JP6049565B2 - Geothermal turbine - Google Patents

Geothermal turbine Download PDF

Info

Publication number
JP6049565B2
JP6049565B2 JP2013159454A JP2013159454A JP6049565B2 JP 6049565 B2 JP6049565 B2 JP 6049565B2 JP 2013159454 A JP2013159454 A JP 2013159454A JP 2013159454 A JP2013159454 A JP 2013159454A JP 6049565 B2 JP6049565 B2 JP 6049565B2
Authority
JP
Japan
Prior art keywords
stationary blade
cooling medium
cooling
unit
stage stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013159454A
Other languages
Japanese (ja)
Other versions
JP2015031174A (en
Inventor
亮 ▲高▼田
亮 ▲高▼田
雅徳 堤
雅徳 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013159454A priority Critical patent/JP6049565B2/en
Publication of JP2015031174A publication Critical patent/JP2015031174A/en
Application granted granted Critical
Publication of JP6049565B2 publication Critical patent/JP6049565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、地熱タービンに係り、特に、地熱タービンにおける蒸気導入側の初段静翼と後段側の静翼との間で冷熱媒体を循環させ、初段静翼に対しては熱交換による冷却を、後段静翼に対しては加熱を行って、初段静翼へのスケール付着、後段側の静翼の潰食防止を図った、地熱タービンに関する。   The present invention relates to a geothermal turbine, and in particular, circulates a cooling medium between a first-stage stationary blade on the steam introduction side and a rear-stage stationary blade in the geothermal turbine, and the first-stage stationary blade is cooled by heat exchange. The present invention relates to a geothermal turbine that heats a rear stator blade to prevent scale adhesion to the first stator blade and prevent erosion of the rear stator blade.

近年、地熱エネルギーの利用として、例えば図10に示す地熱発電システム1があり、かかる地熱発電システム1は、地下深部の熱源により熱水を発生する生産井2と、生産井2から地上まで導いて沸騰した熱水を、蒸気と分離させるセパレータ3を具備する。
また地熱発電システム1は、セパレータ3で分離された熱水を戻す還元井4と、分離された蒸気により回転する地熱タービン5と、地熱タービン5に接続の発電機6とを具備する。
さらに、地熱発電システム1は、地熱タービン5を通過した蒸気を温水化する復水器7と、温水を冷却する冷却塔8とを具備する。
In recent years, as geothermal energy utilization, for example, there is a geothermal power generation system 1 shown in FIG. 10, and the geothermal power generation system 1 leads a production well 2 that generates hot water by a heat source in a deep underground, and leads from the production well 2 to the ground. A separator 3 that separates boiling hot water from steam is provided.
The geothermal power generation system 1 includes a reduction well 4 that returns hot water separated by the separator 3, a geothermal turbine 5 that is rotated by the separated steam, and a generator 6 that is connected to the geothermal turbine 5.
The geothermal power generation system 1 further includes a condenser 7 that warms the steam that has passed through the geothermal turbine 5 and a cooling tower 8 that cools the hot water.

また、図11に地熱発電システム1に用いられる地熱タービン5としての蒸気タービンの一例を示す。
この蒸気タービン5は、例えば、周知の軸流式蒸気タービンであり、ロータシャフト5a側に動翼5bとケーシング5c側に固定された静翼(ノズル)5dとが、多段的に交互に対向するように列設されている。ロータシャフト5aには、発電機6のロータが連結されている。セパレータ3からの蒸気は、蒸気入口から初段静翼5dを通じて導入され、多段の動翼5b、静翼5d間を膨張しながら通過して蒸気排出口から放出され、運動エネルギーにより動翼5bが回転してロータシャフト5aを回し、発電機6のロータを回転駆動させ、電力を取り出すようになっている。
FIG. 11 shows an example of a steam turbine as the geothermal turbine 5 used in the geothermal power generation system 1.
The steam turbine 5 is, for example, a well-known axial-flow steam turbine, and the rotor blades 5b on the rotor shaft 5a side and the stationary blades (nozzles) 5d fixed on the casing 5c side alternately oppose each other in multiple stages. Are lined up like this. The rotor of the generator 6 is connected to the rotor shaft 5a. The steam from the separator 3 is introduced from the steam inlet through the first stage stationary blade 5d, passes through the multistage moving blade 5b and the stationary blade 5d while expanding, is discharged from the steam discharge port, and the moving blade 5b is rotated by kinetic energy. Then, the rotor shaft 5a is rotated, the rotor of the generator 6 is rotationally driven, and electric power is taken out.

ところで、生産井から噴出する高温の熱水は、井戸水や河川水よりもカルシウムや溶存シリカを多く含むため、炭酸カルシウムや非晶質シリカなどのスケールを析出しやすい。特に地上部や還元井では、熱水が地上部で温度降下することにより発生するシリカスケールを抑制することが課題である。   By the way, high-temperature hot water ejected from the production well contains more calcium and dissolved silica than well water and river water, and therefore, scales such as calcium carbonate and amorphous silica are easily deposited. Particularly in the above-ground part and the reduction well, it is a problem to suppress the silica scale generated by the temperature drop of the hot water in the above-ground part.

これまで、地熱発電用蒸気タービンのノズル(特に、初段静翼)に付着堆積したスケールを除去するものとしては、たとえば、特許文献1において開示されているものがある。
ここでは、円環状に必要な枚数だけ所定の角度に並べたノズル板のプロファイル内部に貫通した冷却水通路をもち、ノズル板を複数個並べて、全体を数個のブロックを構成させることとし、各ブロックにおいて、冷却水通路を冷却水接続管で接続して連通せしめ、冷却水供給管から冷却水を流し、冷部に、水排水管に戻すような構成としている。
Up to now, as a means for removing the scale deposited on the nozzle (especially the first stage stationary blade) of the steam turbine for geothermal power generation, there is one disclosed in Patent Document 1, for example.
Here, it has a cooling water passage penetrating the inside of the profile of the nozzle plate arranged at a predetermined angle as many as necessary in an annular shape, and a plurality of nozzle plates are arranged so that the whole constitutes several blocks. In the block, the cooling water passages are connected and communicated with each other through a cooling water connecting pipe, and the cooling water is supplied from the cooling water supply pipe and returned to the water drain pipe in the cold part.

また、上述の蒸気タービン5では、蒸気が初段静翼から蒸気排出口寄りの後段側の静翼に膨張しながら流れるにつれ、湿り蒸気として通過するので、後段側の静翼には、湿り蒸気中の水滴により潰食(エロージョン)が生じ、静翼が損傷する。
このようなエロージョンによる損傷を回避するために、本出願人は、例えば特許文献2において開示しているように、動翼および静翼で構成されるタービン段の終段側動翼に湿り蒸気の衝突による腐食を防止するために、渇き蒸気導入管から乾き蒸気を最終段静翼の翼環の環状ポケットに導入するようにしている。
Further, in the steam turbine 5 described above, as the steam flows while expanding from the first stage stationary blade to the rear stage stationary blade near the steam discharge port, it passes as wet steam. The water droplets cause erosion and damage the stationary blade.
In order to avoid such damage due to erosion, the present applicant, for example, disclosed in Patent Document 2, the wet steam is applied to the final stage moving blade of the turbine stage composed of the moving blade and the stationary blade. In order to prevent corrosion due to collision, dry steam is introduced from the thirst steam inlet pipe into the annular pocket of the blade ring of the final stage stationary blade.

特許第3046907号公報Japanese Patent No. 3046907 特開2012−140901号公報JP 2012-140901 A

しかしながら、いずれも蒸気タービンにおける初段静翼の冷却機能および最終段の静翼に対する腐食現象を防止するための機能を兼ね備えたものは、開発されていない。
本発明は、上記背景から提案されたものであって、地熱タービンにおける初段静翼を冷熱媒体との熱交換作用により冷却し、さらに、この初段静翼の冷却に供した冷熱媒体を後段の静翼の加熱用として用いて、初段静翼へのスケール付着防止と共に、後段側の静翼の潰食防止を図った、地熱タービンを提供することを目的とする。
However, none has been developed which has a cooling function for the first stage stationary blade and a function for preventing the corrosion phenomenon of the last stage stationary blade in the steam turbine.
The present invention has been proposed from the above background. The first stage stationary blade in the geothermal turbine is cooled by a heat exchange action with the cooling medium, and the cooling medium used for cooling the first stage stationary blade is further cooled. An object of the present invention is to provide a geothermal turbine that is used for heating a blade and prevents the adhesion of scale to the first stage stationary blade and the erosion of the stationary blade on the rear stage side.

上記課題を解決するために、請求項1にかかる本発明では、ロータシャフトの外周に配置した複数の動翼列と、ロータシャフトを収納するケーシングの内周にそれぞれ翼取付部を介して支持される複数の静翼列とを具備し、動翼列と静翼列とを交互に対向配置してなる、地熱タービンであって、複数の静翼列のうち、初段静翼列を冷熱媒体との熱交換により冷却する冷却部と、初段静翼よりも後段側の静翼列を冷熱媒体との熱交換により加熱する加熱部と、冷却部と加熱部との間を冷熱媒体が循環する冷熱媒体循環部と、を備えることを特徴とする。   In order to solve the above-mentioned problem, in the present invention according to claim 1, a plurality of moving blade rows arranged on the outer periphery of the rotor shaft and an inner periphery of a casing for housing the rotor shaft are respectively supported via blade attachment portions. A geothermal turbine comprising a plurality of stationary blade rows, wherein the moving blade rows and the stationary blade rows are alternately arranged opposite to each other, wherein the first stage stationary blade row of the plurality of stationary blade rows is a cooling medium. A cooling section that cools by heat exchange, a heating section that heats the stationary blade row downstream of the first stage stationary blade by heat exchange with the cooling medium, and a cooling medium in which the cooling medium circulates between the cooling section and the heating section A medium circulation unit.

これにより、初段静翼では冷熱媒体との熱交換により、初段静翼が冷却され、次いで、冷熱媒体との熱交換により温度が上昇した冷熱媒体が後段側の静翼との熱交換により、後段側の静翼は加熱される。
これにより、初段静翼はタービン入口の高温熱が静翼に伝わりにくくしたことでスケールの付着は抑制され、後段側の静翼は加熱されて、湿り蒸気により静翼表面についた水滴を蒸発させて、後段側の動翼にエロージョンの発生が抑制される。
Thereby, in the first stage stationary blade, the first stage stationary blade is cooled by heat exchange with the cooling medium, and then, the cooling medium whose temperature has increased due to heat exchange with the cooling medium is exchanged with the rear stage stationary blade by the heat exchange with the second stage stationary blade. The side vane is heated.
As a result, the high temperature heat at the turbine inlet is not easily transmitted to the stationary blade in the first stage stationary blade, and scale adhesion is suppressed, and the downstream stationary blade is heated and water droplets attached to the surface of the stationary blade are evaporated by wet steam. As a result, the generation of erosion in the rotor blade on the rear stage side is suppressed.

また、請求項2にかかる本発明では、初段静翼列を冷却する冷却部は、初段静翼列におけるそれぞれの静翼内に冷熱媒体が流れる冷熱媒体流路からなる、ことを特徴とする。   Further, the present invention according to claim 2 is characterized in that the cooling section for cooling the first stage stationary blade row includes a cooling medium flow path through which a cooling medium flows in each stationary blade in the first stage stationary blade row.

これにより、初段静翼列におけるそれぞれの静翼内の冷熱媒体流路に、冷熱媒体を流すことで、冷熱媒体が静翼と直接接触し、タービン入口の高温熱を静翼に伝わりにくくすることができる。   As a result, the cooling medium flows through the cooling medium flow path in each stationary blade in the first stage stationary blade row, so that the cooling medium is in direct contact with the stationary blade and makes it difficult for high temperature heat at the turbine inlet to be transmitted to the stationary blade. Can do.

また、請求項3にかかる本発明では、初段静翼列を冷却する冷却部は、初段静翼列を支持する翼取付部の内部に設けられた冷熱媒体流路からなる、ことを特徴とする。   In the present invention according to claim 3, the cooling section for cooling the first stage stationary blade row is composed of a cooling medium flow path provided inside the blade mounting portion that supports the first stage stationary blade row. .

これにより、初段静翼列を支持する翼取付部の内部に設けられた冷熱媒体流路に、冷熱媒体を流すことで静翼が間接的に熱交換により冷却される。   As a result, the stationary blade is indirectly cooled by heat exchange by flowing the cooling medium through the cooling medium flow path provided in the blade attachment portion that supports the first stage stationary blade row.

また、請求項4記載の本発明では、後段側の静翼列を加熱する加熱部は、静翼列におけるそれぞれの静翼内に冷熱媒体が流れる冷熱媒体流路からなる、ことを特徴とする。   In the present invention described in claim 4, the heating unit for heating the stationary blade row on the rear stage side includes a cooling medium flow path through which a cooling medium flows in each stationary blade in the stationary blade row. .

これにより、後段側の静翼内の冷熱媒体流路に冷熱媒体を流すことで、冷熱媒体流路を介して、冷熱媒体と静翼との熱交換作用により、静翼が加熱され、後段側の静翼表面に生じる湿り蒸気による水滴を蒸発させることができ、後段側の動翼にエロージョンが生じるのを阻止することができる。   As a result, the cooling blade is heated by the heat exchange action between the cooling medium and the stationary blade through the cooling medium passage by flowing the cooling medium through the cooling medium passage in the latter stator blade, and the latter side It is possible to evaporate water droplets due to the wet steam generated on the surface of the stationary blades, and to prevent erosion from occurring on the rotor blades on the rear stage side.

さらに、請求項5記載の本発明では、冷熱媒体循環部における冷却部から加熱部に至る冷熱媒体往路に減圧膨張部が介在され、冷却部からの冷熱媒体を減圧して減圧後の冷熱媒体の気相分を加熱部に供給して凝縮させる一方、減圧後の冷熱媒体の液相分を、加熱部から冷却部に至る冷熱媒体復路に合流させるようにした、ことを特徴とする。   Further, in the present invention according to claim 5, the decompression expansion unit is interposed in the cooling medium forward path from the cooling unit to the heating unit in the cooling medium circulation unit, and the cooling medium from the cooling unit is decompressed to reduce the cooling medium after depressurization. The vapor phase component is supplied to the heating unit to be condensed, and the liquid phase component of the chilled heat medium after decompression is joined to the cooling medium return path from the heating unit to the cooling unit.

これにより、初段静翼において熱交換により初段静翼を冷却後、冷熱媒体は、減圧膨張部において減圧膨張される。すると、冷熱媒体は一部が蒸発して気相化する一方、一部は液相状態で加熱部から冷却部に至る冷熱媒体復路に戻される。
加熱部に送り込まれた気相状態の冷熱媒体は凝縮して液相に戻る。加熱部は冷熱媒体の凝縮により熱交換量を増加させることができ、後段側の静翼の加熱を行うことができる。
Thereby, after cooling the first stage stationary blade by heat exchange in the first stage stationary blade, the cooling medium is decompressed and expanded in the decompression and expansion section. Then, a part of the cooling medium evaporates to form a gas phase, while a part is returned to the cooling medium return path from the heating unit to the cooling unit in a liquid phase state.
The cold medium in the gas phase state sent to the heating unit is condensed and returned to the liquid phase. The heating unit can increase the amount of heat exchange by condensing the cooling medium, and can heat the rear stator blade.

本発明によれば、初段静翼において熱交換により初段静翼が冷却されることで、冷熱媒体の熱エネルギーが失われて高温化しても、後段側の静翼との熱交換で静翼を加熱することで、冷熱媒体は再び温度が低下し、この冷熱媒体を初段静翼との熱交換により、初段静翼の冷却に供することができる。
このように、静翼冷却で失われるエネルギーを静翼加熱で還元することができるため、静翼冷却のみを行う手法に比較して、冷却効果の低下を抑制することができる。
さらに静翼加熱のみを行う場合、気相の凝縮により蒸気の低下は避けられないが、初段静翼と後段静翼との冷熱媒体の循環系統としたことで、熱損失が少ないため加熱蒸気を導入する必要がなく、効率に優れる。
According to the present invention, even if the first stage stationary blade is cooled by heat exchange in the first stage stationary blade, even if the heat energy of the cooling medium is lost and the temperature is increased, the stationary blade is removed by heat exchange with the rear stage stationary blade. By heating, the temperature of the cooling medium is lowered again, and this cooling medium can be used for cooling the first stage stationary blade by heat exchange with the first stage stationary blade.
Thus, since the energy lost by stationary blade cooling can be reduced by stationary blade heating, a decrease in cooling effect can be suppressed as compared with a method in which only stationary blade cooling is performed.
In addition, when only the stator blades are heated, the steam is inevitably reduced due to the condensation of the gas phase, but by using a cooling medium circulation system between the first stage stator blades and the rear stage stator blades, heat loss is reduced because there is less heat loss. There is no need to introduce it, and it is highly efficient.

地熱発電システムの一例を示す全体系統説明図である。It is a whole system explanatory view showing an example of a geothermal power generation system. 図1に示す地熱発電システムに用いられる地熱タービンの一例を示す、要部断面説明図である。It is principal part sectional explanatory drawing which shows an example of the geothermal turbine used for the geothermal power generation system shown in FIG. 図2に示す地熱タービンに設けられる、第1実施形態を示す、初段静翼の冷却部と後段側静翼の加熱部と、これら冷却部と加熱部との間を冷熱媒体を循環させる冷熱媒体循環部の系統図と、初段静翼および動翼の拡大図である。The first embodiment of the cooling unit of the first stage stationary blade and the heating unit of the rear stage stationary blade, and the cooling medium that circulates the cooling medium between the cooling unit and the heating unit, which is provided in the geothermal turbine shown in FIG. It is the systematic diagram of a circulation part, and the enlarged view of a first stage stationary blade and a moving blade. 図2に示すA−A線に沿って切断した、初段静翼と初段静翼を支える翼取付部の一例を示す、模式的な切断矢視図である。It is a typical cutting arrow line view which shows an example of the blade | wing attachment part which supports the first stage stationary blade and the first stage stationary blade cut | disconnected along the AA line shown in FIG. 第2実施形態を示す、初段静翼の冷却部と後段側静翼の加熱部と、これら冷却部と加熱部との間を冷熱媒体を循環させる冷熱媒体循環部の模式的な系統図である。FIG. 4 is a schematic system diagram of a cooling unit of a first stage stationary blade and a heating unit of a rear stage stationary blade, and a cooling medium circulation unit that circulates a cooling medium between the cooling unit and the heating unit, showing a second embodiment. . 第3実施形態を示す、初段静翼の冷却部と後段側静翼の加熱部と、これら冷却部と加熱部との間を冷熱媒体を循環させる冷熱媒体循環部の模式的な系統図である。FIG. 5 is a schematic system diagram of a cooling unit for a first stage stationary blade and a heating unit for a rear stage stationary blade, and a cooling medium circulation unit that circulates a cooling medium between the cooling unit and the heating unit, showing a third embodiment. . 第4実施形態を示す、初段静翼の冷却部と後段側静翼の加熱部と、これら冷却部と加熱部との間を冷熱媒体を循環させる冷熱媒体循環部の模式的な系統図である。FIG. 10 is a schematic system diagram of a cooling unit of a first stage stationary blade and a heating unit of a rear stage stationary blade, and a cooling medium circulation unit that circulates a cooling medium between the cooling unit and the heating unit, showing a fourth embodiment. . 第5実施形態を示す、初段静翼の冷却部と後段側静翼の加熱部と、これら冷却部と加熱部との間を冷熱媒体を循環させる冷熱媒体循環部の模式的な系統図である。FIG. 10 is a schematic system diagram of a cooling unit of a first stage stationary blade and a heating unit of a rear stage stationary blade, and a cooling medium circulation unit that circulates a cooling medium between the cooling unit and the heating unit, showing a fifth embodiment. . 第6実施形態を示す、初段静翼の冷却部と後段側静翼の加熱部と、これら冷却部と加熱部との間を冷熱媒体を循環させる冷熱媒体循環部の模式的な系統図である。FIG. 10 is a schematic system diagram of a cooling unit for a first stage stationary blade and a heating unit for a rear stage stationary blade, and a cooling medium circulation unit that circulates a cooling medium between the cooling unit and the heating unit, showing a sixth embodiment. . 従来の地熱発電システムの一例を示す、概略系統説明図である。It is a schematic system explanatory drawing which shows an example of the conventional geothermal power generation system. 図10に示す地熱発電システムに用いられる地熱タービンの一例を示した、要部断面図である。It is principal part sectional drawing which showed an example of the geothermal turbine used for the geothermal power generation system shown in FIG.

以下、本発明にかかる実施形態について図面を用いて詳細に説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対位置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, and the like of the components described in the following embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely descriptions. It is just an example.

図1に、本発明にかかる地熱タービンが用いられる地熱発電システム10の一実施形態を挙げ、添付の図面に基づいて説明する。
この地熱発電システム10は、地下深部の熱源により高温高圧の熱水を発生する生産井11と、高温高圧の熱水を地上まで導いて沸騰した熱水を、蒸気と分離させるセパレータ12と、セパレータ12で分離された熱水を戻す還元井13と、分離された蒸気により作動する地熱タービン14と、地熱タービン14に接続された発電機15と、地熱タービン14を通過した蒸気を温水化する復水器16と、温水を冷却する冷却塔17とを具備する。
FIG. 1 shows an embodiment of a geothermal power generation system 10 in which a geothermal turbine according to the present invention is used, and a description will be given based on the attached drawings.
This geothermal power generation system 10 includes a production well 11 that generates high-temperature and high-pressure hot water from a deep heat source, a separator 12 that separates the hot water boiled by guiding the high-temperature and high-pressure hot water to the ground, a separator, The reduction well 13 that returns the hot water separated in 12, the geothermal turbine 14 that is operated by the separated steam, the generator 15 that is connected to the geothermal turbine 14, and the recovery that warms the steam that has passed through the geothermal turbine 14. The water device 16 and the cooling tower 17 which cools warm water are provided.

生産井11からセパレータ12へは、熱水取出し流路18を通じて熱水が取り出される。熱水取出し流路18には流量調節弁19が介在される。   Hot water is taken out from the production well 11 to the separator 12 through the hot water outlet passage 18. A flow rate adjusting valve 19 is interposed in the hot water outlet channel 18.

セパレータ12は例えばサイクロン型気水分離器であり、セパレータ容器上部側に蒸気、容器下部側に熱水を集めることで熱水から蒸気を分離するようにしている。セパレータ12で分離された蒸気は蒸気流路20を通じて地熱タービン14に送り込まれるようになっている。
なお、セパレータ12の容器下部側に集められた熱水は、還流路21を通じて還元井13に戻されるようになっている。
The separator 12 is, for example, a cyclone type steam / water separator, and steam is separated from hot water by collecting steam on the upper side of the separator container and hot water on the lower side of the container. The steam separated by the separator 12 is sent to the geothermal turbine 14 through the steam flow path 20.
The hot water collected on the container lower side of the separator 12 is returned to the reduction well 13 through the reflux path 21.

地熱タービン14は、詳細は後述するが、例えば周知の軸流式蒸気タービン14が可能である。   Although the details of the geothermal turbine 14 will be described later, for example, a well-known axial flow steam turbine 14 can be used.

復水器16は、地熱タービン14を通過した蒸気を凝縮して温水化するもので、ここでは復水器16は、蒸気を凝縮するために冷却塔17で冷却された水を用いるようにしている。   The condenser 16 condenses the steam that has passed through the geothermal turbine 14 and warms it up. Here, the condenser 16 uses water cooled by the cooling tower 17 to condense the steam. Yes.

冷却塔17には、復水器16からの温水が、復水流路22を通じて介在されるポンプ23により導入されるようになっている。
冷却塔17は、復水器16からの温水を、冷却塔17内で送風機24により強制的に送り込んだ外気と接触させて冷却するようにしている。このとき、復水は一部が蒸発することで、蒸発潜熱で温水は、さらに効果的に冷却される。
Hot water from the condenser 16 is introduced into the cooling tower 17 by a pump 23 interposed through the condensate flow path 22.
The cooling tower 17 cools the hot water from the condenser 16 by bringing it into contact with the outside air that is forcibly sent by the blower 24 in the cooling tower 17. At this time, part of the condensate is evaporated, so that the warm water is further effectively cooled by the latent heat of vaporization.

次に、地熱タービン14について、図2に要部を示し、以下、説明する。
地熱タービン14は、ロータシャフト25側に突設された動翼26とケーシング27側に、翼取付部27bを介して固定された静翼28とが、多段的に交互に対向するように列設される構成としている。なお、動翼26は、ロータシャフト25の周方向に複数列設されて動翼列を構成し、また静翼28はケーシング27の内周側に翼取付部27bを介して周方向に複数列設されて静翼列を構成している。そして図2では、動翼26及び静翼28は、それぞれ動翼列、静翼例の一部として示している。そこで、以下、動翼列、静翼例をそれぞれ動翼26及び静翼28として説明する。
かかる地熱タービン14において、蒸気は、蒸気入口29から、静翼28のうち、蒸気入口29寄りの初段静翼28aを通じて導入され、多段の動翼26、静翼28間を通過して蒸気排出口(図示省略)から放出される構成としている。
Next, the main part of the geothermal turbine 14 will be described with reference to FIG.
The geothermal turbine 14 is arranged in a row such that the moving blades 26 projecting on the rotor shaft 25 side and the stationary blades 28 fixed on the casing 27 side via the blade mounting portions 27b alternately face each other in multiple stages. It is assumed to be configured. The moving blades 26 are arranged in a plurality of rows in the circumferential direction of the rotor shaft 25 to form a moving blade row, and the stationary blades 28 are arranged in a plurality of rows in the circumferential direction on the inner peripheral side of the casing 27 via the blade mounting portions 27b. It is installed and constitutes a stationary blade row. In FIG. 2, the moving blade 26 and the stationary blade 28 are shown as a part of the moving blade row and the stationary blade example, respectively. Therefore, hereinafter, examples of the moving blade row and the stationary blade will be described as the moving blade 26 and the stationary blade 28, respectively.
In the geothermal turbine 14, the steam is introduced from the steam inlet 29 through the first stage stationary blade 28 a near the steam inlet 29 among the stationary blades 28, passes between the multistage moving blades 26 and the stationary blades 28, and is a steam discharge port. It is configured to be released from (not shown).

(第1実施形態)
以上のような地熱タービン14は、図3に示すように、初段静翼28aと、初段静翼28aよりも後段側の静翼28e(以下、後段静翼28e)との間で冷熱媒体を循環させる冷熱媒体循環部30を備える。
すなわち、地熱タービン14は、初段静翼28aに冷熱媒体との熱交換により冷却する冷却部31を備える。
また、初段静翼28aよりも後段静翼28eを冷熱媒体との熱交換により加熱する加熱部32を備える。
さらに、冷熱媒体循環部30は、初段静翼28aにおける冷却部31から後段静翼28eにおける加熱部32まで冷熱媒体を流す冷熱媒体往路30aと、後段静翼28eにおける加熱部32から初段静翼28aにおける冷却部31まで戻す、冷熱媒体復路30bとを有し、冷熱媒体復路30bには、冷熱媒体を強制的に循環させるポンプ33が介在されている。
(First embodiment)
As shown in FIG. 3, the geothermal turbine 14 as described above circulates a cooling medium between the first stage stationary blades 28a and the stationary blades 28e on the rear side of the first stage stationary blades 28a (hereinafter, the rear stage stationary blades 28e). A cooling medium circulating unit 30 is provided.
That is, the geothermal turbine 14 includes a cooling unit 31 that cools the first stage stationary blade 28a by heat exchange with a cooling medium.
Further, a heating unit 32 is provided that heats the rear stage stationary blade 28e by heat exchange with the cooling medium rather than the first stage stationary blade 28a.
Further, the cooling medium circulation unit 30 includes a cooling medium forward path 30a through which a cooling medium flows from the cooling unit 31 in the first stage stationary blade 28a to the heating unit 32 in the rear stage stationary blade 28e, and the first stage stationary blade 28a from the heating unit 32 in the rear stage stationary blade 28e. And a cooling medium return path 30b for returning to the cooling unit 31 in the above. A cooling medium forcibly circulating the cooling medium is interposed in the cooling medium return path 30b.

初段静翼28aを冷却する冷却部31は、初段静翼28aを支持する翼取付部27bの内部に設けられた冷熱媒体流路として、例えば連続的に周回する環状冷却部40が設けられる(図2、図3、図4参照)。
ここでは、翼取付部27bはケーシング27の内周に固定された、ケーシング27とは別部材で構成される環状の外輪27bからなる。外輪27bの内部には環状冷却部40が設けられている。
また、外輪27bに支持される初段静翼列28aの内周側には内輪27iが設けられている。
そして、環状冷却部40は外輪27bに同心円状に、一回り周回する外輪環状冷却部40pとして構成されている。また、かかる外輪環状冷却部40pは、所定の位置に互いに近接配置した入口40pin、出口40poutを介して冷却水を冷熱媒体循環部30と循環させるようにしている。
The cooling section 31 that cools the first stage stationary blade 28a is provided with, for example, an annular cooling section 40 that continuously circulates as a cooling medium flow path provided inside the blade attachment section 27b that supports the first stage stationary blade 28a (see FIG. 2, see FIG. 3 and FIG.
Here, the blade attachment portion 27 b is composed of an annular outer ring 27 b that is fixed to the inner periphery of the casing 27 and is formed of a member different from the casing 27. An annular cooling unit 40 is provided inside the outer ring 27b.
An inner ring 27i is provided on the inner peripheral side of the first stage stationary blade row 28a supported by the outer ring 27b.
And the annular cooling part 40 is comprised as the outer ring | wheel annular cooling part 40p which carries out one turn around concentric with the outer ring | wheel 27b. In addition, the outer ring annular cooling unit 40p is configured to circulate cooling water with the cooling medium circulation unit 30 through an inlet 40pin and an outlet 40pout that are arranged close to each other at predetermined positions.

以上のような初段静翼28aを冷却する冷却部31において、蒸気入口29からの蒸気(例えば200℃以上)が接触通過することで加熱される初段静翼28aを、翼取付部27bにおける環状冷却部40に冷却水を流すことで熱交換により間接的に冷却するようにしている。
すなわち初段静翼28aでは、タービン入口の高温熱によって高温化して乾湿が繰り返されることでスケールが生成されるので、初段静翼28aを冷却することで、初段静翼28aの乾湿繰返しを阻止して、初段静翼28aにスケールが生成されるのを防止するようにしている。
In the cooling unit 31 that cools the first-stage stationary blade 28a as described above, the first-stage stationary blade 28a that is heated when steam (for example, 200 ° C. or more) from the steam inlet 29 passes through the ring is cooled in the blade mounting portion 27b. Cooling is performed indirectly by heat exchange by flowing cooling water through the portion 40.
That is, in the first stage stationary blade 28a, the scale is generated by increasing the temperature by the high temperature heat at the turbine inlet and repeating the drying and wetting. Therefore, by cooling the first stage stationary blade 28a, the repeated drying and wetting of the first stage stationary blade 28a is prevented. The scale is prevented from being generated on the first stage stationary blade 28a.

次に、後段静翼28eにおける加熱部32について説明する。
後段静翼28eにおける加熱部32は、後段静翼28e内が穿孔され、冷熱媒体が流れる冷熱媒体流路34が設けられている。この冷熱媒体流路34は、後段静翼28e内を図中、上下方向に貫通する一対の貫通路34d、34uとなっている。後段静翼28e内を上下方向に、冷熱媒体が出入りすることで、直接、後段静翼28eとの熱交換性を高めている。
Next, the heating unit 32 in the rear stage stationary blade 28e will be described.
The heating unit 32 in the rear stage stationary blade 28e is provided with a cooling medium flow path 34 in which the inside of the rear stage stationary blade 28e is perforated and the cooling medium flows. The cooling medium flow passage 34 is a pair of through passages 34d and 34u penetrating through the rear stationary blade 28e in the vertical direction in the drawing. The heat exchange property with the rear stationary blade 28e is directly enhanced by the cooling medium entering and exiting the rear stationary blade 28e in the vertical direction.

第1実施形態にかかる地熱タービン14は以上のとおりであり、次にその動作、作用を説明する。
図1に示す地熱発電システム10において、セパレータ12からの蒸気は、地熱タービン14の蒸気入口29から初段静翼28aを通じて導入され、多段の動翼26、静翼28間を膨張しながら通過して蒸気排出口から放出され、運動エネルギーにより動翼26が回転してロータシャフト25を回し、発電機15のロータを回転駆動させ、電力を取り出すことができる。
The geothermal turbine 14 according to the first embodiment is as described above. Next, the operation and action will be described.
In the geothermal power generation system 10 shown in FIG. 1, the steam from the separator 12 is introduced from the steam inlet 29 of the geothermal turbine 14 through the first stage stationary blade 28 a and passes between the multistage moving blade 26 and the stationary blade 28 while expanding. It is discharged from the steam discharge port, and the rotor blades 26 are rotated by the kinetic energy to rotate the rotor shaft 25, and the rotor of the generator 15 is rotationally driven to extract electric power.

セパレータ12からの蒸気が、地熱タービン14の蒸気入口から初段静翼28aを通じて導入される際、蒸気は、略200℃程の高温高圧となっている。
かかる蒸気が初段静翼28aおよび動翼26間から、順次後方の静翼28、動翼26間を進行するうちに膨張して熱エネルギーが運動エネルギーに変換され、蒸気は、蒸気排出口近傍の後段静翼28eに至るときは、略70℃前後の低温蒸気となる。係る低温蒸気は、膨張した結果、低圧化するため、湿度が上昇し(略16%)、後段静翼28eを通過することで、後段静翼28e表面に結露する。
When the steam from the separator 12 is introduced from the steam inlet of the geothermal turbine 14 through the first stage stationary blade 28a, the steam has a high temperature and high pressure of about 200 ° C.
The steam expands as it progresses between the first stage stationary blade 28a and the moving blade 26 and sequentially between the rear stationary blade 28 and the moving blade 26, and heat energy is converted into kinetic energy. When it reaches the rear stationary blade 28e, it becomes a low temperature steam of about 70 ° C. As the low temperature steam expands to a low pressure as a result of the expansion, the humidity rises (approximately 16%) and passes through the rear stage stationary blade 28e, resulting in condensation on the surface of the rear stage stationary blade 28e.

初段静翼28aにおける冷却部31には、冷熱媒体循環部30の冷熱媒体復路30bを通じて、冷熱媒体がポンプ33の作用下に送り込まれ、最も温度が高い、地熱タービン14の蒸気入口29に近接した位置に配置した入口40pinを介して外輪27bの外輪環状冷却部40pに流入する。
この場合、外輪環状冷却部40pは、外輪27bの周方向に、一回り周回する冷却水管30pとして構成されているため、間接的ではあるが、外輪27bの内側に支持された初段静翼28aとの間で満遍なく熱交換がなされ、初段静翼28aが乾かないように、蒸気入口の高温熱が初段静翼28aに伝わりにくいように初段静翼28aを冷却して、乾湿繰返しを防止することができる。
The cooling medium 31 in the first stage stationary blade 28a is sent to the cooling medium 31 through the cooling medium return path 30b of the cooling medium circulation section 30 under the action of the pump 33, and close to the steam inlet 29 of the geothermal turbine 14 having the highest temperature. It flows into the outer ring annular cooling part 40p of the outer ring 27b through the inlet 40pin arranged at the position.
In this case, since the outer ring annular cooling portion 40p is configured as a cooling water pipe 30p that circulates once in the circumferential direction of the outer ring 27b, the first-stage stationary blade 28a supported inside the outer ring 27b is indirect. The first stage vane 28a is cooled so that the high temperature heat at the steam inlet is not easily transmitted to the first stage vane 28a so that the heat exchange is performed uniformly between the two, and the first stage vane 28a does not dry. it can.

初段静翼28aにおける冷却部31において、熱交換がなされ、冷却部31から流出した冷熱媒体は、初段静翼28aから奪った熱で、温度が上昇し、冷熱媒体循環部30の冷熱媒体往路30aを通じて後段静翼28eの加熱部32にまでもたらされる。
後段静翼28eの加熱部32に冷熱媒体がもたらされると、冷熱媒体は貫通路34d、34uを通じて上下方向に出入りすることで、直接、後段静翼28eと熱交換を行うことができる。
ここで、後段静翼28eの表面には、低温蒸気により水滴が付いているが、直接、冷熱媒体と熱交換を行うことで冷熱媒体からの熱を受け、加熱される。これにより、後段静翼28eの表面から水滴を蒸発させることができ、湿り気による、動翼エロージョン等が生じることを回避することができる。
In the cooling section 31 of the first stage stationary blade 28a, heat exchange is performed, and the temperature of the cooling medium flowing out from the cooling section 31 is increased by the heat taken from the first stage stationary blade 28a, and the cooling medium circulation path 30a of the cooling medium circulation section 30 is heated. To the heating section 32 of the rear stationary blade 28e.
When a cooling medium is provided to the heating unit 32 of the rear stationary blade 28e, the cooling medium enters and exits in the vertical direction through the through passages 34d and 34u, so that heat exchange with the rear stationary blade 28e can be performed directly.
Here, water droplets are attached to the surface of the rear stationary vane 28e by low-temperature steam, but heat is directly received from the cold medium by heat exchange with the cold medium and heated. As a result, water droplets can be evaporated from the surface of the rear stationary blade 28e, and occurrence of moving blade erosion or the like due to moisture can be avoided.

以上のように、本実施形態によれば、また、初段静翼28aにおいて熱交換により初段静翼28aが冷却されることで、冷熱媒体の熱エネルギーが失われて高温化しても、後段側の静翼28eとの熱交換で静翼28eを加熱することで、冷熱媒体は再び温度が低下し、この冷熱媒体を初段静翼28aとの熱交換により、初段静翼28aの冷却に供することができる。
このように、静翼冷却で失われるエネルギーを静翼加熱で還元することができるため、静翼冷却のみを行う手法に比較して、冷却効果の低下を抑制することができる。
さらに静翼加熱のみを行う場合、気相の凝縮により蒸気の低下は避けられないが、初段静翼28aと後段静翼28eとの冷熱媒体の循環系統としたことで、熱損失が少ないため加熱蒸気を導入する必要がなく、高効率を確保することができる。
As described above, according to the present embodiment, the first stage vane 28a is cooled by heat exchange in the first stage vane 28a, so that even if the heat energy of the cooling medium is lost and the temperature rises, By heating the stationary blade 28e by heat exchange with the stationary blade 28e, the temperature of the cooling medium decreases again, and this cooling medium can be used for cooling the first-stage stationary blade 28a by heat exchange with the first-stage stationary blade 28a. it can.
Thus, since the energy lost by stationary blade cooling can be reduced by stationary blade heating, a decrease in cooling effect can be suppressed as compared with a method in which only stationary blade cooling is performed.
Furthermore, in the case where only the stationary blade heating is performed, the steam is inevitably lowered due to the condensation of the gas phase. However, since the cooling medium circulation system of the first stage stationary blade 28a and the rear stage stationary blade 28e is used, the heat loss is reduced. It is not necessary to introduce steam, and high efficiency can be ensured.

(第2実施形態)
本発明は、以下の第2実施形態によっても実施することができる。
第2実施形態では、図5に示すように、初段静翼28aにおける冷却部31は、後段静翼28eの加熱部32同様、初段静翼28a内に冷熱媒体が流れる冷熱媒体流路35からなる。
この冷熱媒体流路35は、初段静翼28a内を図中、上下方向に貫通する一対の貫通路35d、35uとなっている。初段静翼28a内を上下方向に、冷熱媒体が出入りすることで、直接、初段静翼28aとの熱交換を行っている。
なお、この他、冷熱媒体循環部30としては、第1実施形態と実質的に変わらず、同様の効果を奏することができる。
(Second Embodiment)
The present invention can also be implemented by the following second embodiment.
In the second embodiment, as shown in FIG. 5, the cooling unit 31 in the first stage stationary blade 28a includes a cooling medium flow path 35 through which the cooling medium flows in the first stage stationary blade 28a, like the heating unit 32 of the rear stage stationary blade 28e. .
The cooling medium passage 35 is a pair of through passages 35d and 35u penetrating in the first stage stationary blade 28a in the vertical direction in the drawing. Heat exchange with the first stage stationary blade 28a is directly performed by the cooling medium flowing in and out of the first stage stationary blade 28a in the vertical direction.
In addition, the cooling medium circulating unit 30 is not substantially different from the first embodiment, and can provide the same effects.

これにより、初段静翼28aにおけるそれぞれの静翼28a内の冷熱媒体流路35に、冷熱媒体を流すことで、冷熱媒体が静翼28aと直接接触し、タービン入口の高温熱を静翼28aに伝わりにくくすることができる。   As a result, by flowing the cooling medium through the cooling medium flow path 35 in each stationary blade 28a in the first stage stationary blade 28a, the cooling medium directly contacts the stationary blade 28a, and the high temperature heat at the turbine inlet is transferred to the stationary blade 28a. It can be difficult to communicate.

(第3実施形態)
本発明は、図6に示すように実施することもできる。
この場合の地熱タービン14では、初段静翼28aにおける冷却部31から後段静翼28eにおける加熱部32に至る、冷熱媒体循環部30の冷熱媒体往路30aに減圧膨張部50(フラッシャー50)が介在されている。
フラッシャー50は、詳細な構造は省略するが、初段静翼28aにおける冷却部31において、初段静翼28aとの熱交換に供され、温度が上昇した高圧の冷却水を、減圧膨張させ、一部を蒸気化させる機能のものである。そしてこの蒸気化された冷却水は、後段静翼28eにおける加熱部32に送られ、加熱部32に送り込まれた気相状態の冷熱媒体と後段静翼28eとで直接熱交換を行うようにしている。
(Third embodiment)
The present invention can also be implemented as shown in FIG.
In the geothermal turbine 14 in this case, the decompression expansion unit 50 (flasher 50) is interposed in the cooling medium forward path 30a of the cooling medium circulation unit 30 from the cooling unit 31 in the first stage stationary blade 28a to the heating unit 32 in the rear stage stationary blade 28e. ing.
Although the detailed structure of the flasher 50 is omitted, the cooling unit 31 of the first stage stationary blade 28a is subjected to heat exchange with the first stage stationary blade 28a, and the high-pressure cooling water whose temperature has risen is decompressed and expanded. It has a function to vaporize the water. Then, the vaporized cooling water is sent to the heating unit 32 in the rear stage stationary blade 28e, and heat exchange is directly performed between the rear-stage stationary blade 28e and the gas phase state cooling medium sent to the heating unit 32. Yes.

また、フラッシャー50は、減圧後の冷熱媒体の液相分を、加熱部32から冷却部31に至る冷熱媒体復路30bに戻すように、冷熱媒体復路30bに連結されている。   The flasher 50 is connected to the cooling medium return path 30b so as to return the liquid phase component of the cooling medium after decompression to the cooling medium return path 30b from the heating section 32 to the cooling section 31.

以上のような第3実施形態によれば、初段静翼28aにおいて熱交換により初段静翼28aを冷却後、冷熱媒体は、フラッシャー50において減圧膨張される。すると、冷熱媒体は一部が蒸発して気相化する一方、一部は液相状態で加熱部32から冷却部31に至る冷熱媒体復路30bに戻される。
加熱部32に送り込まれた気相状態の冷熱媒体は、後段静翼28eの貫通路34d、34uを通じて上下方向に後段静翼28eに出入りすることで、直接、後段静翼28eと熱交換を行うことができ、蒸発潜熱により凝縮することで、凝縮熱を放出し、後段静翼28eを加熱することができる。
加熱部32における熱交換後は、冷熱媒体は液相に戻り、フラッシャー50から戻された液相状態の冷熱媒体と冷熱媒体復路30bにおいて合流し、ポンプ33により、初段静翼28aにおける冷却部31に戻すことができ、再び、初段静翼28aとの熱交換に供される。
According to the third embodiment as described above, the cooling medium is decompressed and expanded in the flasher 50 after the first stage vane 28a is cooled by heat exchange in the first stage vane 28a. Then, a part of the cooling medium evaporates to form a gas phase, while a part thereof is returned to the cooling medium return path 30b from the heating unit 32 to the cooling unit 31 in a liquid phase state.
The gas-phase state cooling medium sent to the heating unit 32 directly exchanges heat with the rear stage stationary blade 28e by entering and exiting the rear stage stationary blade 28e in the vertical direction through the through passages 34d and 34u of the rear stage stationary blade 28e. By condensing with the latent heat of vaporization, the heat of condensation can be released and the rear stationary blade 28e can be heated.
After the heat exchange in the heating unit 32, the cooling medium returns to the liquid phase and merges with the cooling medium in the liquid phase returned from the flasher 50 in the cooling medium return path 30 b, and is cooled by the cooling unit 31 in the first stage stationary blade 28 a by the pump 33. Then, it is again subjected to heat exchange with the first stage stationary blade 28a.

このように、第3実施形態では、フラッシャー50において減圧膨張によって一部が蒸発して気相化した冷熱媒体を、加熱部32との熱交換に供することで、冷熱媒体を蒸発潜熱を利用して凝縮させることで、熱交換量を増加させることができ、後段側静翼28eの効率的な加熱を行うことができる。
以上のように構成することで、タービン内圧力が高い初段静翼28aと、圧力が低下している後段静翼28e、最終段付近に対応して、閉サイクルの圧力を調整することができるため、漏れや吸込み等のリスクを低減することができ、信頼性が向上する。
As described above, in the third embodiment, the cooling medium partially vaporized by the expansion under reduced pressure in the flasher 50 is subjected to heat exchange with the heating unit 32, so that the cooling medium is made use of latent heat of evaporation. By condensing, the amount of heat exchange can be increased, and the rear stage stationary blade 28e can be efficiently heated.
By configuring as described above, it is possible to adjust the pressure of the closed cycle corresponding to the first stage stationary blade 28a having a high turbine internal pressure, the rear stage stationary blade 28e having a decreased pressure, and the vicinity of the final stage. Risks such as leakage and suction can be reduced, and reliability is improved.

(第4実施形態)
本発明は、図7に示すように実施することもできる。
この第4実施形態では、第3実施形態におけるフラッシャー50を省いても、熱交換により、冷却と加熱を可能とするために、冷熱媒体循環部30の冷熱媒体往路30aに流す冷熱媒体が気液二相流(飽和蒸気)となるように冷熱媒体を選定している。冷熱媒体は、使用される地熱タービン14の規格、その他種々の配管、仕様に対応して温度、圧力を調整するとよい。
また、冷熱媒体が気液二相流となるようにするためには、運転状態(出力)を加減することでも実現可能である。すなわち、設計点(100%の負荷運転)において、冷熱媒体が単相であっても、部分負荷運転(例えば出力50%)とすることで二相流となる可能性がある。
(Fourth embodiment)
The present invention can also be implemented as shown in FIG.
In the fourth embodiment, even if the flasher 50 in the third embodiment is omitted, in order to enable cooling and heating by heat exchange, the cooling medium flowing through the cooling medium circulation path 30a of the cooling medium circulation unit 30 is a gas-liquid. The cooling medium is selected so that it becomes a two-phase flow (saturated steam). The temperature and pressure of the cooling medium may be adjusted in accordance with the standard of the geothermal turbine 14 used and other various piping and specifications.
Moreover, in order to make a cooling-heat medium become a gas-liquid two-phase flow, it is realizable also by adjusting operation state (output). That is, at the design point (100% load operation), even if the cooling medium is a single phase, there is a possibility of a two-phase flow by setting the partial load operation (for example, output 50%).

冷熱媒体が気液二相流となるように用いれば、潜熱加熱による高速且つ均一な加熱が期待できる。ただし、乾き度の高い状態で使用しなければ加熱効率が低下すること、配管抵抗等の圧力損失で圧力が低下した場合に、温度も下がってしまうことから注意を要する。   If the cooling medium is used in a gas-liquid two-phase flow, high-speed and uniform heating by latent heat heating can be expected. However, care must be taken because the heating efficiency will be reduced if not used in a dry state, and the temperature will drop if the pressure drops due to pressure loss such as piping resistance.

以上、本発明にかかる地熱タービンについて、第1〜第4実施形態を挙げ、それぞれ詳細に作用効果を説明した。
本発明にかかる地熱タービンは、第1〜第4実施形態に限られるものではない。
例えば、図8に示すように、冷熱媒体として気相、すなわち空気等の気体も可能である。この場合、冷熱媒体循環部30の冷熱媒体復路30bに、ファンFが介在される。ただし、冷熱媒体に気体を用いることは熱交換効率が他の冷熱場合に比較して低い。
また、図9に示すように、冷熱媒体として水などの液体や低沸点媒体も考えられる。低沸点媒体とは、例えばイソブタン,フロン,又はアンモニア+水の混合がある。
低沸点媒体を用いることにより、冷熱媒体循環部30の密封構造さえ確保できれば、冷熱媒体は、水に比べて低温であっても沸騰して蒸気化するため、より効率的な熱交換が期待できる。
As mentioned above, about the geothermal turbine concerning this invention, 1st-4th embodiment was mentioned and the effect was demonstrated in detail, respectively.
The geothermal turbine according to the present invention is not limited to the first to fourth embodiments.
For example, as shown in FIG. 8, the cooling medium can be a gas phase, that is, a gas such as air. In this case, the fan F is interposed in the cooling medium return path 30 b of the cooling medium circulation unit 30. However, the use of gas for the cooling medium has a low heat exchange efficiency compared to other cooling cases.
Further, as shown in FIG. 9, a liquid such as water or a low boiling point medium can be considered as the cooling medium. Examples of the low boiling point medium include a mixture of isobutane, chlorofluorocarbon, or ammonia + water.
By using a low-boiling point medium, as long as the sealing structure of the cooling medium circulating unit 30 can be secured, the cooling medium boils and vaporizes even at a lower temperature than water, so that more efficient heat exchange can be expected. .

本発明は、様々な規模の、さらには、様々な方式の地熱タービンに適用可能である。
また、本発明における地熱タービンは、地熱発電用のタービンに係わらず、タービン作動条件が変化する製品(例えばターボチャージャのタービン、水中航走体に用いられるタービン)等に適用可能である。
The present invention is applicable to geothermal turbines of various scales and of various systems.
Further, the geothermal turbine in the present invention can be applied to products whose turbine operating conditions change regardless of the turbine for geothermal power generation (for example, a turbocharger turbine, a turbine used in an underwater vehicle).

14 地熱タービン
23 ポンプ
25 ロータシャフト
26 動翼
27 ケーシング
27b翼取付部(外輪)
27i内輪
28 静翼
28a初段静翼
29 蒸気入口
30 冷熱媒体循環部
30a冷熱媒体往路
30b冷熱媒体復路
31 冷却部
32 加熱部
33 ポンプ
34、35 冷熱媒体流路
34d、34u、35d、35u 貫通路
40 環状冷却部
40p 外輪環状冷却部
40pin 入口管
40pout 出口管
50 フラッシャー
F ファン
14 Geothermal turbine 23 Pump 25 Rotor shaft 26 Rotor blade 27 Casing 27b Blade attachment part (outer ring)
27i Inner ring 28 Stator blade 28a First stage stator blade 29 Steam inlet 30 Cooling medium circulating section 30a Cooling medium forward path 30b Cooling medium return path 31 Cooling section 32 Heating section 33 Pump 34, 35 Cooling medium flow paths 34d, 34u, 35d, 35u Through-path 40 Annular cooling part 40p Outer ring annular cooling part 40pin Inlet pipe 40pout Outlet pipe 50 Flasher F Fan

Claims (5)

ロータシャフトの外周に配置した複数の動翼列と、前記ロータシャフトを収納するケーシングの内周にそれぞれ翼取付部を介して支持される複数の静翼列とを具備し、前記動翼列と静翼列とを交互に対向配置してなる、地熱タービンであって、
前記複数の静翼列のうち、初段静翼列を冷熱媒体との熱交換により冷却する冷却部と、
前記初段静翼よりも後段側の静翼列を前記冷熱媒体との熱交換により加熱する加熱部と、
前記冷却部と前記加熱部との間を冷熱媒体が循環する冷熱媒体循環部と、
を備えたことを特徴とする地熱タービン。
A plurality of moving blade rows arranged on the outer periphery of the rotor shaft, and a plurality of stationary blade rows supported on the inner periphery of a casing that houses the rotor shaft via blade attachment portions, A geothermal turbine having stationary blade rows alternately arranged,
Among the plurality of stationary blade rows, a cooling unit that cools the first-stage stationary blade row by heat exchange with a cooling medium;
A heating unit that heats the stationary blade row on the rear stage side of the first stage stationary blade by heat exchange with the cooling medium;
A cooling medium circulating section in which a cooling medium circulates between the cooling section and the heating section;
A geothermal turbine characterized by comprising:
前記初段静翼列を冷却する冷却部は、前記初段静翼列におけるそれぞれの静翼内に前記冷熱媒体が流れる冷熱媒体流路からなる、ことを特徴とする請求項1記載の地熱タービン。   2. The geothermal turbine according to claim 1, wherein the cooling unit that cools the first stage stationary blade row includes a cooling medium flow path through which the cooling medium flows in each stationary blade in the first stage stationary blade row. 前記初段静翼列を冷却する冷却部は、前記初段静翼列を支持する翼取付部の内部に設けられた冷熱媒体流路からなる、ことを特徴とする請求項1記載の地熱タービン。   The geothermal turbine according to claim 1, wherein the cooling unit that cools the first stage stationary blade row includes a cooling medium flow path provided inside a blade attachment portion that supports the first stage stationary blade row. 前記後段側の静翼列を加熱する加熱部は、前記静翼列におけるそれぞれの静翼内に前記冷熱媒体が流れる冷熱媒体流路からなる、ことを特徴とする請求項1記載の地熱タービン。   2. The geothermal turbine according to claim 1, wherein the heating unit that heats the rear-stage stationary blade row includes a cooling medium flow path through which the cooling medium flows in each stationary blade in the stationary blade row. 前記冷熱媒体循環部における前記冷却部から前記加熱部に至る冷熱媒体往路に減圧膨張部が介在され、前記冷却部からの冷熱媒体を減圧して減圧後の冷熱媒体の気相分を前記加熱部に供給して凝縮させる一方、減圧後の冷熱媒体の液相分を、前記加熱部から前記冷却部に至る冷熱媒体復路に合流させるようにした、ことを特徴とする請求項1記載の地熱タービン。




A decompression expansion unit is interposed in the cooling medium forward path from the cooling unit to the heating unit in the cooling medium circulation unit, and the gas phase component of the cooling medium after depressurization is reduced by depressurizing the cooling medium from the cooling unit. The geothermal turbine according to claim 1, wherein the liquid phase component of the cold medium after decompression is joined to the cold medium return path from the heating unit to the cooling unit while being supplied and condensed. .




JP2013159454A 2013-07-31 2013-07-31 Geothermal turbine Active JP6049565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013159454A JP6049565B2 (en) 2013-07-31 2013-07-31 Geothermal turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159454A JP6049565B2 (en) 2013-07-31 2013-07-31 Geothermal turbine

Publications (2)

Publication Number Publication Date
JP2015031174A JP2015031174A (en) 2015-02-16
JP6049565B2 true JP6049565B2 (en) 2016-12-21

Family

ID=52516718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159454A Active JP6049565B2 (en) 2013-07-31 2013-07-31 Geothermal turbine

Country Status (1)

Country Link
JP (1) JP6049565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808111B1 (en) * 2017-05-18 2018-01-18 주식회사 성지공조기술 Low temperature power generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3262285T3 (en) * 2015-02-27 2020-05-18 Electric Power Research Institute, Inc. Reheating of a working fluid within a turbine system for power generation
JP6791777B2 (en) * 2017-02-10 2020-11-25 三菱パワー株式会社 Geothermal turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458105A (en) * 1977-10-18 1979-05-10 Fuji Electric Co Ltd Device for preventing water drops from occurring on steam turbine
JP3046907B2 (en) * 1994-04-07 2000-05-29 三菱重工業株式会社 Method for manufacturing scale adhesion preventing nozzle plate cooling water passage
JPH0849502A (en) * 1994-08-05 1996-02-20 Mitsubishi Heavy Ind Ltd Scale adhesion preventing method for geothermal steam turbine nozzle blade
US5685693A (en) * 1995-03-31 1997-11-11 General Electric Co. Removable inner turbine shell with bucket tip clearance control
JP3635782B2 (en) * 1996-06-03 2005-04-06 株式会社デンソー Refrigeration equipment for vehicles
DE19640298A1 (en) * 1996-09-30 1998-04-09 Siemens Ag Steam turbine, method for cooling a steam turbine in ventilation mode and method for reducing condensation in a steam turbine in power mode
JP2002309906A (en) * 2001-04-11 2002-10-23 Mitsubishi Heavy Ind Ltd Steam cooling type gas turbine
JP2004003681A (en) * 2002-04-12 2004-01-08 Toshiba Electric Appliance Co Ltd Mounting structure for cooling pipe or cold water pipe
JP2005220850A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Scale removing device for geothermal generation steam turbine
JP2007332778A (en) * 2006-06-12 2007-12-27 Fuji Electric Systems Co Ltd Steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808111B1 (en) * 2017-05-18 2018-01-18 주식회사 성지공조기술 Low temperature power generation system

Also Published As

Publication number Publication date
JP2015031174A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US9689281B2 (en) Hermetic motor cooling for high temperature organic Rankine cycle system
JP4457138B2 (en) Compressor and heat pump system
JP5597016B2 (en) Steam turbine plant
JP5479192B2 (en) Steam turbine plant
US9500205B2 (en) Multi-pressure radial turbine system
KR20100074167A (en) Method and device for converting thermal energy of a low temperature heat source into mechanical energy
US20170002695A1 (en) Organic rankine binary cycle power generation system
US20120006024A1 (en) Multi-component two-phase power cycle
JP6261052B2 (en) ORC system and method for energy generation by organic Rankine cycle
JP5912323B2 (en) Steam turbine plant
JP6049565B2 (en) Geothermal turbine
WO2015133428A1 (en) Steam system
US20180258799A1 (en) A multistage evaporation organic rankine cycle
JP6103418B2 (en) High-efficiency ocean thermal energy conversion (OTEC) applying a liquid-vapor ejector and a pump with a liquid-steam ejector and a working part pump
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
ES2672308T3 (en) Heat recovery and improvement method and compressor for use in said method
JP6306821B2 (en) Rankine cycle engine
JP5479191B2 (en) Steam turbine plant
JP3199309U (en) Radial outflow turbine and cogeneration system using the same
JP6257946B2 (en) Geothermal turbine
JP2011522209A (en) Thermodynamic cycle with power unit and venturi tube and method for obtaining useful effects using the same
JP2014227842A (en) Geothermal power generation system
CN117287994A (en) Expansion self-condensation type steam-driven system
Mil’man et al. Thermal test of a hydro-steam turbine in a boiler house
JP2017155612A (en) Waste heat recovery device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150122

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R151 Written notification of patent or utility model registration

Ref document number: 6049565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350