JP6052197B2 - Monitoring device and monitoring method - Google Patents

Monitoring device and monitoring method Download PDF

Info

Publication number
JP6052197B2
JP6052197B2 JP2014020607A JP2014020607A JP6052197B2 JP 6052197 B2 JP6052197 B2 JP 6052197B2 JP 2014020607 A JP2014020607 A JP 2014020607A JP 2014020607 A JP2014020607 A JP 2014020607A JP 6052197 B2 JP6052197 B2 JP 6052197B2
Authority
JP
Japan
Prior art keywords
compressed air
area
valves
monitoring
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014020607A
Other languages
Japanese (ja)
Other versions
JP2015148257A (en
Inventor
正洋 宇野
正洋 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014020607A priority Critical patent/JP6052197B2/en
Publication of JP2015148257A publication Critical patent/JP2015148257A/en
Application granted granted Critical
Publication of JP6052197B2 publication Critical patent/JP6052197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)
  • Safety Devices In Control Systems (AREA)
  • Control Of Fluid Pressure (AREA)

Description

本発明は、エネルギー分野で利用される圧縮空気を供給する圧縮空気配管の破損を監視する監視装置および監視方法に関する。   The present invention relates to a monitoring device and a monitoring method for monitoring breakage of compressed air piping for supplying compressed air used in the energy field.

圧縮空気を利用してエネルギーを供給する技術が知られている。この技術は、電力や自然エネルギーを圧縮空気に変換して貯蔵して、それを需要家のニーズに合わせて供給し、発電や動力、あるいはエアレーションなどに利用するものである。この技術について、例えば、工場等で、圧縮空気コンプレッサーで製造された圧縮空気をループ型の圧縮空気配管を介して供給する運用形態が知られている。このような運用形態において、圧縮空気配管に破損が生じて圧縮空気が漏洩すると、工場全体での圧縮空気の運用に支障をきたすため、破損の影響を最小限に抑えなければならない。   A technique for supplying energy using compressed air is known. This technology converts electric power and natural energy into compressed air, stores it, supplies it according to the needs of consumers, and uses it for power generation, power, or aeration. With respect to this technology, for example, an operation mode is known in which compressed air produced by a compressed air compressor is supplied through a loop type compressed air pipe at a factory or the like. In such an operation mode, if the compressed air piping is damaged and the compressed air leaks, the operation of the compressed air in the whole factory is hindered, so the influence of the damage must be minimized.

特許文献1には、圧縮空気を利用して管路の内壁面に沿って潤滑油を移動させて潤滑対象物に供給する装置において、圧縮空気と潤滑油とを混合した後、潤滑対象物に供給されるまでの供給路での圧力変化から管路の異常を検出する技術が記載されている。   In Patent Document 1, in an apparatus that uses compressed air to move lubricating oil along the inner wall surface of a pipeline and supplies the lubricating oil to the object to be lubricated, after the compressed air and the lubricating oil are mixed, A technique for detecting an abnormality of a pipe line from a pressure change in the supply path until it is supplied is described.

特開2006−300293号公報JP 2006-3000293 A

しかしながら、特許文献1に記載の技術によれば、管路の異常が検知された場合にも、圧縮空気の漏洩箇所を探索して手動でバルブを閉める必要があるため、漏洩事故の発生からバルブを閉めるまでにタイムラグが発生し、工場全体の圧縮空気の運用に支障をきたすおそれがあった。   However, according to the technology described in Patent Document 1, it is necessary to search for a leaked portion of compressed air and manually close the valve even when an abnormality in the pipeline is detected. A time lag occurred before closing, and there was a risk of hindering the operation of compressed air throughout the factory.

本発明は、上記に鑑みてなされたものであって、ループ型の圧縮空気配管に破損が生じた際に、バルブを自動的に閉止して破損の影響を最小限に抑止可能な監視装置および監視方法を提供することを目的とする。   The present invention has been made in view of the above, and when a loop type compressed air pipe is damaged, a monitoring device capable of automatically closing a valve and minimizing the influence of the damage The purpose is to provide a monitoring method.

上述した課題を解決し、目的を達成するため、本発明に係る監視装置は、ループ型の圧縮空気配管の破損を監視する監視装置であって、前記圧縮空気配管の長さ方向に配置され、該圧縮空気配管を開閉可能な複数のバルブと、前記バルブで区切られた前記圧縮空気配管内の各エリアの圧力を測定する測定手段と、前記測定手段による該エリアの圧力の測定値が所定の閾値以下になった場合に、該エリアの両端のバルブを閉止する閉止手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a monitoring device according to the present invention is a monitoring device that monitors the breakage of a loop type compressed air pipe, and is arranged in the length direction of the compressed air pipe. A plurality of valves capable of opening and closing the compressed air piping, a measuring means for measuring the pressure of each area in the compressed air piping divided by the valves, and a measured value of the pressure of the area by the measuring means is a predetermined value And a closing unit that closes the valves at both ends of the area when the threshold value is reached.

また、本発明に係る監視方法は、ループ型の圧縮空気配管の破損を監視する監視方法であって、前記圧縮空気配管の長さ方向に配置され、該圧縮空気配管を開閉可能な複数のバルブと、前記バルブで区切られた前記圧縮空気配管内の各エリアの圧力を測定する測定ステップと、前記測定ステップにおける該エリアの圧力の測定値が所定の閾値以下になった場合に、該エリアの両端のバルブを閉止する閉止ステップと、を含むことを特徴とする。   The monitoring method according to the present invention is a monitoring method for monitoring the breakage of a loop type compressed air pipe, and is arranged in the length direction of the compressed air pipe, and a plurality of valves capable of opening and closing the compressed air pipe. And a measuring step for measuring the pressure in each area in the compressed air piping divided by the valve, and when the measured pressure value in the area in the measuring step is equal to or lower than a predetermined threshold, And a closing step for closing the valves at both ends.

本発明によれば、ループ型の圧縮空気配管に破損が生じた際に、バルブを自動的に閉止して破損の影響を最小限に抑止することができる。   According to the present invention, when a loop type compressed air pipe is damaged, the valve can be automatically closed to minimize the influence of the damage.

図1は、本発明の一実施形態に係る圧縮空気配管および監視装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a compressed air pipe and a monitoring device according to an embodiment of the present invention. 図2は、本実施の形態の監視処理手順を示すフローチャートである。FIG. 2 is a flowchart showing the monitoring processing procedure of the present embodiment.

以下、図面を参照して、本発明の一実施形態について詳細に説明する。なお、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

図1は、本実施の形態の監視装置およびこの監視処理を適用した圧縮空気配管の構成を示す模式図である。ここで、圧縮空気配管1は、例えば製鉄工場内に設置され、工場内の各プロセスに圧縮空気に変換された動力を供給するものである。   FIG. 1 is a schematic diagram illustrating a configuration of a monitoring device of the present embodiment and a compressed air pipe to which the monitoring process is applied. Here, the compressed air piping 1 is installed in, for example, an iron factory, and supplies power converted into compressed air to each process in the factory.

図1に示すように、この圧縮空気配管1は、ループ型の管路で構成され、圧縮空気コンプレッサー2と、各プロセスへの供給配管3とが接続されている。圧縮空気コンプレッサー2は、吸込口21から取り込んだ空気の圧力を吸込み弁22と放風弁23とを用いて調整して圧縮空気を製造し、吐出弁24を介して圧縮空気配管1内に圧縮空気を送り出す。圧縮空気配管1内に送り出された圧縮空気は、供給配管3を介して各プロセスに供給され動力として利用される。   As shown in FIG. 1, this compressed air piping 1 is comprised by the loop type pipe line, and the compressed air compressor 2 and the supply piping 3 to each process are connected. The compressed air compressor 2 adjusts the pressure of the air taken in from the suction port 21 using the suction valve 22 and the discharge valve 23 to produce compressed air, and compresses the compressed air into the compressed air pipe 1 through the discharge valve 24. Send out air. The compressed air sent into the compressed air pipe 1 is supplied to each process through the supply pipe 3 and used as power.

監視装置10は、バルブVと、圧力計Pと、制御装置Cとを備え、バルブVと圧力計Pとが制御ケーブル11を介して制御装置Cにデータを送受可能に接続されている。バルブVは、監視対象の圧縮空気配管1の長さ方向の複数箇所に配置され、制御装置Cの制御により開状態および閉状態が切り替え可能に構成される。このバルブVが配置された位置において、圧縮空気配管1内の圧縮空気の流通は、バルブVが閉止された(閉状態の)場合に遮断され、開状態の場合に開放される。圧力計Pは、バルブVによって区切られたエリアAごとに設置され、設置位置での圧縮空気配管1内の圧力を所定の周期で測定し、測定値を制御装置Cに送信する。   The monitoring device 10 includes a valve V, a pressure gauge P, and a control device C, and the valve V and the pressure gauge P are connected to the control device C through the control cable 11 so as to be able to send and receive data. The valves V are disposed at a plurality of locations in the length direction of the compressed air pipe 1 to be monitored, and are configured to be switchable between an open state and a closed state under the control of the control device C. At the position where the valve V is disposed, the flow of the compressed air in the compressed air pipe 1 is interrupted when the valve V is closed (closed) and opened when the valve V is open. The pressure gauge P is installed for each area A divided by the valve V, measures the pressure in the compressed air pipe 1 at the installation position at a predetermined period, and transmits the measured value to the control device C.

制御装置Cは、ワークステーションやパソコン等の汎用コンピュータで実現され、CPU、更新記録可能なフラッシュメモリ等のROMやRAM等の各種メモリ、ハードディスク、CD−ROM等の記録媒体といった各種記録装置、通信装置、表示装置や印刷装置等の出力装置、入力装置等を備えて構成される。制御装置Cは、処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPUなどを用いて監視装置10の各構成部を制御して、後述する監視処理を実行する。   The control device C is realized by a general-purpose computer such as a workstation or a personal computer, and includes various recording devices such as a CPU, various memories such as a ROM and RAM such as flash memory that can be updated and recorded, a recording medium such as a hard disk and a CD-ROM, and communication. An apparatus, an output device such as a display device and a printing device, an input device, and the like are included. The control device C controls each component of the monitoring device 10 using a memory that stores a processing program and the like, a CPU that executes the processing program, and the like, and executes a monitoring process that will be described later.

次に、図2のフローチャートを参照して、監視装置10による圧縮空気配管1の監視処理手順について説明する。図2のフローチャートは、例えば、操作者が制御装置Cの入力装置を操作して監視開始の指示を入力したタイミングで開始となり、監視処理はステップS1の処理に進む。   Next, the monitoring processing procedure of the compressed air pipe 1 by the monitoring device 10 will be described with reference to the flowchart of FIG. The flowchart in FIG. 2 starts, for example, when the operator operates the input device of the control device C and inputs a monitoring start instruction, and the monitoring process proceeds to the process of step S1.

ステップS1の処理では、制御装置Cが、所定の周期で、各圧力計Pの圧縮空気配管1内の圧力の測定値を取得する。これにより、ステップS1の処理は終了し、監視処理はステップS2の処理に進む。   In the process of step S1, the control apparatus C acquires the measured value of the pressure in the compressed air piping 1 of each pressure gauge P with a predetermined period. Thereby, the process of step S1 is complete | finished and a monitoring process progresses to the process of step S2.

ステップS2の処理では、制御装置Cは、取得した測定値が所定の閾値以下か否かを判別する。この閾値は、圧縮空気配管1内に保持される圧縮空気の圧力の範囲に基づいて予め設定しておく。圧力の測定値が閾値より大きい場合には(ステップS2,No)、制御装置Cは、異常なしと判定し、ステップS1に処理に戻して監視処理を続行する。一方、圧力の測定値が所定の閾値以下であった場合は(ステップS2,Yes)、制御装置Cによる測定値取得の周期より短期間に急速に圧力が低下したことを意味する。このとき、制御装置Cは、圧縮空気配管1の圧力を測定した圧力計Pが設置されているエリアA内で、圧縮空気配管1の破損が発生したものと判定し、ステップS3に処理を進める。   In the process of step S2, the control device C determines whether or not the acquired measurement value is equal to or less than a predetermined threshold value. This threshold value is set in advance based on the range of the pressure of the compressed air held in the compressed air pipe 1. When the measured pressure value is larger than the threshold value (No in step S2), the control device C determines that there is no abnormality, returns to the process in step S1, and continues the monitoring process. On the other hand, when the measured pressure value is equal to or less than the predetermined threshold value (step S2, Yes), it means that the pressure has rapidly decreased in a shorter period than the cycle of obtaining the measured value by the control device C. At this time, the control device C determines that the compressed air pipe 1 is damaged in the area A where the pressure gauge P that measures the pressure of the compressed air pipe 1 is installed, and proceeds to step S3. .

ステップS3の処理では、制御装置Cは、このエリアAの両端のバルブVを閉状態にする制御を行う。これにより、ステップS3の処理は完了し、一連の監視処理は終了する。   In the process of step S3, the control device C performs control to close the valves V at both ends of the area A. Thereby, the process of step S3 is completed and a series of monitoring processes are complete | finished.

以上の説明から明らかなように、本実施の形態の監視装置10による監視処理では、ループ型の圧縮空気配管1において、バルブVで区切られたエリアA内の圧力が制御装置Cによる測定値取得の周期より短期間に急速に低下した場合に、これを検知できる。これにより、エリアA内で圧縮空気配管1の破損が発生した場合に直ちに検知して、バルブVが自動的に閉止されるので、破損の影響を最小限に抑止して、圧縮空気を利用する工場全体に影響が拡大することを未然に防止することができる。   As is clear from the above description, in the monitoring process by the monitoring device 10 of the present embodiment, the pressure in the area A divided by the valve V is acquired by the control device C in the loop type compressed air piping 1. This can be detected when it drops rapidly within a short period of time. As a result, when the compressed air pipe 1 is damaged in the area A, it is immediately detected and the valve V is automatically closed. Therefore, the influence of the damage is minimized and the compressed air is used. It is possible to prevent the influence from spreading to the entire factory.

なお、各プロセスへの供給配管3は、複数のエリアAに接続しておくことが望ましい。これにより、破損により閉塞されたエリアAから圧縮空気の供給を受けていたプロセスについても、他のエリアAに切り替えて圧縮空気を継続して利用することが可能となる。   It is desirable that the supply piping 3 for each process be connected to a plurality of areas A. As a result, even for a process that has been supplied with compressed air from the area A blocked by breakage, it is possible to switch to another area A and continue to use the compressed air.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 圧縮空気配管
2 圧縮空気コンプレッサー
3 供給配管
10 監視装置
11 制御ケーブル
P 圧力計
V バルブ
C 制御装置
DESCRIPTION OF SYMBOLS 1 Compressed air piping 2 Compressed air compressor 3 Supply piping 10 Monitoring apparatus 11 Control cable P Pressure gauge V Valve C Control apparatus

Claims (2)

ループ型の圧縮空気配管の破損を監視する監視装置であって、
前記圧縮空気配管の長さ方向に配置され、該圧縮空気配管を開閉可能な複数のバルブと、
前記複数のバルブで区切られた前記圧縮空気配管内の各エリアの圧力を測定する測定手段と、
前記測定手段による圧力の測定値が所定の閾値以下か否かを判別し、前記圧力の測定値が前記閾値以下であった場合、前記各エリアのうち前記閾値以下の圧力の測定値であった破損発生のエリアの両端のバルブを閉止するように前記複数のバルブを制御する制御装置と、
を備え
前記圧縮空気配管からプロセスへ圧縮空気を供給する供給配管は、前記各エリアのうち互いに異なる複数のエリアに接続され、
前記制御装置は、前記破損発生のエリアの両端のバルブを閉止することにより、前記プロセスへ供給配管を介して圧縮空気を供給するエリアを、前記複数のエリアのうち前記破損発生のエリアから他のエリアに切り替えて、前記圧縮空気配管から供給配管を介して前記プロセスへ圧縮空気を継続して供給させることを特徴とする監視装置。
A monitoring device for monitoring the breakage of a loop type compressed air pipe,
A plurality of valves arranged in the length direction of the compressed air pipe and capable of opening and closing the compressed air pipe;
Measuring means for measuring the pressure of each area in the compressed air piping divided by the plurality of valves;
It is determined whether or not the measured pressure value by the measuring means is equal to or lower than a predetermined threshold value. When the measured pressure value is equal to or lower than the threshold value, the measured pressure value is equal to or lower than the threshold value in each area. A control device that controls the plurality of valves so as to close the valves at both ends of the area where the breakage occurred ;
Equipped with a,
Supply piping for supplying compressed air from the compressed air piping to the process is connected to a plurality of different areas among the areas,
The control device closes valves at both ends of the area where the damage has occurred, thereby changing the area where compressed air is supplied to the process via a supply pipe from the area where the damage has occurred to the other area. A monitoring device that switches to an area and continuously supplies compressed air from the compressed air pipe to the process via a supply pipe .
ループ型の圧縮空気配管の破損を監視する監視方法であって、
前記圧縮空気配管の長さ方向に配置され、該圧縮空気配管を開閉可能な複数のバルブで区切られた前記圧縮空気配管内の各エリアの圧力を測定する測定ステップと、
前記測定ステップによる圧力の測定値が所定の閾値以下か否かを判別する判別ステップと、
前記測定ステップによる圧力の測定値が前記閾値以下であった場合前記各エリアのうち前記閾値以下の圧力の測定値であった破損発生のエリアの両端のバルブを閉止するように前記複数のバルブを制御する閉止ステップと、
を含み、
前記圧縮空気配管からプロセスへ圧縮空気を供給する供給配管は、前記各エリアのうち互いに異なる複数のエリアに接続され、
前記閉止ステップは、前記破損発生のエリアの両端のバルブを閉止することにより、前記プロセスへ供給配管を介して圧縮空気を供給するエリアを、前記複数のエリアのうち前記破損発生のエリアから他のエリアに切り替えて、前記圧縮空気配管から供給配管を介して前記プロセスへ圧縮空気を継続して供給させることを特徴とする監視方法。
A monitoring method for monitoring breakage of a loop type compressed air pipe,
A measurement step of measuring the pressure in each area in the compressed air piping, which is arranged in the length direction of the compressed air piping and is partitioned by a plurality of valves capable of opening and closing the compressed air piping;
A discriminating step for discriminating whether or not the measured pressure value in the measuring step is a predetermined threshold value or less;
When the pressure measurement value in the measurement step is less than or equal to the threshold value , the plurality of valves are closed so as to close the valves at both ends of the breakage occurrence area that is the pressure measurement value less than or equal to the threshold value among the areas. A closing step for controlling
Only including,
Supply piping for supplying compressed air from the compressed air piping to the process is connected to a plurality of different areas among the areas,
In the closing step, by closing valves at both ends of the damaged area, an area for supplying compressed air to the process via a supply pipe is changed from the damaged area to the other area. A monitoring method, wherein the compressed air is continuously supplied from the compressed air pipe to the process through a supply pipe by switching to an area .
JP2014020607A 2014-02-05 2014-02-05 Monitoring device and monitoring method Expired - Fee Related JP6052197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020607A JP6052197B2 (en) 2014-02-05 2014-02-05 Monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020607A JP6052197B2 (en) 2014-02-05 2014-02-05 Monitoring device and monitoring method

Publications (2)

Publication Number Publication Date
JP2015148257A JP2015148257A (en) 2015-08-20
JP6052197B2 true JP6052197B2 (en) 2016-12-27

Family

ID=53891786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020607A Expired - Fee Related JP6052197B2 (en) 2014-02-05 2014-02-05 Monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP6052197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237313A (en) * 2018-10-09 2019-01-18 哈尔滨工业大学水资源国家工程研究中心有限公司 Chuck mode piping displacement monitoring node device and monitoring method
CN113544430A (en) * 2019-03-13 2021-10-22 三菱电机株式会社 Fluid supply system, route determination device, route determination program, and route determination method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817290A (en) * 1981-07-20 1983-02-01 Toshiba Corp Oil control circuit for turbine bearings
EP0094533B1 (en) * 1982-05-15 1986-03-12 Fried. Krupp Gesellschaft mit beschränkter Haftung Method for leakage testing of pipes or networks of pipes
JPS58191500U (en) * 1982-06-16 1983-12-20 三菱鉱業セメント株式会社 Compressed air transport pipeline management device
JPS5947200U (en) * 1982-09-22 1984-03-29 株式会社東芝 compressed air generator
US4643213A (en) * 1984-08-03 1987-02-17 Techrad Corporation Method and apparatus for controlling leaks in pressurized fluid systems
JP2006308076A (en) * 2005-11-14 2006-11-09 Nsk Ltd Oil-air feeding device and method of detecting abnormality in the device
JP5633439B2 (en) * 2011-03-17 2014-12-03 富士通株式会社 Compressed air supply device
JP6016416B2 (en) * 2012-04-04 2016-10-26 矢崎エナジーシステム株式会社 Gas supply system

Also Published As

Publication number Publication date
JP2015148257A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
US9739396B2 (en) Apparatus for fluid control device leak detection
KR101923691B1 (en) Method and apparatus for controlling a processing system
JP5242659B2 (en) Shut-off valve control system
WO2018057418A3 (en) Automated wash method for a progressing cavity pump system
JP7027407B2 (en) Gas leak detection device for heater tube and gas leak detection method for heater tube
JP6052197B2 (en) Monitoring device and monitoring method
CN110118283B (en) Method for determining the degree of wear of a valve and device for carrying out the method
CN104847716A (en) Apparatus for the controlled pressurization of gas cylinder actuators
JP2017219107A5 (en)
SA519401023B1 (en) Apparatus and method for jetting a cable into a duct
GB2566383A (en) Apparatus for acoustic monitoring of pipeline connected components
MX2019008624A (en) Methods and apparatus to control the actuation of regulators including a loading chamber.
EP3146163B1 (en) Device for expanding steam and method to control such a device
SG11201908174VA (en) Fluid drive valve
JP2004251798A (en) High pressure air leakage detection method
RU86274U1 (en) DEVICE FOR AUTOMATED DETECTION OF PIPELINE GAPS IN THE SEWER SYSTEM
KR20170059035A (en) Pressure regulating appartus, and apparatus and method for test of switch including the same
PH12019502768A1 (en) Abnormal opening degree detection device and abnormal opening degree detection method for control valve
KR102044994B1 (en) Control method for preventing safety valve sticking
CN104088675B (en) Monitoring method for vacuum leakage points of steam turbine
WO2002017028A1 (en) Method for detecting plug wear
KR101401495B1 (en) High vacuum system for checking leakage of special gas
KR200483613Y1 (en) Solenoid valve test device
CN107606274A (en) A kind of valving for being used to check side leakage
KR101842942B1 (en) Operating system for a plural of air compressors and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6052197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees