容量劣化率ηx2のときの充電開始のセル電圧が、V0tより大きいときは、充電電圧V0tでは保証電気量Psを維持できないと判断してブロック215に移行する。ブロック215でコントローラ101は、容量劣化率η1のグラフに対応する充電電圧V1tを取得する。容量劣化率ηは、直流抵抗DCRから推定しているが、所定の直流抵抗DCRxに対して、実験で求めた図4のライン11が示す絶対容量C01と実測した絶対容量Cx1、cx2の関係の間には、環境条件や個体差によりある程度の差が生じる。
実測した絶対容量Cx1よりも、実測した直流抵抗DCRからライン11を使って推定した絶対容量が大きい場合は、推定したよりも容量劣化が遅いため、充電電圧が保証電気量Psを維持するために必要な値以上に大きくなり不必要な容量劣化が進行することになる。逆に、実測した絶対容量Cx2よりも、実測した直流抵抗DCRからライン11を使って推定した絶対容量C01が小さい場合は、充電電圧および充電開始のセル電圧が必要以上に小さくなり保証電気量Psを維持できなくなる。
ブロック217で、偶発的に実用放電が発生する場合がある。コントローラ101は交流電力源119の停電を検出するとスイッチ111、113およびVR107を制御して負荷109に電池ユニット117から電力を供給する。このとき、交流電力源119は、電池ユニット117が放電終止電圧に到達する前に復電することがあるが、コントローラ101は復電しても放電終止電圧まで電池ユニット117から電力を供給してから充電を継続することができる。
ブロック219でコントローラ101は、放電終止電圧から満充電電圧で充電して実測した絶対容量Cと、現在の直流抵抗DCRの値に対して図4のライン11が対応する絶対容量C01を比較して、図4のグラフを修正することができる。実測した絶対容量Cx1が、実測した直流抵抗DCRxから取得したライン11上の絶対容量C01より小さい場合は、ライン11をライン15のように修正することができる。
逆に実測した絶対容量Cx2が絶対容量C01より大きい場合は、ライン11をライン13のように修正することができる。以後、ライン11のキャリブレーションは、実用放電が発生するタイミングごとに実行することができる。あるいは実用放電に代えて定期的にまたは徐々に短くなる周期で、計画的な完全放電および満充電電圧による充電をして図4のグラフをキャリブレーションするようにしてもよい。
ブロック221では、ブロック203からブロック219までの手順を繰り返してSOCを保証電気量Ps以上に維持しながら直流抵抗DCRの増加に伴って充電電圧を徐々に上昇させる。したがって、セル電圧は、保証電気量Psを維持するのに必要な最低限の値に維持できるため、ストレージ劣化を抑制することができる。この例では、ブロック223で容量劣化率がη5まで大きくなったときに満充電電圧で充電しており、このときの満充電容量C5に相当するSOCが目標電気量Ptに一致している。
これ以降は再充電の際に、満充電電圧で充電しても充電終了時のSOCが目標電気量Ptより小さくなるため寿命判定期間に移行する。寿命判定期間への移行のタイミングは、満充電電圧で充電したときのSOCが目標電気量Ptより小さいが保証電気量Psより大きい所定値になったときとすることができる。あるいは、実測した直流抵抗DCRが容量劣化率η5に対応する値より大きいが限界抵抗DCRmの値より小さい所定値になったときとすることができる。あるいは、充電開始のセル電圧から満充電容量まで充電したときに充電した電気量が所定値未満になったときとすることができる。
ブロック225でコントローラ101は、一定の周期または徐々に短くなる周期で完全放電をして満充電電圧で充電し絶対容量Cを実測する。ブロック227でコントローラ101は、絶対容量Cが限界容量Cmに到達したときに寿命と判断してブロック231に移行する。絶対容量Cが限界容量Cmに到達していないときはブロック229でコントローラ101は、図5の容量劣化率η6のラインが示すように、満充電電圧V6tで充電したときのSOCが保証電気量Psを下回ったときに寿命と判断してブロック231に移行する。ブロック231でコントローラ101は、ユーザーにランプやディスプレイを通じて電池ユニット117に寿命が到来したことを知らせる。
ブロック201からブロック231までの手順は、本発明の実施形態を説明したものであり、本発明に必須の手順およびその順番は特許請求の範囲に記載のとおりである。たとえば、寿命を判定するブロック207、227、229の手順はすべてを採用する必要はなくいずれか1つであってもよい。ブロック227の手順を省略すれば、完全放電をしないで寿命の判断ができるため、使用開始から寿命までの全期間にわたって保証電気量Psを維持することができる。また、ブロック219の手順は省略してもよい。
上記の手順によれば、セル電圧を抑制しながらストレージ劣化を抑制できるとともに、計測放電期間は寿命の判断のために完全放電をする必要がないか、または頻度が少ないためサイクル劣化を抑制することも可能になる。また、寿命の判断や充電電圧を上昇させるタイミングを取得するために完全放電する必要がないため、ほぼ完全に保証電気量Psを維持することができる。これまで、突然利用型の電池ユニットを例示して管理方法を説明したが、本発明は、予定利用型の電池ユニットに適用してサイクル劣化を防ぎながら寿命を判断することができる。この場合は特に図6のブロック207、ブロック223〜229の手順を適用することができる。
これまで本発明について図面に示した特定の実施の形態をもって説明してきたが、本発明は図面に示した実施の形態に限定されるものではなく、本発明の効果を奏する限り、これまで知られたいかなる構成であっても採用することができることはいうまでもないことである。
100 充電システム
η 容量劣化率
C0 定格容量
Cm 限界容量
P 蓄積電気量
Pt 目標電気量
Ps 保証電気量
DCR 直流抵抗
SOC 定格容量に対する蓄積電気量

Claims (14)

  1. 交流電力源が停止したときに所定の時間だけ負荷に電力を供給することが可能な突然利用型の二次電池を使用開始後にバックアップ・システムが管理する方法であって、
    前記二次電池の絶対容量より小さい保証電気量を設定するステップと、
    前記保証電気量を維持しながら複数の所定のタイミングで計測放電をして前記二次電池の直流抵抗を測定するステップと、
    前記直流抵抗を利用して取得した充電開始電圧と充電電圧で前記二次電池の充電を制御し前記保証電気量を維持するステップ、
    前記交流電力源が停止して前記二次電池から前記負荷に電力を供給した後で充電する際に測定した絶対容量に基づいて前記直流抵抗と前記充電電圧の関係を修正するステップと
    を有する方法。
  2. 前記所定のタイミングが一定の周期である請求項1に記載の方法。
  3. 前記所定のタイミングが時間の経過とともに短くなる周期である請求項1に記載の方法。
  4. 前記保証電気量を維持するステップが、
    前記絶対容量より小さくかつ前記保証電気量より大きい目標電気量を設定するステップと、
    前記直流抵抗を利用して取得した前記目標電気量に対応する第1の充電電圧で充電するステップと
    を有する請求項1に記載の方法。
  5. 前記保証電気量を維持するステップが、
    前記二次電池の電圧が前記直流抵抗を利用して取得した前記保証電気量に相当する値まで低下したときに前記第1の充電電圧で充電を開始するステップを含む請求項4に記載の方法。
  6. 前記直流抵抗を利用して取得した前記第1の充電電圧に対応する蓄積電気量が所定値より小さくなったときに前記第1の充電電圧よりも高い第2の充電電圧で充電するステップを有する請求項5に記載の方法。
  7. 前記所定値が前記保証電気量である請求項6に記載の方法。
  8. 満充電電圧で充電を終了した時の蓄積電気量が所定値よりも小さくなったときに、完全放電して絶対容量を計算するステップと、
    前記絶対容量が所定値よりも小さいときに前記バックアップ・システムが前記二次電池の寿命の到来を認識するステップと
    を有する請求項1に記載の方法。
  9. 前記蓄積電気量の所定値が前記保証電気量である請求項8に記載の方法。
  10. 前記直流抵抗が所定値を越えたときに前記バックアップ・システムが前記二次電池の寿命の到来を認識するステップを有する請求項1に記載の方法。
  11. 交流電力源が停止したときに所定の時間だけ負荷に電力を供給することが可能な突然利用型の二次電池を有するバックアップ・システムであって、
    前記二次電池を充電する充電器と、
    前記二次電池の直流抵抗を計算するためのデータを測定する計測回路と、
    前記直流抵抗から保証電気量を維持する充電電圧を取得するためのデータを格納する参照テーブルと、
    前記二次電池から複数の所定のタイミングで計測放電をして前記直流抵抗を計算し、前記参照テーブルから前記充電器の充電電圧を取得して前記保証電気量を維持し、前記交流電力源が停止して前記二次電池から前記負荷に電力を供給した後で前記充電器が充電する際に測定した絶対容量に基づいて前記直流抵抗と前記充電電圧の関係を修正するするコントローラと
    を有するバックアップ・システム。
  12. 前記参照テーブルが前記直流抵抗から充電を開始する電池電圧を取得するためのデータを格納し、前記コントローラは前記参照テーブルから取得した前記電池電圧に基づいて前記充電器の動作を制御する請求項11に記載のバックアップ・システム。
  13. 前記負荷がNVDIMMである請求項11に記載のバックアップ・システム。
  14. 請求項11から請求項13のいずれかに記載のバックアップ・システムを搭載する情報処理装置。
JP2014232789A 2014-11-17 2014-11-17 二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置 Active JP6054934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232789A JP6054934B2 (ja) 2014-11-17 2014-11-17 二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232789A JP6054934B2 (ja) 2014-11-17 2014-11-17 二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置

Publications (2)

Publication Number Publication Date
JP2016096696A JP2016096696A (ja) 2016-05-26
JP6054934B2 true JP6054934B2 (ja) 2016-12-27

Family

ID=56070115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232789A Active JP6054934B2 (ja) 2014-11-17 2014-11-17 二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置

Country Status (1)

Country Link
JP (1) JP6054934B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170821A (ja) * 2017-03-29 2018-11-01 株式会社オートネットワーク技術研究所 車載用電源システムの制御装置及び車載用電源装置
JP2019022286A (ja) * 2017-07-13 2019-02-07 富士通コネクテッドテクノロジーズ株式会社 電子機器
WO2020137815A1 (ja) * 2018-12-25 2020-07-02 三洋電機株式会社 待機用電源装置及び二次電池の充電方法
CN111525200A (zh) * 2019-02-01 2020-08-11 神讯电脑(昆山)有限公司 备用电池模块的充电方法及电子装置
GB2596066A (en) * 2020-06-15 2021-12-22 Tridonic Gmbh & Co Kg A converter for charging a battery for supplying emergency lighting means

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270491A (ja) * 1999-03-16 2000-09-29 Nissan Motor Co Ltd リチウムイオン電池充電方法及びリチウムイオン電池充電装置
JP4079108B2 (ja) * 2004-03-25 2008-04-23 デンセイ・ラムダ株式会社 無停電電源装置
JP4079106B2 (ja) * 2004-03-25 2008-04-23 デンセイ・ラムダ株式会社 無停電電源装置
JP5789736B2 (ja) * 2009-10-23 2015-10-07 パナソニックIpマネジメント株式会社 電力供給装置
JP2011200023A (ja) * 2010-03-19 2011-10-06 Commuture Corp 無停電電源装置
WO2012043744A1 (ja) * 2010-09-29 2012-04-05 三洋電機株式会社 充電制御装置

Also Published As

Publication number Publication date
JP2016096696A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6054934B2 (ja) 二次電池の寿命期間を延長するバックアップ・システム、管理方法および情報処理装置
DK2752955T3 (en) Power System Stabilization System
JP4691140B2 (ja) 充放電システムおよび携帯式コンピュータ
JP5119307B2 (ja) バッテリーパックの充電制御方法
JP5423925B1 (ja) 鉛蓄電池からなる組電池のリフレッシュ充電方法及び充電装置
JP5506498B2 (ja) 二次電池の充電装置および充電方法
JP5509152B2 (ja) 蓄電システム
JP2011089938A (ja) 電力供給装置
US20150102779A1 (en) Device and Method for Charging a Battery
JP2010190903A (ja) ニッケル・水素蓄電池の寿命判定方法および寿命判定装置
JP7261803B2 (ja) 休止にされたままの電池の充電状態を管理するための方法
CN109188296B (zh) 一种bbu电量校验方法、装置、终端及fcc计算方法
US10283987B1 (en) Dynamic adjustment of capacity threshold for a battery unit
JP6157088B2 (ja) 電池制御ic及びその制御方法
WO2019155507A1 (ja) 直流給電システム
JP3907065B1 (ja) 蓄電素子充放電システム
JP2015010962A (ja) 蓄電池の劣化判定方法および蓄電池の劣化判定装置
JP5186446B2 (ja) 放電制御装置、無停電電源装置、および負荷平準化システム
KR101776517B1 (ko) 배터리 충전 방법 및 시스템
US11056701B2 (en) Fuel cell system
TWI538350B (zh) 備用電源設備、用於選擇性致能備用電源的系統、提供備用電源的方法
JP6627567B2 (ja) 電源装置、ストレージ装置及び電源装置制御方法
JP7051488B2 (ja) 監視システムおよび監視方法
US12009683B2 (en) Standby power supply device and method for charging secondary battery
US10770911B1 (en) Calibrating battery fuel gages

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6054934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250