JP6048937B2 - Lithium air battery - Google Patents

Lithium air battery Download PDF

Info

Publication number
JP6048937B2
JP6048937B2 JP2013127801A JP2013127801A JP6048937B2 JP 6048937 B2 JP6048937 B2 JP 6048937B2 JP 2013127801 A JP2013127801 A JP 2013127801A JP 2013127801 A JP2013127801 A JP 2013127801A JP 6048937 B2 JP6048937 B2 JP 6048937B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
battery
electrode
linh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013127801A
Other languages
Japanese (ja)
Other versions
JP2015002156A (en
Inventor
浩伸 蓑輪
浩伸 蓑輪
政彦 林
政彦 林
小林 隆一
隆一 小林
慎一 折茂
慎一 折茂
元彰 松尾
元彰 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2013127801A priority Critical patent/JP6048937B2/en
Publication of JP2015002156A publication Critical patent/JP2015002156A/en
Application granted granted Critical
Publication of JP6048937B2 publication Critical patent/JP6048937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、長期安定性に優れたリチウム空気電池に関する。   The present invention relates to a lithium air battery excellent in long-term stability.

リチウム空気電池は、正極活物質として空気中の酸素を用い、電池外部から常に酸素が供給され、電池内に大量の負極活物質である金属リチウムを充填することができるため、非常に大きな放電容量を示すことが報告されている。   Lithium-air batteries use oxygen in the air as the positive electrode active material, oxygen is always supplied from the outside of the battery, and a large amount of lithium metal, which is a negative electrode active material, can be filled in the battery. It has been reported to show.

例えば、非特許文献1では、溶質として1mol/lの六フッ化リン酸リチウム(LiPF)、有機溶媒として炭酸プロピレン(PC)と1,2−ジメトキシエタン(DME)の混合溶媒を用いて、電解液を作製し、リチウム空気(酸素)電池の評価を行っている。 For example, in Non-Patent Document 1, using 1 mol / l lithium hexafluorophosphate (LiPF 6 ) as a solute and a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) as an organic solvent, An electrolytic solution is prepared and a lithium air (oxygen) battery is evaluated.

また、非特許文献2では、電解液として、溶質に1mol/lのLi(CFSON(以下、LiTFSIと表記)を、有機溶媒に炭酸エチレン(EC)と炭酸ジエチル(DEC)の混合溶媒を用いて、リチウム空気電池を作製し評価を行っている。 In Non-Patent Document 2, as an electrolytic solution, 1 mol / l Li (CF 3 SO 2 ) 2 N (hereinafter referred to as LiTFSI) is used as a solute, and ethylene carbonate (EC) and diethyl carbonate (DEC) are used as organic solvents. A lithium-air battery is produced and evaluated using the above mixed solvent.

いずれの文献でも、空気電池として作動し、大きな放電容量が得られることを報告している。   In any literature, it reports that it operates as an air battery and a large discharge capacity is obtained.

しかしながら、これらの文献で用いられている有機溶媒には揮発性があるため、空気を電池内に取り込む構造を有するリチウム空気電池においては、長期作動では安定性に課題があると考えられる。つまり、長期の電池作動時には、正極側から電解液が揮発することによって電池抵抗が増大し、電池性能が著しく低下することが予想される。また、これらの有機電解液は、揮発性かつ引火性があるため、火災事故などの安全性が懸念される。   However, since the organic solvent used in these documents has volatility, it is considered that a lithium-air battery having a structure for taking in air into the battery has a problem in stability during long-term operation. That is, when the battery is operated for a long time, it is expected that the battery resistance increases due to volatilization of the electrolytic solution from the positive electrode side, and the battery performance is significantly reduced. Moreover, since these organic electrolytes are volatile and flammable, there is a concern about safety such as fire accidents.

J.Read et al.,Journal of The Electrochemical Society,Vol.150,pp.A1351−A1356(2003).J. et al. Read et al. , Journal of The Electrochemical Society, Vol. 150, pp. A1351-A1356 (2003). A.K.Thapa,西面和希、松本広重、石原達己、電気化学会第76回大会講演要旨集、3P23,pp.383(2009).A. K. Thapa, Kazuki Nishimi, Hiroshige Matsumoto, Tatsumi Ishihara, Abstracts of the 76th Annual Meeting of the Electrochemical Society, 3P23, pp. 383 (2009).

本発明は、電解質の減少が抑制され、電池の長期の安定作動が可能で安全なリチウム空気電池を供することを課題とする。   It is an object of the present invention to provide a safe lithium-air battery in which a decrease in electrolyte is suppressed and a long-term stable operation of the battery is possible.

上述した課題を解決し目的を達するための手段の一例は、空気極として構成された正極と、金属リチウムまたはリチウム含有物質を含む負極と、前記正極と前記負極との間に配置される電解質とを含むリチウム空気電池である。ここで、前記電解質は、リチウムイオン導電性固体状物質であり、例えば有機電解液のような揮発現象は起こり得ないため、電池の安定作動に大きく寄与する。また、前記電解質は、水素化ホウ素リチウム(LiBH)、ヨウ化リチウム(LiI)、リチウムアミド(LiNH)のいずれか1つを含むか、あるいは、前記電解質は、水素化ホウ素リチウム(LiBH)、ヨウ化リチウム(LiI)、リチウムアミド(LiNH)のいずれかを適量混合したものである。 An example of means for solving the above-described problems and achieving the object is a positive electrode configured as an air electrode, a negative electrode containing metallic lithium or a lithium-containing substance, and an electrolyte disposed between the positive electrode and the negative electrode. A lithium-air battery. Here, the electrolyte is a lithium ion conductive solid substance, and for example, a volatilization phenomenon such as an organic electrolyte cannot occur. Therefore, the electrolyte greatly contributes to stable operation of the battery. The electrolyte includes any one of lithium borohydride (LiBH 4 ), lithium iodide (LiI), and lithium amide (LiNH 2 ), or the electrolyte includes lithium borohydride (LiBH 4). ), Lithium iodide (LiI), or lithium amide (LiNH 2 ).

ここで、前記電解質は、前記正極上で融解させたのち再凝固させた電解質であることが好ましい。   Here, the electrolyte is preferably an electrolyte that is melted on the positive electrode and then re-solidified.

また、前記正極が、水素化ホウ素リチウム(LiBH)、ヨウ化リチウム(LiI)、およびリチウムアミド(LiNH)のいずれかひとつを更に含むことが好ましい。 Also, the positive electrode, lithium borohydride (LiBH 4), lithium iodide (LiI), and more preferably contains any one of the lithium amide (LiNH 2).

あるいは、前記正極が、水素化ホウ素リチウム(LiBH)、ヨウ化リチウム(LiI)、およびリチウムアミド(LiNH)の少なくとも2つを混合したものを更に含むことが好ましい。 Alternatively, the positive electrode preferably further includes a mixture of at least two of lithium borohydride (LiBH 4 ), lithium iodide (LiI), and lithium amide (LiNH 2 ).

上述した課題を解決し目的を達するための手段の別の例は、リチウム空気電池の製造方法であって、前記リチウム空気電池が、空気極として構成された正極と、金属リチウムまたはリチウム含有物質を含む負極と、前記正極と前記負極との間に配置される電解質とを含み、前記電解質が、リチウムイオン導電性固体電解質であり、かつ、水素化ホウ素リチウム(LiBH)、ヨウ化リチウム(LiI)、およびリチウムアミド(LiNH)のいずれか1つを含み、あるいは、前記電解質が、リチウムイオン導電性固体電解質であり、かつ、水素化ホウ素リチウム(LiBH)、ヨウ化リチウム(LiI)、およびリチウムアミド(LiNH)の少なくとも2つを混合したものを含み、前記電解質を前記正極上で融解する工程と、融解した前記電解質を再凝固させる工程とを含む、リチウム空気電池の製造方法である。 Another example of means for solving the above-described problems and achieving the object is a method for producing a lithium-air battery, in which the lithium-air battery includes a positive electrode configured as an air electrode and metallic lithium or a lithium-containing substance. And an electrolyte disposed between the positive electrode and the negative electrode, wherein the electrolyte is a lithium ion conductive solid electrolyte, and lithium borohydride (LiBH 4 ), lithium iodide (LiI) ), And lithium amide (LiNH 2 ), or the electrolyte is a lithium ion conductive solid electrolyte, and lithium borohydride (LiBH 4 ), lithium iodide (LiI), and wherein a mixture of at least two lithium amide (LiNH 2), a step of melting the electrolyte in the positive electrode And a step of re-solidifying the molten said electrolyte is a method of manufacturing a lithium-air battery.

本発明によれば、長期安定性に優れ高安全性で高性能なリチウム空気電池を供することができる。特に、固体電解質を用いることにより、揮発性の有機電解液を用いる場合よりも、引火性等がないため、電池の安全性が大きく向上する効果も得られる。また、イオン導電率が向上し、特にLiBH+LiNHの場合に電池は最も高い性能が得られる。 According to the present invention, it is possible to provide a lithium-ion battery that has excellent long-term stability, high safety, and high performance. In particular, by using a solid electrolyte, since there is no flammability or the like compared to the case of using a volatile organic electrolytic solution, an effect of greatly improving the safety of the battery can be obtained. Further, the ion conductivity is improved, and the battery can obtain the highest performance particularly in the case of LiBH 4 + LiNH 2 .

一般的に、全固体型電池では、電極/固体電解質間の接触抵抗が大きく、これが電池性能を著しく低下させる。本発明において、正極上で固体電解質を融点以上に加熱し融解させたのちに再凝固させると、正極/固体電解質間の接触抵抗が低減して過電圧が減少し、放電電圧の上昇や充電電圧の低下が可能となる。   In general, in an all-solid battery, the contact resistance between the electrode and the solid electrolyte is large, which significantly reduces the battery performance. In the present invention, when the solid electrolyte is heated above the melting point on the positive electrode and melted and then re-solidified, the contact resistance between the positive electrode and the solid electrolyte is reduced, the overvoltage is reduced, the discharge voltage is increased and the charge voltage is increased. Reduction is possible.

さらに、固体電解質材料を空気極に混合することにより、電池性能を著しく改善することができる。固体電解質は、正極全体で望ましくは1〜20重量%、更に望ましくは1〜10重量%である。あるいは、効率的に接触抵抗を減少させるためには、正極への固体電解質の更なる添加量は、1〜10重量%、1〜20重量%、1〜25重量%、5〜10重量%、5〜20重量%、5〜25重量%、10〜20重量%、10〜25重量%としても良い。   Furthermore, the battery performance can be remarkably improved by mixing the solid electrolyte material into the air electrode. The solid electrolyte is desirably 1 to 20% by weight, more desirably 1 to 10% by weight, based on the whole positive electrode. Alternatively, in order to efficiently reduce the contact resistance, the additional amount of the solid electrolyte to the positive electrode is 1 to 10 wt%, 1 to 20 wt%, 1 to 25 wt%, 5 to 10 wt%, It is good also as 5-20 weight%, 5-25 weight%, 10-20 weight%, and 10-25 weight%.

本発明のリチウム空気電池の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the lithium air battery of this invention. 実施例7,10,12のリチウム空気電池の放電曲線である。It is a discharge curve of the lithium air battery of Examples 7, 10, and 12. 比較例、実施例10の長時間放置後の放電時間を示すグラフである。It is a graph which shows the discharge time after leaving for a comparative example and Example 10 for a long time.

本発明に係るリチウム空気電池は、空気極として構成された正極と、金属リチウムまたはリチウム含有物質を含む負極と、前記正極と前記負極との間に配置される電解質とを含むリチウム空気電池である。   The lithium-air battery according to the present invention is a lithium-air battery including a positive electrode configured as an air electrode, a negative electrode containing metallic lithium or a lithium-containing substance, and an electrolyte disposed between the positive electrode and the negative electrode. .

正極(以後、空気極ともいう)は、好ましくはカーボン、触媒、バインダーを含む空気極として構成される。カーボンとして、ケッチェンブラック、アセチレンブラックなどのカーボンブラック類、活性炭類、グラファイト類、カーボン繊維類などを用いることができるが、空気極中の反応サイトを十分に確保するために表面積が大きなものが適しており、具体的にはBET比表面積で300m/g以上の値を有しているものが望ましい。 The positive electrode (hereinafter also referred to as air electrode) is preferably configured as an air electrode containing carbon, a catalyst, and a binder. As carbon, carbon blacks such as ketjen black and acetylene black, activated carbons, graphites, carbon fibers, etc. can be used, but those having a large surface area to ensure sufficient reaction sites in the air electrode. Specifically, a BET specific surface area of 300 m 2 / g or more is desirable.

また空気極中には、酸素還元・酸素発生反応に高活性な触媒が好適に添加される。該触媒としては、構造中に遷移金属のMn,Fe,Co,Ni,V,W等の少なくとも一つを含む酸化物が好適であり、具体的には、MnO,Mn,MnO,FeO,Fe,FeO,CoO,Co,NiO,NiO,V,WOなどの単独酸化物や、La0.6Sr0.4MnO,La0.6Sr0.4FeO,La0.6Sr0.4CoO,La0.6Ca0.4CoO,Pr0.6Ca0.4MnO,LaNiO,La0.6Sr0.4Mn0.4Fe0.6などのペロブスカイト型構造を有する複合酸化物などを用いることができる。 Further, a highly active catalyst for oxygen reduction / oxygen generation reaction is preferably added to the air electrode. As the catalyst, an oxide containing at least one of transition metals such as Mn, Fe, Co, Ni, V, and W in the structure is suitable. Specifically, MnO 2 , Mn 3 O 4 , MnO , FeO 2 , Fe 3 O 4 , FeO, CoO, Co 3 O 4 , NiO, NiO 2 , V 2 O 5 , WO 3 and other single oxides, La 0.6 Sr 0.4 MnO 3 , La 0 .6 Sr 0.4 FeO 3 , La 0.6 Sr 0.4 CoO, La 0.6 Ca 0.4 CoO 3 , Pr 0.6 Ca 0.4 MnO 3 , LaNiO 3 , La 0.6 Sr 0 A composite oxide having a perovskite structure such as .4 Mn 0.4 Fe 0.6 O 3 can be used.

これら触媒の合成手法としては、固相法や液相法などの公知のプロセスを用いることができるが、三相界面サイトを多量に電極触媒表面に生成することが重要である。使用する触媒は高表面積であることが望ましく、焼成後の比表面積が10m/g以上であることが好適である。そのため、金属酢酸塩や金属硝酸塩の混合水溶液の蒸発乾固や金属アルコキシドの加水分解によりアモルファス前駆体を得る手法などに代表される液相法を用いることが望ましい。 As a method for synthesizing these catalysts, known processes such as a solid phase method and a liquid phase method can be used. However, it is important to generate a large amount of three-phase interface sites on the surface of the electrode catalyst. The catalyst to be used preferably has a high surface area, and the specific surface area after calcination is preferably 10 m 2 / g or more. Therefore, it is desirable to use a liquid phase method typified by a technique of obtaining an amorphous precursor by evaporating and drying a mixed aqueous solution of metal acetate or metal nitrate or hydrolysis of metal alkoxide.

また、触媒としては、中心金属として遷移金属のMn,Fe,Co,Ni,V,W等の少なくとも一つを含むポルフィリンやフタロシアニンなどの大環状金属錯体も用いることができる。これらの金属錯体は、カーボンと混合後、不活性ガス雰囲気中で熱処理を行うことによって活性は増大する。   As the catalyst, a macrocyclic metal complex such as porphyrin or phthalocyanine containing at least one of transition metals such as Mn, Fe, Co, Ni, V, and W as a central metal can be used. The activity of these metal complexes is increased by performing heat treatment in an inert gas atmosphere after mixing with carbon.

触媒としては、上記の化合物系だけでなく、Pt,Au,Pdなどの貴金属やそれらの酸化物、Co,Ni,Mnなどの遷移金属を用いることでもできる。これらの金属をカーボン上に高分散担持することにより高い活性を発現することができる。具体的には、これらの金属が分散したコロイド溶液中にカーボンを分散させ、激しく拡販知ることによって、カーボン上に金属粒子を吸着・担持させることにより、高い分散性を達成することができる。   As the catalyst, not only the above-mentioned compound system, but also noble metals such as Pt, Au, and Pd, oxides thereof, and transition metals such as Co, Ni, and Mn can be used. High activity can be expressed by carrying these metals in high dispersion on carbon. Specifically, high dispersibility can be achieved by adsorbing and supporting metal particles on carbon by dispersing carbon in a colloidal solution in which these metals are dispersed, and knowing that the sales are vigorously expanded.

また、正極には好適にはバインダーが含まれる。バインダーは特定のものに限定されず、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴムなどが用いられる。   The positive electrode preferably contains a binder. The binder is not limited to a specific one, and polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyvinylidene fluoride (PVDF), styrene butadiene rubber and the like are used.

ガス拡散型電極(正極)を形成するには、前記触媒粉末、前記カーボン粉末と前記バインダー粉末との混合物をチタンメッシュ等の支持体上に圧着成形する、あるいは、前述の混合物を有機溶剤等の溶媒中に分散してスラリー状にして金属メッシュ又はカーボンクロス上に塗布し乾燥する、等によって形成可能である。電極の片面は大気に曝され、またもう一方の面は非水電解質と接する。また、電極の強度を高め電解液の漏洩を防止するために、冷間プレスだけでなくホットプレスを行うことによっても、より安定性に優れた電極を作製可能である。   In order to form a gas diffusion electrode (positive electrode), the catalyst powder, a mixture of the carbon powder and the binder powder is pressure-molded on a support such as a titanium mesh, or the above mixture is made of an organic solvent or the like. It can be formed by dispersing in a solvent to form a slurry, coating on a metal mesh or carbon cloth, and drying. One side of the electrode is exposed to the atmosphere, and the other side is in contact with the nonaqueous electrolyte. Further, in order to increase the strength of the electrode and prevent leakage of the electrolytic solution, it is possible to produce an electrode having higher stability by performing not only cold pressing but also hot pressing.

負極は、金属リチウムまたはリチウム含有物質を含む。負極の活物質としては、金属リチウム、もしくは、リチウムイオンを放出することができる物質である、リチウムを含むシリコンやスズとの合金やLi2.6Co0.4Nなどのリチウム窒化物も使用することができる。リチウム二次電池負極材料として用いることができる材料であれば他の化合物も使用することができる。しかしながら、合成時にリチウムを含まないシリコンやスズなどを用いる場合には、前もって化学的手法または電気化学的手法によって、それらの材料がリチウムを含む状態にあるように処理しておく必要がある。 The negative electrode includes metallic lithium or a lithium-containing material. As the negative electrode active material, metallic lithium or lithium nitride, such as lithium-containing silicon or tin alloy, or lithium nitride such as Li 2.6 Co 0.4 N, which can release lithium ions, is also used. can do. Any other compound can be used as long as it can be used as a negative electrode material for a lithium secondary battery. However, when silicon, tin, or the like that does not contain lithium is used during synthesis, it is necessary to perform treatment in advance so that these materials contain lithium by a chemical method or an electrochemical method.

電解質は、正極と負極との間に配置される導電性固体電解質として構成され、リチウムイオン導電性を有する材料である。具体的には、電解質としてLiBH、LiI、LiNHのいずれか1つが用いられる。あるいは、これらの材料を少なくとも2つ混合した固体電解質が用いられる。特にLiBH+LiNHの材料が、その導電性から最も高い性能を示すため好ましい。 The electrolyte is a material that is configured as a conductive solid electrolyte disposed between the positive electrode and the negative electrode and has lithium ion conductivity. Specifically, any one of LiBH 4 , LiI, and LiNH 2 is used as the electrolyte. Alternatively, a solid electrolyte in which at least two of these materials are mixed is used. In particular, a material of LiBH 4 + LiNH 2 is preferable because it exhibits the highest performance due to its conductivity.

空気極に電解質の材料を更に混合することにより、電池性能を著しく改善することができる。固体電解質は、効率的に接触抵抗を減少させるためには、正極全体で1〜20重量%を添加することが望ましく、更に望ましくは1〜10重量%であると言える。あるいは、正極への固体電解質の更なる添加量は、1〜10重量%、1〜20重量%、1〜25重量%、5〜10重量%、5〜20重量%、5〜25重量%、10〜20重量%、10〜25重量%としても所望の効果が達成される。   By further mixing an electrolyte material into the air electrode, battery performance can be significantly improved. In order to efficiently reduce the contact resistance, the solid electrolyte is desirably added in an amount of 1 to 20% by weight, more preferably 1 to 10% by weight, based on the whole positive electrode. Alternatively, the additional amount of the solid electrolyte to the positive electrode is 1 to 10 wt%, 1 to 20 wt%, 1 to 25 wt%, 5 to 10 wt%, 5 to 20 wt%, 5 to 25 wt%, The desired effect is achieved even when the content is 10 to 20% by weight or 10 to 25% by weight.

以下に添付図面を参照して、本発明のリチウム空気電池についての実施例を詳細に説明する。なお、本発明は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, embodiments of the lithium-air battery of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to what was shown to the following Example, In the range which does not change the summary, it can change suitably and can implement.

[実施例1〜9]
リチウム空気電池は、以下の手順で作製した。
[Examples 1 to 9]
The lithium air battery was produced by the following procedure.

正極は、電極触媒であるLa0.6Sr0.4Fe0.6Mn0.4(LSFM)粉末、ケッチェンブラック粉末及びポリテトラフルオロエチレン(PTFE)粉末を50:30:20の重量比で、らいかい機を用いて十分に粉砕・混合し、ロール成形し、シート状電極(厚さ:0.5mm)を作製した。このシート状電極を直径15mmの円形に切り抜き、チタンメッシュ上にプレスすることにより、ガス拡散型電極を得た。なお、La0.6Sr0.4Fe0.6Mn0.4粉末は、金属硝酸塩を出発原料とする公知の手法によって合成した。 For the positive electrode, La 0.6 Sr 0.4 Fe 0.6 Mn 0.4 O 3 (LSFM) powder, ketjen black powder and polytetrafluoroethylene (PTFE) powder, which are electrode catalysts, are 50:30:20. In a weight ratio, it was sufficiently pulverized and mixed using a rough machine, and roll-formed to produce a sheet-like electrode (thickness: 0.5 mm). The sheet electrode was cut into a circle having a diameter of 15 mm and pressed onto a titanium mesh to obtain a gas diffusion electrode. The La 0.6 Sr 0.4 Fe 0.6 Mn 0.4 O 3 powder was synthesized by a known method using metal nitrate as a starting material.

固体電解質は、以下の材料を用いた(混合物における係数はモル比を示す)。具体的には、実施例1はLiBH、実施例2はLiI、実施例3はLiNH、実施例4は3LiBH+LiI、実施例5は2LiBH+LiI、実施例6は3LiBH+LiNH、実施例7はLiBH+LiNH、実施例8はLiI+6LiNH、実施例9はLiI+3LiNHを用いた。 The following materials were used for the solid electrolyte (the coefficient in the mixture indicates the molar ratio). Specifically, Example 1 is LiBH 4 , Example 2 is LiI, Example 3 is LiNH 2 , Example 4 is 3LiBH 4 + LiI, Example 5 is 2LiBH 4 + LiI, Example 6 is 3LiBH 4 + LiNH 2 , Example 7 used LiBH 4 + LiNH 2 , Example 8 used LiI + 6LiNH 2 , and Example 9 used LiI + 3LiNH 2 .

LiBH、LiI、LiNHはAldrich社製の粉末を利用した。また実施例4〜9の固体電解質においては、種々の粉末試料を所定比で混合した後、Ar中でボールミリングすることにより作製した。それぞれの粉末を1ton/cmでプレスによりディスク状(直径16mm、厚さ0.2mm)に成型することにより用いた。 LiBH 4 , LiI, and LiNH 2 were powders manufactured by Aldrich. The solid electrolytes of Examples 4 to 9 were prepared by mixing various powder samples at a predetermined ratio and ball milling in Ar. Each powder was used by molding into a disk shape (diameter 16 mm, thickness 0.2 mm) by pressing at 1 ton / cm 2 .

図1に、本発明のリチウム空気電池の概略断面図を示す。このリチウム空気電池は、リチウム空気電池セルを円柱形に構成したものである。正極1は、PTFE被覆された正極支持体2の凹部に配置し、正極固定用PTFEリング3で固定した。なお、正極1と正極支持体2が接触する部分は、電気的接触をとるためにPTFE被覆されていない。負極固定用座金6に負極7である厚さ150μmの4枚の金属リチウム箔(直径15mm)に同心円上に重ねて圧着した。負極固定用リング5を、正極1を設置する凹部と対向する逆の凹部に配置し、中央部に金属リチウムが圧着された負極固定用座金6を更に配置した。Oリング8は、図に示すようにセットした。セルの内部の正極1と負極7に挟まれるように、固体電解質9のディスクを充填し、負極支持体10を被せて、セル固定用ねじ11で、セル全体を固定した。電池性能の測定試験には、正・負極端子4,12を用いた。   FIG. 1 shows a schematic cross-sectional view of the lithium-air battery of the present invention. In this lithium-air battery, lithium-air battery cells are formed in a cylindrical shape. The positive electrode 1 was disposed in a concave portion of the positive electrode support 2 coated with PTFE, and fixed with a positive electrode fixing PTFE ring 3. Note that the portion where the positive electrode 1 and the positive electrode support 2 are in contact with each other is not covered with PTFE in order to make electrical contact. The negative electrode fixing washer 6 was concentrically overlapped with four metallic lithium foils (diameter: 15 mm) having a thickness of 150 μm as the negative electrode 7. The negative electrode fixing ring 5 was disposed in a concave portion opposite to the concave portion in which the positive electrode 1 is disposed, and a negative electrode fixing washer 6 having metallic lithium bonded thereto was further disposed in the center. The O-ring 8 was set as shown in the figure. The disc of solid electrolyte 9 was filled so as to be sandwiched between the positive electrode 1 and the negative electrode 7 inside the cell, covered with the negative electrode support 10, and the entire cell was fixed with a cell fixing screw 11. For the battery performance measurement test, positive and negative terminals 4 and 12 were used.

電池の放電試験は、充放電測定システムを用いて、正極の有効面積当たりの電流密度で1.25・A/cmを通電し、開回路電圧から電池電圧が、1.0Vに低下するまで測定を行った。電池の作製は、露点が−60℃以下の乾燥空気中で行い、電池の放電試験は、25℃において温度を制御しない雰囲気下で測定を行った。 In the battery discharge test, a charge / discharge measurement system was used, and 1.25 · A / cm 2 was applied at a current density per effective area of the positive electrode until the battery voltage dropped from the open circuit voltage to 1.0V. Measurements were made. The battery was produced in dry air having a dew point of −60 ° C. or lower, and the battery discharge test was performed at 25 ° C. in an atmosphere where the temperature was not controlled.

実施例7において作製した電池の放電曲線を、図2に示す。図2より、実施例7によるリチウム空気電池は、開回路電圧として約2.6Vを示し、約220時間の放電が可能であり、空気電池として動作することを確認した。   The discharge curve of the battery produced in Example 7 is shown in FIG. 2. From FIG. 2, it was confirmed that the lithium air battery according to Example 7 exhibited about 2.6 V as an open circuit voltage, was capable of discharging for about 220 hours, and operated as an air battery.

第1表に、実施例1〜9におけるリチウム空気電池の電圧や放電時間についての電池性能を示す。   Table 1 shows the battery performance for the voltage and discharge time of the lithium-air batteries in Examples 1 to 9.

Figure 0006048937
Figure 0006048937

何れの実施例においても、空気電池としての作動を確認し、特に実施例7における空気電池が、最も高い電圧で最も長時間の放電が可能であることがわかった。   In any of the examples, the operation as an air battery was confirmed, and it was found that the air battery in Example 7 can discharge at the highest voltage for the longest time.

[実施例10]
実施例10では、実施例7で高い性能を示したLiBH+LiNHを正極上で95℃で融解し、再凝固させることによって、正極/固体電解質の接触界面サイトを増加させることで電池性能の改善を試みた。
[Example 10]
In Example 10, LiBH 4 + LiNH 2 that showed high performance in Example 7 was melted at 95 ° C. on the positive electrode and re-solidified to increase the battery interface performance by increasing the contact interface site of the positive electrode / solid electrolyte. Tried to improve.

正極、負極、固体電解質の作製法は、上記と同様にして行った。   The positive electrode, negative electrode, and solid electrolyte were produced in the same manner as described above.

具体的には、ホットプレート上に、図1に示す正極1および固体電解質9と同じ大きさの内径の空洞をもつ金属製リングを置き、その空洞内に下から正極1と固体電解質9の順になるように重ねて配置し、95℃で1時間加熱し固体電解質を融解させた後、2時間空冷し、空気極上で再凝固させた。この正極1と固体電解質9が一体となったものを、図に示すようにPTFE被覆された正極支持体2の凹部に固体電解質9と負極7が接触するように配置し、正極固定用PTFEリング3で固定した。なお、正極1と正極支持体2が接触する部分は、電気的接触をとるためにPTFE被覆されていない。負極固定用座金6に負極7である厚さ150μmの4枚の金属リチウム箔(直径15mm)に同心円上に重ねて圧着した。負極固定用リング5を、正極1を設置する凹部と対向する逆の凹部に配置し、中央部に金属リチウムが圧着された負極固定用座金6を更に配置した。Oリング8は、図に示すようにセットした。セルの内部の正極1と負極7に固体電解質9が挟まれるように、負極支持体10を被せて、セル固定用ねじ11で、セル全体を固定した。電池性能の測定試験には、正・負極端子4,12を用いた。   Specifically, a metal ring having a cavity with the same inner diameter as that of the positive electrode 1 and the solid electrolyte 9 shown in FIG. 1 is placed on a hot plate, and the positive electrode 1 and the solid electrolyte 9 are sequentially placed in the cavity from the bottom. Then, the solid electrolyte was melted by heating at 95 ° C. for 1 hour, air-cooled for 2 hours, and re-solidified on the air electrode. As shown in the figure, the positive electrode 1 and the solid electrolyte 9 are integrated so that the solid electrolyte 9 and the negative electrode 7 are in contact with the concave portion of the positive electrode support 2 coated with PTFE, as shown in FIG. 3 fixed. Note that the portion where the positive electrode 1 and the positive electrode support 2 are in contact with each other is not covered with PTFE in order to make electrical contact. The negative electrode fixing washer 6 was concentrically overlapped with four metallic lithium foils (diameter: 15 mm) having a thickness of 150 μm as the negative electrode 7. The negative electrode fixing ring 5 was disposed in a concave portion opposite to the concave portion in which the positive electrode 1 is disposed, and a negative electrode fixing washer 6 having metallic lithium bonded thereto was further disposed in the center. The O-ring 8 was set as shown in the figure. The negative electrode support 10 was covered so that the solid electrolyte 9 was sandwiched between the positive electrode 1 and the negative electrode 7 inside the cell, and the entire cell was fixed with a cell fixing screw 11. For the battery performance measurement test, positive and negative terminals 4 and 12 were used.

図2は実施例7、10による電池の放電曲線を示す。第2表は実施例7、10による電池の平均放電電圧および放電時間の結果を示す。図2および第2表より、平均放電電圧、放電時間について、電池性能が改善されることが確認された。これは、固体電解質の融解・再凝固という手法が有効であることを示している。   FIG. 2 shows the discharge curves of the batteries according to Examples 7 and 10. Table 2 shows the results of the average discharge voltage and discharge time of the batteries according to Examples 7 and 10. From FIG. 2 and Table 2, it was confirmed that the battery performance was improved with respect to the average discharge voltage and discharge time. This indicates that the technique of melting and re-solidifying the solid electrolyte is effective.

Figure 0006048937
Figure 0006048937

[実施例11〜13]
実施例11〜13では、実施例7で高い性能を示したLiBH+LiNHを空気極に混合することによって、正極/固体電解質の接触界面サイトを増加させることに電池性能の改善を試みた。
[Examples 11 to 13]
In Examples 11 to 13, an attempt was made to improve battery performance by increasing the contact interface sites of the positive electrode / solid electrolyte by mixing LiBH 4 + LiNH 2 that showed high performance in Example 7 into the air electrode.

正極、負極等の作製法は、上記と同様にして行った。LiBH+LiNHの空気極への添加は、らいかい機を用いて触媒、カーボン、PTFEと十分に粉砕・混合を行い、LiBH+LiNHが正極中に高分散するように配慮した。 The method for producing the positive electrode, the negative electrode, etc. was performed in the same manner as described above. The addition of LiBH 4 + LiNH 2 to the air electrode was sufficiently pulverized and mixed with a catalyst, carbon, and PTFE using a rough machine so that LiBH 4 + LiNH 2 was highly dispersed in the positive electrode.

第3表は、空気極の組成と電池性能を示し、特に固体電解質の添加量を変化させた時の電圧や放電時間などの電池性能を示す。比較として、固体電解質を空気極に添加しない実施例10の結果も合わせて第3表に示した。   Table 3 shows the composition of the air electrode and battery performance, and particularly shows battery performance such as voltage and discharge time when the amount of solid electrolyte added is changed. For comparison, the results of Example 10 in which no solid electrolyte was added to the air electrode are also shown in Table 3.

Figure 0006048937
Figure 0006048937

実施例12による電池の放電曲線を、実施例10の曲線と合わせて、図2に示す。図2より、平均放電電圧、放電時間について、電池性能は改善されることが確認された。これは、正極への固体電解質の添加という手法が有効であることを示している。   The discharge curve of the battery according to Example 12 is shown in FIG. 2 together with the curve of Example 10. From FIG. 2, it was confirmed that the battery performance was improved with respect to the average discharge voltage and the discharge time. This indicates that the method of adding a solid electrolyte to the positive electrode is effective.

第3表より、電池性能は、固体電解質の添加量に大きく影響を受けることが分かった。例えば、添加量が少ない実施例11については、実施例10からの特段の改善効果は見られなかった。逆に添加量を多くすると、実施例12よりも実施例13の性能が低下し、更に添加量が多い実施例14では更に著しく電池性能は低下した。これは、添加量が少ない場合は、接触抵抗の減少が不十分であるが、添加量が多くなると正極そのもの抵抗の増大や、正極中での空気の拡散が阻害されるためであると考えられる。結果として、正極への固体電解質の適切な添加量は、正極全体で10重量%、20重量%であることが確認され、望ましくは1〜20重量%、更に望ましくは1〜10重量%であると言える。あるいは、正極への固体電解質の更なる添加量は、1〜10重量%、1〜20重量%、1〜25重量%、5〜10重量%、5〜20重量%、5〜25重量%、10〜20重量%、10〜25重量%としても所望の効果が達成される。   From Table 3, it was found that the battery performance is greatly affected by the amount of solid electrolyte added. For example, in Example 11 with a small amount of addition, no particular improvement effect from Example 10 was found. Conversely, when the addition amount was increased, the performance of Example 13 was lower than that of Example 12, and in Example 14 where the addition amount was further higher, the battery performance was further significantly reduced. This is considered to be because when the addition amount is small, the contact resistance is not sufficiently reduced, but when the addition amount is large, the increase in the resistance of the positive electrode itself and the diffusion of air in the positive electrode are hindered. . As a result, it is confirmed that the appropriate amount of the solid electrolyte added to the positive electrode is 10% by weight and 20% by weight with respect to the whole positive electrode, preferably 1 to 20% by weight, and more preferably 1 to 10% by weight. It can be said. Alternatively, the additional amount of the solid electrolyte to the positive electrode is 1 to 10 wt%, 1 to 20 wt%, 1 to 25 wt%, 5 to 10 wt%, 5 to 20 wt%, 5 to 25 wt%, The desired effect is achieved even when the content is 10 to 20% by weight or 10 to 25% by weight.

[比較例]
比較例として、有機電解液を用いた電池を作製した。実施例1〜10に記したセル構成で、固体電解質に代えて有機電解液である1mol/lLiPF/炭酸プロピレン(PC)をセル内にセパレータとともに充填することにより電池を作製した。同一構成の電池を、5セル作製した。
[Comparative example]
As a comparative example, a battery using an organic electrolyte was produced. In the cell configuration described in Examples 1 to 10, a battery was fabricated by filling the cell with 1 mol / l LiPF 6 / propylene carbonate (PC), which is an organic electrolyte, instead of the solid electrolyte, together with the separator. Five cells of the same configuration were produced.

また、実施例10の電池についても5セル作製した。   Also, five cells of the battery of Example 10 were produced.

これらのセルを、35℃の恒温槽内にセットし、24,72,168,240,480時間放置させた後に測定を行い、室温で測定したデータ(0時間)と比較を行った。図3に、放電時間と放置時間依存性を示す。   These cells were set in a constant temperature bath at 35 ° C., allowed to stand for 24, 72, 168, 240, and 480 hours, then measured, and compared with data measured at room temperature (0 hours). FIG. 3 shows the dependency of the discharge time and the standing time.

図3より、比較例の電池が、待機時間の経過とともに放電容量が急激に減少すること分かる。これは、有機電解液の揮発による減少が原因であると考えられる。一方、固体電解質を用いた実施例10による電池は、測定した時間内において、ほとんど放電容量の減少は見られなかった。この結果は、本発明による固体電解質の使用が、電池の長期安定作動の非常に有効であることを示している。   From FIG. 3, it can be seen that the discharge capacity of the battery of the comparative example rapidly decreases as the standby time elapses. This is considered to be caused by a decrease due to volatilization of the organic electrolyte. On the other hand, the battery according to Example 10 using the solid electrolyte showed almost no decrease in discharge capacity within the measured time. This result shows that the use of the solid electrolyte according to the present invention is very effective for long-term stable operation of the battery.

本発明により、長期安定性に優れ、安全なリチウム空気電池を作製することができ、様々な電子機器の駆動源として使用することができる。   According to the present invention, a lithium-air battery that is excellent in long-term stability and safe can be manufactured, and can be used as a drive source for various electronic devices.

1 正極
2 正極支持体(PTFE被覆)
3 正極固定用PTFEリング
4 正極端子
5 負極固定用PTFEリング
6 負極固定用座金
7 負極
8 Oリング
9 固体電解質
10 負極支持体
11 セル固定用ねじ(PTFE被覆)
12 負極端子
1 Positive electrode 2 Positive electrode support (PTFE coating)
3 Positive electrode fixing PTFE ring 4 Positive electrode terminal 5 Negative electrode fixing PTFE ring 6 Negative electrode fixing washer 7 Negative electrode 8 O-ring 9 Solid electrolyte 10 Negative electrode support 11 Cell fixing screw (PTFE coating)
12 Negative terminal

Claims (5)

空気極として構成された正極と、金属リチウムまたはリチウム含有物質を含む負極と、前記正極と前記負極との間に配置される電解質とを含むリチウム空気電池であって、
前記電解質が、リチウムイオン導電性固体電解質であり、かつ、水素化ホウ素リチウム(LiBH4)、ヨウ化リチウム(LiI)、およびリチウムアミド(LiNH2)の少なくとも2つを混合したものを含み、
前記正極内に、水素化ホウ素リチウム(LiBH 4 )およびリチウムアミド(LiNH 2 )の混合材料が更に添加されており、
前記正極が、前記水素化ホウ素リチウム(LiBH 4 )およびリチウムアミド(LiNH 2 )の混合材料を正極全体重量の1〜25重量%で含むことを特徴とするリチウム空気電池。
A lithium-air battery comprising a positive electrode configured as an air electrode, a negative electrode containing metallic lithium or a lithium-containing substance, and an electrolyte disposed between the positive electrode and the negative electrode,
Wherein the electrolyte is a lithium ion conductive solid electrolyte, and lithium borohydride (LiBH 4), viewed contains a mixture of at least two lithium iodide (LiI), and lithium amide (LiNH 2),
A mixed material of lithium borohydride (LiBH 4 ) and lithium amide (LiNH 2 ) is further added in the positive electrode ,
The positive electrode is a lithium-air battery, characterized in including Mukoto a mixed material with 1-25% by weight of the total cathode weight of the lithium borohydride (LiBH 4) and lithium amide (LiNH 2).
前記正極が、前記水素化ホウ素リチウム(LiBH  The positive electrode is made of the lithium borohydride (LiBH). 4Four )およびリチウムアミド(LiNH) And lithium amide (LiNH 22 )の混合材料を正極全体重量の5〜25重量%で含むことを特徴とする、請求項1に記載のリチウム空気電池。The lithium-air battery according to claim 1, comprising 5 to 25% by weight of the total weight of the positive electrode. 前記正極が、前記水素化ホウ素リチウム(LiBH  The positive electrode is made of the lithium borohydride (LiBH). 4Four )およびリチウムアミド(LiNH) And lithium amide (LiNH 22 )の混合材料を正極全体重量の5〜20重量%で含むことを特徴とする、請求項1に記載のリチウム空気電池。The lithium-air battery according to claim 1, comprising 5 to 20% by weight of the total weight of the positive electrode. 前記正極が、前記水素化ホウ素リチウム(LiBH  The positive electrode is made of the lithium borohydride (LiBH). 4Four )およびリチウムアミド(LiNH) And lithium amide (LiNH 22 )の混合材料を正極全体重量の1〜20重量%で含むことを特徴とする、請求項1に記載のリチウム空気電池。The lithium-air battery according to claim 1, comprising 1 to 20% by weight of the total weight of the positive electrode. 前記正極が、前記水素化ホウ素リチウム(LiBH  The positive electrode is made of the lithium borohydride (LiBH). 4Four )およびリチウムアミド(LiNH) And lithium amide (LiNH 22 )の混合材料を正極全体重量の1〜10重量%で含むことを特徴とする、請求項1に記載のリチウム空気電池。The lithium-air battery according to claim 1, comprising 1 to 10% by weight of the total weight of the positive electrode.
JP2013127801A 2013-06-18 2013-06-18 Lithium air battery Active JP6048937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127801A JP6048937B2 (en) 2013-06-18 2013-06-18 Lithium air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127801A JP6048937B2 (en) 2013-06-18 2013-06-18 Lithium air battery

Publications (2)

Publication Number Publication Date
JP2015002156A JP2015002156A (en) 2015-01-05
JP6048937B2 true JP6048937B2 (en) 2016-12-21

Family

ID=52296545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127801A Active JP6048937B2 (en) 2013-06-18 2013-06-18 Lithium air battery

Country Status (1)

Country Link
JP (1) JP6048937B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022498B2 (en) * 2016-02-05 2022-02-18 三菱瓦斯化学株式会社 Method of suppressing deterioration of ionic conductor over time
CN114464877B (en) * 2022-01-05 2023-09-29 东南大学 Composite solid electrolyte material and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458117B2 (en) * 2007-06-01 2010-04-28 株式会社豊田中央研究所 Non-aqueous air battery and its catalyst
US9722276B2 (en) * 2008-05-13 2017-08-01 Tohoku University Solid electrolyte, method for producing the same, and secondary battery comprising solid electrolyte
JP2013058336A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Metal-air battery
JP5652877B2 (en) * 2011-09-27 2015-01-14 日本電信電話株式会社 Lithium air battery

Also Published As

Publication number Publication date
JP2015002156A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
JP5184212B2 (en) Lithium air secondary battery and lithium air secondary battery manufacturing method
Zhao et al. Strontium-doped perovskite oxide La1-xSrxMnO3 (x= 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries
JP5421076B2 (en) Lithium air battery
JP6119492B2 (en) Carbon nanohorn aggregate, electrode material using the same, and method for producing the same
JPWO2010100752A1 (en) Air electrode and non-aqueous air battery
JP5378038B2 (en) Lithium air battery
JP2011175929A (en) Lithium-air secondary battery, and method of manufacturing air electrode of the same
JP2011014478A (en) Lithium air battery
Li et al. Sheet‐on‐Sheet Hierarchical Nanostructured C@ MnO2 for Zn‐Air and Zn‐MnO2 Batteries
JP6216288B2 (en) Lithium air battery
JP5373355B2 (en) Positive electrode for all solid-state polymer battery, manufacturing method thereof, and all solid-state polymer battery
JP2012243576A (en) Lithium air secondary battery
Oh et al. Enhancing Bifunctional Catalytic Activity via a Nanostructured La (Sr) Fe (Co) O3− δ@ Pd Matrix as an Efficient Electrocatalyst for Li–O2 Batteries
JP6048937B2 (en) Lithium air battery
JP2014075269A (en) Metal-air battery
JP6178758B2 (en) Lithium air secondary battery
WO2019093441A1 (en) Amorphous transition metal oxide and use thereof
JP5871394B2 (en) Lithium air battery
JP6310413B2 (en) Lithium air secondary battery, method for producing catalyst for air electrode, and method for producing lithium air secondary battery
JP2015069960A (en) Lithium air secondary battery
JP5652877B2 (en) Lithium air battery
JP6059632B2 (en) Lithium air secondary battery
JP6599815B2 (en) Lithium air secondary battery
JP2015018679A (en) Lithium air secondary battery
JP2018198183A (en) Lithium air secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6048937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250