JP6050443B2 - Flame retardant polylactic acid resin composition - Google Patents

Flame retardant polylactic acid resin composition Download PDF

Info

Publication number
JP6050443B2
JP6050443B2 JP2015151104A JP2015151104A JP6050443B2 JP 6050443 B2 JP6050443 B2 JP 6050443B2 JP 2015151104 A JP2015151104 A JP 2015151104A JP 2015151104 A JP2015151104 A JP 2015151104A JP 6050443 B2 JP6050443 B2 JP 6050443B2
Authority
JP
Japan
Prior art keywords
flame retardant
polylactic acid
resin composition
acid resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015151104A
Other languages
Japanese (ja)
Other versions
JP2016060908A (en
Inventor
ジョン,ジンソン
イ,ドフン
Original Assignee
ハンファ トータル ペトロケミカル カンパニー リミテッド
ハンファ トータル ペトロケミカル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハンファ トータル ペトロケミカル カンパニー リミテッド, ハンファ トータル ペトロケミカル カンパニー リミテッド filed Critical ハンファ トータル ペトロケミカル カンパニー リミテッド
Publication of JP2016060908A publication Critical patent/JP2016060908A/en
Application granted granted Critical
Publication of JP6050443B2 publication Critical patent/JP6050443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Description

本発明は燃焼時に発生する煙発生量が大きく低減された難燃性ポリ乳酸樹脂組成物に関するものである。   The present invention relates to a flame retardant polylactic acid resin composition in which the amount of smoke generated during combustion is greatly reduced.

石油を含む化石燃料資源はいつか枯渇するだけでなく、これを用いる過程にて地球温暖化を引き起こす二酸化炭素を発生させる。よって、石油資源から得られる燃料油および石油化学基盤の高分子素材はバイオマス基盤の素材に代わりつつある。このようなバイオマス基盤の素材のうちポリ乳酸(polylactic acid, PLA)は、植物性澱粉を原料とするカーボンニュートラル(carbon neutral)である点が注目され、石油由来樹脂の代替材料として期待されている。ポリ乳酸は生分解性特性のため使い捨て用品などに用いられてはいるが、電子機器分野と自動車用部品などに適用するためには追加的に難燃性が必要であり、燃焼される際に煙発生量も考慮されなければならない。実際に、火災が発生したとき、火が鎮火されないため死亡する場合もあるが、燃焼の副産物である煙と毒性ガスがより大きい影響を与えるものと報告されている。   Fossil fuel resources, including oil, will not only be depleted sometime, but will also generate carbon dioxide that causes global warming in the process of using it. Thus, fuel oils obtained from petroleum resources and petrochemical-based polymer materials are being replaced by biomass-based materials. Among such biomass-based materials, polylactic acid (PLA) is attracting attention because it is carbon neutral using plant starch as a raw material, and is expected as an alternative material for petroleum-derived resins. . Polylactic acid is used for disposable items because of its biodegradable properties, but it needs additional flame retardancy to be applied to the electronic equipment field and automotive parts. Smoke generation must also be considered. In fact, when a fire breaks out, it may die because the fire is not extinguished, but it is reported that smoke and toxic gases, which are by-products of combustion, have a greater impact.

特許文献1においては難燃剤とポリエステルを共重合して難燃性脂肪族ポリエステル樹脂を製造した後、製造された難燃性ポリエステル樹脂とポリ乳酸樹脂を一定比率で混合してポリ乳酸繊維に難燃性を与えた。しかし、ポリ乳酸と難燃性ポリエステル樹脂との相溶性が低い場合もありえるし、難燃性評価をLOI(酸素限界指数、Limited Oxygen Index)のみを評価して、難燃効果を正確に分かることができない。   In Patent Document 1, a flame retardant aliphatic polyester resin is produced by copolymerizing a flame retardant and polyester, and then the produced flame retardant polyester resin and polylactic acid resin are mixed at a certain ratio to make it difficult to produce polylactic acid fibers. Gave flammability. However, the compatibility between the polylactic acid and the flame-retardant polyester resin may be low, and the flame-retardant evaluation is based only on LOI (Limited Oxygen Index), and the flame-retardant effect can be accurately understood. I can't.

特許文献2においては難燃性ポリエステル樹脂を含む難燃性ポリ乳酸樹脂組成物を提案しているが、同様に難燃性評価をLOIのみを評価して、難燃効果を正確に分かることができない。   Patent Document 2 proposes a flame retardant polylactic acid resin composition containing a flame retardant polyester resin. Similarly, it is possible to accurately evaluate the flame retardant effect by evaluating only the LOI for the flame retardant evaluation. Can not.

特許文献3においてはリン系難燃剤とドリップ防止成分を含有する難燃性ポリ乳酸を提案しているが、難燃性はUL94のみを評価した。   Patent Document 3 proposes a flame-retardant polylactic acid containing a phosphorus-based flame retardant and an anti-drip component, but only flame resistance UL94 was evaluated.

特許文献4においてはポリ乳酸以外に熱可塑性樹脂、リン系または窒素系または金属酸化物系難燃剤と難燃助剤を含むポリ乳酸樹脂組成物を提案しているが、難燃性はUL94のみを評価した。   Patent Document 4 proposes a polylactic acid resin composition containing a thermoplastic resin, a phosphorus-based, nitrogen-based or metal oxide-based flame retardant and a flame retardant aid in addition to polylactic acid, but the flame retardancy is only UL94. Evaluated.

韓国登録特許第10−1038466号公報Korean Registered Patent No. 10-1038466 韓国公開特許第10−2011−0032183号公報Korean Published Patent No. 10-2011-0032183 特許第5273646号公報Japanese Patent No. 5273646 特許第5378904号公報Japanese Patent No. 5378904

本発明は、既存の石油化学基盤の難燃性ポリエチレンテレフタレート(PET)、難燃性ポリブチレンテレフタレート(PBT)が適用中の電気電子部品の内外装材やケース類などの成形品製造に有用に用いられるように、煙発生量が大きく低減された環境に優しい難燃性ポリ乳酸樹脂組成物を提供するためのものである。   INDUSTRIAL APPLICABILITY The present invention is useful for manufacturing molded products such as interior / exterior materials and cases of electrical and electronic parts to which existing petrochemical-based flame retardant polyethylene terephthalate (PET) and flame retardant polybutylene terephthalate (PBT) are applied It is intended to provide an environmentally friendly flame retardant polylactic acid resin composition that is greatly reduced in the amount of smoke generated.

前記課題を解決するために本発明は、(A)ポリ乳酸樹脂85〜95重量%、(B)リン系難燃剤3〜10重量%、および(C)窒素系難燃助剤2〜5重量%を含む難燃性ポリ乳酸樹脂組成物を提供する。   In order to solve the above problems, the present invention provides (A) 85-95% by weight of polylactic acid resin, (B) 3-10% by weight of phosphorus-based flame retardant, and (C) 2-5% by weight of nitrogen-based flame retardant aid. % Flame retardant polylactic acid resin composition is provided.

本発明による難燃性ポリ乳酸樹脂組成物は煙発生量が大きく減少された特徴があり、同時に難燃性にも非常に優れているので、電気電子部品の内外装材やケース類などに適用できる。
環境的な側面では、環境に優しい素材であるポリ乳酸の含有により、石油化学基盤のプラスチックを代替する場合、二酸化炭素を低減できる効果を有する。
The flame retardant polylactic acid resin composition according to the present invention has a feature that the amount of smoke generated is greatly reduced, and at the same time, is very excellent in flame retardancy, so it is applied to interior and exterior materials and cases of electrical and electronic parts. it can.
In terms of environmental aspects, the inclusion of polylactic acid, an environmentally friendly material, has the effect of reducing carbon dioxide when replacing petrochemical-based plastics.

本発明の難燃性ポリ乳酸樹脂組成物は(A)ポリ乳酸樹脂85〜95重量%、(B)リン系難燃剤3〜10重量%、および(C)窒素系難燃助剤2〜5重量%を含むことを特徴とする。
以下、本発明の一具現例による難燃性ポリ乳酸樹脂組成物に含まれる各成分をさらに詳細に説明する。
The flame-retardant polylactic acid resin composition of the present invention comprises (A) 85-95% by weight of a polylactic acid resin, (B) 3-10% by weight of a phosphorus-based flame retardant, and (C) 2-5 of a nitrogen-based flame retardant aid. It is characterized by containing weight%.
Hereinafter, each component contained in the flame retardant polylactic acid resin composition according to an embodiment of the present invention will be described in more detail.

(A)ポリ乳酸樹脂(polylactic acid, PLA)
ポリ乳酸は典型的な脂肪族ポリエステル系樹脂であり、トウモロコシおよびジャガイモの澱粉など100%再生可能な資源から得られた単量体を用いて合成された生分解性高分子である。
(A) Polylactic acid (PLA)
Polylactic acid is a typical aliphatic polyester-based resin, a biodegradable polymer synthesized using monomers obtained from 100% renewable resources such as corn and potato starch.

前記ポリ乳酸は単量体である乳酸(lactic acid)の重合から製造される。乳酸は化学的に合成する方法と、穀物資源の発酵法によって生産が可能である。化石原料から化学的に合成された乳酸は、L−タイプおよびD−タイプ乳酸が50重量%ずつ混合されているラセミ混合物から作られる反面、澱粉発酵による方法では99.5重量%以上のL−タイプ乳酸が得られるため、食物資源の発酵による生産方法が好まれる。現在乳酸はもっとも安値で、豊富なトウモロコシ澱粉から得られたグルコースを用いて製造する。   The polylactic acid is produced by polymerization of lactic acid, which is a monomer. Lactic acid can be produced by chemical synthesis and cereal resource fermentation. Lactic acid chemically synthesized from fossil raw materials is made from a racemic mixture in which L-type and D-type lactic acid are mixed by 50% by weight, whereas in the method by starch fermentation, 99.5% by weight or more of L- Since type lactic acid is obtained, the production method by fermentation of food resources is preferred. Currently, lactic acid is the cheapest and is produced using glucose obtained from abundant corn starch.

本発明において、前記ポリ乳酸樹脂としては、ポリ−L−乳酸、ポリ−D−乳酸、ポリ−(D、L)−乳酸、またはこれらの組み合わせを用いることができる。前記ポリ乳酸は乳酸の光学純度の高いものを用いたほうが好ましい。光学純度が高ければ高いほど耐熱性と結晶化速度が速いため、光学純度が95%以上のポリ乳酸が好ましい。   In the present invention, poly-L-lactic acid, poly-D-lactic acid, poly- (D, L) -lactic acid, or a combination thereof can be used as the polylactic acid resin. The polylactic acid is preferably one having a high optical purity of lactic acid. Since the higher the optical purity, the higher the heat resistance and the crystallization speed, polylactic acid having an optical purity of 95% or more is preferable.

本発明に用いられるポリ乳酸の分子量は射出成形が可能であれば分子量や、分子量分布に特別な制限がないが、重量平均分子量が50,000〜400,000g/molが好ましく、成形品の機械的強度をさらに高めるためには100,000〜400,000g/molがさらに好ましい。   The molecular weight of the polylactic acid used in the present invention is not particularly limited in terms of molecular weight and molecular weight distribution as long as injection molding is possible, but the weight average molecular weight is preferably 50,000 to 400,000 g / mol, and the machine of the molded product In order to further increase the mechanical strength, 100,000 to 400,000 g / mol is more preferable.

本発明の難燃性ポリ乳酸樹脂組成物において、前記ポリ乳酸の含量は、樹脂組成物全体の重量基準で85〜95重量%であることが好ましい。前記ポリ乳酸樹脂が前記範囲で含まれる場合に、加工性および機械的物性のバランスに優れたポリ乳酸樹脂組成物を確保することができる。   In the flame-retardant polylactic acid resin composition of the present invention, the content of the polylactic acid is preferably 85 to 95% by weight based on the weight of the entire resin composition. When the polylactic acid resin is included in the above range, a polylactic acid resin composition having an excellent balance between workability and mechanical properties can be ensured.

(B)リン系難燃剤
一般的にリン系難燃剤は熱分解によりリン酸、メタリン酸、ポリメタリン酸を生成し、リン酸層による保護層の形成とポリメタリン酸による脱水作用から生成されたチャー(char)による遮断効果により難燃性を発揮する。
(B) Phosphorus flame retardant In general, phosphorus flame retardants produce phosphoric acid, metaphosphoric acid, and polymetaphosphoric acid by thermal decomposition, and the char ( It exhibits flame retardancy due to the blocking effect of char).

難燃剤は難燃性を付与する方法により、添加型と反応型難燃剤に区分できる。添加型難燃剤はコンパウンディング(compounding)工程中に添加剤として投入されて単純混合され、反応型難燃剤は高分子化合物の主鎖に難燃性を付与できる単量体を導入して難燃性高分子化合物を製造したり、または高分子化合物に反応生基を導入して高分子化合物の末端または側鎖に難燃性物質を化学的に結合して難燃性を付与するものである。   Flame retardants can be classified into additive and reactive flame retardants according to the method of imparting flame retardancy. The additive type flame retardant is added as an additive during the compounding process and simply mixed, and the reactive type flame retardant is introduced by introducing a monomer capable of imparting flame retardancy to the main chain of the polymer compound. A flame retardant substance is produced by chemically bonding a flame retardant substance to the terminal or side chain of the polymer compound by introducing a reactive biogroup into the polymer compound. .

本発明においてリン系難燃剤としては添加型と反応型の両方とも用いることができる。前記添加型リン系難燃剤としてはリン酸エステルまたはホスフェイト(phosphate)があり、その例としてはレゾルシノールビス(ジフェニル)ホスフェイト(resorcinol bis (diphenyl phosphate), RDP)が代表的である。前記反応型リン系難燃剤としては、下記化学式1で示される化合物を用いることができる。下記化学式1において、Rはフェニル(phenyl)、ベンジル(benzyl)、トリル(tolyl)、キシリル(xylyl)のようなアリル(aryl)基であり、Rは炭素数1〜10のアルキル基である。代表的な前記反応型リン系難燃剤は3−(ヒドロキシフェニルホスフィニル)プロパン酸である。

Figure 0006050443
In the present invention, both the additive type and the reactive type can be used as the phosphorus-based flame retardant. Examples of the additive-type phosphorus-based flame retardant include phosphate ester or phosphate, and a representative example thereof is resorcinol bis (diphenyl) phosphate (resorcinol bis (diphenyl phosphate), RDP). As the reactive phosphorus flame retardant, a compound represented by the following chemical formula 1 can be used. In the following chemical formula 1, R 1 is an allyl group such as phenyl, benzyl, tolyl, xylyl, and R 2 is an alkyl group having 1 to 10 carbon atoms. is there. A typical reactive phosphorus flame retardant is 3- (hydroxyphenylphosphinyl) propanoic acid.
Figure 0006050443

本発明の難燃性ポリ乳酸樹脂組成物において、前記リン系難燃剤の含量は、全体樹脂組成物の重量基準として3〜10重量%であることが好ましい。前記リン系難燃剤の含量が3重量%未満であれば、難燃剤の効果が劣り、10重量%を超えると、難燃性の側面では効果的であるが、むしろ煙発生量があまり低くならず、機械的物性が低下し、経済性の側面でも好ましくない。   In the flame retardant polylactic acid resin composition of the present invention, the content of the phosphorus flame retardant is preferably 3 to 10% by weight based on the weight of the entire resin composition. If the content of the phosphorus flame retardant is less than 3% by weight, the effect of the flame retardant is inferior, and if it exceeds 10% by weight, it is effective in terms of flame retardancy, but rather the amount of smoke generated is too low. Therefore, the mechanical properties are deteriorated, which is not preferable in terms of economy.

(C)窒素系難燃助剤
一般的に難燃助剤は難燃剤の含量を減らしつつ、難燃性を極大化させるために用いられる。
下記の実施窒素系難燃助剤はリン系難燃剤との相乗効果を起こし、難燃性を向上させる物質である。前記窒素系難燃助剤としてはメラミン、トリス(ヒドロキシエチル)イソシアヌレート(THEIC)、メラミンホスフェイト(MP)、メラミンポリホスフェイト(MPP)、メラミンシアヌレート(MC)など窒素系化合物から選ばれる1種以上が挙げられる。
(C) Nitrogen-based flame retardant aids Generally, flame retardant aids are used to maximize flame retardancy while reducing the content of flame retardants.
The following nitrogen-based flame retardant aids are substances that cause a synergistic effect with phosphorus-based flame retardants and improve flame retardancy. The nitrogen flame retardant aid is selected from nitrogen compounds such as melamine, tris (hydroxyethyl) isocyanurate (THEIC), melamine phosphate (MP), melamine polyphosphate (MPP), melamine cyanurate (MC), etc. 1 type or more is mentioned.

本発明の難燃性ポリ乳酸樹脂組成物において、前記窒素系難燃助剤の含量は、全体樹脂組成物の重量基準として2〜5重量%であることが好ましい。前記窒素系難燃助剤の含量が2重量%未満であれば、難燃剤との相乗効果が劣り、5重量%を超えると、ポリ乳酸樹脂組成物の機械的物性が劣るため好ましくない。   In the flame retardant polylactic acid resin composition of the present invention, the content of the nitrogen-based flame retardant aid is preferably 2 to 5% by weight based on the weight of the entire resin composition. If the content of the nitrogen-based flame retardant auxiliary is less than 2% by weight, the synergistic effect with the flame retardant is inferior, and if it exceeds 5% by weight, the mechanical properties of the polylactic acid resin composition are inferior.

追加に、本発明の組成物は機械的物性を高めるために無機フィラーをさらに含むことができる。代表的な無機フィラーとしてはガラス繊維があり、ガラス繊維はポリ乳酸樹脂組成物の耐熱性、引張強度および屈曲弾性率のような機械的物性を向上させるために添加される無機フィラーである。特に、前記ガラス繊維はチョップ(chop)形態であるのが好ましく、より詳しくは直径が10ないし15μmで、長さは3ないし5mmであるチョップドストランド(chopped strands)形態のガラス繊維が好ましい。   In addition, the composition of the present invention may further include an inorganic filler in order to enhance mechanical properties. A typical inorganic filler includes glass fiber, and the glass fiber is an inorganic filler added to improve mechanical properties such as heat resistance, tensile strength and flexural modulus of the polylactic acid resin composition. In particular, the glass fibers are preferably in a chopped form, and more particularly in the form of chopped strands having a diameter of 10 to 15 μm and a length of 3 to 5 mm.

前記ガラス繊維は、繊維製造時または後処理工程時、ガラス繊維処理剤(sizing compositions)により処理できるが、前記ガラス繊維処理剤としては潤滑剤、カップリング剤などがある。前記潤滑剤は主にガラス繊維製造時、良好なストランドを形成するために用いられる。前記カップリング剤はガラス繊維とポリ乳酸樹脂との間の接着力を高めるためのものであって、ポリ乳酸樹脂とガラス繊維の種類を考慮して適切に選択して使用する場合、前記ポリ乳酸樹脂組成物に優れた物性を与えることができる。前記カップリング剤としてはビニル基、エポキシ基、メルカプタン基、アミン基などの有機官能基を有するシラン系物質を用いるのが好ましい。   The glass fibers can be treated with glass fiber treating agents during fiber production or in a post-treatment process. Examples of the glass fiber treating agents include lubricants and coupling agents. The lubricant is mainly used for forming good strands during glass fiber production. The coupling agent is for increasing the adhesive force between the glass fiber and the polylactic acid resin. When the coupling agent is appropriately selected in consideration of the types of the polylactic acid resin and the glass fiber, the polylactic acid is used. Excellent physical properties can be imparted to the resin composition. As the coupling agent, it is preferable to use a silane-based material having an organic functional group such as a vinyl group, an epoxy group, a mercaptan group, or an amine group.

また、追加的に本発明の組成物は要求される特性に応じて添加剤をさらに含むこともできる。前記添加剤としては熱安定剤、酸化防止剤、光安定剤、離型剤、染料、顔料、着色剤、核剤、可塑剤、衝撃補強剤、加水分解防止剤、安定剤および滑剤のうち1種以上が可能である。   In addition, the composition of the present invention may further contain an additive depending on required properties. Examples of the additive include a heat stabilizer, an antioxidant, a light stabilizer, a release agent, a dye, a pigment, a colorant, a nucleating agent, a plasticizer, an impact reinforcing agent, a hydrolysis inhibitor, a stabilizer, and a lubricant. More than seeds are possible.

本発明は、例によってより具体的に理解でき、下記の実施例は本発明を例示するための例に過ぎないものであって、本発明の保護範囲を制限するものではない。   The present invention can be more specifically understood by way of examples, and the following examples are merely examples for illustrating the present invention and do not limit the protection scope of the present invention.

本発明の実施例および比較例において用いられた難燃ポリ乳酸樹脂組成物の各構成成分は次のとおりである。
(A)ポリ乳酸
アメリカのネイチャーワークス(NatureWorks LLC)社にて製造された4032Dを用いた。
(B−1)添加型リン系難燃剤
アメリカのケムチュラ(Chemtura)社にて製造されたReofos RDP(レゾルシノールビス(ジフェニル)ホスフェイト)を用いた。
(B−2)反応型リン系難燃剤
韓国のコーロン生命科学にて製造された反応型リン系難燃剤であるHiretar 205((3−ヒドロキシフェニルポルフィニル)プロパン酸)を用いた。
(C)窒素系難燃助剤
日本の純正(Junsei)社にて製造されたメラミンを用いた。
(D)ポリエチレンテレフタレート(PET)
韓国のSK chemicals社にて製造されたSKY−PET BRを用いた。
(E)ポリブチレンテレフタレート(PBT)
韓国コーロンプラスチックにて製造されたKP211を用いた。
Each component of the flame retardant polylactic acid resin composition used in Examples and Comparative Examples of the present invention is as follows.
(A) Polylactic acid 4032D manufactured by NatureWorks LLC of America was used.
(B-1) Additive Phosphorus Flame Retardant Reofos RDP (resorcinol bis (diphenyl) phosphate) manufactured by Chemtura, USA was used.
(B-2) Reactive Phosphorus Flame Retardant Hiretar 205 ((3-hydroxyphenylporphinyl) propanoic acid), which is a reactive phosphorus flame retardant manufactured by Korea Coron Life Science, was used.
(C) Nitrogen-based flame retardant auxiliary Melamine produced by Junsei in Japan was used.
(D) Polyethylene terephthalate (PET)
SKY-PET BR manufactured by SK chemicals of Korea was used.
(E) Polybutylene terephthalate (PBT)
KP211 manufactured by Korea Kolon Plastic was used.

実施例1〜2および比較例1〜9
下記表1に示した含量で各構成成分を混合して樹脂組成物を製造した後、L/D40、直径30mmの二軸圧出機で160〜230℃の温度範囲で圧出した後、圧出物をペレット形態に製造した。下記表1において各構成成分の含量単位は重量%である。前記のような方法で製造されたペレットは80℃で4時間乾燥した後、オートプレスを用いて難燃評価用試片を製作した。前記難燃評価は下記の方法で測定し、その結果を下記表2に示した。
Examples 1-2 and Comparative Examples 1-9
Each component was mixed in the content shown in Table 1 to produce a resin composition, and then the mixture was extruded in a temperature range of 160 to 230 ° C. with a biaxial extruder with L / D 40 and a diameter of 30 mm. The product was produced in pellet form. In Table 1 below, the content unit of each component is% by weight. After the pellets produced by the above method were dried at 80 ° C. for 4 hours, a flame retardant evaluation specimen was produced using an auto press. The flame retardant evaluation was measured by the following method, and the results are shown in Table 2 below.

難燃評価
1)難燃性:UL94に基づき、3mm厚さの試片で難燃性を評価した。
2)総熱放出量(THR, Total Heat Release):ISO 5660に基づき、cone calorimeter(FESTEC社)装備を用いて評価した。
3)総煙発生量(TSP, Total Smoke Production):ISO 5660に基づき、cone calorimeter(FESTEC社)装備を用いて評価した。
Flame retardancy evaluation 1) Flame retardancy: Based on UL94, flame retardancy was evaluated with a specimen having a thickness of 3 mm.
2) Total heat release (THR, Total Heat Release): Based on ISO 5660, evaluation was performed using a cone calorimeter (FESTEC) equipment.
3) Total smoke production (TSP, Total Smoke Production): Based on ISO 5660, evaluation was performed using an equipment of cone calorimeter (FESTEC).

ISO 5660(Reaction−to−fire tests:Heat release、smoke production and mass loss rate)は、輻射熱に露出した扁平な試験体の動的煙発生率を評価する試験方法について規定している。この試験方法は一般的に燃焼生成物を透過する光の強さが距離によって指数関数の積で減少するということ(Bouguerの法則)に基づいている。試験に用いられる試験体は事前に決められた0〜100kW/m範囲内外部輻射熱を受けながら大気条件で燃焼させて減光、排気ガス流量および試験体の質量減少率を測定する。減光は排気ダクトにある煙を介して透過する光の強さの比率で測定する。この比率はBouguerの法則にしたがい、減衰係数を計算することに用いる。試験結果は露出された試験体の表面積から規格化された総煙発生量および煙発生率を示す。煙発生率は減衰係数と排気ダクトにて煙の最適流量の積で計算する。総煙発生量は煙発生率を考慮した時間帯での累積分から得る。前記総煙発生量および煙発生率は下記式を通じて計算できる。 ISO 5660 (Reaction-to-fire tests: Heat release, smoke production and mass loss rate) stipulates a test method for evaluating the dynamic smoke generation rate of a flat specimen exposed to radiant heat. This test method is generally based on the fact that the intensity of light transmitted through the combustion products decreases with the exponential product with distance (Bouguer's law). The test body used for the test is burned under atmospheric conditions while receiving external radiant heat within a predetermined range of 0 to 100 kW / m 2, and measured for light attenuation, exhaust gas flow rate, and mass reduction rate of the test body. Dimming is measured by the ratio of the intensity of light transmitted through the smoke in the exhaust duct. This ratio is used to calculate an attenuation coefficient according to Bouguer's law. The test results show the total smoke generation rate and smoke generation rate normalized from the surface area of the exposed specimen. The smoke generation rate is calculated by the product of the attenuation coefficient and the optimum flow rate of smoke in the exhaust duct. The total amount of smoke generated is obtained from the cumulative amount of time in consideration of the smoke generation rate. The total smoke generation amount and smoke generation rate can be calculated through the following equations.

S=Pの累積分
=k×V
k=ln(l/l)/L
=m×T/(12.2×10×M)
S = P cumulative amount P of s s = k × V s
k = ln (l 0 / l) / L
V s = m e × T s /(12.2×10 3 × M)

S:総煙発生量[m]
:煙発生率[m/s]
k:減衰係数[m−1]
ln:自然ログ
:煙がないときの光の強さ[W/m]
l:減少された光の強さ[W/m]
L:煙を通過した光の経路[m]
:測定支点での煙の体積流量率[m/s]
:オリフィスにて測定された質量流量[kg/s]
:測定支点での煙温度[K]
M:排気ダクトを通じて流れる空気の分子量、0.029[kg/mol]
S: Total smoke generation [m 2 ]
P s : Smoke generation rate [m 2 / s]
k: damping coefficient [m −1 ]
ln: Natural log l 0 : Light intensity when there is no smoke [W / m 2 ]
l: Reduced light intensity [W / m 2 ]
L: Path of light passing through smoke [m]
V s : Volume flow rate of smoke at the measurement fulcrum [m 3 / s]
m e : Mass flow rate measured at the orifice [kg / s]
T s : Smoke temperature at the measurement fulcrum [K]
M: Molecular weight of air flowing through the exhaust duct, 0.029 [kg / mol]

Figure 0006050443
Figure 0006050443

Figure 0006050443
Figure 0006050443

前記表1および表2に示された実施例および比較例の結果にて分かるように、本発明による組成を有する実施例1ないし2の難燃性ポリ乳酸樹脂組成物はポリ乳酸を100重量%使用した比較例1に比べて煙発生量が大きく減少するだけでなく、難燃性にも優れていることが確認できる。すなわち、実施例1と実施例2は本発明にて用いられたリン系難燃剤と難燃助剤によりV−0難燃性と総煙発生量が大きく減少できることが分かる。   As can be seen from the results of Examples and Comparative Examples shown in Tables 1 and 2, the flame retardant polylactic acid resin compositions of Examples 1 and 2 having the composition according to the present invention are 100% by weight of polylactic acid. It can be confirmed that not only the amount of smoke generated is greatly reduced as compared with Comparative Example 1 used, but also excellent in flame retardancy. That is, in Example 1 and Example 2, it can be seen that V-0 flame retardancy and total smoke generation can be greatly reduced by the phosphorus-based flame retardant and flame retardant aid used in the present invention.

ポリ乳酸100重量%を用いた比較例1、ポリエチレンテレフタレート100重量%を用いた比較例6、およびポリブチレンテレフタレート100重量%を用いた比較例8の結果から、難燃剤がない場合には全焼するとともに総熱放出量と煙発生量が高いことが分かる。   From the results of Comparative Example 1 using 100% by weight of polylactic acid, Comparative Example 6 using 100% by weight of polyethylene terephthalate, and Comparative Example 8 using 100% by weight of polybutylene terephthalate, it is completely burned when there is no flame retardant. It can be seen that the total heat release and smoke generation are high.

比較例2の結果から、添加型リン系難燃剤の含量が1重量%である場合には全焼することが分かる。   From the results of Comparative Example 2, it can be seen that when the content of the additive-type phosphorus flame retardant is 1% by weight, it is completely burned.

比較例3の結果から、反応型リン系難燃剤の含量が2重量%である場合にはV−2難燃性が出るが、総煙発生量が大きく減少しないことが分かる。   From the results of Comparative Example 3, it can be seen that when the content of the reactive phosphorus flame retardant is 2% by weight, V-2 flame retardancy appears, but the total amount of smoke generated does not decrease significantly.

比較例4と比較例5の結果から、添加型リン系難燃剤と反応型リン系難燃剤の含量がそれぞれ20重量%である場合には、V−1、V−0難燃性が出るが、総煙発生量が大きく減少しないことが分かる。   From the results of Comparative Example 4 and Comparative Example 5, when the contents of the additive-type phosphorus-based flame retardant and the reactive-type phosphorus-based flame retardant are 20% by weight, V-1 and V-0 flame retardancy are obtained. It can be seen that the total smoke generation does not decrease greatly.

比較例7と比較例9はそれぞれ難燃ポリエチレンテレフタレート、難燃ポリブチレンテレフタレートを用いた場合であり、総煙発生量の低減効果が大きくないことが分かる。   Comparative Example 7 and Comparative Example 9 are cases where flame retardant polyethylene terephthalate and flame retardant polybutylene terephthalate are used, respectively, and it can be seen that the effect of reducing the total smoke generation amount is not large.

前記のような結果から総合してみると、本発明の難燃性ポリ乳酸樹脂組成物は、煙発生量が大きく減少した特徴があり、同時に難燃性も非常に優れているので、難燃ポリエチレンテレフタレート(PET)と難燃ポリブチレンテレフタレート(PBT)が適用された電気電子部品の内外装材やケース類などのような成形品製造に有用に用いることができる。   Overall, the flame retardant polylactic acid resin composition of the present invention has a feature that the amount of smoke generated is greatly reduced, and at the same time, the flame retardancy is very excellent. It can be usefully used for manufacturing molded articles such as interior and exterior materials and cases of electrical and electronic parts to which polyethylene terephthalate (PET) and flame-retardant polybutylene terephthalate (PBT) are applied.

Claims (9)

(A)ポリ乳酸樹脂85〜95重量%;
(B)リン系難燃剤3〜10重量%;および
(C)窒素系難燃助剤2〜5重量%;
を含み、前記リン系難燃剤は下記化学式1で表される反応型リン系難燃剤であり、難燃等級はV−0であり、総煙発生量が2.0m(3mm厚さ試片基準)以下である難燃性ポリ乳酸樹脂組成物
Figure 0006050443
ここで、R はフェニル、ベンジル、トリルまたはキシリルであり、
は炭素数1〜10のアルキル基である。
(A) 85-95% by weight of polylactic acid resin;
(B) 3-10 wt% phosphorus flame retardant; and
(C) 2-5% by weight of a nitrogen-based flame retardant aid;
The phosphorus-based flame retardant is a reactive phosphorus-based flame retardant represented by the following chemical formula 1, the flame retardant grade is V-0, and the total smoke generation amount is 2.0 m 2 (3 mm thick specimen) Standard) The flame retardant polylactic acid resin composition is :
Figure 0006050443
Where R 1 is phenyl, benzyl, tolyl or xylyl;
R 2 is an alkyl group having 1 to 10 carbon atoms.
前記ポリ乳酸が、ポリ−L−乳酸、ポリ−D−乳酸、ポリ−(D、L)−乳酸、またはこれらの組み合わせであり、光学純度が95%以上であり、重量平均分子量が50,000〜400,000g/molであることを特徴とする請求項1記載の難燃性ポリ乳酸樹脂組成物。   The polylactic acid is poly-L-lactic acid, poly-D-lactic acid, poly- (D, L) -lactic acid, or a combination thereof, optical purity is 95% or more, and weight average molecular weight is 50,000. The flame retardant polylactic acid resin composition according to claim 1, wherein the composition is ˜400,000 g / mol. 前記反応型リン系難燃剤が3−(ヒドロキシフェニルホスホニル)プロパン酸であることを特徴とする請求項記載の難燃性ポリ乳酸樹脂組成物。 The reactive phosphorus flame retardant 3- (hydroxyphenyl phosphonyl) flame retardant polylactic acid resin composition of claim 1, wherein the propane acid. 前記窒素系難燃助剤がメラミン、トリス(ヒドロキシエチル)イソシアヌレート、メラミンホスフェイト、メラミンポリホスフェイトおよびメラミンシアヌレートから選ばれる1種以上であることを特徴とする請求項1記載の難燃性ポリ乳酸樹脂組成物。   The flame retardant according to claim 1, wherein the nitrogen-based flame retardant aid is one or more selected from melamine, tris (hydroxyethyl) isocyanurate, melamine phosphate, melamine polyphosphate and melamine cyanurate. Polylactic acid resin composition. 前記組成物がガラス繊維をさらに含むことを特徴とする請求項1記載の難燃性ポリ乳酸樹脂組成物。   The flame retardant polylactic acid resin composition according to claim 1, wherein the composition further comprises glass fiber. 前記ガラス繊維の直径が10〜15μmであり、その長さが3〜5mmであり、その形態がチョップドストランド形態であることを特徴とする請求項記載の難燃性ポリ乳酸樹脂組成物。 6. The flame retardant polylactic acid resin composition according to claim 5, wherein the glass fiber has a diameter of 10 to 15 [mu] m, a length of 3 to 5 mm, and a chopped strand form. 前記ガラス繊維がビニル基、エポキシ基、メルカプタン基、アミン基から選ばれる有機官能基を有するシラン系物質で処理されたことを特徴とする請求項記載の難燃性ポリ乳酸樹脂組成物。 6. The flame retardant polylactic acid resin composition according to claim 5, wherein the glass fiber is treated with a silane-based material having an organic functional group selected from a vinyl group, an epoxy group, a mercaptan group, and an amine group. 請求項1ないし請求項7のいずれか一項に記載された難燃性ポリ乳酸樹脂組成物を含む電気電子部品の内外装材射出品An interior / exterior material injection product of an electrical / electronic component comprising the flame retardant polylactic acid resin composition according to any one of claims 1 to 7. 請求項1ないし請求項7のいずれか一項に記載された難燃性ポリ乳酸樹脂組成物を含むケース類射出品。  A case injection product comprising the flame retardant polylactic acid resin composition according to any one of claims 1 to 7.
JP2015151104A 2014-09-12 2015-07-30 Flame retardant polylactic acid resin composition Active JP6050443B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0121102 2014-09-12
KR1020140121102A KR20160031609A (en) 2014-09-12 2014-09-12 Flame-retardant polylactic acid composition

Publications (2)

Publication Number Publication Date
JP2016060908A JP2016060908A (en) 2016-04-25
JP6050443B2 true JP6050443B2 (en) 2016-12-21

Family

ID=55497828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151104A Active JP6050443B2 (en) 2014-09-12 2015-07-30 Flame retardant polylactic acid resin composition

Country Status (3)

Country Link
JP (1) JP6050443B2 (en)
KR (1) KR20160031609A (en)
CN (1) CN105419264B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106243656B (en) * 2016-09-29 2019-03-01 陈跃 A kind of anti-flaming environment-friendly polylactic acid plastic and preparation method thereof
CN111363322B (en) * 2018-12-26 2022-05-31 浙江海正生物材料股份有限公司 Flame-retardant polylactic resin composition and preparation method thereof
CN113462002B (en) * 2021-06-29 2023-03-31 北京化工大学常州先进材料研究院 Preparation method of degradable flame-retardant foamed beads
CN115637032A (en) * 2021-07-20 2023-01-24 北京服装学院 Heat-resistant flame-retardant polylactic acid material and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423947B2 (en) * 2002-11-29 2010-03-03 東レ株式会社 Resin composition
JP2007246564A (en) * 2006-03-13 2007-09-27 Asahi Kasei Chemicals Corp Aliphatic polyester composition excellent in flame retardant property
JP5173747B2 (en) * 2008-11-05 2013-04-03 帝人化成株式会社 Method for producing polylactic acid composition
JP5378904B2 (en) * 2009-08-05 2013-12-25 帝人株式会社 Flame retardant polylactic acid resin composition
KR20110048377A (en) * 2009-11-02 2011-05-11 제일모직주식회사 Thermoplastic resin composition and molded product using the same
JP5796577B2 (en) * 2010-06-09 2015-10-21 日本電気株式会社 Polylactic acid resin composition and molded body thereof
WO2012049896A1 (en) * 2010-10-14 2012-04-19 日本電気株式会社 Polylactic resin composition and polylactic resin molded body
CN102757622B (en) * 2011-04-27 2015-02-25 合肥杰事杰新材料股份有限公司 Low-smoke halogen-free flame-retardant thermoplastic polyester elastomer and preparation method thereof
CN103146161B (en) * 2013-03-29 2015-08-05 浙江海正生物材料股份有限公司 A kind of modified polylactic resin composition and method of making the same and application
CN103483787A (en) * 2013-08-23 2014-01-01 苏州长盛机电有限公司 Antibacterial flame-retardant PLA (Poly Lactic Acid)/PC (Poly Carbonate) alloy and preparation method thereof
CN103613913B (en) * 2013-11-13 2016-01-20 华东理工大学 A kind of Halogen-free flame-retardant thermoplastic polyester elastomer material and preparation method thereof

Also Published As

Publication number Publication date
CN105419264B (en) 2018-06-29
KR20160031609A (en) 2016-03-23
JP2016060908A (en) 2016-04-25
CN105419264A (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP4964891B2 (en) Halogen-free flame retardant thermoplastic polyester
JP6050443B2 (en) Flame retardant polylactic acid resin composition
KR102329063B1 (en) Polyester compositions
US10808120B2 (en) Polyester blend having a halogen-free flame protection
JPWO2009031284A1 (en) Resin composition and molded body using the same
WO2010108076A2 (en) Biobased polymer compositions
JP2015101730A (en) Polyester compositions
CN107603214B (en) Flame-retardant polyamide composition, and preparation method and application of flame-retardant polyamide
JP2015101731A (en) Polyester compositions
WO2015141708A1 (en) Flame-retardant polyester resin composition
JP2015532342A (en) Heat resistant, flame retardant polylactic acid compound
TWI730110B (en) Thermoplastic moulding compounds
KR102341559B1 (en) Thermoplastic molding compound
KR100877392B1 (en) Tube extrudable polyamide composition with a good flammability and long term heat stability
US20120264856A1 (en) Flame-retardant thermoplastic molding composition
WO2016106191A1 (en) Flame retardant polybutylene succinate compound
KR102059493B1 (en) Non-halogen flame-retarding polycyclohexylenedimethyleneterephtalate resin composition
WO2021144584A1 (en) Polylactic acid flame resistant blend
JP6514663B2 (en) Flame retardant resin composition
WO2012049896A1 (en) Polylactic resin composition and polylactic resin molded body
US20230272208A1 (en) Polymer blends of aliphatic polyketone, acrylonitrile butadiene styrene, and flame retardant
Bocz Development of environmentally friendly flame retarded polymer composites
US20230159746A1 (en) Flame retarded polyester blend
KR20240038576A (en) Polybutylene terephthalate resin composition, method for preparing the same, and molded product therefrom
JP2010229228A (en) Flame-retardant resin composition and molded article obtained by molding the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250