JP6052949B2 - Method for producing 9-fluorenone from fluorene - Google Patents

Method for producing 9-fluorenone from fluorene Download PDF

Info

Publication number
JP6052949B2
JP6052949B2 JP2016517134A JP2016517134A JP6052949B2 JP 6052949 B2 JP6052949 B2 JP 6052949B2 JP 2016517134 A JP2016517134 A JP 2016517134A JP 2016517134 A JP2016517134 A JP 2016517134A JP 6052949 B2 JP6052949 B2 JP 6052949B2
Authority
JP
Japan
Prior art keywords
fluorene
fluorenone
reaction
producing
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016517134A
Other languages
Japanese (ja)
Other versions
JP2016523227A (en
Inventor
占先 高
占先 高
麗梅 于
麗梅 于
俊 閻
俊 閻
匯豊 李
匯豊 李
永超 何
永超 何
正茂 史
正茂 史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Publication of JP2016523227A publication Critical patent/JP2016523227A/en
Application granted granted Critical
Publication of JP6052949B2 publication Critical patent/JP6052949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings

Description

本発明は、生成物としての9−フルオレノンと水を溶剤として、相間移動触媒酸化反応によってフルオレンを9−フルオレノンに転化する方法に関するものである。本発明は有機合成分野に属する。   The present invention relates to a method for converting fluorene to 9-fluorenone by a phase transfer catalytic oxidation reaction using 9-fluorenone as a product and water as a solvent. The present invention belongs to the field of organic synthesis.

近年、コールタール及び関連産業の発展は速やかである。フルオレンはコールタールの重要な成分中の一つであり、コールタール重量の1−2%を占めており、コールタールから分離されるフルオレンの産出量は非常に大きい。フルオレンの用途は限られているが、その誘導体の利用価値は高い。そこで、タール中のフルオレンを初期原料として付加価値が高いフルオレンの下流製品を開発することは肝要なことである。フルオレノンは、よいタールフルオレンの高度加工製品であり、重要な化学工業原料である。フルオレン系誘導体の多くはフルオレノンから合成されるものの、市場でのフルオレノンの需要量が大きく、その関連工業の発展の見通しが広い。前世紀の30年代−50年代から、フルオレノンの合成及びその応用に対する研究は既に開始されたが、フルオレノンを大規模で生産する製造業者に関する報告は少ない。工業用フルオレンからフルオレノンへの転換が可能であれば、石炭化学工業製品に対する研究と開発が必然的に促進でき、関連企業により良い利益をもたらすこととなる。   In recent years, coal tar and related industries have been rapidly developed. Fluorene is one of the important components of coal tar, accounting for 1-2% of the weight of coal tar, and the amount of fluorene separated from coal tar is very large. Although the use of fluorene is limited, its utility value is high. Therefore, it is important to develop a downstream product of fluorene with high added value using fluorene in tar as an initial raw material. Fluorenone is a highly processed product of good tar fluorene and an important chemical industry raw material. Although many of the fluorene derivatives are synthesized from fluorenone, the demand for fluorenone in the market is large and the prospects for development of related industries are wide. Research on the synthesis of fluorenone and its application has already started from the 30s-50s of the last century, but there are few reports on manufacturers producing fluorenone on a large scale. If the conversion from industrial fluorene to fluorenone is possible, research and development on coal chemical products will inevitably be promoted and will bring better benefits to related companies.

フルオレンを酸化してフルオレノンを製造する反応は、フルオレンメチレン基をカルボニル基に酸化する過程である。フルオレンを原料としてフルオレノンを製造する方法は比較的多い。使用される酸化剤と反応相の違いによって、フルオレンを酸化してフルオレノンを製造する方法は、空気気相酸化法、空気液相酸化法、その他の酸化剤による酸化法の3つの種類に分けられる。その中、空気気相酸化法は気固反応に属する。特許文献1(1999)と特許文献2(2009)には気相酸化法が公開された。フルオレンを気体状態として空気とともに380℃以上の固態触媒床層を通過させることで反応を行い、反応物を凝縮、精製してフルオレノンを得る。この方法は溶剤を使わないことが利点である。しかし、反応温度が高く、触媒がフルオレンの高転化率とフルオレノンに対する高選択性を保持しにくいため、フルオレンの深度酸化が発生されてしまう欠点はある。   The reaction for producing fluorenone by oxidizing fluorene is a process in which a fluorene methylene group is oxidized to a carbonyl group. There are relatively many methods for producing fluorenone using fluorene as a raw material. Depending on the difference between the oxidizing agent used and the reaction phase, the method for producing fluorenone by oxidizing fluorene can be divided into three types: an air-gas phase oxidation method, an air-liquid phase oxidation method, and an oxidation method using other oxidizing agents. . Among them, the air vapor oxidation method belongs to a gas-solid reaction. Patent Document 1 (1999) and Patent Document 2 (2009) published a gas phase oxidation method. The reaction is carried out by passing fluorene in a gas state together with air through a solid catalyst bed layer at 380 ° C. or higher, and the reaction product is condensed and purified to obtain fluorenone. This method has the advantage that no solvent is used. However, since the reaction temperature is high and the catalyst is difficult to maintain a high conversion rate of fluorene and high selectivity to fluorenone, there is a drawback that deep oxidation of fluorene occurs.

空気液相酸化法は、ピリジン(特許文献3)、ジメチルスルホキシド(特許文献4、非特許文献1、非特許文献2および非特許文献3)などの非プロトン極性溶剤を反応溶剤とし、アルカリ金属水酸化物を触媒とするのが多く、相間移動剤を添加する場合もある。それらの方法は、フルオレノンの収率は90%以上で、工業生産に適するが、溶剤の使用量大きく、過程が複雑であり、特に溶剤の回収利用の問題を考慮しなければならない。   The air-liquid phase oxidation method uses an aprotic polar solvent such as pyridine (Patent Document 3), dimethyl sulfoxide (Patent Document 4, Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3) as a reaction solvent, and alkali metal water. In many cases, an oxide is used as a catalyst, and a phase transfer agent may be added. These methods have a fluorenone yield of 90% or more and are suitable for industrial production. However, the amount of solvent used is large and the process is complicated. In particular, the problem of solvent recovery and utilization must be considered.

特許文献5(出願番号200910187363.X)において、トルエンを溶剤とし、第四級アンモニウム塩を触媒として、アルカリを加えず、フルオレンからフルオレノンを製造する方法が開示されたが、この研究はトルエン溶剤に第四級アンモニウム塩だけを触媒としており、フルオレノンの転化率が非常に低い。   In Patent Document 5 (Application No. 200910187363.X), a method for producing fluorenone from fluorene using toluene as a solvent and a quaternary ammonium salt as a catalyst without adding an alkali was disclosed. Only quaternary ammonium salts are used as catalysts, and the conversion of fluorenone is very low.

特許文献6(出願番号201110337560.2)において、工業用フルオレンを原料とし、ベンゼン系有機物(トルエン、キシレン)を溶剤とし、水酸化ナトリウムを触媒とし、空気を酸化剤とし、第四級アンモニウム塩を相間移動触媒として、フルオレノンを製造する方法が開示されたが、この研究は水を加えず、第四級アンモニウム塩は相間移動触媒の作用を発揮しにくく、且つ反応温度が90℃以上と高いため、溶剤損失が大きい。また、該研究では第四級アンモニウムの種類などの問題が開示されなかった。   In Patent Document 6 (Application No. 2011103377560.2), industrial fluorene is used as a raw material, benzene-based organic matter (toluene, xylene) is used as a solvent, sodium hydroxide is used as a catalyst, air is used as an oxidant, and a quaternary ammonium salt is used. Although a method for producing fluorenone was disclosed as a phase transfer catalyst, this research does not add water, and quaternary ammonium salts are difficult to exert the action of phase transfer catalyst, and the reaction temperature is as high as 90 ° C. or higher. The solvent loss is great. Also, the study did not disclose problems such as the type of quaternary ammonium.

米国特許第5902907号明細書US Pat. No. 5,902,907 中国特許出願公開第101385990号明細書Chinese Patent Application Publication No. 10138590 米国特許第4218400号明細書U.S. Pat. No. 4,218,400 米国特許第3875237号明細書U.S. Pat. No. 3,875,237 中国特許出願公開第102020543号明細書Chinese Patent Application No. 102020543 中国特許出願公開第102391087号明細書Chinese Patent Application No. 102391087

西化学工業(1989、2期17頁)Nishi Chemical Industries (1989, 17th page) 燃料と化学工業(1999年3期66頁)Fuel and Chemical Industry (March 1999, page 66) 上海化学工業(2005年7期17頁)Shanghai Chemical Industry (17th page, 2005)

従来技術において、有機溶剤の存在下で、フルオレンを相間移動触媒で酸化して9−フルオレノンを製造する方法は、工業化を実現できるにもかかわらず、有機溶剤の存在は過程を複雑化させて、生産性が比較的低かった。この問題を解決するため、本発明は生成物としての9−フルオレノンを溶剤として、相間移動触媒酸化によって、フルオレンを9−フルオレノンに効果的に転化させる方法を提供する。該方法は、反応器材の利用率を向上させ、溶剤の分離、回収過程を省き、反応溶液の分離と9−フルオレノン精製ステップとの結合操作を実現し、プロセスを大幅に簡素化した。   In the prior art, the method of producing 9-fluorenone by oxidizing fluorene with a phase transfer catalyst in the presence of an organic solvent can realize industrialization, but the presence of the organic solvent complicates the process, Productivity was relatively low. In order to solve this problem, the present invention provides a method for effectively converting fluorene to 9-fluorenone by phase transfer catalytic oxidation using 9-fluorenone as a product as a solvent. This method improved the utilization of the reactor material, eliminated the solvent separation and recovery process, realized the combined operation of the reaction solution separation and the 9-fluorenone purification step, and greatly simplified the process.

本発明の技術的解決手段は以下の通りである。   The technical solution of the present invention is as follows.

フルオレンから9−フルオレノンを製造する方法であって、工業用フルオレンを原料とし、9−フルオレノンと水を溶剤とし、アルカリを触媒とし、第四級アンモニウム塩を相間移動剤とし、酸素含有気体を酸化剤として、70〜83℃の反応温度下で9−フルオレノンを製造し、原料としてのフルオレンは一回だけで添加を行うか或いは反応の進行に従って継続的に補充を行う。   A method for producing 9-fluorenone from fluorene, using industrial fluorene as raw materials, 9-fluorenone and water as solvent, alkali as catalyst, quaternary ammonium salt as phase transfer agent, and oxidizing oxygen-containing gas As the agent, 9-fluorenone is produced at a reaction temperature of 70 to 83 ° C., and fluorene as a raw material is added only once or continuously replenished as the reaction proceeds.

本発明に記載のフルオレンから9−フルオレノンを製造する方法において、初期投入量又は毎回補充されるフルオレンの量は反応系におけるフルオレンと9−フルオレノンが溶液を形成するようにするのが好ましい。より好ましくは、初期投入量又は毎回補充されるフルオレンの量は反応系におけるフルオレンと9−フルオレノンのモル比が1〜2:1になるようにするのがよい。フルオレンと9−フルオレノンとの割合は反応温度に従って変化される。反応温度下で、フルオレンと9−フルオレノンは溶液を形成し、且つフルオレンと9−フルオレノンのモル比が1〜2:1である場合、相間移動触媒反応の実行に有利であるばかりでなく、反応速度を向上させることに有利であり、従って少量の9−フルオレノンを加えることで大量のフルオレンの高速転化を誘発するのが実現され、反応器の利用率は最大値に達する。   In the method for producing 9-fluorenone from fluorene according to the present invention, the initial charge amount or the amount of fluorene replenished each time is preferably such that the fluorene and 9-fluorenone in the reaction system form a solution. More preferably, the initial charge amount or the amount of fluorene replenished each time should be such that the molar ratio of fluorene to 9-fluorenone in the reaction system is 1-2: 1. The proportion of fluorene and 9-fluorenone is varied according to the reaction temperature. At the reaction temperature, fluorene and 9-fluorenone form a solution, and when the molar ratio of fluorene to 9-fluorenone is 1-2: 1, not only is it advantageous for carrying out the phase transfer catalytic reaction, It is advantageous to increase the speed, so that by adding a small amount of 9-fluorenone, it is realized to induce a fast conversion of a large amount of fluorene, and the reactor utilization reaches a maximum.

本発明に記載のフルオレンで9−フルオレノンを製造する方法は、反応液から第四級アンモニウム塩を含んだアルカリ液を回収するステップと9−フルオレノンの再結晶するステップとの結合操作の過程を更に含み、反応が完了した後、熱いうちに反応液を再結晶溶剤と混合し、第四級アンモニウムを含んだアルカリ液を分離、回収して循環利用し、有機層は冷却して結晶させ、濾過を行い、精製された9−フルオレノンを得る。   The method for producing 9-fluorenone with fluorene according to the present invention further comprises the step of recovering the alkaline solution containing the quaternary ammonium salt from the reaction solution and the step of recrystallization of 9-fluorenone. After the reaction is completed, the reaction solution is mixed with the recrystallization solvent while it is hot, and the alkali solution containing quaternary ammonium is separated, recovered and recycled, and the organic layer is cooled and crystallized and filtered. To obtain purified 9-fluorenone.

更に、前記再結晶溶剤はシクロヘキサンである。   Further, the recrystallization solvent is cyclohexane.

具体的なステップとしては、反応が完了した後、熱いうちに反応液を再結晶溶剤に導入するか或いは再結晶溶剤を熱い反応液に導入する。その中、再結晶溶剤をあらかじめ温めて置くことで、再結晶溶剤と反応液を混合した後の温度が約70℃を保つようにすることができる。熱いうちに第四級アンモニウム塩を含んだアルカリ液層を分離し、次回の反応に用いることで、アルカリ、第四級アンモニウム塩、副生成物としての水の循環利用を実現し、有機溶液層は冷却して結晶させ、濾過と乾燥を行い、合格の9−フルオレノン製品を得る。   As a specific step, after the reaction is completed, the reaction solution is introduced into the recrystallization solvent while it is hot, or the recrystallization solvent is introduced into the hot reaction solution. Among them, the temperature after mixing the recrystallization solvent and the reaction solution can be maintained at about 70 ° C. by preheating the recrystallization solvent. Separate the alkali liquid layer containing the quaternary ammonium salt while it is hot, and use it for the next reaction to realize recycling of alkali, quaternary ammonium salt, and water as a by-product. Is cooled and crystallized, filtered and dried to obtain a successful 9-fluorenone product.

本発明に記載のフルオレンから9−フルオレノンを製造する方法において、具体的な操作ステップとしては、フルオレンと9−フルオレノンを混合して反応温度まで加熱して油相になるようにし、20〜55wt%のアルカリ溶液を水相とし、油相と水相との体積比が5:1〜6になるように反応器に加えた後、フルオレンと第四級アンモニウム塩とのモル比が50〜300:1になるように第四級アンモニウム塩を加えて、酸素含有気体を導入する。その中、反応の進行に従ってフルオレンを復数回に分けて補充することができ、フルオレンの転化率≧98.5%になるまでに反応させて反応を終了する。   In the method for producing 9-fluorenone from fluorene according to the present invention, as specific operation steps, fluorene and 9-fluorenone are mixed and heated to the reaction temperature so as to become an oil phase. Was added to the reactor so that the volume ratio of the oil phase to the aqueous phase was 5: 1 to 6, and the molar ratio of fluorene to the quaternary ammonium salt was 50 to 300: A quaternary ammonium salt is added so as to be 1, and an oxygen-containing gas is introduced. Among them, fluorene can be replenished in several batches according to the progress of the reaction, and the reaction is completed until the conversion of fluorene becomes 98.5%.

更に、前記アルカリと第四級アンモニウム塩は一回だけで添加するか或いは複数回に分けて反応系に添加する。反応過程において、アルカリ溶液の濃度が20〜55wt%を保つようにし、好ましくは30〜40wt%を保つようにするのが良い。第四級アンモニウム塩を複数回に分けて加えることにより、第四級アンモニウム塩の分解が速すぎてしまうことを防ぐことができる。フルオレンと第四級アンモニウム塩とのモル比は80〜200:1になるようにするのが好ましく、油相と水相との体積比は5:1〜3になるようにするのが好ましい。   Furthermore, the alkali and the quaternary ammonium salt are added only once, or added to the reaction system in a plurality of times. In the course of the reaction, the concentration of the alkaline solution should be kept at 20 to 55 wt%, preferably 30 to 40 wt%. By adding the quaternary ammonium salt in a plurality of times, it is possible to prevent the quaternary ammonium salt from being decomposed too quickly. The molar ratio of fluorene to quaternary ammonium salt is preferably 80 to 200: 1, and the volume ratio of oil phase to aqueous phase is preferably 5: 1 to 3.

本発明の製造方法における反応一般式は以下の通りである。
The general reaction formula in the production method of the present invention is as follows.

前記一般式において、R〜Rは水素又は不活性化基であり、前記不活性化基は、C〜C10のアルキル基、C〜C10のアルコキシ基、C〜C10のアルキルアリール基、C〜C10のアラルキル基とC〜C10のアシル基から選択され、
前記C〜C10のアルキル基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、イソペンチル基、シクロペンチル基、シクロヘキシル基、メチルシクロペンチル基、ジメチルシクロペンチル基及びジメチルシクロへキシル基から選択され、
前記C〜C10のアルコキシ基は、メトキシ基、エトキシ基、プロポキシ基、イソブトキシ基、t−ブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基及びフェノキシ基から選択され、
前記C〜C10のアルキルアリール基とアラルキル基は、フェニル基、ベンジル基及びトリル基から選択され、
前記C〜C10のアシル基はホルミル基、アセチル基、オクタノイル基とイソバレリル基から選択され、
前記R〜Rは同じ、或いは同じではない。
In the general formula, R 1 to R 8 are hydrogen or an inactivating group, and the inactivating group is a C 1 to C 10 alkyl group, a C 1 to C 10 alkoxy group, or a C 6 to C 10. An alkylaryl group, a C 6 -C 10 aralkyl group and a C 1 -C 10 acyl group,
Alkyl group of the C 1 -C 10 is a methyl group, an ethyl group, propyl group, butyl group, pentyl group, hexyl, heptyl, octyl, nonyl, decyl, isopropyl group, isobutyl group, isopentyl group, Selected from a cyclopentyl group, a cyclohexyl group, a methylcyclopentyl group, a dimethylcyclopentyl group and a dimethylcyclohexyl group;
Alkoxy groups of the C 1 -C 10 include a methoxy group, an ethoxy group, a propoxy group, an isobutoxy group, t-butoxy group, cyclopentyloxy group, selected from cyclohexyl group and a phenoxy group,
Alkylaryl group and aralkyl group in the C 6 -C 10 is selected from phenyl, benzyl and tolyl groups,
The C 1 -C 10 acyl group is selected from a formyl group, an acetyl group, an octanoyl group and an isovaleryl group;
The R 1 to R 8 are the same or not the same.

更に、前記酸素含有気体はまず暖かい水を通過して湿潤された後、気体分散器を経由して反応器に導入され、反応に関与する。前記酸素含有気体は清潔な空気、酸素富化空気と純酸素から選ばれる一種である。前記酸素富化空気は水素の体積分率が空気中の平均酸素体積分率より大きい空気を指す。酸素含有気体を暖かい水を通過させて湿潤した後反応系に通入させるのは、反応器内のアルカリ濃度を保持するためであり、気体分散器を経由して反応液に通入させるのは、気体を均一に反応液に分散させるためである。   Furthermore, the oxygen-containing gas is first wetted by passing through warm water, and then introduced into the reactor via a gas disperser and participates in the reaction. The oxygen-containing gas is a kind selected from clean air, oxygen-enriched air, and pure oxygen. The oxygen-enriched air refers to air in which the volume fraction of hydrogen is greater than the average oxygen volume fraction in air. The oxygen-containing gas is wetted by passing it through warm water and then allowed to pass through the reaction system in order to maintain the alkali concentration in the reactor. This is because the gas is uniformly dispersed in the reaction solution.

本発明に記載の方法において、異なる酸素ソースの使用によって異なる操作条件を採用することができる。例えば、純酸素を酸素ソースとして使用する場合、反応器を密閉することで、酸素を最大限に利用することができる。また、空気を酸素ソースとして使用する場合、常圧下で冷却回流反応を行うことで、反応排気ガスが携帯する有機物をできるだけ低減することができる。   In the process according to the invention, different operating conditions can be employed depending on the use of different oxygen sources. For example, when pure oxygen is used as the oxygen source, oxygen can be utilized to the maximum by sealing the reactor. In addition, when air is used as an oxygen source, the organic matter carried by the reaction exhaust gas can be reduced as much as possible by performing a cooling circulation reaction under normal pressure.

フルオレンから9−フルオレノンを製造する反応は多相反応であり、撹拌と気体の流入速度が重要であり、異なる反応器に対して異なる攪拌器、撹拌速度と気体の流入速度を必要とする。撹拌速度は200〜400r/minであるのが好ましく、気体の流入速度は300〜600mL/minであるのが好ましい。   The reaction for producing 9-fluorenone from fluorene is a multiphase reaction, and stirring and gas inflow rates are important, and different agitators, stirring speeds and gas inflow rates are required for different reactors. The stirring speed is preferably 200 to 400 r / min, and the gas inflow speed is preferably 300 to 600 mL / min.

更に、前記触媒としてのアルカリは、アルカリ金属又はアルカリ土類金属の酸化物又は水酸化物から選ばれる少なくとも一種であるのが好ましい。より好ましくは、水酸化カリウム、水酸化ナトリウムと水酸化リチウムから選ばれる少なくとも一種であることがよい。   Furthermore, the alkali as the catalyst is preferably at least one selected from oxides or hydroxides of alkali metals or alkaline earth metals. More preferably, it is at least one selected from potassium hydroxide, sodium hydroxide and lithium hydroxide.

本発明の前記相間移動剤は相間移動触媒である。   The phase transfer agent of the present invention is a phase transfer catalyst.

更に、前記第四級アンモニウム塩は一般式RNYの構造を有し、
その中、R〜RはC〜C12の直鎖又は分枝鎖アルキル基、C〜Cのシクロアルキル基、C〜C10のアルキルアリール基又はC〜C10のアラルキル基から選択され、R、R、R、Rは同じ、或いは同じではなく、
その中、Yは塩素、臭素、ヨウ素の陰イオン又は硫酸水素基から選択され、
塩化アンモニウム系第四級アンモニウム塩は、塩化ラウリルトリメチルアンモニウム、塩化ビスカプリルジメチルアンモニウム、塩化ビスノナンジメチルアンモニウム、塩化ビスデシルジメチルアンモニウム、塩化メチトリプロピルメチルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリブチルメチルアンモニウム、塩化トリノニルメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラプロピルアンモニウム、塩化テトラブチルアンモニウム、塩化テトラオクチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウム、塩化ベンジルトリプロピルアンモニウム、及び塩化ベンジルトリブチルアンモニウムから選ばれる一種である。
Further, the quaternary ammonium salt has a structure of the general formula R 1 R 2 R 3 R 4 NY,
Among them, R 1 to R 4 are C 1 to C 12 linear or branched alkyl groups, C 5 to C 6 cycloalkyl groups, C 6 to C 10 alkylaryl groups, or C 6 to C 10 Selected from aralkyl groups, R 1 , R 2 , R 3 , R 4 are the same or not the same,
Wherein Y is selected from chlorine, bromine, iodine anions or hydrogen sulfate groups;
Ammonium chloride quaternary ammonium salts are: lauryltrimethylammonium chloride, biscapryldimethylammonium chloride, bisnonanedimethylammonium chloride, bisdecyldimethylammonium chloride, methyltripropylmethylammonium chloride, trioctylmethylammonium chloride, tributylmethylammonium chloride , Trinonylmethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, tetraoctylammonium chloride, benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benzyltripropylammonium chloride, and benzyltributylammonium chloride It is a kind.

臭化アンモニウム系第四級アンモニウム塩は、臭化ラウリルトリメチルアンモニウム、臭化ビスオクチルジメチルアンモニウム、臭化ビスノナンジメチルアンモニウム、臭化ビスデシルジメチルアンモニウム、臭化トリオクチルメチルアンモニウム、臭化トリノニルメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、及び臭化テトラオクチルアンモニウムから選ばれる一種である。   Ammonium bromide-based quaternary ammonium salts include lauryltrimethylammonium bromide, bisoctyldimethylammonium bromide, bisnonanedimethylammonium bromide, bisdecyldimethylammonium bromide, trioctylmethylammonium bromide, trinonylmethyl bromide It is a kind selected from ammonium, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, and tetraoctylammonium bromide.

ヨウ化アンモニウム系第四級アンモニウム塩は、ヨウ化テトラエチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化テトラブチルアンモニウム、及びヨウ化ドデシルトリメチルアンモニウムから選ばれる一種である。   The ammonium iodide-based quaternary ammonium salt is a kind selected from tetraethylammonium iodide, tetrapropylammonium iodide, tetrabutylammonium iodide, and dodecyltrimethylammonium iodide.

硫酸水素アンモニウム系第四級アンモニウム塩は、硫酸水素テトラメチルアンモニウム、硫酸水素テトラエチルアンモニウム、硫酸水素テトラプロピルアンモニウム、硫酸水素テトラブチルアンモニウム、硫酸水素テトラドデシルトリメチルアンモニウム、硫酸水素ビスオクチルジメチルアンモニウム、硫酸水素ビスノニルジメチルアンモニウム、硫酸水素ビスデシルジメチルアンモニウム、硫酸水素トリオクチルメチルアンモニウム、硫酸水素トリプロピルメチルアンモニウム、硫酸水素トリブチルメチルアンモニウムと硫酸水素トリノニルメチルアンモニウムから選ばれる一種である。   Ammonium hydrogen sulfate quaternary ammonium salt is tetramethylammonium hydrogensulfate, tetraethylammonium hydrogensulfate, tetrapropylammonium hydrogensulfate, tetrabutylammonium hydrogensulfate, tetradodecyltrimethylammonium hydrogensulfate, bisoctyldimethylammonium hydrogensulfate, hydrogensulfate Bisnonyldimethylammonium hydrogen, bisdecyldimethylammonium hydrogensulfate, trioctylmethylammonium hydrogensulfate, tripropylmethylammonium hydrogensulfate, tributylmethylammonium hydrogensulfate and trinonylmethylammonium hydrogensulfate are one type.

本発明に記載の方法において、前記フルオレンの転化率≧98.5%になった時点で反応を終了する。本反応ではフルオレンの転化率が100%に達するのが非常に容易である。転化率≧98.5%になった場合、後続の9−フルオレンの精製において便利で合理的な条件を提供することができる。   In the method according to the present invention, the reaction is terminated when the conversion rate of the fluorene becomes ≧ 98.5%. In this reaction, it is very easy for the conversion of fluorene to reach 100%. When the conversion becomes ≧ 98.5%, convenient and reasonable conditions can be provided in the subsequent purification of 9-fluorene.

本発明に記載の製造方法において、薄層クロマトグラフィーを用いて反応プロセスをモニタリングする。薄層クロマトグラフィーはシリカゲルG254塗板を固定相とし、酢酸エチル:石油エーテル=1:20の混合溶液を展開剤として、原料としてのフルオレンが完全に反応するまで、サンプリング検出を行う。本発明の有益な効果は以下の通りである。 In the production method according to the present invention, the reaction process is monitored using thin layer chromatography. Thin-layer chromatography uses a silica gel G 254 coated plate as a stationary phase, and uses a mixed solution of ethyl acetate: petroleum ether = 1: 20 as a developing agent, and performs sampling detection until fluorene as a raw material is completely reacted. The beneficial effects of the present invention are as follows.

1.本発明に記載の製造方法において、生成物としての9−フルオレノンを溶剤に替えて、少量の9−フルオレノンを溶剤として、大量のフルオレンの高速転化を誘発することで、従来のプロセスと比べて、相間移動触媒の利点を保持するばかりでなく、溶剤の分離、回収などの過程を省き、且つ、反応液の分離とフルオレノン精製との結合操作を実現し、フルオレノンの製造プロセスを大幅に簡素化し、反応器の利用率が最大値に達することを実現する。   1. In the production method according to the present invention, 9-fluorenone as a product is replaced with a solvent, and a small amount of 9-fluorenone is used as a solvent to induce high-speed conversion of a large amount of fluorene. In addition to retaining the advantages of phase transfer catalysts, it eliminates the steps of solvent separation and recovery, and realizes the combined operation of reaction solution separation and fluorenone purification, greatly simplifying the production process of fluorenone, Realize that the reactor utilization reaches the maximum value.

2.本発明に記載の製造方法において、回収されたアルカリ、第四級アンモニウム塩及び副生成物としての水などを処理する必要がなく、直接に循環して使用することができる。   2. In the production method described in the present invention, it is not necessary to treat the recovered alkali, quaternary ammonium salt, water as a by-product, etc., and they can be directly circulated and used.

3.本発明に記載の製造方法において、フルオレンの転化率が容易に100%に達し、フルオレノンの精製方法を簡素化する。   3. In the production method described in the present invention, the conversion rate of fluorene easily reaches 100%, and the purification method of fluorenone is simplified.

4.本発明に記載の製造方法は、グリーン製造方法であって、環境に友好的なプロセスであり、本発明の製造操作は連続的な操作を実現できる。   4). The manufacturing method described in the present invention is a green manufacturing method and is an environmentally friendly process, and the manufacturing operation of the present invention can realize a continuous operation.

下記非限定的な実施例は、当業者により全面的に本発明を理解させることができるが、いずれの方式でも本発明を限定することはできない。   The following non-limiting examples will allow those skilled in the art to fully understand the present invention, but the present invention cannot be limited in any way.

以下、実施例に所用する工業用フルオレンの純度≧95%である。   Hereinafter, the purity of industrial fluorene used in the examples is ≧ 95%.

(実施例1)
250mLの三口フラスコに、順次に60.42gの工業用フルオレン、62.87gの9−フルオレノン、1.00gの塩化テトラブチルアンモニウム、6gのNaOH及び9mLの水を加えて、80℃の水浴中で三口フラスコを加熱し、機械的撹拌速度を300r/minに制御し、300×2mL/minの空気をバブリングで、80℃の水を通過させた後、反応フラスコに通入し、反応を開始する。反応過程において、薄層クロマトグラフィーでフルオレンの転化をモニタリングしながら、10.5h反応させた後、原料点が消失されており、その後0.5時間続けて反応を行ってから反応を停止する。反応液を熱いうちに温水に移して冷却し、十分に撹拌、冷却した後、濾過を行い黄色固体を得る。黄色固体を空気中で自然乾燥して124.46gの9−フルオレノンを得る。クロマトグラフィー分析によれば、9−フルオレノンの含有量が97.01%であり、原料としてのフルオレンは完全に転化された。
Example 1
To a 250 mL three-necked flask, sequentially add 60.42 g of industrial fluorene, 62.87 g of 9-fluorenone, 1.00 g of tetrabutylammonium chloride, 6 g of NaOH and 9 mL of water in an 80 ° C. water bath. The three-necked flask is heated, the mechanical stirring speed is controlled at 300 r / min, air of 300 × 2 mL / min is bubbled through 80 ° C. water, and then the reaction flask is passed to start the reaction. . In the course of the reaction, while monitoring the conversion of fluorene by thin layer chromatography, after reacting for 10.5 h, the raw material point has disappeared, and then the reaction is continued for 0.5 hour, and then the reaction is stopped. While the reaction solution is hot, it is transferred to warm water and cooled. After sufficiently stirring and cooling, filtration is performed to obtain a yellow solid. The yellow solid is naturally dried in air to give 124.46 g of 9-fluorenone. According to chromatographic analysis, the content of 9-fluorenone was 97.01%, and the fluorene as a raw material was completely converted.

(実施例2)
250mLの三口フラスコに、順次に61.86gの工業用フルオレン、30gの9−フルオレノン、1.20gの臭化テトラブチルアンモニウムを加え、ほかは実施例1と同じである。8h反応した時点で原料点が消失され、その後0.5時間続けて反応を行ってから反応を停止する。粗生成物92.86gを得る。クロマトグラフィー分析によれば、9−フルオレノンの含有量が96.87%であり、原料としてのフルオレンは完全に転化された。
(Example 2)
To the 250 mL three-necked flask, 61.86 g of industrial fluorene, 30 g of 9-fluorenone and 1.20 g of tetrabutylammonium bromide were sequentially added, but the same as in Example 1. When the reaction is completed for 8 hours, the starting point disappears, and then the reaction is continued for 0.5 hour, and then the reaction is stopped. 92.86 g of crude product are obtained. According to chromatographic analysis, the content of 9-fluorenone was 96.87%, and the fluorene as a raw material was completely converted.

(実施例3)
250mLの三口フラスコに、順次に61.45gの工業用フルオレン、45.44gの9−フルオレノン、1.20gの硫酸水素テトラブチルアンモニウムを加え、ほかは実施例1と同じである。7.5h反応した時点で原料点が消失され、その後0.5時間続けて反応を行ってから反応を停止し、黄色結晶体113.19gを得る。クロマトグラフィー分析によれば、9−フルオレノンの含有量が96.51%であり、原料としてのフルオレンは完全に転化された。
Example 3
61.45 g of industrial fluorene, 45.44 g of 9-fluorenone and 1.20 g of tetrabutylammonium hydrogen sulfate were sequentially added to a 250 mL three-necked flask. When the reaction was completed for 7.5 h, the raw material point disappeared, and then the reaction was continued for 0.5 hour, and then the reaction was stopped to obtain 113.19 g of a yellow crystal. According to chromatographic analysis, the content of 9-fluorenone was 96.51%, and the fluorene as a raw material was completely converted.

(実施例4)
250mLの三口フラスコに、順次に15.31gの工業用フルオレン、15.24gの9−フルオレノン、0.30gの硫酸水素テトラブチルアンモニウム、2gのNaOH、3mLの水を加えて、80℃の水浴中で三口フラスコを加熱し、機械的撹拌速度を200r/minに制御し、200×2mL/minの空気をバブリングで、80℃の水を通過させた後、反応フラスコに通入し反応を開始する。3時間反応した後、15.04gのフルオレン、0.3gの硫酸水素テトラブチルアンモニウム、2gのNaOH、3mLの水を加えて、3.5時間反応させた時点で原料点が消失され、その後0.5時間続けて反応を行なってから反応を停止する。反応液を熱いうちに温水に移して冷却し、十分に撹拌、冷却した後、濾過を行い黄色固体を得る。黄色固体を空気中で自然乾燥して黄色結晶体43.28gを得る。クロマトグラフィー分析によれば、9−フルオレノンの含有量が94.88%であり、原料としてのフルオレンは1.63%であった。
Example 4
To a 250 mL three-necked flask were sequentially added 15.31 g of industrial fluorene, 15.24 g of 9-fluorenone, 0.30 g of tetrabutylammonium hydrogen sulfate, 2 g of NaOH, and 3 mL of water in an 80 ° C. water bath. The three-necked flask is heated with a mechanical stirring speed of 200 r / min, air of 200 × 2 mL / min is bubbled through 80 ° C. water, and then passed through the reaction flask to start the reaction. . After reacting for 3 hours, 15.04 g of fluorene, 0.3 g of tetrabutylammonium hydrogen sulfate, 2 g of NaOH, and 3 mL of water were added and reacted for 3.5 hours. .Continue reaction for 5 hours before stopping the reaction. While the reaction solution is hot, it is transferred to warm water and cooled. After sufficiently stirring and cooling, filtration is performed to obtain a yellow solid. The yellow solid is naturally dried in air to obtain 43.28 g of yellow crystals. According to chromatographic analysis, the content of 9-fluorenone was 94.88%, and fluorene as a raw material was 1.63%.

(実施例5)
250mLの三口フラスコに、順次に15.31gの工業用フルオレン、15.24gの9−フルオレノン、2.0gの硫酸水素テトラブチルアンモニウム、6gのNaOH、9mLの水を加えて、70℃の水浴中で三口フラスコを加熱し、機械的撹拌速度を200r/minに制御し、200×2mL/minの空気をバブリングで、70℃の水を通過させた後、反応フラスコに通入し、4h反応させる。その後、30gのフルオレンを加えて4.5h反応させてから、40.11gのフルオレンを加えて5h反応させた時点で原料点が完全に消失され、その後に0.5h続けて反応を行って反応を停止する。熱いうちに反応液を温水に移して冷却させ、十分に撹拌、冷却した後、濾過を行い、黄色固体を得る。それを空気中で自然乾燥させ、100.53gの9−フルオレノンを得る。クロマトグラフィー分析によれば、9−フルオレノンの含有量が96.87%であり、原料としてのフルオレンは完全に転化された。
(Example 5)
To a 250 mL three-necked flask, sequentially add 15.31 g of industrial fluorene, 15.24 g of 9-fluorenone, 2.0 g of tetrabutylammonium hydrogen sulfate, 6 g of NaOH, and 9 mL of water in a 70 ° C. water bath. The three-necked flask is heated at 200 ° C., the mechanical stirring speed is controlled to 200 r / min, and air of 200 × 2 mL / min is bubbled through 70 ° C. water, then passed into the reaction flask and reacted for 4 hours. . Thereafter, 30 g of fluorene was added and reacted for 4.5 hours, then 40.11 g of fluorene was added and reacted for 5 hours, and then the raw material point disappeared completely, and then the reaction was continued for 0.5 h. To stop. While hot, the reaction solution is transferred to warm water and allowed to cool. After sufficiently stirring and cooling, filtration is performed to obtain a yellow solid. It is air dried in air to give 100.53 g of 9-fluorenone. According to chromatographic analysis, the content of 9-fluorenone was 96.87%, and the fluorene as a raw material was completely converted.

(実施例6)
250mLの三口フラスコに、順次に10.09gの工業用フルオレン、10.43gの9−フルオレノン、3.0gの硫酸水素テトラブチルアンモニウム、6gのNaOH、9mLの水を加えて、70℃の水浴中で三口フラスコを加熱し、機械的撹拌速度を200r/minに制御し、200×2mL/minの空気をバブリングで、70℃の水を通過させた後、反応フラスコに通入する。2h反応した時点で薄層クロマトグラフィーにおいて原料としてのフルオレンのスポットが完全に消失された。その後、20gのフルオレンを加えて4h反応させてから、40gのフルオレンを加えて5.5h反応させ、その後30.08gのフルオレンを加えて5h反応させた時点で、原料点が完全に消失され、その後0.5h続けて反応を行ってから反応を停止する。9−フルオレノン108.79gを得、クロマトグラフィー分析によれば、9−フルオレノンの含有量が96.47%であり、原料としてのフルオレンは完全に転化された。
(Example 6)
To a 250 mL three-necked flask, sequentially add 10.09 g of industrial fluorene, 10.43 g of 9-fluorenone, 3.0 g of tetrabutylammonium hydrogen sulfate, 6 g of NaOH, and 9 mL of water in a 70 ° C. water bath. Then, the three-necked flask is heated, the mechanical stirring speed is controlled to 200 r / min, air of 200 × 2 mL / min is bubbled through 70 ° C. water, and then passed into the reaction flask. When the reaction was performed for 2 h, the spot of fluorene as a raw material disappeared completely in the thin layer chromatography. Then, after adding 20 g of fluorene and reacting for 4 hours, adding 40 g of fluorene and reacting for 5.5 hours, and then adding 30.08 g of fluorene and reacting for 5 hours, the raw material point is completely disappeared, Thereafter, the reaction is continued for 0.5 h, and then the reaction is stopped. 108.79 g of 9-fluorenone was obtained, and according to chromatographic analysis, the content of 9-fluorenone was 96.47%, and the fluorene as a raw material was completely converted.

(実施例7)
250mLの三口フラスコに、順次に40.26gの工業用フルオレン、40.18gの9−フルオレノン、3.0gの臭化テトラブチルアンモニウム、6gのNaOHと9mLの水を加えて、75℃の水浴中で三口フラスコを加熱し、機械的撹拌速度を300r/minに制御し、300×2mL/minの空気をバブリングで、75℃の水を通過させた後、反応フラスコに通入し、反応を開始する。反応過程に、薄層クロマトグラフィーでフルオレンの転化情況をモニタリングしながら、5.5h反応させてから40.02gのフルオレンを補充し、続けて6.5h反応を行ってから反応を停止する。反応液を熱いうちに360mlのシクロヘキサンに転移するとともに、溶液の温度を65℃に保持して9−フルオレノンが完全にシクロヘキサンに溶解されるようにする。熱いうちに12mLの臭化テトラブチルアンモニウムを含んだアルカリ水層を分離し、有機層は35℃にまで冷却し、9−フルオレノンを結晶させる。その後、減圧抽出及び乾燥を行い、精製された9−フルオレノン94.80gを得る。クロマトグラフィー分析によれば、9−フルオレノンの含有量が99.74%であった。アルカリ水層を回収し循環使用する。
(Example 7)
To a 250 mL three-necked flask, sequentially add 40.26 g of industrial fluorene, 40.18 g of 9-fluorenone, 3.0 g of tetrabutylammonium bromide, 6 g of NaOH and 9 mL of water in a 75 ° C. water bath. The three-necked flask is heated with a mechanical stirring speed of 300 r / min, 300 x 2 mL / min air is bubbled through 75 ° C water, and then the reaction flask is passed through to start the reaction. To do. In the reaction process, while monitoring the conversion state of fluorene by thin layer chromatography, the reaction is carried out for 5.5 h and then supplemented with 40.02 g of fluorene, followed by a reaction for 6.5 h and then the reaction is stopped. While the reaction solution is hot, it is transferred to 360 ml of cyclohexane, and the temperature of the solution is kept at 65 ° C. so that 9-fluorenone is completely dissolved in cyclohexane. While hot, an alkaline aqueous layer containing 12 mL of tetrabutylammonium bromide is separated, the organic layer is cooled to 35 ° C., and 9-fluorenone is crystallized. Thereafter, extraction under reduced pressure and drying are performed to obtain 94.80 g of purified 9-fluorenone. According to chromatographic analysis, the 9-fluorenone content was 99.74%. The alkaline water layer is collected and recycled.

Claims (10)

工業用フルオレンを原料とし、9−フルオレノンと水とを溶剤とし、アルカリを触媒とし、第四級アンモニウム塩を相間移動触媒とし、酸素含有気体を酸化剤として用意するステップと、70〜83℃の反応温度下で9−フルオレノンを製造するステップとを含み、原料としてのフルオレンは一回だけで添加を行うか或いは反応の進行に従って継続的に補充を行う、ことを特徴とするフルオレンから9−フルオレノンを製造する方法。   Using industrial fluorene as a raw material, 9-fluorenone and water as a solvent, alkali as a catalyst, quaternary ammonium salt as a phase transfer catalyst, and oxygen-containing gas as an oxidant; A step of producing 9-fluorenone at a reaction temperature, wherein fluorene as a raw material is added only once or is continuously replenished as the reaction proceeds, and 9-fluorenone from fluorene is characterized in that How to manufacture. 前記原料としてのフルオレンは一回だけで添加を行うか或いは反応の進行に従って継続的に補充を行い、初期投入量又は毎回補充されるフルオレンの量は、反応系におけるフルオレンと9−フルオレノンが溶液を形成するような量である、ことを特徴とする請求項1に記載のフルオレンから9−フルオレノンを製造する方法。   The fluorene as the raw material is added only once or continuously replenished as the reaction proceeds. The initial charge amount or the amount of fluorene replenished each time is determined by the solution of fluorene and 9-fluorenone in the reaction system. The method for producing 9-fluorenone from fluorene according to claim 1, wherein the amount is such that it forms. 前記原料としてのフルオレンは一回だけで添加を行うか或いは反応の進行に従って継続的に補充を行い、初期投入量又は毎回補充されるフルオレンの量は、反応系におけるフルオレンと9−フルオレノンのモル比が1〜2:1になるような量である、ことを特徴とする請求項2に記載のフルオレンから9−フルオレノンを製造する方法。   The fluorene as the raw material is added only once or continuously replenished as the reaction proceeds, and the initial charge amount or the amount of fluorene replenished each time is the molar ratio of fluorene and 9-fluorenone in the reaction system. The method for producing 9-fluorenone from fluorene according to claim 2, wherein the amount of the fluorene is 1 to 2: 1. 反応液から第四級アンモニウム塩を含んだアルカリ液の回収と9−フルオレノンの再結晶との結合操作のステップを更に含み、反応が完了した後、反応液を熱いうちに再結晶溶剤と混合し、第四級アンモニウムを含んだアルカリ液を分離、回収して循環利用し、有機層は冷却して結晶させ、濾過を行い、精製された9−フルオレノンを得る、ことを特徴とする請求項1に記載のフルオレンから9−フルオレノンを製造する方法。   The method further includes a step of combining an alkaline solution containing a quaternary ammonium salt from the reaction solution and recrystallization of 9-fluorenone, and after the reaction is completed, the reaction solution is mixed with a recrystallization solvent while hot. The alkaline liquid containing quaternary ammonium is separated, recovered and recycled, and the organic layer is cooled and crystallized, and filtered to obtain purified 9-fluorenone. A method for producing 9-fluorenone from fluorene described in 1. 前記再結晶溶剤は、シクロヘキサンである、ことを特徴とする請求項4に記載のフルオレンから9−フルオレノンを製造する方法。   The method for producing 9-fluorenone from fluorene according to claim 4, wherein the recrystallization solvent is cyclohexane. 具体的な操作のステップは、フルオレンと9−フルオレノンを混合して、反応温度まで加熱して油相になるようにし、20〜55wt%のアルカリ溶液を水相とし、油相と水相との体積比が5:1〜6になるように混合した後、フルオレンと第四級アンモニウム塩とのモル比が50〜300:1になるように第四級アンモニウム塩を加えて、酸素含有気体を導入し、反応の進行に従ってフルオレンを複数回に分けて補充することができ、フルオレンの転化率≧98.5%になるまでに反応させた後反応を終了する、ことを特徴とする請求項1に記載のフルオレンから9−フルオレノンを製造する方法。   The specific operation step is to mix fluorene and 9-fluorenone and heat to the reaction temperature so as to become an oil phase. A 20-55 wt% alkaline solution is used as the water phase, and the oil phase and the water phase are mixed. After mixing so that the volume ratio is 5: 1 to 6, the quaternary ammonium salt is added so that the molar ratio of fluorene to the quaternary ammonium salt is 50 to 300: 1. The fluorene can be replenished in a plurality of times as it is introduced, and the reaction is terminated after the reaction is carried out until the fluorene conversion rate is equal to or greater than 98.5%. A method for producing 9-fluorenone from fluorene described in 1. 前記酸素含有気体はまず水を通過して湿潤された後、気体分散器を経由して反応液に導入され、反応に関与する、ことを特徴とする請求項1〜6のいずれか一項に記載のフルオレンから9−フルオレノンを製造する方法。   The oxygen-containing gas is first wetted by passing through water, and then introduced into the reaction solution via a gas disperser and participates in the reaction. A process for producing 9-fluorenone from the described fluorene. 前記酸素含有気体は、清潔な空気、酸素富化空気と純酸素から選ばれる一種である、ことを特徴とする請求項1〜6のいずれか一項に記載のフルオレンから9−フルオレノンを製造する方法。   The said oxygen-containing gas is 1 type chosen from clean air, oxygen-enriched air, and pure oxygen, The 9-fluorenone is manufactured from the fluorene as described in any one of Claims 1-6 characterized by the above-mentioned. Method. 前記触媒としてのアルカリは、アルカリ金属、アルカリ土類金属の酸化物及び水酸化物から選ばれる少なくとも一種である、ことを特徴とする請求項1〜6のいずれか一項に記載のフルオレンから9−フルオレノンを製造する方法。   The fluorene to 9 according to any one of claims 1 to 6, wherein the alkali as the catalyst is at least one selected from alkali metal, alkaline earth metal oxides and hydroxides. -A method for producing fluorenone. 前記アルカリと第四級アンモニウム塩の添加方式は一回だけで添加するか又は複数回に分けて添加する、ことを特徴とする請求項1〜6のいずれか一項に記載のフルオレンから9−フルオレノンを製造する方法。   The addition method of the alkali and the quaternary ammonium salt is added only once, or is added in a plurality of times, and the fluorene to 9- is added according to any one of claims 1 to 6. A method for producing fluorenone.
JP2016517134A 2014-03-03 2014-04-25 Method for producing 9-fluorenone from fluorene Active JP6052949B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410074024.1 2014-03-03
CN201410074024.1A CN103787858B (en) 2014-03-03 2014-03-03 Method for preparing 9-fluorenone through fluorene
PCT/CN2014/076189 WO2015131435A1 (en) 2014-03-03 2014-04-25 Method for preparing 9-fluorenone from fluorene

Publications (2)

Publication Number Publication Date
JP2016523227A JP2016523227A (en) 2016-08-08
JP6052949B2 true JP6052949B2 (en) 2016-12-27

Family

ID=50663975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016517134A Active JP6052949B2 (en) 2014-03-03 2014-04-25 Method for producing 9-fluorenone from fluorene

Country Status (3)

Country Link
JP (1) JP6052949B2 (en)
CN (1) CN103787858B (en)
WO (1) WO2015131435A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801389A (en) * 2016-04-14 2016-07-27 宝舜科技股份有限公司 Method for preparing 9-fluorenone with fluorene

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572002B2 (en) * 1993-01-21 1997-01-16 大阪市 Method for producing fluorenone
JPH0782206A (en) * 1993-09-14 1995-03-28 Sumikin Chem Co Ltd Production of fluorenone
CN102020543B (en) * 2009-09-15 2013-12-11 鞍钢股份有限公司 Method for producing 9-fluorenone
JP2011256150A (en) * 2010-06-11 2011-12-22 Taoka Chem Co Ltd Production method of 9-fluorenones
CN102924255A (en) * 2012-11-07 2013-02-13 天津大学 Method for preparing 9-fluorenone through liquid-phase oxidation
CN103435456B (en) * 2013-08-15 2015-06-10 宝舜科技股份有限公司 Preparation method for 9-fluorenone
CN103435463B (en) * 2013-08-15 2015-09-02 宝舜科技股份有限公司 A kind of four phase phase-transfer catalysiss prepare the method for 9-Fluorenone
CN103467264B (en) * 2013-08-15 2016-01-27 宝舜科技股份有限公司 A kind of method being prepared 9-Fluorenone by Industrial fluorene

Also Published As

Publication number Publication date
WO2015131435A1 (en) 2015-09-11
CN103787858A (en) 2014-05-14
CN103787858B (en) 2015-07-01
JP2016523227A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
CN102030706B (en) Method for preparing 6-hydroxy-2(1H)-quinolone in ionic liquid by using one-pot method
CN101787042B (en) Copper-nitrogen compound and application thereof
CN103992225A (en) Salicylaldehyde derivatives and preparation method thereof
CN101717368A (en) Method and process thereof for preparing imidazole ionic liquid under microwave condition
CN103641722A (en) Production method for 2-nitrobenzyl bromide
CN103172480B (en) Method for preparing iodo aromatic hydrocarbon
JP6052949B2 (en) Method for producing 9-fluorenone from fluorene
JP2011236208A (en) Process for producing c1-c4 alkyl nitrite
CN103787963A (en) Efficient preparation of 4-dimethylaminopyridine
JP6392994B2 (en) Method for producing 9-fluorenone from fluorene
CN103435456B (en) Preparation method for 9-fluorenone
CN104193670A (en) Synthesis and application of novel catalyst used in preparation of arone by carrying out catalytic oxidation on ethylbenzene and derivative of ethylbenzene
CN103467264B (en) A kind of method being prepared 9-Fluorenone by Industrial fluorene
CN107814691B (en) Method for synthesizing ethylguaiacol
CN103435463B (en) A kind of four phase phase-transfer catalysiss prepare the method for 9-Fluorenone
CN110950778A (en) Process and catalyst system for preparing aromatic malononitrile
CN103073499A (en) Method for preparing rhenium ion liquid by extraction method
CN111269142B (en) Method for catalyzing benzylidene malononitrile compound by SBA-15 supported ionic liquid
CN103804162B (en) Method for preparing high-purity 9-fluorenone from high-purity fluorene
CN113149827A (en) Method for synthesizing alkynoic acid by using terminal alkyne and carbon dioxide
CN110713442A (en) Preparation method of o-nitrobenzaldehyde
CN106749232B (en) A kind of synthetic method of imidazo isoquinoline compound
CN112961030B (en) Method for catalytic synthesis of 4- (trans-4-alkyl cyclohexyl) cyclohexanone
CN111250107B (en) Biomass-derived recyclable metal catalyst and preparation method and application thereof
CN101658802B (en) Supported ionic liquid catalyst and preparation and applications thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6052949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250