JP6048194B2 - Impact light emitting point detector - Google Patents

Impact light emitting point detector Download PDF

Info

Publication number
JP6048194B2
JP6048194B2 JP2013027233A JP2013027233A JP6048194B2 JP 6048194 B2 JP6048194 B2 JP 6048194B2 JP 2013027233 A JP2013027233 A JP 2013027233A JP 2013027233 A JP2013027233 A JP 2013027233A JP 6048194 B2 JP6048194 B2 JP 6048194B2
Authority
JP
Japan
Prior art keywords
light emission
image
impact light
bullet
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013027233A
Other languages
Japanese (ja)
Other versions
JP2014156945A (en
Inventor
原田 直樹
直樹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013027233A priority Critical patent/JP6048194B2/en
Publication of JP2014156945A publication Critical patent/JP2014156945A/en
Application granted granted Critical
Publication of JP6048194B2 publication Critical patent/JP6048194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、砲弾を発射する装置とその近傍に設置された撮像機を利用した装置を用いて、砲弾が発射されて着弾する様子を撮像した画像の中から砲弾が着弾する際に発生する弾着発光を画像処理により検出し、検出された目標の位置情報を、砲弾を発射する装置に通知して、狙った位置と着弾した位置のズレから、次弾発射時の砲修正を行うものである。 This invention uses a device that fires a shell and a device that uses an image pickup device installed in the vicinity thereof, and generates a bullet that is generated when the shell is landed from an image obtained by shooting how the shell is fired and landed. It detects landing light emission by image processing, notifies the position information of the detected target to the device that fires the shell, and corrects the gun when the next bullet is fired from the difference between the target position and the landing position. is there.

砲の命中精度の向上のためには、高精度の砲制御と、風向、風速、距離等から正確な弾道計算が必要になる。さらに、長距離砲においては、砲弾の着弾をみて、はずれ具合から照準を修正する砲修正の技術が不可欠である。
弾着発光点検出においては、砲弾発射装置の近傍に設置された撮像機から得られる画像データを用い、種々な画像処理を用いた方式が提案されている。
方式の一例として、砲の位置から目標までの距離を計測するレーザ等の測距装置を用いて、砲弾の撃発時点から、砲弾が目標までの距離を飛翔するために要する時間を算出し、撮像機から得られる画像データから飛翔時間経過後の画像のみを抜き出し、弾着発光点を検出しようとするものがある(例えば、特許文献1参照)。
In order to improve the accuracy of gun hits, high-precision gun control and accurate trajectory calculation from wind direction, wind speed, distance, etc. are required. Furthermore, for long-range guns, it is indispensable to have a gun correction technique that corrects the aim according to the degree of dislocation by looking at the impact of the shell.
In the impact light emitting point detection, a method using various image processing using image data obtained from an image pickup device installed in the vicinity of a shell projecting device has been proposed.
As an example of the method, using a distance measuring device such as a laser that measures the distance from the position of the gun to the target, the time required for the bullet to fly the distance to the target is calculated from the time the bullet is fired, and imaging is performed. There are some which extract only the image after the flight time has elapsed from the image data obtained from the machine to detect the impact light emission point (for example, see Patent Document 1).

特開昭60−22608号公報(第39頁、第2図)JP 60-22608 (page 39, Fig. 2)

特許文献1記載のように、画像データと距離データを用いた方式は提案されているが、レーザ等の測距装置が必要となる点等から高価となるという課題があった。
このため今後は、画像データのみを用いた弾着発光点検出装置が必要となるが、画像データのみを用いた弾着発光点検出装置では、後述するように、高い輝度をもつ砲口火炎を目標として検出されてしまう誤検出や、砲口火炎を誤検出しないように二値化のためのしきい値を大きくする必要があり、そのため実際に弾着発光が発生しても、二値化を行うことが出来ず、その結果正確な弾着発光点を検出できないという課題があった。
As described in Patent Document 1, a method using image data and distance data has been proposed, but there is a problem that it is expensive because a distance measuring device such as a laser is required.
Therefore, in the future, an impact light emission point detection device using only image data will be required. However, an impact light emission point detection device using only image data will produce a muzzle flame with high brightness as described later. It is necessary to increase the threshold for binarization so that false detections that are detected as targets and muzzle flames are not erroneously detected, so even if impact light emission actually occurs, binarization As a result, there is a problem that an accurate impact light emitting point cannot be detected.

この発明は係る課題を解決するためになされたものであり、従来のように距離データを必要とせず、画像データのみにより着弾発光点の検出を精度よく計測可能な着弾発光点検出装置を提供することを目的とする。 The present invention has been made to solve such a problem, and provides a landing light emitting point detection device that can accurately measure the detection of a landing light emitting point only from image data without requiring distance data as in the prior art. For the purpose.

この発明に係る弾着発光点検出装置は、撮像機が時間経過と共に撮像した複数のフレームからなる画像を用いて砲弾が着弾した位置情報を出力する弾着発光点検出装置であって、前記砲弾が着弾して発光を開始したか否かを判定する弾着発光開始判定回路を備え、前記弾着発光開始判定回路は、前記フレームの前後の画像における画像面内の輝度値の標準偏差を比較し、後の画像における画像面内の輝度値の標準偏差を、前の画像における画像面内の輝度値の標準偏差で除した値が所定値以上となった場合に、前記砲弾が着弾して発光を開始したと判定し、前記値が前記所定値以上となったフレームの画像を用いて砲弾が着弾した位置情報を算出し出力する

An impact light emission point detection device according to the present invention is an impact light emission point detection device that outputs position information where a bullet has landed using an image composed of a plurality of frames imaged by an imaging device over time. A landing light emission start determination circuit that determines whether or not the light has landed and started light emission, and the impact light emission start determination circuit compares standard deviations of luminance values in the image plane in the images before and after the frame. When the value obtained by dividing the standard deviation of the luminance value in the image plane in the subsequent image by the standard deviation of the luminance value in the image plane in the previous image is equal to or greater than a predetermined value, the shell is landed. It is determined that light emission has started, and the position information where the shell has landed is calculated and output using an image of a frame in which the value is equal to or greater than the predetermined value.

本発明に係る弾着発光点検出装置によれば、画像データから弾着発光開始判定、砲口火炎消失判定を行うことで、弾着発光開始以降の画像データ、もしくは砲口火炎消失以降からの画像データのみに対して、二値化処理、重心計測を行うことにより、弾着発光点の検出を精度良く計測出来る。 According to the impact light emission point detection device according to the present invention, by performing impact light emission start determination and muzzle flame disappearance determination from image data, image data after the start of impact light emission, or after muzzle flame disappearance By performing binarization processing and center-of-gravity measurement only on image data, it is possible to accurately measure the detection of impact light emission points.

本発明の実施の形態1に係る弾着発光点検出装置における着弾位置検出処理の流れを説明する図である。It is a figure explaining the flow of a landing position detection process in the landing light emission point detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1において砲弾の発射から着弾までを撮像した画像の標準偏差の推移を説明する図である。It is a figure explaining transition of the standard deviation of the image which imaged from the launch of the bullet to the landing in Embodiment 1 of the present invention. 本発明の実施の形態2に係る弾着発光点検出装置の着弾位置検出処理の流れを説明する図である。It is a figure explaining the flow of the landing position detection process of the landing light emission point detection apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2において砲弾の発射から着弾までを撮像した画像の平均値の推移を説明する図である。It is a figure explaining transition of the average value of the picture which picturized from the launch of a bullet to the landing in Embodiment 2 of the present invention. 従来の弾着発光検出を行う際の機器の基本的な構成を説明する図である。It is a figure explaining the fundamental structure of the apparatus at the time of performing the conventional impact light emission detection. 従来の機器構成において砲弾発射前に撮像される画像の例である。It is an example of the image imaged before a shell discharge in the conventional apparatus structure. 従来の機器構成において砲弾発射時に発生する砲口火炎を撮像した画像の例である。It is an example of the image which imaged the muzzle flame which generate | occur | produces at the time of a shell discharge in the conventional apparatus structure. 従来の機器構成において砲口火炎が消失する際の画像の例である。It is an example of an image when a muzzle flame disappears in a conventional device configuration. 従来の機器構成において弾着発光が発生する際の画像の例である。It is an example of an image when impact light emission occurs in a conventional device configuration. 従来の機器構成において弾着発光を二値化した画像の例である。It is an example of the image which binarized impact light emission in the conventional apparatus structure. 従来の弾着発光点検出装置における着弾位置検出処理の流れを説明する図である。It is a figure explaining the flow of the landing position detection process in the conventional landing light emission point detection apparatus.

まず、従来の弾着発光検出を行う際の機器構成と処理の流れについて説明する。
図5は従来の弾着発光検出を行う際の機器の基本的な構成を説明する図である。図5で砲弾4は砲弾発射装置2から発射され、目標5に向かって飛翔している。弾着発光点検出装置3には撮像機1で撮像された画像データが送られる。弾着発光点検出装置3で検出された弾着発光点の位置情報は、砲弾発射装置2に送られ、次弾発射時の砲修正の計算に用いられる。
その際、砲弾4が発射され着弾するまでを、砲弾発射装置の近傍に設置された撮像機1にて撮像された画像の特徴について、以下図を用いて示す。
砲弾発射から砲弾着弾までを撮像機1で撮像した場合、撮像される画像としては一般的に次の流れとなる。
First, a description will be given of a device configuration and a processing flow when performing conventional impact light emission detection.
FIG. 5 is a diagram for explaining a basic configuration of a device when performing conventional impact emission detection. In FIG. 5, the shell 4 is fired from the shell firing device 2 and flies toward the target 5. Image data captured by the imaging device 1 is sent to the impact light emitting point detection device 3. The position information of the impact light emission point detected by the impact light emission point detection device 3 is sent to the cannon ball firing device 2 and used for calculation of gun correction at the time of the next bullet firing.
At that time, the characteristics of the image captured by the imaging device 1 installed in the vicinity of the cannonball firing device until the cannonball 4 is fired and landed will be described below with reference to the drawings.
When the imaging device 1 captures from the bullet launch to the bullet landing, the image generally has the following flow.

図6は砲弾発射前に撮像された画像の例である。砲弾発射前の状態では、目標とその背景が撮像される。
図7は砲弾発射直後に撮像された画像の例である。砲弾4が発射された直後では、発生する砲口火炎9や、それに伴い発生する高温のガス11等が撮像される。砲口火炎9とは火薬の燃焼に伴い発生する火炎であり、高温でありかつ撮像機の付近で発生するため撮像される画像への影響は大きく、砲口火炎発生時に撮像機によって撮像される画像は図7のように、画像の大部分が高輝度な状態となる。
FIG. 6 is an example of an image captured before the bullet is fired. In the state before the shell is fired, the target and its background are imaged.
FIG. 7 is an example of an image taken immediately after the shell is fired. Immediately after the cannonball 4 is fired, the generated muzzle flame 9 and the high-temperature gas 11 and the like generated therewith are imaged. The muzzle flame 9 is a flame generated as a result of combustion of the explosive, and is generated at a high temperature and in the vicinity of the image pickup device, so that it has a great influence on the image to be picked up. As shown in FIG. 7, most of the image is in a high brightness state.

図8は砲弾発射後、所定の時間が経過した後に撮像された画像の例である。砲口火炎9と高温のガス11は時間の経過と共に熱が拡散し温度が低下したり、風に吹き飛ばされる等して消失していく。この時、砲弾発射直後の画面全体の輝度が上がった状態から、画像全体の輝度が下がりつつ、一部には高輝度部分が残るような画像が撮像される。
図9は更に時間が経過し、発射した砲弾4が着弾し、着弾した砲弾が発する弾着発光が撮像された画像の例を示す。図10は、図9の弾着発光の画像を二値化した画像の例である。
図11は従来の弾着発光点検出装置3における着弾位置検出処理の流れを説明する図である。従来の弾着発光点検出装置3では、図5〜図9で説明した画像のすべてに対し無条件に二値化処理を行い、二値画像から重心計測を行い、その座標を弾着発光点として検出していた。
そのため、高い輝度をもつ砲口火炎9を目標5として検出されてしまう誤検出や、砲口火炎9を誤検出しないように二値化のためのしきい値を大きくする必要があり、そのため実際に弾着発光が発生しても、二値化を全く行うことが出来ず、その結果正確な弾着発光点を検出できないという課題があった。
FIG. 8 is an example of an image captured after a predetermined time has elapsed since the shell was fired. The muzzle flame 9 and the high-temperature gas 11 disappear as the heat diffuses over time and the temperature drops or is blown away by the wind. At this time, an image is captured in which the brightness of the entire image decreases while the brightness of the entire image decreases while the brightness of the entire screen increases immediately after the shell is fired.
FIG. 9 shows an example of an image in which landing luminescence emitted by the fired cannonball 4 is picked up and the impacted light emission emitted from the landed cannonball is captured. FIG. 10 is an example of an image obtained by binarizing the impact light emission image of FIG.
FIG. 11 is a diagram for explaining the flow of the landing position detection process in the conventional landing light emitting point detection device 3. In the conventional impact light emission point detection device 3, binarization processing is unconditionally performed on all the images described with reference to FIGS. 5 to 9, the center of gravity is measured from the binary image, and the coordinates are determined as the impact light emission points. It was detected as.
Therefore, it is necessary to increase the threshold for binarization so that the muzzle flame 9 having high brightness is detected as the target 5 and the muzzle flame 9 is not erroneously detected. Even if impact light emission occurs, binarization cannot be performed at all, and as a result, there is a problem that an accurate impact light emission point cannot be detected.

実施の形態1
実施の形態1に係る弾着発光点検出装置について、以下、図を参照して説明する。
図1は本発明の実施の形態1に係る弾着発光点検出装置の構成、及び着弾位置検出処理の流れを説明する図である。
弾着発光点検出装置3は、弾着発光が開始したか否かの判定を行う弾着発光開始判定回路17と、画像データ6を二値化する二値化回路14と、二値化後の二値画像15を用いて二値化された領域の重心を計測する重心計測回路16を備える。
図1において、砲弾発射装置2の近傍に設置された撮像機1から得られた画像データ6は、弾着発光点検出装置3に送られる。弾着発光点検出装置3では画像データ6を二値化回路14で二値化処理を行い、二値画像15を重心計測回路16に送る。重心計測回路16では二値化された領域の重心を計測し、その座標を弾着発光点の位置情報7として、砲弾発射装置2に送る。
また、撮像部1からの画像データ6に対して、弾着発光開始判定回路17は弾着発光開始のフレームを判定し、二値化回路14に対して弾着発光開始情報18を送る。
二値化回路14は弾着発光開始情報18に基づき、二値化処理を開始する。
ここで弾着発光開始判定は、画像例図9に示す弾着発光が開始したかどうかを判定するものである。弾着発光開始判定回路17は、次の式(1)を用い、得られた画像からフレーム毎に画像面内の輝度の標準偏差を取得し、式(1)に示す条件を、砲弾発射後、初めて満たしたフレームを弾着発光が開始したフレームであると判定する。
Embodiment 1
The impact light emission point detection apparatus according to Embodiment 1 will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining the configuration of a landing light emitting point detection apparatus according to Embodiment 1 of the present invention and the flow of landing position detection processing.
The impact light emission point detection device 3 includes an impact light emission start determination circuit 17 that determines whether or not impact light emission has started, a binarization circuit 14 that binarizes the image data 6, and a binarized image A centroid measurement circuit 16 that measures the centroid of the binarized region using the binary image 15 is provided.
In FIG. 1, image data 6 obtained from the image pickup device 1 installed in the vicinity of the bullet projecting device 2 is sent to the impact light emitting point detection device 3. In the impact light emission point detection device 3, the image data 6 is binarized by the binarization circuit 14, and the binary image 15 is sent to the gravity center measurement circuit 16. The center-of-gravity measurement circuit 16 measures the center of gravity of the binarized area, and sends the coordinates to the bullet firing device 2 as the position information 7 of the impact light emitting point.
Also, for the image data 6 from the imaging unit 1, the impact light emission start determination circuit 17 determines the impact light emission start frame, and sends impact light emission start information 18 to the binarization circuit 14.
The binarization circuit 14 starts binarization processing based on the impact light emission start information 18.
Here, the impact light emission start determination is to determine whether or not the impact light emission shown in the image example FIG. 9 has started. The impact light emission start determination circuit 17 uses the following equation (1) to obtain the standard deviation of the luminance in the image plane for each frame from the obtained image, and satisfies the condition shown in the equation (1) after the bullet is fired. Then, it is determined that the frame that has been satisfied for the first time is the frame in which the impact light emission has started.

Figure 0006048194
Figure 0006048194

図2は砲弾の発射から着弾までを撮像した画像における輝度の標準偏差の時間推移を説明する図である。砲弾発射前の画像の標準偏差19は、発射される前の目標地点を撮像しているため、目標地点の環境によって標準偏差の大きさは違うが、時間の経過に伴って変化することはない。
次に、砲口火炎発生中の画像の輝度の標準偏差20は、砲弾が発射される際の砲口火炎9が発生して標準偏差は大きく下がる。これは、砲口火炎の発生によって画面の全体が高い輝度となるため、画面の各場所で輝度差がなくなり、標準偏差が下がるためである。
FIG. 2 is a diagram for explaining the time transition of the standard deviation of luminance in an image obtained from shooting of a bullet to landing. Since the standard deviation 19 of the image before the shell is shot is taken at the target point before being fired, the standard deviation is different depending on the environment of the target point, but does not change with time. .
Next, the standard deviation 20 of the brightness of the image during the muzzle flame is greatly reduced due to the muzzle flame 9 when the bullet is fired. This is because the brightness of the entire screen becomes high due to the occurrence of muzzle flame, so that there is no brightness difference at each location on the screen and the standard deviation is reduced.

次に、砲口火炎消失過程の画像の輝度の標準偏差21は、砲口火炎の影響が小さくなっていくため、小さく変化しながら全体として、標準偏差は大きくなっていく。これは、砲口火炎の消失過程では、周囲の環境によって火炎の消失の仕方や高温のガスの分布が変わりその挙動によって標準偏差も小さく変化するが、全体としては砲口火炎の影響はなくなっていくため、砲弾発射前の標準偏差に近づいていく。
そして、弾着発光発生時の画像の輝度の標準偏差22は、砲弾が着弾した際に発生する弾着発光が発生し、その標準偏差は大きく上がる。これは、弾着発光は高い輝度で、しかも画像全体ではなく一部分にのみ現れるためである。
Next, the standard deviation 21 of the luminance of the image in the process of disappearing the muzzle flame becomes smaller as a whole because the influence of the muzzle flame becomes smaller, and the standard deviation becomes larger as a whole. This is because in the process of disappearance of the muzzle flame, the way of flame disappearance and the distribution of high-temperature gas change depending on the surrounding environment, and the standard deviation also changes slightly depending on the behavior, but the influence of the muzzle flame disappears as a whole. Therefore, it approaches the standard deviation before the shells are fired.
The standard deviation 22 of the luminance of the image at the time of occurrence of impact light emission is impact light emission that occurs when a bullet hits, and the standard deviation greatly increases. This is because the impact light emission has a high luminance and appears only in a part rather than the entire image.

ここで、着弾発光開始判定回路17は、式(1)に基づき、標準偏差の増加がある一定値以上に値に始めて達したフレームを弾着発光が開始したフレームとし検出する。
そして、着弾発光開始判定回路は、弾着発光が開始したものすることで、その後は従来から実施していた輝度の高い部分を有意とする二値化処理を行い、有意とされた画素の領域の重心点を砲弾の弾着発光点として、その位置情報を通知する。
Here, the landing light emission start determination circuit 17 detects, based on the formula (1), a frame that first reaches a value above a certain value with an increase in the standard deviation as a frame in which the impact light emission has started.
Then, the landing light emission start determination circuit performs the binarization processing that makes the high-luminance portion that has been conventionally performed significant by the fact that the landing light emission has started, and the pixel region that is made significant The position information is notified using the center of gravity of the bullet as the bullet emission point of the shell.

このように実施の形態1に係る弾着発光点検出装置では、式(1)で示される標準偏差を用いた判定式に基づき、弾着発光が開始したか否かの判定を行うようにした。弾着発光開始判定回路17は、図2の砲口火炎消失過程の画像の輝度の標準偏差21で示すように、砲口火炎の消失過程において小刻みに変化しながら徐々に値が大きくなった後、画像フレーム前後における輝度値の標準偏差が予め定めた定数値を超えたタイミングを、弾着発光が開始したタイミングと判断する。 As described above, in the impact light emission point detection device according to the first embodiment, it is determined whether or not impact light emission has started based on the determination formula using the standard deviation represented by the equation (1). . As shown by the standard deviation 21 of the brightness of the muzzle flame disappearance process in FIG. 2, the impact light emission start determination circuit 17 gradually increases in value while gradually changing in the muzzle flame disappearance process. The timing at which the standard deviation of the luminance value before and after the image frame exceeds a predetermined constant value is determined as the timing at which impact light emission starts.

本実施の形態に係る弾着発光点検出装置によれば、高い輝度をもつ砲口火炎を目標として検出されてしまう誤検出や、二値化のためのしきい値を大きくしたために弾着発光が発生しても二値化が出来ないことを防止して、着弾発光点の検出を精度よく計測することができる。 According to the impact light emission point detecting device according to the present embodiment, the impact light emission due to the detection error or the threshold value for binarization that is detected with a high-luminance muzzle flame as a target. Even if this occurs, binarization cannot be prevented, and the detection of the landing light emission point can be accurately measured.

実施の形態2.
実施の形態1に係る弾着発光点検出装置によれば、誤検出等を防止して精度よく着弾発光点の検出を行うことができるが、周囲の環境によっては、砲口火炎消失過程においては標準偏差の局所的に変動が大きくなる事があり、弾着発光開始判定に悪影響を及ぼす可能性がある。
そこで実施の形態2では、弾着発光開始判定を行うとともに、砲口火炎消失判定も行うようにする。
Embodiment 2. FIG.
According to the impact light emission point detection device according to the first embodiment, it is possible to detect the impact light emission point with high accuracy by preventing erroneous detection, but depending on the surrounding environment, in the muzzle flame disappearance process There may be a local fluctuation of the standard deviation, which may adversely affect the impact light emission start determination.
In the second embodiment, therefore, the impact light emission start determination is performed and the muzzle flame disappearance determination is also performed.

図3は、実施の形態2に係る弾着発光点検出装置の構成、及び着弾位置検出処理の流れを説明する図である。
本実施の形態に係る弾着発光点検出装置3は、砲口火炎が消失したか否かを判定する砲口火炎消失判定回路23と、弾着発光が開始したか否かの判定を行う弾着発光開始判定回路17と、画像データ6を二値化する二値化回路14と、二値化後の二値画像15を用いて二値化された領域の重心を計測する重心計測回路16を備える。
砲口火炎消失判定回路23は、撮像部1からの画像データ6に対して、砲口火炎の消失フレームを判定し、二値化回路14に対して砲口火炎消失情報24を送る。
二値化回路14では弾着発光開始情報18及び砲口火炎消失情報24に基づき、砲口火炎が消失完了し、さらに弾着発光開始したことを条件に二値化処理を開始する。
FIG. 3 is a diagram for explaining the configuration of the landing light emission point detection apparatus according to the second embodiment and the flow of landing position detection processing.
The impact light emission point detection device 3 according to the present embodiment includes a muzzle flame disappearance determination circuit 23 that determines whether or not a muzzle flame has disappeared, and a bullet that determines whether or not impact light emission has started. An arrival / emission start determination circuit 17, a binarization circuit 14 for binarizing the image data 6, and a centroid measurement circuit 16 for measuring the centroid of the binarized region using the binarized binary image 15 Is provided.
The muzzle flame disappearance determination circuit 23 determines a muzzle flame disappearance frame for the image data 6 from the imaging unit 1, and sends muzzle flame disappearance information 24 to the binarization circuit 14.
Based on the impact light emission start information 18 and the muzzle flame disappearance information 24, the binarization circuit 14 starts the binarization process on the condition that the disappearance of the muzzle flame has been completed and the impact light emission has started.

ここで砲口火炎消失判定回路23は、図8の画像に示す砲口火炎が消失したか否かを判定するものである。判定には得られた画像からフレーム毎に輝度平均値を取得し、次の式(2)で示す条件を砲弾発射後、初めて満たしたフレームを砲口火炎が消失したフレームであると判断する。なお式(2)は、tフレーム目の画像の輝度の平均値を砲弾発射前の画像の輝度の平均値で除した値が、予め定めた定数値K以下であるか否かを判断するものである。 Here, the muzzle flame disappearance determination circuit 23 determines whether or not the muzzle flame shown in the image of FIG. 8 has disappeared. For the determination, an average luminance value is acquired for each frame from the obtained image, and after satisfying the condition indicated by the following equation (2), a frame that is satisfied for the first time is determined to be a frame in which the muzzle flame has disappeared. Equation (2) is used to determine whether or not a value obtained by dividing the average luminance value of the t-th frame image image by the average luminance value of the image before the bullet is less than or equal to a predetermined constant value K. It is.

Figure 0006048194
Figure 0006048194

図4は、砲弾が発射されてから、弾着発光が起こるまでの画像の輝度平均値の推移を示す。
砲弾発射前の画像の平均輝度25は、目標地点の環境によって異なるがほぼ一定値となる。砲口火炎発生中の画像の平均輝度26は、砲弾が発射され砲口火炎が発生すると、高い値に固定される。
次に、砲口火炎消失過程の画像の平均輝度27は小さく変化しながら、減少していき、砲弾発射前に近い値となって安定する。弾着発光発生時の画像の平均輝度28は砲弾が着弾し弾着発光が発生すると、値が大きく上がる。
FIG. 4 shows the transition of the average luminance value of the image from the time when the shell is fired until the impact light emission occurs.
The average brightness 25 of the image before projecting the bullet differs depending on the environment of the target point, but is a substantially constant value. The average brightness 26 of the image during muzzle flame generation is fixed to a high value when a cannonball is fired and muzzle flame is generated.
Next, the average brightness 27 of the image of the muzzle flame disappearing process decreases while changing to a small value, and stabilizes to a value close to that before the shell was fired. The average brightness 28 of the image at the time of occurrence of impact light emission increases greatly when a bullet hits and impact light emission occurs.

砲口火炎消失判定回路23は、式(2)に基づき、図12で示す砲口火炎の影響が減少し、平均値が砲弾発射前の水準に近い値まで減少した点を検出する。
平均値は、標準偏差に比べて撮像された画像の一部に砲口火炎の影響等が現れても影響を受けにくく、画面全体の輝度の傾向を表すので、砲口火炎が消失していき撮像される画像に対する影響が小さくなった事を安定的にとらえることができる。
The muzzle flame disappearance determination circuit 23 detects a point where the influence of the muzzle flame shown in FIG. 12 is reduced and the average value is reduced to a value close to the level before the bullet is fired based on the equation (2).
The average value is less affected by the effects of muzzle flames on the part of the image taken compared to the standard deviation, and represents the tendency of the brightness of the entire screen, so the muzzle flames disappear. It is possible to stably grasp that the influence on the captured image has been reduced.

このように本実施の形態に係る弾着発光点検出装置は、砲口火炎消失判定と弾着発光開始判定を備えるようにした。これにより、周囲の環境によっては砲口火炎消失過程において標準偏差の局所的に変動が大きくなることから、誤った弾着発光開始判定を行うことを防止し、更に、高い輝度をもつ砲口火炎を目標として検出されてしまう誤検出や、二値化のためのしきい値を大きくしたために弾着発光が発生しても二値化が出来ないということを防いで、着弾発光点の検出を精度よく計測することができる。 Thus, the impact light emission point detection apparatus according to the present embodiment includes the muzzle flame disappearance determination and the impact light emission start determination. As a result, depending on the surrounding environment, the local deviation of the standard deviation increases in the process of extinguishing the muzzle flame. The detection of impact light emission points is prevented by preventing false detections that are detected as targets, and the fact that binarization cannot be performed even if impact light emission occurs because the threshold for binarization is increased. It can measure with high accuracy.

照準点設定に画像処理を用いた照準射撃システムに適用し、簡易な構成で高精度な射撃システムを実現可能である。 It can be applied to an aiming shooting system that uses image processing for aiming point setting, and a highly accurate shooting system can be realized with a simple configuration.

1 撮像機、2 砲弾発射装置、3 弾着発光点検出装置、4 砲弾、5 目標、6 画像データ、7 位置情報、8 撮像された画像における目標、9 撮像された砲口火炎、10 撮像された砲口火炎の残り、11 撮像された高温のガス、12 撮像された弾着発光、13 撮像された二値化された弾着発光、14 二値化回路、15 二値画像、16 重心計測回路、17 弾着発光開始判定回路、18 弾着発光開始情報、19 砲弾発射前の画像の標準偏差、20 砲口火炎発生中の画像の標準偏差、21 砲口火炎消失過程の画像の標準偏差、22 弾着発光発生時の画像の標準偏差、23 砲口火炎消失判定回路、24 砲口火炎消失情報、25 砲弾発射前の画像の平均輝度、26 砲口火炎発生中の画像の平均輝度、27 砲口火炎消失過程の画像の平均輝度、28 弾着発光発生時の画像の平均輝度。 DESCRIPTION OF SYMBOLS 1 Image pick-up device, 2 Cannonball launching device, 3 Bullet emission point detection device, 4 Cannonball, 5 Target, 6 Image data, 7 Position information, 8 Target in the imaged image, 9 Imaged muzzle flame, 10 Imaged Remaining muzzle flame, 11 Imaged hot gas, 12 Imaged impact light emission, 13 Imaged binary impact light emission, 14 Binary circuit, 15 Binary image, 16 Center of gravity measurement Circuit, 17 impact light emission start determination circuit, 18 impact light emission start information, 19 standard deviation of image before projectile launch, 20 standard deviation of image during muzzle flame occurrence, 21 standard deviation of image of muzzle flame disappearance process , 22 Standard deviation of image when impact light emission occurs, 23 Muzzle flame disappearance determination circuit, 24 Muzzle flame disappearance information, 25 Average brightness of image before launching fire, 26 Average brightness of image during muzzle flame occurrence, 27 Average brightness of the muzzle flame disappearance process 28 bullets deposition average luminance of the light emission generated at the time of the image.

Claims (4)

撮像機が時間経過と共に撮像した複数のフレームからなる画像を用いて砲弾が着弾した位置情報を出力する弾着発光点検出装置であって、
前記砲弾が着弾して発光を開始したか否かを判定する弾着発光開始判定回路を備え、
前記弾着発光開始判定回路は、前記フレームの前後の画像における画像面内の輝度値の標準偏差を比較し、後の画像における画像面内の輝度値の標準偏差を、前の画像における画像面内の輝度値の標準偏差で除した値が所定値以上となった場合に、前記砲弾が着弾して発光を開始したと判定し、
前記値が前記所定値以上となったフレームの画像を用いて砲弾が着弾した位置情報を算出し出力することを特徴とする弾着発光点検出装置。
An impact light emitting point detection device that outputs position information where a shell has landed using an image composed of a plurality of frames captured by an imager over time,
An impact light emission start determining circuit for determining whether or not the bullet has landed and started light emission;
The impact light emission start determination circuit compares the standard deviation of the luminance value in the image plane in the image before and after the frame, and determines the standard deviation of the luminance value in the image plane in the subsequent image as the image plane in the previous image. When the value divided by the standard deviation of the brightness value is equal to or greater than a predetermined value, it is determined that the bullet has landed and started to emit light,
An impact light emitting point detection device that calculates and outputs position information where a bullet has landed using an image of a frame in which the value is equal to or greater than the predetermined value .
砲口火炎が消失したか否かを判定する砲口火炎消失回路を備え、
前記砲口火炎消失回路は、砲弾発射後のフレームの画像面内の輝度値の平均値と、砲弾発射前のフレームの画像面内の輝度値の平均値とを比較し、前記砲弾発射後の輝度値の平均値を砲弾発射前の輝度値の平均値で除した値が、予め定めた所定の値以下となった場合に砲口火炎が消失したと判定することを特徴とする請求項1記載の弾着発光点検出装置。
A muzzle flame extinction circuit that determines whether or not the muzzle flame has disappeared,
The muzzle flame extinguishing circuit compares the average value of the luminance value in the image plane of the frame after the bullet is fired with the average value of the luminance value in the image plane of the frame before the bullet is fired. 2. The muzzle flame is determined to have disappeared when a value obtained by dividing an average value of brightness values by an average value of brightness values before firing a bullet is equal to or less than a predetermined value. The impact light emitting point detection device described.
前記弾着発光開始判定回路は、次の式(1)に基づき、砲弾が着弾して発光を開始したか否かを判定することを特徴とする請求項1記載の弾着発光点検出装置。

Figure 0006048194
2. The impact light emission point detection device according to claim 1, wherein the impact light emission start determination circuit determines whether or not a bullet has landed and started light emission based on the following equation (1).

Figure 0006048194
前記砲口火炎消失回路は、次の式(2)に基づき、砲口火炎が消失したか否かを判定することを特徴とする請求項2記載の弾着発光点検出装置。


Figure 0006048194
3. The impact light emitting point detecting device according to claim 2, wherein the muzzle flame extinction circuit determines whether or not the muzzle flame has disappeared based on the following equation (2).


Figure 0006048194
JP2013027233A 2013-02-15 2013-02-15 Impact light emitting point detector Expired - Fee Related JP6048194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027233A JP6048194B2 (en) 2013-02-15 2013-02-15 Impact light emitting point detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027233A JP6048194B2 (en) 2013-02-15 2013-02-15 Impact light emitting point detector

Publications (2)

Publication Number Publication Date
JP2014156945A JP2014156945A (en) 2014-08-28
JP6048194B2 true JP6048194B2 (en) 2016-12-21

Family

ID=51577923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027233A Expired - Fee Related JP6048194B2 (en) 2013-02-15 2013-02-15 Impact light emitting point detector

Country Status (1)

Country Link
JP (1) JP6048194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431234B2 (en) 2018-03-20 2022-08-30 Johnson Electric International AG Rotor assembly for DC motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677985B1 (en) * 2015-04-23 2016-11-21 국방과학연구소 Appratus and operation method for testing performance of a warhead
CN106767548B (en) * 2017-03-08 2023-07-25 长春理工大学 Device and method for detecting directivity of gun barrel in shooting state by using space three-coordinate method
CN109959499B (en) * 2017-12-26 2021-07-16 宁波方太厨具有限公司 Illumination testing device for illuminating lamp of range hood

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711398B2 (en) * 1988-07-15 1995-02-08 防衛庁技術研究本部長 Landing point confirmation device
JP3487295B2 (en) * 2001-03-21 2004-01-13 三菱電機株式会社 Image target detection device
JP5308303B2 (en) * 2009-10-16 2013-10-09 三菱重工業株式会社 Method and system for impact detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431234B2 (en) 2018-03-20 2022-08-30 Johnson Electric International AG Rotor assembly for DC motor

Also Published As

Publication number Publication date
JP2014156945A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
US8074555B1 (en) Methodology for bore sight alignment and correcting ballistic aiming points using an optical (strobe) tracer
US10648775B2 (en) Apparatus for correcting ballistic aim errors using special tracers
JP6048194B2 (en) Impact light emitting point detector
US9600900B2 (en) Systems to measure yaw, spin and muzzle velocity of projectiles, improve fire control fidelity, and reduce shot-to-shot dispersion in both conventional and air-bursting programmable projectiles
US20200200509A1 (en) Joint Firearm Training Systems and Methods
ES2628514T3 (en) Procedure and provisions to fire a firearm
JP4614783B2 (en) Shooting training system
RU2669690C1 (en) Method of correction of shooting from artillery-type weapon
EP2784518A2 (en) Projectile and projectile flight parameter measurement apparatus for a weapon
EP2746716A1 (en) Optical device including a mode for grouping shots for use with precision guided firearms
KR102279589B1 (en) Target impact measuring apparatus, warship combat system having the same, and target impact measuring method
EP3752786B1 (en) Method and system for measuring airburst munition burst point
JP5308303B2 (en) Method and system for impact detection
KR101912754B1 (en) Shooting and display system for shooting target
JP2011163589A (en) Guided flying object device
US20160018196A1 (en) Target scoring system and method
KR102151340B1 (en) impact point detection method of shooting system with bullet ball pellet
KR102494977B1 (en) Method and apparatus for analyzing kill ratio of CIWS
KR20220139725A (en) Apparatus and method for calculating kill ratio of CIWS
TWI526668B (en) A method of capturing the coordinates of a complex spot
WO2024144520A1 (en) Air ground gunnery visual scoring method
JP3505334B2 (en) Device for identifying flying warheads
WO2009094004A1 (en) Methodology for bore sight alignment and correcting ballistic aiming points using an optical (strobe) tracer
EP2976593A2 (en) Apparatus for correcting ballistic errors using laser induced fluorescent (strobe) tracers
JPH06137791A (en) Method and apparatus for monitoring image shooting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6048194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees