JP6050289B2 - Selection method of cell lines expressing high levels of recombinant proteins - Google Patents

Selection method of cell lines expressing high levels of recombinant proteins Download PDF

Info

Publication number
JP6050289B2
JP6050289B2 JP2014153311A JP2014153311A JP6050289B2 JP 6050289 B2 JP6050289 B2 JP 6050289B2 JP 2014153311 A JP2014153311 A JP 2014153311A JP 2014153311 A JP2014153311 A JP 2014153311A JP 6050289 B2 JP6050289 B2 JP 6050289B2
Authority
JP
Japan
Prior art keywords
cell
cell line
recombinant protein
cell lines
mobile phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014153311A
Other languages
Japanese (ja)
Other versions
JP2015033382A (en
Inventor
哲雄 横山
哲雄 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCR Pharmaceuticals Co Ltd
Original Assignee
JCR Pharmaceuticals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCR Pharmaceuticals Co Ltd filed Critical JCR Pharmaceuticals Co Ltd
Priority to JP2014153311A priority Critical patent/JP6050289B2/en
Publication of JP2015033382A publication Critical patent/JP2015033382A/en
Application granted granted Critical
Publication of JP6050289B2 publication Critical patent/JP6050289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は,組換え蛋白質を高発現する細胞株の簡易な選択法に関し,詳しくは,無血清培地で培養した組換え蛋白質発現細胞株の培養上清に含まれる組換え蛋白質を,逆相クロマトグラフィーで分析することにより,組換え蛋白質を高発現する細胞株を選択する方法に関する。  The present invention relates to a simple method for selecting a cell line that highly expresses a recombinant protein. Specifically, the recombinant protein contained in the culture supernatant of a recombinant protein-expressing cell line cultured in a serum-free medium is subjected to reverse phase chromatography. The present invention relates to a method for selecting a cell line that highly expresses a recombinant protein by analyzing by chromatography.

所望の蛋白質をコードする遺伝子を組み込んだ発現ベクターで形質転換された哺乳動物細胞を用いて,組換え蛋白質を製造する方法は,医薬品製造等の産業分野で広く普及した技術であり,α−ガラクトシダーゼA,イズロン酸2−スルファターゼ,グルコセレブロシダーゼ,ガルスルファーゼ,α−L−イズロニダーゼ,酸性α−グルコシダーゼ等のリソソーム酵素,組織プラスミノーゲンアクチベーター(t−PA),血液凝固第VII因子,血液凝固第VIII因子,血液凝固第IX因子等の血液凝固因子,エリスロポエチン,インターフェロン,トロンボモジュリン,卵胞刺激ホルモン,顆粒球コロニー刺激因子(G−CSF),各種抗体医薬等がこの技術を用いて製造され,医薬品として市販されている。  A method for producing a recombinant protein using mammalian cells transformed with an expression vector incorporating a gene encoding a desired protein is a widely used technique in industrial fields such as pharmaceutical production, and α-galactosidase. A, lysosomal enzymes such as iduronic acid 2-sulfatase, glucocerebrosidase, galsulfase, α-L-iduronidase, acid α-glucosidase, tissue plasminogen activator (t-PA), blood coagulation factor VII, blood coagulation factor Blood coagulation factors such as factor VIII and blood coagulation factor IX, erythropoietin, interferon, thrombomodulin, follicle stimulating hormone, granulocyte colony stimulating factor (G-CSF), various antibody drugs, etc. are manufactured using this technology, It is commercially available.

組換え蛋白質を哺乳動物細胞を用いて製造する場合,組換え蛋白質の生産効率を高めるため,所望の蛋白質をコードする遺伝子を組み込んだ発現ベクターで形質転換された哺乳動物細胞の中から,組換え蛋白質を高発現する細胞を選択する必要がある。かかる選択は,選択マーカーとしてピューロマイシン,ネオマイシン等の薬剤を分解する酵素(薬剤耐性マーカー)を発現ベクターに組み込み,このような発現ベクターで形質転換された細胞を,選択マーカーに対応する薬剤をある一定濃度含む培地中で培養することにより,一般的に行われる。選択マーカーに対応する薬剤存在下で培養することにより,薬剤選択マーカーを高レベルで発現する細胞のみが増殖して,それらが選択される結果となる。薬剤選択マーカーを高レベルで発現する細胞は,発現ベクターに同時に組み込んだ所望の蛋白質をコードする遺伝子も高レベルに発現する傾向があるので,結果として,所望の蛋白質を高レベルで発現する哺乳動物細胞が得られる。  When producing recombinant proteins using mammalian cells, in order to increase the production efficiency of the recombinant protein, recombination is carried out from mammalian cells transformed with an expression vector incorporating a gene encoding the desired protein. It is necessary to select cells that highly express the protein. Such selection includes, as a selection marker, an enzyme that degrades drugs such as puromycin and neomycin (drug resistance marker) incorporated into an expression vector, and cells transformed with such an expression vector have a drug corresponding to the selection marker. It is generally performed by culturing in a medium containing a constant concentration. By culturing in the presence of a drug corresponding to the selectable marker, only cells that express the drug selectable marker at a high level proliferate and are selected. Cells expressing a drug selectable marker at a high level tend to express a gene encoding a desired protein simultaneously incorporated into an expression vector at a high level. As a result, a mammal expressing a desired protein at a high level Cells are obtained.

選択マーカーにより選択された細胞は,所望の蛋白質を高レベルに発現する傾向があるものの,その発現レベルは個々の細胞毎に異なる。そこで,組換え蛋白質の生産効率をより高めるため,選択マーカーにより選択された細胞から,所望の蛋白質をより高レベルで発現する細胞を更に選択する必要がある。このような細胞の更なる選択は,一般に,細胞を株化し,細胞株毎に培地中に分泌される組換え蛋白質をELISA法により定量することにより行われている(特許文献1)。しかしながら,ELISA法による定量は,組換え蛋白質に対する抗体を準備する必要がある。  The cells selected by the selectable marker tend to express the desired protein at a high level, but the expression level varies from individual cell to individual cell. Therefore, in order to further increase the production efficiency of the recombinant protein, it is necessary to further select cells that express the desired protein at a higher level from the cells selected by the selection marker. Such further selection of cells is generally carried out by culturing cells and quantifying recombinant proteins secreted into the medium for each cell line by ELISA (Patent Document 1). However, quantification by the ELISA method requires the preparation of an antibody against the recombinant protein.

また,所望の蛋白質をより高レベルで発現する細胞を選択する方法として,組換え蛋白質の受容体との親和性を利用する方法もある(特許文献2)。しかしながら,受容体との親和性を利用する方法は,別途受容体蛋白質を遺伝子組換え技術等を用いて準備することを必要とする。  In addition, as a method for selecting cells that express a desired protein at a higher level, there is a method that utilizes the affinity of a recombinant protein with a receptor (Patent Document 2). However, a method using affinity with a receptor requires that a receptor protein is separately prepared using a gene recombination technique or the like.

特許第2657816号公報  Japanese Patent No. 2657816 国際公開第2009/020142号  International Publication No. 2009/020142

上記背景の下で,本発明の目的は,組換え蛋白質を高発現する細胞株の簡易な選択法を提供することを目的とする。  Under the above background, an object of the present invention is to provide a simple method for selecting a cell line that highly expresses a recombinant protein.

上記目的に向けた研究において,本発明者らは,無血清培地で培養した組換え蛋白質発現細胞株の培養上清に含まれる組換え蛋白質を,逆相クロマトグラフィーで分析することにより,組換え蛋白質を高発現する細胞株を選択することができることを見出し,本発明を完成した。すなわち,本発明は以下を提供する。
(1)組換え蛋白質を高発現する細胞株を選択する方法であって,
(a)細胞を所望の蛋白質をコードする遺伝子と選択マーカーとを組み込んだ発現ベクターで形質転換させて形質転換細胞を得るステップと,
(b)該形質転換細胞を,該選択マーカーに対応する薬剤存在下で選択培養することにより,複数の細胞株を選択するステップと,
(c)該細胞株を,それぞれ無血清培地で培養し,該培養後に該細胞株の培養上清をそれぞれ回収するステップと,
(d)回収した該細胞株の培養上清をそれぞれ逆相クロマトグラフィーに付し,次いで,逆相カラムからの流出液を,連続的に流路に導き,該流路中を流れる該流出液の吸光度を連続的に測定するステップと,
(e)該測定により該組換え蛋白質に対応する吸光度のピークを同定するとともに,該細胞株の培養上清毎に得られる該ピークの面積を比較するステップと,
(f)該細胞株の中から,相対的に大きい該面積を示す細胞株を選択するステップと,を含む方法。
(2)該細胞が哺乳動物細胞である,上記(1)に記載の方法。
(3)該哺乳動物細胞がCHO細胞である,上記(2)に記載の方法。
(4)該逆相クロマトグラフィーが,オクタデシルシリル基で表面が修飾された化学結合型多孔性球状シリカゲルを固定相とし,0.08〜0.12%トリフルオロ酢酸を含有する20〜40%プロパノール水溶液を第1の移動相とし,そして,第1の移動相と比較して,トリフルオロ酢酸の濃度が同一である一方,プロパノールの濃度が高められた水溶液を第2の移動相として行うものである,上記(1)乃至(3)のいずれかに記載の方法。
(5)該組換え蛋白質が,α−ガラクトシダーゼA,イズロン酸2−スルファターゼ,グルコセレブロシダーゼ,ガルスルファーゼ,α−L−イズロニダーゼ,酸性α−グルコシダーゼ等のリソソーム酵素,組織プラスミノーゲンアクチベーター(t−PA),血液凝固第VII因子,血液凝固第VIII因子,血液凝固第IX因子等の血液凝固因子,エリスロポエチン,ダルベポエチン,インターフェロン,トロンボモジュリン,卵胞刺激ホルモン,顆粒球コロニー刺激因子(G−CSF),抗体,若しくはこれらの類縁体からなる群から選択されるものである,上記(1)乃至(4)のいずれかに記載の方法。
(6)該組換え蛋白質が,エリスロポエチン又はダルベポエチン,若しくはこれらの類縁体からなる群から選択されるものである,上記(1)乃至(4)のいずれかに記載の方法。
In the research aimed at the above purpose, the present inventors analyzed the recombinant protein contained in the culture supernatant of a recombinant protein-expressing cell line cultured in a serum-free medium by reverse-phase chromatography, thereby recombining the recombinant protein. The present inventors have found that a cell line that highly expresses a protein can be selected, thereby completing the present invention. That is, the present invention provides the following.
(1) A method for selecting a cell line that highly expresses a recombinant protein,
(A) transforming a cell with an expression vector incorporating a gene encoding a desired protein and a selectable marker to obtain a transformed cell;
(B) selecting a plurality of cell lines by selectively culturing the transformed cells in the presence of a drug corresponding to the selection marker;
(C) culturing each of the cell lines in a serum-free medium, and collecting the culture supernatant of the cell line after the culturing,
(D) Each of the collected culture supernatants of the cell line is subjected to reverse phase chromatography, and then the effluent from the reverse phase column is continuously guided to the flow path, and the effluent flowing in the flow path Continuously measuring the absorbance of
(E) identifying an absorbance peak corresponding to the recombinant protein by the measurement, and comparing the area of the peak obtained for each culture supernatant of the cell line;
(F) selecting a cell line showing the relatively large area from the cell lines.
(2) The method according to (1) above, wherein the cell is a mammalian cell.
(3) The method according to (2) above, wherein the mammalian cell is a CHO cell.
(4) 20-40% propanol containing 0.08-0.12% trifluoroacetic acid, the stationary phase of which is chemically bonded porous spherical silica gel whose surface is modified with octadecylsilyl groups. An aqueous solution is used as the first mobile phase, and an aqueous solution with the same concentration of trifluoroacetic acid as compared with the first mobile phase, but with an increased concentration of propanol is used as the second mobile phase. The method according to any one of (1) to (3) above.
(5) The recombinant protein is a lysosomal enzyme such as α-galactosidase A, iduronic acid 2-sulfatase, glucocerebrosidase, galsulfase, α-L-iduronidase, acid α-glucosidase, tissue plasminogen activator (t- PA), blood coagulation factor VII, blood coagulation factor VIII, blood coagulation factor such as blood coagulation factor IX, erythropoietin, darbepoetin, interferon, thrombomodulin, follicle stimulating hormone, granulocyte colony stimulating factor (G-CSF), antibody Or the method according to any one of (1) to (4) above, which is selected from the group consisting of these analogs.
(6) The method according to any one of (1) to (4) above, wherein the recombinant protein is selected from the group consisting of erythropoietin, darbepoetin, or analogs thereof.

本発明によれば,組換え蛋白質を高発現する細胞株を,簡易に選択することができる。  According to the present invention, a cell line that highly expresses a recombinant protein can be easily selected.

細胞株(細胞株1)の培養上清とコントロール液の逆相クロマトグラフィーによる分析結果を示すクロマトグラム。破線が細胞株の培養上清,実線がコントロール液のクロマトグラムを示す。縦軸は吸光度,横軸はサンプル負荷完了後の経過時間(分)を示す。(A)はダルベポエチンに由来するピークを示す。The chromatogram which shows the analysis result by the reverse phase chromatography of the culture supernatant of a cell strain (cell strain 1), and a control solution. The broken line shows the culture supernatant of the cell line, and the solid line shows the chromatogram of the control solution. The vertical axis represents absorbance, and the horizontal axis represents elapsed time (minutes) after completion of sample loading. (A) shows a peak derived from darbepoetin. 細胞株1〜3の培養上清の逆相クロマトグラフィーによる分析結果を示すクロマトグラム。(1)が細胞株1,(2)が細胞株2,(3)が細胞株3の培養上清のクロマトグラムを示す。縦軸は吸光度,横軸はサンプル負荷完了後の経過時間(分)を示す。The chromatogram which shows the analysis result by the reverse phase chromatography of the culture supernatant of the cell lines 1-3. (1) shows the chromatogram of the culture supernatant of cell line 1, (2) is the cell line 2, and (3) is the cell line 3. The vertical axis represents absorbance, and the horizontal axis represents elapsed time (minutes) after completion of sample loading.

本発明において,「細胞」というときは,所望の組換え蛋白質をコードする遺伝子を組み込んだ発現ベクターで形質転換させることにより,組換え蛋白質を発現させることができる細胞であれば特に限定はないが,好ましくは酵母,昆虫細胞,カルス等の植物細胞,哺乳動物細胞である。細胞が哺乳動物細胞である場合,その細胞の種類について特に限定はないが,好ましくはヒト,マウス,ハムスター由来の細胞であり,特にCHO細胞,COS細胞が好適に使用し得る。  In the present invention, the term “cell” is not particularly limited as long as it is a cell capable of expressing a recombinant protein by transformation with an expression vector incorporating a gene encoding a desired recombinant protein. , Preferably yeast, insect cells, plant cells such as callus, and mammalian cells. When the cell is a mammalian cell, the type of the cell is not particularly limited, but is preferably a cell derived from human, mouse, or hamster, and CHO cell or COS cell can be preferably used.

本発明において,「細胞株」というときは,細胞を,所望の組換え蛋白質をコードする遺伝子を組み込んだ発現ベクターで形質転換させた後に,選択培養することにより得られる,単一細胞に由来する形質が均一(又はほぼ均一)且つ安定な細胞のことをいう。また,本発明において,「組換え蛋白質を高発現する細胞株」というときは,組換え蛋白質の発現量を複数の細胞株について比較したときに,相対的に発現量が高い細胞株のことをいい,例えば,100個の細胞株について発現量を比較したときに,好ましくは発現量が上位1〜10位までの細胞株であり,より好ましくは発現量が上位1〜5位までの細胞株であり,更に好ましくは発現量が最も高い細胞株である。  In the present invention, the term “cell line” is derived from a single cell obtained by transforming a cell with an expression vector incorporating a gene encoding a desired recombinant protein, followed by selective culture. A cell with uniform (or almost uniform) character and stability. In the present invention, “cell line that highly expresses a recombinant protein” refers to a cell line that has a relatively high expression level when the expression level of the recombinant protein is compared among a plurality of cell lines. For example, when the expression levels of 100 cell lines are compared, the cell lines are preferably those having the highest level of expression in the top 1 to 10 levels, more preferably the cell lines having the level of expression of the top 1 to 5 levels. More preferably, it is a cell line with the highest expression level.

本発明で,細胞を形質転換するために用いる発現ベクターは,そのベクターに組み込んだ所望の蛋白質をコードする遺伝子と選択マーカーを,その発現ベクターを導入した細胞内で発現させることができるものであれば特に限定はない。所望の蛋白質をコードする遺伝子は,その下流に存在する遺伝子の転写の頻度を制御(調節)することができるDNA上の領域であるプロモーター(遺伝子発現制御部位)の制御化に置かれる。このとき用いることのできる遺伝子発現制御部位は,細胞が哺乳動物細胞である場合,その下流に組み込んだ遺伝子の転写を,哺乳動物細胞内において強力に誘導することができるものである限り特に限定はないが,好ましくはサイトメガロウイルス(CMV)由来のプロモーター,SV40初期プロモーター等のウイルス由来のプロモーター,及び伸長因子1α(EF−1α)プロモーター等である。  In the present invention, an expression vector used for transforming a cell can express a gene encoding a desired protein incorporated in the vector and a selectable marker in the cell into which the expression vector has been introduced. There is no particular limitation. A gene encoding a desired protein is placed under the control of a promoter (gene expression control site), which is a region on DNA that can control (regulate) the frequency of transcription of a gene present downstream thereof. The gene expression control site that can be used at this time is not particularly limited as long as the transcription of the gene incorporated downstream of the cell is a mammalian cell and can be strongly induced in the mammalian cell. However, a promoter derived from cytomegalovirus (CMV), a promoter derived from a virus such as the SV40 early promoter, and an elongation factor 1α (EF-1α) promoter are preferred.

本発明において,所望の組換え蛋白質をコードする遺伝子として発現ベクターに組み込むことのできる遺伝子は,当該組換え蛋白質を高発現する細胞株を本発明の方法により選択することができるものである限り特に制限はないが,α−ガラクトシダーゼA,イズロン酸2−スルファターゼ,グルコセレブロシダーゼ,ガルスルファーゼ,α−L−イズロニダーゼ,酸性α−グルコシダーゼ等のリソソーム酵素,組織プラスミノーゲンアクチベーター(t−PA),血液凝固第VII因子,血液凝固第VIII因子,血液凝固第IX因子等の血液凝固因子,エリスロポエチン,ダルベポエチン,インターフェロン,トロンボモジュリン,卵胞刺激ホルモン,顆粒球コロニー刺激因子(G−CSF),顆粒球単球コロニー刺激因子(GM−CSF),マクロファージコロニー刺激因子(M−CSF),抗体,若しくはこれらの類縁体をコードする遺伝子等である。特に,本発明の方法は,エリスロポエチン又はダルベポエチン,若しくはこれらの類縁体を高発現する細胞株を選択するために好適に使用し得る。  In the present invention, a gene that can be incorporated into an expression vector as a gene encoding a desired recombinant protein is particularly selected as long as a cell line that highly expresses the recombinant protein can be selected by the method of the present invention. Although not limited, α-galactosidase A, iduronic acid 2-sulfatase, glucocerebrosidase, galsulfase, α-L-iduronidase, lysosomal enzymes such as acid α-glucosidase, tissue plasminogen activator (t-PA), blood Coagulation factor VII, blood coagulation factor VIII, blood coagulation factor such as blood coagulation factor IX, erythropoietin, darbepoetin, interferon, thrombomodulin, follicle stimulating hormone, granulocyte colony stimulating factor (G-CSF), granulocyte monocyte colony Stimulation factor (GM-CSF , Macrophage colony stimulating factor (M-CSF), a gene such as that encoding antibodies, or those analogues. In particular, the method of the present invention can be suitably used to select cell lines that highly express erythropoietin or darbepoetin, or analogs thereof.

本発明で,「選択マーカー」というときは,発現ベクターにより形質転換された細胞を選択するために機能する,発現ベクターに組み込まれた遺伝子,又はその遺伝子によりコードされた蛋白質のことをいう。選択マーカーとして最も一般的なものはピューロマイシン,ネオマイシン等の薬剤を分解する酵素(薬剤耐性マーカー)である。また,この他,ジヒドロ葉酸レダクターゼ(DHFR),グルタミン合成酵素(GS)も選択マーカーとして使用できる。ピューロマイシン,ネオマイシン等の薬剤を分解する酵素(薬剤耐性マーカー)を選択マーカーとして使用する場合,選択マーカーに対応する薬剤とは,これらの酵素により分解される細胞毒性を有する薬剤であり,例えば,選択マーカーがピューロマイシン耐性遺伝子の場合は,ピューロマイシンである。また,選択マーカーがジヒドロ葉酸レダクターゼ(DHFR)の場合はメトトレキサート(MTX)が,選択マーカーがグルタミン合成酵素(GS)の場合はメチオニンスルホキシミン(MSX)が,それぞれ選択マーカーに対応する薬剤として使用し得る。  In the present invention, the term “selection marker” refers to a gene incorporated in an expression vector or a protein encoded by the gene that functions to select cells transformed with the expression vector. The most common selection marker is an enzyme (drug resistance marker) that degrades drugs such as puromycin and neomycin. In addition, dihydrofolate reductase (DHFR) and glutamine synthetase (GS) can also be used as selection markers. When an enzyme (drug resistance marker) that degrades a drug such as puromycin or neomycin is used as a selection marker, the drug corresponding to the selection marker is a cytotoxic drug that is degraded by these enzymes. If the selectable marker is a puromycin resistance gene, it is puromycin. When the selection marker is dihydrofolate reductase (DHFR), methotrexate (MTX) is used, and when the selection marker is glutamine synthetase (GS), methionine sulphoximine (MSX) is used as a drug corresponding to the selection marker. Can do.

なお,本発明において,選択マーカーの導入された細胞を選択するための培養を「選択培養」といい,導入された細胞を選択するために使用される培地を「選択培地」という。また,選択培養では,単一細胞に由来する細胞株を得るため,多穴ウェルプレート(96ウェルプレート等)の各ウェルに形質転換細胞が1個含まれるように,細胞を希釈して播種して培養する操作を行う。選択培養では,複数の細胞株が選択される。選択される細胞株の数は任意であるが,概ね10〜100種類の細胞株が選択される。  In the present invention, the culture for selecting cells into which the selection marker has been introduced is referred to as “selective culture”, and the medium used for selecting the introduced cells is referred to as “selection medium”. In selective culture, in order to obtain a cell line derived from a single cell, the cells are diluted and seeded so that each well of a multi-well plate (such as a 96-well plate) contains one transformed cell. To incubate. In selective culture, multiple cell lines are selected. Although the number of cell lines to be selected is arbitrary, approximately 10 to 100 types of cell lines are selected.

選択培養で選択された細胞は,無血清培地で培養される。このとき用いることのできる無血清培地に特に限定はないが,例えば:
アミノ酸・・・3〜700mg/L,
ビタミン類・・・0.001〜50mg/L,
単糖類・・・0.3〜10g/L,
無機塩・・・0.1〜10000mg/L,
微量元素・・・0.001〜0.1mg/L,
ヌクレオシド・・・0.1〜50mg/L,
脂肪酸・・・0.001〜10mg/L,
ビオチン・・・0.01〜1mg/L,
ヒドロコルチゾン・・・0.1〜20μg/L,
インシュリン・・・0.1〜20mg/L,
ビタミンB12・・・0.1〜10mg/L,
プトレッシン・・・0.01〜1mg/L,
ピルビン酸ナトリウム・・・10〜500mg/L,及び
水溶性鉄化合物を含有する培地が好適に用いられる。所望により,チミジン,ヒポキサンチン,慣用のpH指示薬および抗生物質を添加してもよい。
Cells selected by selective culture are cultured in serum-free medium. There are no particular limitations on the serum-free medium that can be used at this time, for example:
Amino acids ... 3-700mg / L,
Vitamins ... 0.001-50mg / L,
Monosaccharides 0.3 to 10 g / L,
Inorganic salt: 0.1 to 10,000 mg / L,
Trace elements: 0.001 to 0.1 mg / L,
Nucleoside: 0.1 to 50 mg / L,
Fatty acid ... 0.001-10mg / L,
Biotin ... 0.01-1mg / L,
Hydrocortisone ... 0.1-20 μg / L,
Insulin ... 0.1-20mg / L,
Vitamin B 12 ... 0.1-10mg / L,
Putrescine 0.01 ~ 1mg / L,
A medium containing sodium pyruvate... 10 to 500 mg / L and a water-soluble iron compound is preferably used. If desired, thymidine, hypoxanthine, conventional pH indicators and antibiotics may be added.

また無血清培地として,DMEM/F12培地(DMEMとF12の混合培地)を基本培地として用いてもよく,これら各培地は当業者に周知である。更にまた無血清培地として,炭酸水素ナトリウム,L−グルタミン,D−グルコース,インスリン,ナトリウムセレナイト,ジアミノブタン,ヒドロコルチゾン,硫酸鉄(II),アスパラギン,アスパラギン酸,セリン及びポリビニルアルコールを含むものである,DMEM(HG)HAM改良型(R5)培地を使用してもよい。更には市販の無血清培地,例えば,CDoptiCHO,CHO−S−SFMII又はCD CHO(インビトロジェン社),IS CHO−V又はIS CHO−V−GS(アーバイン社),EX−CELL302又はEX−CELL305(JRH社)等を基本培地として使用してもよい。  Further, as a serum-free medium, DMEM / F12 medium (mixed medium of DMEM and F12) may be used as a basic medium, and each of these media is well known to those skilled in the art. Furthermore, the serum-free medium contains sodium bicarbonate, L-glutamine, D-glucose, insulin, sodium selenite, diaminobutane, hydrocortisone, iron (II) sulfate, asparagine, aspartic acid, serine and polyvinyl alcohol, DMEM ( HG) HAM modified (R5) media may be used. Furthermore, commercially available serum-free media such as CDoptioCHO, CHO-S-SFMII or CD CHO (Invitrogen), IS CHO-V or IS CHO-V-GS (Irvine), EX-CELL302 or EX-CELL305 (JRH) Etc.) may be used as the basic medium.

細胞株の無血清培地中での培養は,全ての細胞株について培養開始時の細胞密度を含めて同一の条件で行い,好ましくは,全ての細胞株について同時に培養を開始して行う。培養終了後に回収した培養上清は,フィルターでろ過してから逆相クロマトグラフィーでの分析に供される。このとき用いるフィルターの孔径は,好ましくは0.1〜2.0μmであり,例えば,孔径0.45μmである。また,培養上清は,直ちに分析に供するのではなく,後の分析のために凍結して保存することもできる。  The cell line is cultured in a serum-free medium under the same conditions including the cell density at the start of culture for all the cell lines, and preferably, all the cell lines are simultaneously cultured. The culture supernatant collected after completion of the culture is filtered through a filter and then subjected to analysis by reverse phase chromatography. The pore size of the filter used at this time is preferably 0.1 to 2.0 μm, for example, 0.45 μm. In addition, the culture supernatant can be frozen and stored for later analysis, rather than immediately subjected to analysis.

本発明において,培養上清を分析するための逆相クロマトグラフィーにおいて用いることのできる固定相としては,下記の第1の移動相で平衡化させたときに,組換え蛋白質が吸着し得るものであれば,特に限定なく使用できるが,好ましくは,オクタデシルシリル(Octa Decyl Silyl)基(C1837Si)で表面が修飾された化学結合型多孔性球状シリカゲルである。In the present invention, the stationary phase that can be used in reversed-phase chromatography for analyzing the culture supernatant is one that can be adsorbed with a recombinant protein when equilibrated with the following first mobile phase. As long as it can be used without particular limitation, it is preferably a chemically bonded porous spherical silica gel whose surface is modified with an Octa Decyl Silyl group (C 18 H 37 Si).

逆相クロマトグラフィーにおいて,混合して又は単独で移動相をなす溶液A及び溶液Bはともに水溶液である。溶液Bの比率を高めるには,連続的に高めても,断続的に高めてもよいが,好ましくは連続的に高められ,また特に好ましくは,直線的に(すなわち,一定の速度で連続的に)高められる。本発明において,「第1の移動相」とは,試料を負荷する前にカラムを平衡化させるための平衡化液である。「第2の移動相」とは,カラムに第1の移動相を通した後に,カラムから組換え蛋白質を溶離させるためにカラムに通す移動相のことをいう。単に「移動相」というときは,第1の移動相及び第2の移動相2を区別することなく示す。本発明における,移動相の好適な一例は,第1の移動相が0.08〜0.12%トリフルオロ酢酸,20〜40%プロパノール水溶液であり,第2の移動相が,第1の移動相と比較して,トリフルオロ酢酸の濃度が同一である一方,プロパノールの濃度が高められた水溶液であり,特に,第2の移動相が,逆相クロマトグラフィーにおいて,第1の移動相に対して,プロパノールの濃度が20%から80%のいずれかの間で直線的に高められる水溶液であるものである。移動相の更なる好適な一例は,第1の移動相が0.08〜0.12%トリフルオロ酢酸,35%プロパノール水溶液であり,第2の移動相が,逆相クロマトグラフィーにおいて,第1の移動相と比較して,プロパノールの濃度が35%から70%にまで直線的に高められる水溶液であるものである。  In the reverse phase chromatography, both the solution A and the solution B, which are mixed or independently form a mobile phase, are aqueous solutions. The ratio of solution B can be increased continuously or intermittently, but is preferably increased continuously, and particularly preferably linearly (ie continuously at a constant rate). To) enhanced. In the present invention, the “first mobile phase” is an equilibration liquid for equilibrating a column before loading a sample. The “second mobile phase” refers to a mobile phase that is passed through the column in order to elute the recombinant protein from the column after passing the first mobile phase through the column. When simply referred to as “mobile phase”, the first mobile phase and the second mobile phase 2 are shown without distinction. In the present invention, a preferred example of the mobile phase is that the first mobile phase is 0.08 to 0.12% trifluoroacetic acid and a 20 to 40% propanol aqueous solution, and the second mobile phase is the first mobile phase. An aqueous solution with the same concentration of trifluoroacetic acid as compared to the phase but with an increased concentration of propanol. In particular, the second mobile phase is compared to the first mobile phase in reverse phase chromatography. Thus, the concentration of propanol is an aqueous solution that can be linearly increased between 20% and 80%. A further preferred example of the mobile phase is that the first mobile phase is 0.08 to 0.12% trifluoroacetic acid and 35% propanol aqueous solution, and the second mobile phase is the first phase in reverse phase chromatography. Compared with the mobile phase, the concentration of propanol is an aqueous solution that is linearly increased from 35% to 70%.

逆相クロマトグラフィーでチャートとして得られた各細胞株の培養上清の分析結果は,コントロールとして分析した無血清培地のチャートと比較される。組換え蛋白質を発現する細胞株のチャートを,無血清培地のチャートと比較したときに,細胞株のチャートにのみ出現するピークが組換え蛋白質のピークとして同定される。このピークの面積を細胞株毎に比較して,ピーク面積が相対的に大きい細胞を,高発現細胞株として選択する。選択された高発現細胞株は,所望により発現した組換え蛋白質の性状等について更に分析され,最適なものが当該組換え蛋白質の実製造用の細胞として使用される。  The analysis result of the culture supernatant of each cell line obtained as a chart by reverse phase chromatography is compared with the chart of serum-free medium analyzed as a control. When the chart of the cell line expressing the recombinant protein is compared with the chart of the serum-free medium, the peak that appears only in the chart of the cell line is identified as the peak of the recombinant protein. The area of this peak is compared for each cell line, and a cell having a relatively large peak area is selected as a high expression cell line. The selected high-expression cell line is further analyzed for the properties of the recombinant protein expressed as desired, and the optimal one is used as a cell for actual production of the recombinant protein.

以下,実施例を参照して本発明を更に詳細に説明するが,本発明が実施例に限定されることは意図しない。  Hereinafter, the present invention will be described in more detail with reference to examples. However, it is not intended that the present invention be limited to the examples.

〔ダルベポエチン発現ベクターの作成〕
発現ベクターとしては,選択マーカーとしてネオマイシン耐性遺伝子を組み込んだ,先行文献(特表2010−511378公報)に開示のpE−neoベクターを用いた。ダルベポエチン(ネスプ)は,天然型エリスロポエチンのペプチド鎖を構成する165個のアミノ酸残基に,Ala30Asn,His32Thr,Pro87Val,Trp88Asn及びPro90Thrの5箇所の変異を導入した変異型エリスロポエチンであり,先行文献(特表平08−506023)に開示されたものである。
[Preparation of darbepoetin expression vector]
As the expression vector, the pE-neo vector disclosed in the previous document (Japanese Patent Publication No. 2010-511378) incorporating a neomycin resistance gene as a selection marker was used. Darbepoetin (Nesp) is a mutant erythropoietin in which five mutations of Ala30Asn, His32Thr, Pro87Val, Trp88Asn, and Pro90Thr are introduced into 165 amino acid residues constituting the peptide chain of natural erythropoietin. Table Hei 08-506023).

ヒトエリスロポエチンのcDNAを,プライマーEPO−5’(配列番号1)及びプライマーEPO−3’(配列番号2)のセットを用いて,ヒト胎児肝臓由来のcDNAライブラリー(Clontech社)を鋳型として,PCRで増幅した。次いで,増幅させたヒトエリスロポエチンのcDNAに,サイトダイレクト変異法により,Ala30Asn,His32Thr,Pro87Val,Trp88Asn及びPro90Thrとなる変異を導入し,ダルベポエチンのcDNAを得た。ダルベポエチンのcDNAをEcoRlとXbalで消化し,pE−neoベクターのEcoRlとXbalの間に挿入し,ダルベポエチン発現ベクター(pE−neo(DAR))とした。  Human erythropoietin cDNA was obtained by PCR using a set of primers EPO-5 ′ (SEQ ID NO: 1) and primer EPO-3 ′ (SEQ ID NO: 2) and a human fetal liver-derived cDNA library (Clontech) as a template. Amplified with Next, mutations of Ala30Asn, His32Thr, Pro87Val, Trp88Asn, and Pro90Thr were introduced into the amplified human erythropoietin cDNA by site direct mutagenesis to obtain darbepoetin cDNA. The darbepoetin cDNA was digested with EcoRl and Xbal and inserted between EcoRl and Xbal of the pE-neo vector to obtain a darbepoetin expression vector (pE-neo (DAR)).

〔ダルベポエチン発現細胞株の作成〕
CHO細胞(CHO−K1:American Type Culture Collectionより購入)にLipofectamine2000(Invitrogen社)を用いて,ダルベポエチン発現ベクター(pE−neo(DAR))をトランスフェクトした。トランスフェクション後,細胞を,5%FCSを含むD−MEM/F12(D−MEM/F12/5%FCS)培地に交換して5%炭酸ガス通気下37℃で2日間培養した。その後,0.6mg/mLG418を含むD−MEM/F12/5%FCS培地に交換して5%炭酸ガス通気下37℃で選択培養を行った。選択培地中で増殖する細胞を数代継代し,組換え細胞を得た。
[Creation of a cell line expressing darbepoetin]
A darbepoetin expression vector (pE-neo (DAR)) was transfected into CHO cells (CHO-K1: purchased from American Type Culture Collection) using Lipofectamine 2000 (Invitrogen). After transfection, the cells were replaced with D-MEM / F12 (D-MEM / F12 / 5% FCS) medium containing 5% FCS and cultured at 37 ° C. for 2 days under aeration of 5% carbon dioxide gas. Thereafter, the medium was replaced with a D-MEM / F12 / 5% FCS medium containing 0.6 mg / mL G418, and selective culture was performed at 37 ° C. under aeration of 5% carbon dioxide. Cells that proliferated in the selective medium were passaged several times to obtain recombinant cells.

次に,限界希釈法にて96穴プレートに1穴あたり1個以下の細胞が播種される条件で組換え細胞を播種し,10日間ほど選択培地中で培養し,単一コロニーを形成させた。ここで,単一コロニーから得られた細胞を3種類選択し,細胞株(細胞株1〜3)とした。  Next, the recombinant cells were seeded in a 96-well plate under the condition that 1 or less cells per seed were seeded by limiting dilution, and cultured in a selective medium for about 10 days to form a single colony. . Here, three types of cells obtained from a single colony were selected and used as cell lines (cell lines 1 to 3).

〔培養上清の調製〕
各細胞株を,細胞濃度が2×10個/mLの濃度となるように,4mM L−グルタミン,10mg/Lヒポキサンチン,4mg/L チミジン及び120mg/L G418を添加した市販の無血清培地EX−CELL302培地(JRH社)で希釈し,4日間,37℃で5%CO存在の下に静置培養した。培養後,培養上清を回収し,孔径0.45μmの膜フィルターでろ過した。このとき,細胞を加えない無血清培地のみも同条件下で静置し,これを培養後に穴径0.45μmの膜フィルターでろ過したものをコントロール液とした。
[Preparation of culture supernatant]
Commercially available serum-free medium supplemented with 4 mM L-glutamine, 10 mg / L hypoxanthine, 4 mg / L thymidine and 120 mg / L G418 so that each cell line has a cell concentration of 2 × 10 5 cells / mL The sample was diluted with EX-CELL302 medium (JRH), and statically cultured in the presence of 5% CO 2 at 37 ° C. for 4 days. After culture, the culture supernatant was collected and filtered through a membrane filter having a pore size of 0.45 μm. At this time, only a serum-free medium to which no cells were added was allowed to stand under the same conditions, and this was cultured and filtered through a membrane filter having a hole diameter of 0.45 μm as a control solution.

〔逆相カラムクロマトグラフィーによる培養上清の分析〕
(1)装置
島津HPLCシステムLC−20A(島津製作所)に逆相カラムであるAerisTM widepore XB−C18(充填剤:非多孔質シリカゲルの表面に多孔質シリカゲルを被覆したもの,細孔径:300Å,カラムサイズ:4.6mm径×250mm長,Phenomenex社)をセットし,更にこのカラムを25℃の恒温槽(カラム恒温槽)内に設置した。また,カラムの下流に吸光光度計を設置し,カラムからの流出液の吸光度(測定波長215nm)を連続して測定できるようにした。
[Analysis of culture supernatant by reversed-phase column chromatography]
(1) Apparatus Shimadzu HPLC system LC-20A (Shimadzu Corporation) is a reverse phase column, Aeros widepore XB-C18 (filler: non-porous silica gel coated with porous silica gel, pore size: 300 mm, Column size: 4.6 mm diameter × 250 mm length, Phenomenex) was set, and this column was placed in a 25 ° C. thermostat (column thermostat). In addition, an absorptiometer was installed downstream of the column so that the absorbance (measurement wavelength 215 nm) of the effluent from the column could be continuously measured.

(2)移動相用の溶液の作成
1mLのトリフルオロ酢酸に純水を加えて1Lとした溶液を溶液A(0.1%TFA水溶液)とした。また,1mLのトリフルオロ酢酸と700mLの1−プロパノールに純水を加えて1Lとした溶液を溶液B(0.1%TFA,70%プロパノール水溶液)とした。
(2) Preparation of solution for mobile phase A solution obtained by adding pure water to 1 mL of trifluoroacetic acid was used as Solution A (0.1% TFA aqueous solution). A solution made up to 1 L by adding pure water to 1 mL of trifluoroacetic acid and 700 mL of 1-propanol was designated as Solution B (0.1% TFA, 70% propanol aqueous solution).

(3)操作手順
上記のフィルター濾過した細胞株の培養上清及びコントロール液を,各々100μLずつ,溶液Aと溶液Bとを当容量混合させた第1の移動相で平衡化させた逆相カラムに負荷した。負荷後,0.2mL/分の流速で30分かけて溶液Bの体積比率を100%まで直線的に高め,更に10分間溶液Bを同一流速で流し,その後,35分間第1の移動相を同一流速で流した。この間,カラムからの流出液の吸光度(測定波長215nm)を連続して測定してチャートを得た。
(3) Operational procedure Reverse phase column equilibrated with first mobile phase in which 100 μL each of culture supernatant and control solution of above-filtered cell line was mixed in equal volume of solution A and solution B Loaded. After loading, the volume ratio of solution B is increased linearly to 100% over 30 minutes at a flow rate of 0.2 mL / min, and solution B is allowed to flow at the same flow rate for 10 minutes, and then the first mobile phase is allowed to flow for 35 minutes. Flowed at the same flow rate. During this time, the absorbance (measurement wavelength 215 nm) of the effluent from the column was continuously measured to obtain a chart.

〔分析結果の評価〕
細胞株(細胞株1)の培養上清とコントロール液とを逆相クロマトグラフィーで分析して得られたチャートを比較した(図1)。その結果,細胞株の培養上清では,コントロール液では現れない,ダルベポエチンに由来するピーク(ピークA)が検出され,無血清培地を用いて細胞株を培養した場合,フィルター濾過した細胞株の培養上清を逆相カラムクロマトグラフィーで分析することにより,ダルベポエチンを発現する細胞株を判別できることがわかった。
[Evaluation of analysis results]
The charts obtained by analyzing the culture supernatant of the cell line (cell line 1) and the control solution by reverse phase chromatography were compared (FIG. 1). As a result, in the culture supernatant of the cell line, a peak derived from darbepoetin (Peak A), which does not appear in the control solution, was detected, and when the cell line was cultured using a serum-free medium, It was found that cell lines expressing darbepoetin can be distinguished by analyzing the supernatant by reversed-phase column chromatography.

次いで,上記の選択培養により得た3種類の細胞株(細胞株1〜3)について,逆相クロマトグラフィーで分析して得られたチャートを比較したところ,細胞株毎にダルベポエチンに由来するピーク面積が相違した(図2)。ピーク面積はダルベポエチンの発現量に比例するので,3種類の細胞株の中で最もピーク面積の大きい,細胞株1が最もダルベポエチンを高発現することがわかった。このように,本法によれば,ピーク面積の大きい分析結果を与えた細胞株を選択することにより,ダルベポエチンの高発現株を選択できる。  Next, when the charts obtained by analyzing by reverse phase chromatography were compared for the three types of cell lines (cell lines 1 to 3) obtained by the selective culture, peak areas derived from darbepoetin for each cell line were compared. Differed (FIG. 2). Since the peak area is proportional to the expression level of darbepoetin, it was found that cell line 1, which has the largest peak area among the three cell lines, has the highest expression of darbepoetin. Thus, according to this method, by selecting a cell line that gave an analysis result having a large peak area, a high expression line of darbepoetin can be selected.

本発明によれば,無血清培地で培養して組換え蛋白質を製造するために使用する,組換え蛋白質の高発現細胞株を選択することができる。  According to the present invention, it is possible to select a cell line that highly expresses a recombinant protein that is used to produce a recombinant protein by culturing in a serum-free medium.

配列番号1:Primer EPO−5’,synthetic sequence
配列番号2:Primer EPO−3’,synthetic sequence
【配列表】
1189P
Sequence number 1: Primer EPO-5 ', synthetic sequence
Sequence number 2: Primer EPO-3 ', synthetic sequence
[Sequence Listing]
1189P

Claims (5)

組換え蛋白質を高発現する細胞株を選択する方法であって,
(a)細胞を所望の蛋白質をコードする遺伝子と選択マーカーとを組み込んだ発現ベクターで形質転換させて形質転換細胞を得るステップと,
(b)該形質転換細胞を,該選択マーカーに対応する薬剤存在下で選択培養することにより,複数の細胞株を選択するステップと,
(c)該細胞株を,それぞれ無血清培地で培養し,該培養後に該細胞株の培養上清をそれぞれ回収するステップと,
(d)回収した該細胞株の培養上清をそれぞれ逆相クロマトグラフィーに付し,次いで,逆相カラムからの流出液を,連続的に流路に導き,該流路中を流れる該流出液の吸光度を連続的に測定するステップであって,該逆相クロマトグラフィーが,オクタデシルシリル基で表面が修飾された化学結合型多孔性球状シリカゲルを固定相とし,0.08〜0.12%トリフルオロ酢酸を含有する20〜40%プロパノール水溶液を第1の移動相とし,そして,第1の移動相と比較して,トリフルオロ酢酸の濃度が同一である一方,プロパノールの濃度が高められた水溶液を第2の移動相として行うものであるステップと,
(e)該測定により該組換え蛋白質に対応する吸光度のピークを同定するとともに,該細胞株の培養上清毎に得られる該ピークの面積を比較するステップと,
(f)該細胞株の中から,相対的に大きい該面積を示す細胞株を選択するステップと,
を含む方法。
A method for selecting a cell line that highly expresses a recombinant protein, comprising:
(A) transforming a cell with an expression vector incorporating a gene encoding a desired protein and a selectable marker to obtain a transformed cell;
(B) selecting a plurality of cell lines by selectively culturing the transformed cells in the presence of a drug corresponding to the selection marker;
(C) culturing each of the cell lines in a serum-free medium, and collecting the culture supernatant of the cell line after the culturing,
(D) Each of the collected culture supernatants of the cell line is subjected to reverse phase chromatography, and then the effluent from the reverse phase column is continuously guided to the flow path, and the effluent flowing in the flow path In this step , the reverse-phase chromatography is carried out using 0.08 to 0.12% tricyclic as a stationary phase with chemically bonded porous spherical silica gel whose surface is modified with octadecylsilyl groups. A 20 to 40% propanol aqueous solution containing fluoroacetic acid is used as the first mobile phase, and an aqueous solution in which the concentration of propanol is increased while the concentration of trifluoroacetic acid is the same as that of the first mobile phase. Performing as a second mobile phase ;
(E) identifying an absorbance peak corresponding to the recombinant protein by the measurement, and comparing the area of the peak obtained for each culture supernatant of the cell line;
(F) selecting a cell line showing the relatively large area from the cell lines;
Including methods.
該細胞が哺乳動物細胞である,請求項1に記載の方法。   The method of claim 1, wherein the cell is a mammalian cell. 該哺乳動物細胞がCHO細胞である,請求項2に記載の方法。   The method of claim 2, wherein the mammalian cell is a CHO cell. 該組換え蛋白質が,α−ガラクトシダーゼA,イズロン酸2−スルファターゼ,グルコセレブロシダーゼ,ガルスルファーゼ,α−L−イズロニダーゼ,酸性α−グルコシダーゼ等のリソソーム酵素,組織プラスミノーゲンアクチベーター(t−PA),血液凝固第VII因子,血液凝固第VIII因子,血液凝固第IX因子等の血液凝固因子,エリスロポエチン,ダルベポエチン,インターフェロン,トロンボモジュリン,卵胞刺激ホルモン,顆粒球コロニー刺激因子(G−CSF),抗体,若しくはこれらの類縁体からなる群から選択されるものである,請求項1乃至のいずれかに記載の方法。 The recombinant protein is lysosomal enzyme such as α-galactosidase A, iduronic acid 2-sulfatase, glucocerebrosidase, galsulfase, α-L-iduronidase, acid α-glucosidase, tissue plasminogen activator (t-PA), Blood coagulation factor VII, blood coagulation factor VIII, blood coagulation factor such as blood coagulation factor IX, erythropoietin, darbepoetin, interferon, thrombomodulin, follicle stimulating hormone, granulocyte colony stimulating factor (G-CSF), antibody, or these The method according to any one of claims 1 to 3 , wherein the method is selected from the group consisting of: 該組換え蛋白質が,エリスロポエチン又はダルベポエチン,若しくはこれらの類縁体からなる群から選択されるものである,請求項1乃至のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the recombinant protein is selected from the group consisting of erythropoietin or darbepoetin, or an analog thereof.
JP2014153311A 2013-07-11 2014-07-09 Selection method of cell lines expressing high levels of recombinant proteins Active JP6050289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153311A JP6050289B2 (en) 2013-07-11 2014-07-09 Selection method of cell lines expressing high levels of recombinant proteins

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013158253 2013-07-11
JP2013158253 2013-07-11
JP2014153311A JP6050289B2 (en) 2013-07-11 2014-07-09 Selection method of cell lines expressing high levels of recombinant proteins

Publications (2)

Publication Number Publication Date
JP2015033382A JP2015033382A (en) 2015-02-19
JP6050289B2 true JP6050289B2 (en) 2016-12-21

Family

ID=52542386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153311A Active JP6050289B2 (en) 2013-07-11 2014-07-09 Selection method of cell lines expressing high levels of recombinant proteins

Country Status (1)

Country Link
JP (1) JP6050289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134571B1 (en) * 2018-06-15 2020-07-16 주식회사 알테오젠 Method for production of coagulation factor VII/VIIa fusion protein

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879673A (en) * 1996-01-25 1999-03-09 Genentech, Inc. Administration of thrombopoietin on a single day only
CA2198988A1 (en) * 1997-03-03 1998-09-03 Mai Nguyen P28 bap31 a bcl-2 associated protein and use thereof for the modulation of apoptosis
NZ533133A (en) * 2001-11-28 2006-02-24 Sandoz Ag Method for producing a recombinant polypeptide
EP2109456A2 (en) * 2006-09-29 2009-10-21 Centocor Ortho Biotech Inc. Human epo receptor agonists, compositions, methods and uses for preventing or treating glucose intolerance related conditions
EP2225273B1 (en) * 2007-12-21 2012-05-23 Roche Glycart AG Stability testing of antibodies

Also Published As

Publication number Publication date
JP2015033382A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
Yuk et al. Controlling glycation of recombinant antibody in fed‐batch cell cultures
US5223408A (en) Method for making variant secreted proteins with altered properties
McClanahan et al. Biochemical and genetic characterization of multiple splice variants of the Flt3 ligand
ES2366061T3 (en) A NEW VECTOR AND CELLULAR EXPRESSION LINE FOR MASS PRODUCTION OF A RECOMBINATING PROTEIN AND A PROCESS OF RECOMBINATING PROTEIN PRODUCTION USING THE SAME.
KR101707251B1 (en) Expression vector system comprising two selection markers
JP2009082138A (en) Method for increasing polypeptide production
JP6279466B2 (en) New expression vector
JPWO2012063799A1 (en) New expression vector
EP2970915B1 (en) Methods and compositions for generating stable transfected cells
BRPI0607751A2 (en) host organism, cell culture system, method for enhancing the productivity of recombinant vitamin K-dependent protein expression or a functionally active derivative thereof in a host organism, and recombinant vitamin K-dependent protein
KR20160099675A (en) Novel eukaryotic cells and methods for recombinantly expressing a product of interest
EP3630977A1 (en) Methods and compositions for promoting non-natural amino acid-containing protein production
Yoshikawa et al. Flow cytometry: an improved method for the selection of highly productive gene‐amplified CHO cells using flow cytometry
JP2015513406A (en) Expression vector containing polynucleotide encoding modified glutamine synthetase and method for producing target protein using the same
KR20160030524A (en) Novel selection vectors and methods of selecting eukaryotic host cells
JP6050289B2 (en) Selection method of cell lines expressing high levels of recombinant proteins
ZA200403802B (en) Method for producing a recombinant polypeptide.
CN104087612B (en) Method for fast screening mammal cell strain having high exogenous protein expression level
AU2008258500B2 (en) The puro-DHFR quadrifunctional marker and its use in protein production
US20110091901A1 (en) Vectors and Methods for Screening Cells for High Expression of Protein of Interest (POI)
KR20100044855A (en) Method for generating stable cell lines expressing high levels of a protein of interest
EP2785731B1 (en) Vectors and host cells comprising a modified sv40 promoter for protein expression
CN111512161A (en) Method for analyzing tropolone
Eichner et al. Large‐scale preparation of recombinant platelet‐derived growth factor AA secreted from recombinant baby hamster kidney cells
ES2290337T3 (en) METHODS TO INCREASE THE EXPRESSION LEVELS OF THE HUMAN TNF RECEIVER.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250