JP6051134B2 - Engine intake system - Google Patents

Engine intake system Download PDF

Info

Publication number
JP6051134B2
JP6051134B2 JP2013198652A JP2013198652A JP6051134B2 JP 6051134 B2 JP6051134 B2 JP 6051134B2 JP 2013198652 A JP2013198652 A JP 2013198652A JP 2013198652 A JP2013198652 A JP 2013198652A JP 6051134 B2 JP6051134 B2 JP 6051134B2
Authority
JP
Japan
Prior art keywords
port
intake
cylinder
port portion
tangential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013198652A
Other languages
Japanese (ja)
Other versions
JP2015063958A (en
Inventor
長井 健太郎
健太郎 長井
信裕 山本
信裕 山本
神 深田
神 深田
慶太 内藤
慶太 内藤
宮田 雄介
雄介 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013198652A priority Critical patent/JP6051134B2/en
Priority to KR1020140104405A priority patent/KR102169031B1/en
Priority to CN201410455476.4A priority patent/CN104454221B/en
Publication of JP2015063958A publication Critical patent/JP2015063958A/en
Application granted granted Critical
Publication of JP6051134B2 publication Critical patent/JP6051134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンの吸気装置に関し、詳しくは、追加工により吸気偏向リブの形状や大きさを変更することが容易なエンジンの吸気装置に関する。   The present invention relates to an engine intake device, and more particularly, to an engine intake device in which the shape and size of intake deflection ribs can be easily changed by additional machining.

従来、エンジンの吸気装置として、シリンダヘッドに吸気ポートが設けられ、吸気ポートがタンジェンシャルポートを備え、タンジェンシャルポートが、吸気弁口の上方に位置する出口ポート部分と、出口ポート部分の上流に位置する吸気案内ポート部分とを備え、タンジェンシャルポートに吸気偏向リブが設けられ、この吸気偏向リブでタンジェンシャルポートを通過する吸気を、シリンダ周壁寄りに偏向させるようにしたものがある(例えば、特許文献1参照)。   Conventionally, as an intake device for an engine, an intake port is provided in a cylinder head, the intake port has a tangential port, and the tangential port is located above the intake valve port and upstream of the exit port portion. There is an intake guide port portion that is located, and an intake deflection rib is provided in the tangential port, and the intake air that passes through the tangential port is deflected toward the cylinder peripheral wall by the intake deflection rib (for example, (See Patent Document 1).

この種の吸気装置によれば、吸気偏向リブで吸気をシリンダ周面寄りに偏向させ、吸気のスワールを強化できる利点がある。   According to this type of intake device, there is an advantage that the intake swirl can be strengthened by deflecting the intake air toward the cylinder circumferential surface by the intake deflection rib.

特許文献1の発明では、吸気偏向リブが吸気案内ポート部分と出口ポート部分の境界から突出され、吸気変更リブの突出端縁部が吸気弁口から奥まった位置にある。   In the invention of Patent Document 1, the intake deflection rib protrudes from the boundary between the intake guide port portion and the outlet port portion, and the protruding end edge portion of the intake change rib is in a position recessed from the intake valve port.

特開2000−356135号公報(図1(A)〜(C)参照)JP 2000-356135 A (see FIGS. 1A to 1C)

《問題点》 追加工により吸気偏向リブの形状や大きさを変更するのが困難である。
特許文献1の発明では、吸気偏向リブが吸気案内ポート部分と出口ポート部分の境界から突出され、吸気変更リブの突出端縁部が吸気弁口から奥まった位置にあるため、吸気のスワールや吸気量の微調整等を目的として、吸気弁口から切削用の工具を入れ、吸気偏向リブの突出端縁部を切削する追加工により吸気偏向リブの形状や大きさを変更することが困難である。
<< Problem >> It is difficult to change the shape and size of the intake deflection rib by additional work.
In the invention of Patent Document 1, the intake deflection rib protrudes from the boundary between the intake guide port portion and the outlet port portion, and the protruding end edge of the intake change rib is in a position recessed from the intake valve port. It is difficult to change the shape and size of the intake deflection rib by additional machining that inserts a cutting tool from the intake valve port and cuts the protruding edge of the intake deflection rib for the purpose of fine adjustment of the amount, etc. .

本発明の課題は、追加工により吸気偏向リブの形状や大きさを変更することが容易なエンジンの吸気装置を提供することにある。   An object of the present invention is to provide an engine intake device in which the shape and size of the intake deflection rib can be easily changed by additional work.

本発明の発明者らは、研究の結果、吸気偏向リブが出口ポート部分の周壁面から突出され、吸気偏向リブの突出端縁部が出口ポート部分の中心部寄りに配置され、吸気偏向リブのシリンダ側端縁部が吸気弁口に向けられるようにした場合、追加工により吸気偏向リブの形状や大きさを変更することが容易になることを確認し、この発明に至った。   As a result of research, the inventors of the present invention have found that the intake deflection rib is protruded from the peripheral wall surface of the outlet port portion, the protruding end edge of the intake deflection rib is disposed near the center of the outlet port portion, and When the cylinder side edge is directed to the intake valve port, it has been confirmed that it is easy to change the shape and size of the intake deflection rib by additional processing, and the present invention has been achieved.

(請求項1と請求項3に係る発明に共通する発明特定事項)
図1に例示するように、シリンダヘッド(1)に吸気ポート(2)が設けられ、吸気ポート(2)がタンジェンシャルポート(3)を備え、タンジェンシャルポート(3)が、吸気弁口(3a)の上方に位置する出口ポート部分(3b)と、出口ポート部分(3b)の上流に位置する吸気案内ポート部分(3c)とを備え、タンジェンシャルポート(3)に吸気偏向リブ(4)が設けられ、この吸気偏向リブ(4)でタンジェンシャルポート(3)を通過する吸気(5)を、シリンダ周壁(7)寄りに偏向させるようにした、エンジンの吸気装置において、
図1に例示するように、吸気偏向リブ(4)が出口ポート部分(3b)の周壁面(3d)から突出され、吸気偏向リブ(4)の突出端縁部(4a)が出口ポート部分(3b)の中心部寄りに配置され、吸気偏向リブ(4)のシリンダ側端縁部(4b)が吸気弁口(3a)に向けられている。
(請求項1に係る発明に固有の発明特定事項)
図2に例示するように、吸気ポート(2)がヘリカルポート(8)を備え、ヘリカルポート(8)が、吸気弁口(8a)の上方に位置する出口ポート部分(8b)と、出口ポート部分(8b)の上流に位置する吸気案内ポート部分(8c)とを備え、吸気案内ポート部分(8c)が、ポート入口(8d)寄りの助走ポート部分(8e)と出口ポート部分(8b)寄りの湾曲ポート部分(8f)とを備え、
シリンダ中心軸(6)と平行な向きに見て、湾曲ポート部分(8f)の相互に対向する両壁面のうち、シリンダ周壁(7)寄りのものをシリンダ周壁寄り壁面(8g)として、このシリンダ周壁寄り壁面(8g)がシリンダ周壁(7)に沿う形状に湾曲され、助走ポート部分(8e)と湾曲ポート部分(8f)との境界のうち、シリンダ中心軸(6)寄りの境界部分(8h)に角部(9)が形成され、
助走ポート部分(8e)の相互に対向する両壁面のうち、シリンダ中心軸(6)寄りのものをシリンダ中心軸寄り壁面(8i)とし、このシリンダ中心軸寄り壁面(8i)の接線(8j)が湾曲ポート部分(8f)のシリンダ周壁寄り壁面(8g)を向くように構成されている、ことを特徴とするエンジンの吸気装置。
(請求項3に係る発明に固有の発明特定事項)
図2に例示するように、吸気ポート(2)を構成するタンジェンシャルポート(3)とヘリカルポート(8)の両ポート入口部分(3e)(8k)が、シリンダヘッド(1)をシリンダに取り付けるヘッドボルト(10)のボス(11)を間に挟んで配置され、
シリンダ中心軸(6)と平行な向きに見て、両ポート入口部分(3e)(8k)のボス側壁面(3f)(8n)がボス(11)の外壁面(11a)で円弧状に形成され、両ポート入口部分(3e)(8k)がポート下流に向けて断面積を縮めるファンネル形状とされている、ことを特徴とするエンジンの吸気装置。
(Invention-specific matters common to the inventions of claims 1 and 3)
As illustrated in FIG. 1, the cylinder head (1) is provided with an intake port (2), the intake port (2) is provided with a tangential port (3), and the tangential port (3) is provided with an intake valve port ( 3a), an outlet port portion (3b) located above the outlet port portion (3b), and an intake guide port portion (3c) located upstream of the outlet port portion (3b). The tangential port (3) has an intake deflection rib (4). In the intake system of the engine, the intake (5) passing through the tangential port (3) is deflected toward the cylinder peripheral wall (7) by the intake deflection rib (4).
As illustrated in FIG. 1, the intake deflection rib (4) protrudes from the peripheral wall surface (3d) of the outlet port portion (3b), and the protruding end edge (4a) of the intake deflection rib (4) becomes the outlet port portion ( 3b) is disposed near the center, and the cylinder side edge (4b) of the intake deflection rib (4) is directed to the intake valve port (3a) .
(Invention-specific matters specific to the invention of claim 1)
As illustrated in FIG. 2, the intake port (2) includes a helical port (8), and the helical port (8) includes an outlet port portion (8b) positioned above the intake valve port (8a), and an outlet port. An intake guide port portion (8c) located upstream of the portion (8b), and the intake guide port portion (8c) is close to the run-up port portion (8e) near the port inlet (8d) and the outlet port portion (8b) A curved port portion (8f)
Of the two wall surfaces facing each other of the curved port portion (8f) when viewed in a direction parallel to the cylinder central axis (6), the cylinder wall near the cylinder wall (7) is defined as the wall near the cylinder wall (8g). The peripheral wall surface (8g) is curved into a shape along the cylinder peripheral wall (7). Of the boundary between the run-up port portion (8e) and the curved port portion (8f), the boundary portion (8h) near the cylinder center axis (6) ) Is formed with a corner (9),
Of the opposing wall surfaces of the running port portion (8e), the one near the cylinder center axis (6) is the wall surface near the cylinder center axis (8i), and the tangent line (8j) of the wall surface near the cylinder center axis (8i) An engine air intake device, characterized in that is configured to face the cylinder peripheral wall side wall surface (8g) of the curved port portion (8f).
(Invention-specific matters specific to the invention of claim 3)
As illustrated in FIG. 2, the tangential port (3) constituting the intake port (2) and the port inlet portions (3e) (8k) of the helical port (8) attach the cylinder head (1) to the cylinder. It is arranged with the boss (11) of the head bolt (10) in between,
The boss side wall surfaces (3f) and (8n) of both port inlet portions (3e) and (8k) are formed in an arc shape on the outer wall surface (11a) of the boss (11) when viewed in a direction parallel to the cylinder central axis (6). An intake device for an engine, characterized in that both port inlet portions (3e) and (8k) have a funnel shape whose cross-sectional area is reduced toward the downstream of the port.

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果1−1》 追加工により吸気偏向リブの形状や大きさを変更することが容易になる。
図1に例示するように、吸気偏向リブ(4)が出口ポート部分(3b)の周壁面(3d)から突出され、吸気偏向リブ(4)の突出端縁部(4a)が出口ポート部分(3b)の中心部寄りに配置され、吸気偏向リブ(4)のシリンダ側端縁部(4b)が吸気弁口(3a)に向けられているので、吸気偏向リブ(4)の突出端縁部(4b)やシリンダ側端縁部(4b)が吸気弁口(8a)から近い位置に配置される。このため、吸気(5)のスワール(12)や吸気量の微調整等を目的として、吸気弁口(3a)から切削用の工具(図示せず)を入れ、追加工により吸気偏向リブ(4)の突出端縁部(4a)やシリンダ側端縁部(4b)を容易に削ることができ、追加工により吸気偏向リブ(4)の形状や大きさを変更することが容易になる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<< Effect 1-1 >> It becomes easy to change the shape and size of the intake deflection rib by additional work.
As illustrated in FIG. 1, the intake deflection rib (4) protrudes from the peripheral wall surface (3d) of the outlet port portion (3b), and the protruding end edge (4a) of the intake deflection rib (4) becomes the outlet port portion ( 3b) is located near the center, and the cylinder-side edge (4b) of the intake deflection rib (4) is directed to the intake valve port (3a), so that the protruding edge of the intake deflection rib (4) (4b) and the cylinder side edge portion (4b) are arranged at positions close to the intake valve port (8a). For this reason, for the purpose of fine adjustment of the swirl (12) of the intake air (5) and the intake air amount, a cutting tool (not shown) is inserted from the intake valve port (3a), and the intake deflection rib (4 ) And the cylinder side edge (4b) can be easily cut, and the shape and size of the intake deflection rib (4) can be easily changed by additional machining.

《効果1−2》 吸気のスワールの強化と吸気の充填効率の確保とを両立させることができる。
図2に例示するように、助走ポート部分(8e)と湾曲ポート部分(8f)との境界のうち、シリンダ中心軸(6)寄りの境界部分(8h)に角部(9)が形成され、助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)の接線(8j)が湾曲ポート部分(8f)のシリンダ周壁寄り壁面(8g)を向くように構成されているので、吸気(5)のスワール(12)の強化と吸気の充填効率の確保とを両立させることができる。
その理由は、次のように推定される。
助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)の案内で助走した吸気(5)は、角部(9)から剥離して湾曲ポート部分(8f)のシリンダ周壁寄り壁面(8g)に向かう時に、角部(9)の下流側に乱流(13)を生じさせ、この乱流(13)による絞り効果で、湾曲ポート部分(8f)のシリンダ周壁寄り壁面(8g)に到達する吸気(5)の速度が高まり、このシリンダ周壁寄り壁面(8g)で湾曲状に案内される吸気(5)の速度が高まり、吸気(5)のスワール(12)が強化される。また、乱流(13)による吸気絞り効果は、湾曲ポート部分(8f)の通路断面積を小さくする場合に比べ、通路抵抗が増加しにくく、吸気(5)の充填効率も確保できる。
<Effect 1-2 > It is possible to reinforce the intake swirl and secure the intake charging efficiency.
As illustrated in FIG. 2, a corner portion (9) is formed in a boundary portion (8h) near the cylinder center axis (6) among the boundary between the running port portion (8e) and the curved port portion (8f), Since the tangent line (8j) of the wall surface (8i) near the cylinder center axis of the run-up port portion (8e) faces the cylinder wall surface (8g) of the curved port portion (8f), the intake (5) It is possible to achieve both strengthening of the swirl (12) and ensuring of the charging efficiency of the intake air.
The reason is estimated as follows.
The intake air (5) that has run up by the guide of the wall surface (8i) near the cylinder center axis of the auxiliary port portion (8e) is peeled off from the corner portion (9) to the wall surface (8g) near the cylinder peripheral wall of the curved port portion (8f). When going, a turbulent flow (13) is generated downstream of the corner (9), and the intake air reaching the wall surface (8g) near the cylinder peripheral wall of the curved port portion (8f) by the throttling effect of the turbulent flow (13). The speed of (5) is increased, the speed of the intake air (5) guided in a curved shape by the wall surface (8g) near the cylinder peripheral wall is increased, and the swirl (12) of the intake air (5) is strengthened. Further, the intake throttling effect by the turbulent flow (13) is less likely to increase the passage resistance compared to the case where the passage cross-sectional area of the curved port portion (8f) is reduced, and the charging efficiency of the intake air (5) can be ensured.

(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 吸気のスワールの強化と吸気の充填効率の確保がより効率的に行われる。
図2に例示するように、助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)側の壁面(8m)が円弧形状に形成され、ヘリカルポート(8)のポート入口部分(8k)が下流に向けて断面積を縮めるファンネル形状とされているので、ポート入口部分(8k)への吸気(5)の流入抵抗が減少し、助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)に沿って案内される吸気(5)の速度が高まり、吸気(5)のスワール(12)の強化と吸気(5)の充填効率の確保がより効率的に行われる。
(Invention of Claim 2 )
The invention according to claim 2 has the following effect in addition to the effect of the invention according to claim 1 .
<Effect> The intake swirl is strengthened and the intake charging efficiency is more efficiently ensured.
As illustrated in FIG. 2, the wall surface (8m) on the wall surface (8i) near the cylinder center axis of the running port portion (8e) is formed in an arc shape, and the port inlet portion (8k) of the helical port (8) is downstream. Since the cross-sectional area of the funnel is reduced, the inflow resistance of the intake air (5) to the port inlet portion (8k) is reduced, and the wall surface (8i) near the cylinder center axis of the running port portion (8e) is reduced. The speed of the intake air (5) guided along is increased, and the swirl (12) of the intake air (5) is strengthened and the charging efficiency of the intake air (5) is more efficiently performed.

(請求項3に係る発明)
請求項3に係る発明は、請求項1に係る発明の効果1−1に加え、次の効果を奏する。
《効果3−1》 無駄のない部品配置によりシリンダヘッドをコンパクト化することができる。
図2に例示するように、シリンダ中心軸(6)と平行な向きに見て、両ポート入口部分(3e)(8k)のボス側壁面(3f)(8n)がボス(11)の外壁面(11a)で円弧状に形成され、両ポート入口部分(3e)(8k)がポート下流に向けて断面積を縮めるファンネル形状とされているので、ヘッドボルト(10)のボス(11)が両ポート入口部分(3e)(8k)のファンネル形状の形成に有効利用され、無駄のない部品配置によりシリンダヘッド(1)をコンパクト化することができる。
(Invention of Claim 3 )
The invention according to claim 3 has the following effect in addition to effect 1-1 of the invention according to claim 1 .
<< Effect 3-1 >> The cylinder head can be made compact by the use of a component arrangement without waste.
As illustrated in FIG. 2, when viewed in a direction parallel to the cylinder central axis (6), the boss side wall surfaces (3f) and (8n) of both port inlet portions (3e) and (8k) are the outer wall surfaces of the boss (11). (11a) is formed in a circular arc shape, and both port inlet portions (3e) and (8k) have a funnel shape that reduces the cross-sectional area toward the downstream of the port, so that the bosses (11) of the head bolt (10) are both The cylinder head (1) can be made compact by effectively utilizing the funnel shape of the port inlet portions (3e) and (8k), and by using parts without waste.

《効果3−2》 吸気の充填効率が高まる。
図2に例示するように、両ポート入口部分(3e)(8k)がポート下流に向けて断面積を縮めるファンネル形状とされているので、両ポート入口部分(3e)(8k)への吸気(5)の流入抵抗が少なく、吸気(5)の充填効率が高まる。
(請求項4に係る発明)
請求項4に係る発明は、請求項1または請求項2に係る発明の効果に加え、請求項3の効果3−1,3−2を奏する。
< Effect 3-2 > The charging efficiency of intake air is increased.
As illustrated in FIG. 2, since both the port inlet portions (3e) and (8k) have a funnel shape that reduces the cross-sectional area toward the downstream side of the port, intake air to both the port inlet portions (3e) and (8k) ( 5) The inflow resistance is small, and the charging efficiency of the intake air (5) is increased.
(Invention of Claim 4)
The invention according to claim 4 provides the effects 3-1 and 3-2 of claim 3 in addition to the effects of the invention according to claim 1 or claim 2.

本発明の実施形態に係るエンジンの吸気装置をシリンダ側から見た模式図である。It is the schematic diagram which looked at the intake device of the engine which concerns on embodiment of this invention from the cylinder side. 図1の吸気装置をシリンダヘッドの上方から見た模式図である。It is the schematic diagram which looked at the intake device of FIG. 1 from the upper direction of the cylinder head. 図1の吸気装置で用いる吸気ポートの斜視図で、図3(A)は横斜め下から見上げた図、図3(B)は前斜め下から見上げた図である。FIG. 3A is a perspective view of an intake port used in the intake device of FIG. 1, and FIG. 3A is a view looking up from an obliquely lower side, and FIG.

図1〜図3は本発明の実施形態に係るエンジンの吸気装置を説明する図であり、この実施形態では、立形の直接噴射式多気筒ディーゼルエンジンの吸気装置について説明する。   1 to 3 are views for explaining an intake device for an engine according to an embodiment of the present invention. In this embodiment, an intake device for a vertical direct injection multi-cylinder diesel engine will be described.

図1に示すように、シリンダヘッド(1)に吸気ポート(2)が設けられ、吸気ポート(2)がタンジェンシャルポート(3)を備え、タンジェンシャルポート(3)が、吸気弁口(3a)の上方に位置する出口ポート部分(3b)と、出口ポート部分(3b)の上流に位置する吸気案内ポート部分(3c)とを備え、タンジェンシャルポート(3)に吸気偏向リブ(4)が設けられ、この吸気偏向リブ(4)でタンジェンシャルポート(3)を通過する吸気(5)を、シリンダ周壁(7)寄りに偏向させるようにしている。
図1に示すように、吸気偏向リブ(4)が出口ポート部分(3b)の周壁面(3d)から突出され、吸気偏向リブ(4)の突出端縁部(4a)が出口ポート部分(3b)の中心部寄りに配置され、吸気偏向リブ(4)のシリンダ側端縁部(4b)が吸気弁口(3a)に向けられている。
As shown in FIG. 1, the cylinder head (1) is provided with an intake port (2), the intake port (2) includes a tangential port (3), and the tangential port (3) is connected to an intake valve port (3a). ) And an intake guide port portion (3c) located upstream of the outlet port portion (3b). The tangential port (3) has an intake deflection rib (4). The intake air deflecting rib (4) is provided to deflect the intake air (5) passing through the tangential port (3) toward the cylinder peripheral wall (7).
As shown in FIG. 1, the intake deflection rib (4) protrudes from the peripheral wall surface (3d) of the outlet port portion (3b), and the protruding end edge (4a) of the intake deflection rib (4) becomes the outlet port portion (3b). The cylinder side edge (4b) of the intake deflection rib (4) is directed toward the intake valve port (3a).

上記構成によれば、吸気偏向リブ(4)の突出端縁部(4b)やシリンダ側端縁部(4b)が吸気弁口(8a)から近い位置に配置される。このため、吸気(5)のスワール(12)や吸気量の微調整等を目的として、吸気弁口(3a)から切削用の工具(図示せず)を入れ、追加工により吸気偏向リブ(4)の突出端縁部(4a)やシリンダ側端縁部(4b)を容易に削ることができ、追加工により吸気偏向リブ(4)の形状や大きさを変更することが容易になる。   According to the said structure, the protrusion edge part (4b) and cylinder side edge part (4b) of an intake deflection rib (4) are arrange | positioned in the position close | similar to an intake valve port (8a). For this reason, for the purpose of fine adjustment of the swirl (12) of the intake air (5) and the intake air amount, a cutting tool (not shown) is inserted from the intake valve port (3a), and the intake deflection rib (4 ) And the cylinder side edge (4b) can be easily cut, and the shape and size of the intake deflection rib (4) can be easily changed by additional machining.

図2に示すように、吸気ポート(2)がヘリカルポート(8)を備え、ヘリカルポート(8)が、吸気弁口(8a)の上方に位置する出口ポート部分(8b)と、出口ポート部分(8b)の上流に位置する吸気案内ポート部分(8c)とを備え、吸気案内ポート部分(8c)が、ポート入口(8d)寄りの助走ポート部分(8e)と出口ポート部分(8b)寄りの湾曲ポート部分(8f)とを備えている。
シリンダ中心軸(6)と平行な向きに見て、湾曲ポート部分(8f)の相互に対向する両壁面のうち、シリンダ周壁(7)寄りのものをシリンダ周壁寄り壁面(8g)として、このシリンダ周壁寄り壁面(8g)がシリンダ周壁(7)に沿う形状に湾曲され、助走ポート部分(8e)と湾曲ポート部分(8f)との境界のうち、シリンダ中心軸(6)寄りの境界部分(8h)に角部(9)が形成されている。
助走ポート部分(8e)の相互に対向する両壁面のうち、シリンダ中心軸(6)寄りのものをシリンダ中心軸寄り壁面(8i)とし、このシリンダ中心軸寄り壁面(8i)の接線(8j)が湾曲ポート部分(8f)のシリンダ周壁寄り壁面(8g)を向くように構成されている。
As shown in FIG. 2, the intake port (2) includes a helical port (8), and the helical port (8) has an outlet port portion (8b) positioned above the intake valve port (8a), and an outlet port portion. An intake guide port portion (8c) positioned upstream of (8b), and the intake guide port portion (8c) is located near the port entrance (8d) near the run-up port portion (8e) and the exit port portion (8b). A curved port portion (8f).
Of the two wall surfaces facing each other of the curved port portion (8f) when viewed in a direction parallel to the cylinder central axis (6), the cylinder wall near the cylinder wall (7) is defined as the wall near the cylinder wall (8g). The peripheral wall surface (8g) is curved into a shape along the cylinder peripheral wall (7). Of the boundary between the run-up port portion (8e) and the curved port portion (8f), the boundary portion (8h) near the cylinder center axis (6) ) Is formed with corners (9).
Of the opposing wall surfaces of the running port portion (8e), the one near the cylinder center axis (6) is the wall surface near the cylinder center axis (8i), and the tangent line (8j) of the wall surface near the cylinder center axis (8i) Is configured to face the wall (8g) near the cylinder peripheral wall of the curved port portion (8f).

図2に示すように、シリンダ中心軸(6)と平行な向きに見て、ヘリカルポート(8)のポート入口部分(8k)の相互に対向する両壁面のうち、助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)側の壁面(8m)が円弧形状に形成され、ヘリカルポート(8)のポート入口部分(8k)が下流に向けて断面積を縮めるファンネル形状とされている。 As shown in FIG. 2, of the wall surfaces facing each other of the port inlet portion (8k) of the helical port (8k) when viewed in a direction parallel to the cylinder center axis (6), the running port portion (8e) The wall surface (8m) on the cylinder center axis side wall surface (8i) side is formed in an arc shape, and the port inlet portion (8k) of the helical port (8) is formed in a funnel shape that reduces the cross-sectional area toward the downstream side.

図2に示すように、吸気ポート(2)を構成するタンジェンシャルポート(3)とヘリカルポート(8)の両ポート入口部分(3e)(8k)が、シリンダヘッド(1)をシリンダに取り付けるヘッドボルト(10)のボス(11)を間に挟んで配置され、
シリンダ中心軸(6)と平行な向きに見て、両ポート入口部分(3e)(8k)のボス側壁面(3f)(8n)がボス(11)の外壁面(11a)で円弧状に形成され、両ポート入口部分(3e)(8k)がポート下流に向けて断面積を縮めるファンネル形状とされている。
As shown in FIG. 2, the tangential port (3) constituting the intake port (2) and the port inlet portions (3e) and (8k) of the helical port (8) are the heads for attaching the cylinder head (1) to the cylinder. Arranged with the boss (11) of the bolt (10) in between,
The boss side wall surfaces (3f) and (8n) of both port inlet portions (3e) and (8k) are formed in an arc shape on the outer wall surface (11a) of the boss (11) when viewed in a direction parallel to the cylinder central axis (6). Both port inlet portions (3e) and (8k) have a funnel shape in which the cross-sectional area is reduced toward the downstream side of the port.

図1に示すように、シリンダ中心軸線(6)と平行な向きに見て、吸気ポート(2)は、隣合うタンジェンシャルポート(3)とスワールポート(8)とで構成されている。
タンジェンシャルポート(3)とは、シリンダ内のスワール(12)の接線方向に吸気(5)を吹き出すためのポートであり、スワールポート(3)とは、シリンダ内にスワール(12)を起こさせるためのポートである。
タンジェンシャルポート(3)の吸気案内ポート部分(3c)は、ポート入口部分(3e)から伸びて、シリンダとスワールポート(3)とに近づきながら湾曲し、出口ポート部分(3b)に至る。
As shown in FIG. 1, the intake port (2) is composed of an adjacent tangential port (3) and swirl port (8) when viewed in a direction parallel to the cylinder center axis (6).
The tangential port (3) is a port for blowing out the intake air (5) in the tangential direction of the swirl (12) in the cylinder. The swirl port (3) causes the swirl (12) to rise in the cylinder. It is a port for.
The intake guide port portion (3c) of the tangential port (3) extends from the port inlet portion (3e), curves while approaching the cylinder and the swirl port (3), and reaches the outlet port portion (3b).

スワールポート(8)の助走ポート部分(8e)はポート入口部分(8k)から通路断面積を狭めながら湾曲ポート部分(8f)に至り、湾曲ポート部分(8f)はシリンダ周壁(7)に沿う円弧形状で湾曲しながら出口ポート部分(8b)に至る。助走ポート部分(8e)と湾曲ポート部分(8f)との境界のうち、シリンダ中心軸(6)寄りの境界部分(8h)には角部(9)が形成されている。角部(9)の突出端にはエッジ状の稜線が形成されている。
吸気ポート(2)の立体的形状は、図3(A)(B)に示す通りである。
図1に示すシリンダヘッド(1)の吸気側端部(1a)には、ブランチ部のない箱形の吸気マニホールド(図示せず)が取り付けられ、吸気ポート(2)のポート入口部分(3e)(8e)は吸気マニホールド内に臨んでいる。
シリンダ中心軸線(6)上には、シリンダヘッド(1)に取り付けられた燃料噴射ノズル(14)が配置されている。
The run-up port portion (8e) of the swirl port (8) reaches the curved port portion (8f) from the port inlet portion (8k) while narrowing the passage sectional area, and the curved port portion (8f) is an arc along the cylinder peripheral wall (7). It reaches the exit port portion (8b) while curving in shape. Of the boundary between the running port portion (8e) and the curved port portion (8f), a corner portion (9) is formed at the boundary portion (8h) near the cylinder center axis (6). An edge-shaped ridge line is formed at the protruding end of the corner (9).
The three-dimensional shape of the intake port (2) is as shown in FIGS. 3 (A) and 3 (B).
A box-shaped intake manifold (not shown) without a branch portion is attached to the intake side end (1a) of the cylinder head (1) shown in FIG. 1, and the port inlet portion (3e) of the intake port (2) (8e) faces the intake manifold.
A fuel injection nozzle (14) attached to the cylinder head (1) is disposed on the cylinder center axis (6).

図2に示すように、吸気ポート(2)の各出口ポート部分(3b)(8b)と隣合う位置に排気ポート(15)の2個の入口ポート部分(15a)(15b)が設けられ、各入口ポート部分(15a)(15b)から導出される排気ポート(15)は合流してシリンダヘッド(1)の排気側端部(1b)に至る。シリンダヘッド(1)の排気側端部(1b)には排気マニホールド(図示せず)が取り付けられ、排気ポート(15)は排気マニホールドに接続される。   As shown in FIG. 2, two inlet port portions (15a) (15b) of the exhaust port (15) are provided at positions adjacent to the outlet port portions (3b) (8b) of the intake port (2), The exhaust ports (15) led out from the respective inlet port portions (15a) (15b) merge to reach the exhaust side end (1b) of the cylinder head (1). An exhaust manifold (not shown) is attached to the exhaust side end (1b) of the cylinder head (1), and the exhaust port (15) is connected to the exhaust manifold.

図2に示すヘッドボルト(10)は、シリンダヘッド(1)をシリンダブロック(図示せず)に組み付けるためのボルトで、各シリンダ毎に周囲に60°の等間隔で6本配置され、そのうちの一本は、タンジェンシャルポート(3)のポート入口部分(3e)とスワールポート(8)のポート入口部分(8k)との間に挟まれて、そのボス(11)の外周面(11a)を利用して、両ポート入口部分(3e)(8k)のファンネル形状が形成されている。   The head bolts (10) shown in FIG. 2 are bolts for assembling the cylinder head (1) to a cylinder block (not shown). Six bolts are arranged around each cylinder at regular intervals of 60 °, of which One is sandwiched between the port inlet portion (3e) of the tangential port (3) and the port inlet portion (8k) of the swirl port (8), and the outer peripheral surface (11a) of the boss (11) is The funnel shape of both port inlet portions (3e) and (8k) is formed.

(1) シリンダヘッド
(2) 吸気ポート
(3) タンジェンシャルポート
(3a) 吸気弁口
(3b) 出口ポート部分
(3c) 吸気案内ポート部分
(3d) 出口ポート部分(3b)の周壁面
(3e) ポート入口部分
(3f) ボス側壁面
(4) 吸気偏向リブ
(4a) 突出端縁部
(4b) シリンダ側端縁部
(5) 吸気
(6) シリンダ中心軸
(7) シリンダ周壁
(8) ヘリカルポート
(8a) 吸気弁口
(8b) 出口ポート部分
(8c) 吸気案内ポート部分
(8d) ポート入口
(8e) 助走ポート部分
(8f) 湾曲ポート部分
(8g) シリンダ周壁寄り壁面
(8h) 境界部分
(8i) シリンダ中心軸寄り壁面
(8j) シリンダ中心軸寄り壁面(8i)の接線
(8k) ポート入口部分
(8m) 助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)側の壁面
(8n) ボス側壁面
(9) 角部
(10) ヘッドボルト
(11) ボス
(11a) 外壁面
(12) 吸気(5)のスワール
(1) Cylinder head
(2) Intake port
(3) Tangential port
(3a) Inlet valve port
(3b) Exit port part
(3c) Intake guide port
(3d) Outer port wall (3b) peripheral wall surface
(3e) Port entrance
(3f) Boss side wall
(4) Intake deflection rib
(4a) Protruding edge
(4b) Cylinder side edge
(5) Inhalation
(6) Cylinder center axis
(7) Cylinder peripheral wall
(8) Helical port
(8a) Intake valve port
(8b) Exit port part
(8c) Intake guide port
(8d) Port entrance
(8e) Run-up port part
(8f) Curved port part
(8g) Cylinder wall near wall
(8h) Boundary part
(8i) Cylinder center axis wall
(8j) Tangent line on the wall near the cylinder center axis (8i)
(8k) Port entrance
(8m) Cylinder center axis wall surface (8i) side of the run-up port part (8e)
(8n) Boss side wall
(9) Corner
(10) Head bolt
(11) Boss
(11a) Exterior wall
(12) Swirl for intake (5)

Claims (4)

シリンダヘッド(1)に吸気ポート(2)が設けられ、吸気ポート(2)がタンジェンシャルポート(3)を備え、タンジェンシャルポート(3)が、吸気弁口(3a)の上方に位置する出口ポート部分(3b)と、出口ポート部分(3b)の上流に位置する吸気案内ポート部分(3c)とを備え、タンジェンシャルポート(3)に吸気偏向リブ(4)が設けられ、この吸気偏向リブ(4)でタンジェンシャルポート(3)を通過する吸気(5)を、シリンダ周壁(7)寄りに偏向させるようにした、エンジンの吸気装置において、
吸気偏向リブ(4)が出口ポート部分(3b)の周壁面(3d)から突出され、吸気偏向リブ(4)の突出端縁部(4a)が出口ポート部分(3b)の中心部寄りに配置され、吸気偏向リブ(4)のシリンダ側端縁部(4b)が吸気弁口(3a)に向けられ、
吸気ポート(2)がヘリカルポート(8)を備え、ヘリカルポート(8)が、吸気弁口(8a)の上方に位置する出口ポート部分(8b)と、出口ポート部分(8b)の上流に位置する吸気案内ポート部分(8c)とを備え、吸気案内ポート部分(8c)が、ポート入口(8d)寄りの助走ポート部分(8e)と出口ポート部分(8b)寄りの湾曲ポート部分(8f)とを備え、
シリンダ中心軸(6)と平行な向きに見て、湾曲ポート部分(8f)の相互に対向する両壁面のうち、シリンダ周壁(7)寄りのものをシリンダ周壁寄り壁面(8g)として、このシリンダ周壁寄り壁面(8g)がシリンダ周壁(7)に沿う形状に湾曲され、助走ポート部分(8e)と湾曲ポート部分(8f)との境界のうち、シリンダ中心軸(6)寄りの境界部分(8h)に角部(9)が形成され、
助走ポート部分(8e)の相互に対向する両壁面のうち、シリンダ中心軸(6)寄りのものをシリンダ中心軸寄り壁面(8i)とし、このシリンダ中心軸寄り壁面(8i)の接線(8j)が湾曲ポート部分(8f)のシリンダ周壁寄り壁面(8g)を向くように構成されている、ことを特徴とするエンジンの吸気装置。
The cylinder head (1) is provided with an intake port (2), the intake port (2) is provided with a tangential port (3), and the tangential port (3) is located above the intake valve port (3a). A port portion (3b) and an intake guide port portion (3c) located upstream of the outlet port portion (3b) are provided, and the tangential port (3) is provided with an intake deflection rib (4). In the intake system of the engine, the intake air (5) passing through the tangential port (3) in (4) is deflected toward the cylinder peripheral wall (7).
The intake deflection rib (4) protrudes from the peripheral wall surface (3d) of the outlet port portion (3b), and the protruding end edge (4a) of the intake deflection rib (4) is disposed closer to the center of the outlet port portion (3b). The cylinder side edge (4b) of the intake deflection rib (4) is directed to the intake valve port (3a) ,
The intake port (2) is provided with a helical port (8), and the helical port (8) is located upstream of the intake valve port (8a) and upstream of the outlet port portion (8b). An intake guide port portion (8c), and the intake guide port portion (8c) includes a running port portion (8e) near the port inlet (8d) and a curved port portion (8f) near the outlet port portion (8b). With
Of the two wall surfaces facing each other of the curved port portion (8f) when viewed in a direction parallel to the cylinder central axis (6), the cylinder wall near the cylinder wall (7) is defined as the wall near the cylinder wall (8g). The peripheral wall surface (8g) is curved into a shape along the cylinder peripheral wall (7). Of the boundary between the run-up port portion (8e) and the curved port portion (8f), the boundary portion (8h) near the cylinder center axis (6) ) Is formed with a corner (9),
Of the opposing wall surfaces of the running port portion (8e), the one near the cylinder center axis (6) is the wall surface near the cylinder center axis (8i), and the tangent line (8j) of the wall surface near the cylinder center axis (8i) An engine air intake device, characterized in that is configured to face the cylinder peripheral wall side wall surface (8g) of the curved port portion (8f).
請求項1に記載されたエンジンの吸気装置において、
シリンダ中心軸(6)と平行な向きに見て、ヘリカルポート(8)のポート入口部分(8k)の相互に対向する両壁面のうち、助走ポート部分(8e)のシリンダ中心軸寄り壁面(8i)側の壁面(8m)が円弧形状に形成され、ヘリカルポート(8)のポート入口部分(8k)が下流に向けて断面積を縮めるファンネル形状とされている、ことを特徴とするエンジンの吸気装置。
The engine intake system according to claim 1 , wherein
Of the opposite wall surfaces of the port inlet portion (8k) of the helical port (8) as viewed in a direction parallel to the cylinder central axis (6), the wall surface near the cylinder central axis (8i) of the running port portion (8e) ) side wall (8m) is formed in an arc shape, the intake of the engine port inlet portion of the helical port (8) (8k), characterized in that the, there is a funnel shape to reduce the cross-sectional area toward the downstream apparatus.
シリンダヘッド(1)に吸気ポート(2)が設けられ、吸気ポート(2)がタンジェンシャルポート(3)を備え、タンジェンシャルポート(3)が、吸気弁口(3a)の上方に位置する出口ポート部分(3b)と、出口ポート部分(3b)の上流に位置する吸気案内ポート部分(3c)とを備え、タンジェンシャルポート(3)に吸気偏向リブ(4)が設けられ、この吸気偏向リブ(4)でタンジェンシャルポート(3)を通過する吸気(5)を、シリンダ周壁(7)寄りに偏向させるようにした、エンジンの吸気装置において、
吸気偏向リブ(4)が出口ポート部分(3b)の周壁面(3d)から突出され、吸気偏向リブ(4)の突出端縁部(4a)が出口ポート部分(3b)の中心部寄りに配置され、吸気偏向リブ(4)のシリンダ側端縁部(4b)が吸気弁口(3a)に向けられ、
吸気ポート(2)を構成するタンジェンシャルポート(3)とヘリカルポート(8)の両ポート入口部分(3e)(8k)が、シリンダヘッド(1)をシリンダに取り付けるヘッドボルト(10)のボス(11)を間に挟んで配置され、
シリンダ中心軸(6)と平行な向きに見て、両ポート入口部分(3e)(8k)のボス側壁面(3f)(8n)がボス(11)の外壁面(11a)で円弧状に形成され、両ポート入口部分(3e)(8k)がポート下流に向けて断面積を縮めるファンネル形状とされている、ことを特徴とするエンジンの吸気装置。
The cylinder head (1) is provided with an intake port (2), the intake port (2) is provided with a tangential port (3), and the tangential port (3) is located above the intake valve port (3a). A port portion (3b) and an intake guide port portion (3c) located upstream of the outlet port portion (3b) are provided, and the tangential port (3) is provided with an intake deflection rib (4). In the intake system of the engine, the intake air (5) passing through the tangential port (3) in (4) is deflected toward the cylinder peripheral wall (7).
The intake deflection rib (4) protrudes from the peripheral wall surface (3d) of the outlet port portion (3b), and the protruding end edge (4a) of the intake deflection rib (4) is disposed closer to the center of the outlet port portion (3b). The cylinder side edge (4b) of the intake deflection rib (4) is directed to the intake valve port (3a) ,
Both port inlet portions (3e) and (8k) of the tangential port (3) and the helical port (8) constituting the intake port (2) are bosses (10) of the head bolt (10) for attaching the cylinder head (1) to the cylinder. 11)
The boss side wall surfaces (3f) and (8n) of both port inlet portions (3e) and (8k) are formed in an arc shape on the outer wall surface (11a) of the boss (11) when viewed in a direction parallel to the cylinder central axis (6). An intake device for an engine, characterized in that both port inlet portions (3e) and (8k) have a funnel shape whose cross-sectional area is reduced toward the downstream of the port.
請求項1または請求項2に記載されたエンジンの吸気装置において、
吸気ポート(2)を構成するタンジェンシャルポート(3)とヘリカルポート(8)の両ポート入口部分(3e)(8k)が、シリンダヘッド(1)をシリンダに取り付けるヘッドボルト(10)のボス(11)を間に挟んで配置され、
シリンダ中心軸(6)と平行な向きに見て、両ポート入口部分(3e)(8k)のボス側壁面(3f)(8n)がボス(11)の外壁面(11a)で円弧状に形成され、両ポート入口部分(3e)(8k)がポート下流に向けて断面積を縮めるファンネル形状とされている、ことを特徴とするエンジンの吸気装置。
The engine intake device according to claim 1 or 2 ,
Both port inlet portions (3e) and (8k) of the tangential port (3) and the helical port (8) constituting the intake port (2) are bosses (10) of the head bolt (10) for attaching the cylinder head (1) to the cylinder. 11)
The boss side wall surfaces (3f) and (8n) of both port inlet portions (3e) and (8k) are formed in an arc shape on the outer wall surface (11a) of the boss (11) when viewed in a direction parallel to the cylinder central axis (6). An intake device for an engine, characterized in that both port inlet portions (3e) and (8k) have a funnel shape whose cross-sectional area is reduced toward the downstream of the port.
JP2013198652A 2013-09-25 2013-09-25 Engine intake system Active JP6051134B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013198652A JP6051134B2 (en) 2013-09-25 2013-09-25 Engine intake system
KR1020140104405A KR102169031B1 (en) 2013-09-25 2014-08-12 Intake System for Engine
CN201410455476.4A CN104454221B (en) 2013-09-25 2014-09-09 The inlet duct of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198652A JP6051134B2 (en) 2013-09-25 2013-09-25 Engine intake system

Publications (2)

Publication Number Publication Date
JP2015063958A JP2015063958A (en) 2015-04-09
JP6051134B2 true JP6051134B2 (en) 2016-12-27

Family

ID=52832038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198652A Active JP6051134B2 (en) 2013-09-25 2013-09-25 Engine intake system

Country Status (1)

Country Link
JP (1) JP6051134B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933848Y2 (en) * 1976-06-11 1984-09-20 日産自動車株式会社 exhaust cleaning engine
JPS588719U (en) * 1981-07-10 1983-01-20 三菱自動車工業株式会社 internal combustion engine intake port
JPS59165927U (en) * 1983-04-25 1984-11-07 三菱自動車工業株式会社 Intake port structure of direct injection diesel engine
JPS59172230U (en) * 1983-05-02 1984-11-17 三菱自動車工業株式会社 Intake port structure of direct injection diesel engine
JP3227889B2 (en) * 1993-04-16 2001-11-12 いすゞ自動車株式会社 Multi-valve intake engine
JP3523529B2 (en) * 1999-06-15 2004-04-26 株式会社クボタ Direct intake port and helical intake port of engine

Also Published As

Publication number Publication date
JP2015063958A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
KR102169031B1 (en) Intake System for Engine
JP4834745B2 (en) FUEL SUPPLY DEVICE AND VEHICLE HAVING THE SAME
US10415519B2 (en) Duct structure
US12110848B2 (en) Intake duct
US10174726B2 (en) Intake manifold
EP2787208B1 (en) Cylinder head for an internal-combustion engine with intake ducts having an air-deflecting projection
US10227947B2 (en) Cylinder head for vehicle engine
JP6051133B2 (en) Engine intake system
JP6051134B2 (en) Engine intake system
JP2007198301A (en) Intake port of internal combustion engine
US8424502B2 (en) Intake manifold
US8430073B2 (en) Intake manifold for multiple-cylinder internal combustion engine
JP6332848B2 (en) Plastic intake manifold with EGR gas distribution function
JP5180760B2 (en) Intake manifold for internal combustion engine
JP6413746B2 (en) Intercooler
JP6763641B2 (en) Automotive air cleaner
JP2012163070A (en) Exhaust gas cooling adapter
JP2015190446A (en) Cylinder head of multicylinder internal combustion engine
JP2020112071A (en) Intake manifold
JP2013024171A (en) Internal combustion engine
US9127627B2 (en) Intake device of a vertical multicylinder engine
JP6403254B2 (en) Internal combustion engine
JP2007198303A (en) Intake port of internal combustion engine
US6705283B1 (en) Throttle body comprising a butterfly with a spot face
JP6974999B2 (en) Intake manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6051134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150